 Learning with Mixtures of Trees
 Marina Meila, Michael I. Jordan;
1(Oct):148, 2000.
[abs]
[pdf]
[ps.gz]
[ps]
[html]

 Dependency Networks for Inference, Collaborative Filtering, and Data Visualization
 David Heckerman, David Maxwell Chickering, Christopher Meek, Robert Rounthwaite, Carl Kadie;
1(Oct):4975, 2000.
[abs]
[pdf]
[ps.gz]
[ps]
[html]

 Learning Evaluation Functions to Improve Optimization by Local Search
 Justin Boyan, Andrew W. Moore;
1(Nov):77112, 2000.
[abs]
[pdf]
[ps.gz]
[ps]

 Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers
 Erin L. Allwein, Robert E. Schapire, Yoram Singer;
1(Dec):113141, 2000.
[abs]
[pdf]
[ps.gz]
[ps]

 SVMTorch: Support Vector Machines for LargeScale Regression Problems
(Kernel Machines Section)
 Ronan Collobert, Samy Bengio;
1(Feb):143160, 2001.
[abs]
[pdf]
[ps.gz]
[ps]
[html]

 Lagrangian Support Vector Machines
(Kernel Machines Section)
 O. L. Mangasarian, David R. Musicant;
1(Mar):161177, 2001.
[abs]
[pdf]
[ps.gz]
[ps]
[html]

 Regularized Principal Manifolds
(Kernel Machines Section)
 Alexander J. Smola, Sebastian Mika, Bernhard Schölkopf, Robert C. Williamson;
1(Jun):179209, 2001.
[abs]
[pdf]
[ps.gz]
[ps]

 Sparse Bayesian Learning and the Relevance Vector Machine
 Michael E. Tipping;
1(Jun):211244, 2001.
[abs]
[pdf]
[ps.gz]
[ps]

 Bayes Point Machines
(Kernel Machines Section)
 Ralf Herbrich, Thore Graepel, Colin Campbell;
1(Aug):245279, 2001.
[abs]
[pdf]
[ps.gz]
[ps]

 Tracking the Best Linear Predictor
 Mark Herbster, Manfred K. Warmuth;
1(Sep):281309, 2001.
[abs]
[pdf]
[ps.gz]
[ps]

 Prior Knowledge and Preferential Structures in Gradient Descent Learning Algorithms
 Robert E. Mahony, Robert C. Williamson;
1(Sep):311355, 2001.
[abs]
[pdf]
[ps.gz]
[ps]
