On the Characterization of a Class of Fisher-Consistent Loss Functions and its Application to Boosting

Matey Neykov, Jun S. Liu, Tianxi Cai; 17(70):1−32, 2016.


Accurate classification of categorical outcomes is essential in a wide range of applications. Due to computational issues with minimizing the empirical 0/1 loss, Fisher consistent losses have been proposed as viable proxies. However, even with smooth losses, direct minimization remains a daunting task. To approximate such a minimizer, various boosting algorithms have been suggested. For example, with exponential loss, the AdaBoost algorithm (Freund and Schapire, 1995) is widely used for two- class problems and has been extended to the multi-class setting (Zhu et al., 2009). Alternative loss functions, such as the logistic and the hinge losses, and their corresponding boosting algorithms have also been proposed (Zou et al., 2008; Wang, 2012). In this paper we demonstrate that a broad class of losses, including non-convex functions, achieve Fisher consistency, and in addition can be used for explicit estimation of the conditional class probabilities. Furthermore, we provide a generic boosting algorithm that is not loss-specific. Extensive simulation results suggest that the proposed boosting algorithms could outperform existing methods with properly chosen losses and bags of weak learners.


Home Page




Editorial Board



Open Source Software




Contact Us

RSS Feed