Home Page

Papers

Submissions

News

Editorial Board

Announcements

Proceedings

Open Source Software

Search

Statistics

Login

Contact Us



RSS Feed

Ensemble Learning for Relational Data

Hoda Eldardiry, Jennifer Neville, Ryan A. Rossi; 21(49):1−37, 2020.

Abstract

We present a theoretical analysis framework for relational ensemble models. We show that ensembles of collective classifiers can improve predictions for graph data by reducing errors due to variance in both learning and inference. In addition, we propose a relational ensemble framework that combines a relational ensemble learning approach with a relational ensemble inference approach for collective classification. The proposed ensemble techniques are applicable for both single and multiple graph settings. Experiments on both synthetic and real-world data demonstrate the effectiveness of the proposed framework. Finally, our experimental results support the theoretical analysis and confirm that ensemble algorithms that explicitly focus on both learning and inference processes and aim at reducing errors associated with both, are the best performers.

[abs][pdf][bib]       
© JMLR 2020. (edit, beta)