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Abstract

Clustering is often formulated as a discrete optimizatioobfem. The objective is to find, among
all partitions of the data set, the best one according to spuméty measure. However, in the sta-
tistical setting where we assume that the finite data set éas bampled from some underlying
space, the goal is not to find the best partition of the givanpde, but to approximate the true
partition of the underlying space. We argue that the discogtimization approach usually does
not achieve this goal, and instead can lead to inconsistéieyconstruct examples which prov-
ably have this behavior. As in the case of supervised legrrhre cure is to restrict the size of
the function classes under consideration. For appropfiall” function classes we can prove
very general consistency theorems for clustering optititimaschemes. As one particular algo-
rithm for clustering with a restricted function space weddiuce “nearest neighbor clustering”.
Similar to the k-nearest neighbor classifier in supervigadring, this algorithm can be seen as a
general baseline algorithm to minimize arbitrary clustgrobjective functions. We prove that it is
statistically consistent for all commonly used clusterigective functions.

Keywords: clustering, minimizing objective functions, consistency

1. Introduction

Clustering is the problem of discovering “meaningful” groups in given datgractice, the most
common approach to clustering is to define a clustering quality funQ@jpm@and then construct an
algorithm which is able to minimize (or maximiz€),. There exists a huge variety of clustering
quality functions: theK-means objective function based on the distance of the data points to the
cluster centers, graph cut based objective functions such as ratiw natmalized cut, or various
criteria based on some function of the within- and between-cluster similaritisse @ particular
clustering quality functiorQ, has been selected, the objective of clustering is stated as a discrete
optimization problem. Given a data s& = {X,...,Xs} and a clustering quality functio@,

the ideal clustering algorithm should take into account all possible partitibtieeadata set and
output the one that minimiz&3,. The implicit understanding is that the “best” clustering can be
any partition out of the set of all possible partitions of the data set. Theigabhchallenge is then

(©2009 fbastien Bubeck and Ulrike von Luxburg.



BUBECK AND VON LUXBURG

to construct an algorithm which is able to explicitly compute this “best” clusteringdiving an
optimization problem. We will call this approach the “discrete optimization apprt@aclustering”.

Now let us look at clustering from the perspective of statistical learningryhélere we assume
that the finite data set has been sampled from an underlying data$pemmrding to some prob-
ability measurdP. The ultimate goal in this setting is not to discover the best possible partition of
the data sek;, but to learn the “true clustering” of the underlying spaceWhile it is not obvious
how this “true clustering” should be defined in a general setting (cf. votburg and Ben-David,
2005), in an approach based on quality functions this is straightforwalchoose a clustering
quality functionQ on the set of partitions of the entire data spageand define the true clustering
f* to be the partition oft which minimizesQ. In a finite sample setting, the goal is now to approx-
imate this true clustering as well as possible. To this end, we define an empiradély function
Qn which can be evaluated based on the finite sample only, and construct tiviecahgustering
fn as the minimizer of),. In this setting, a very important property of a clustering algorithm is
consistency: we require th@( f,) converges t®(f*) whenn — . This strongly reminds of the
standard approach in supervised classification, the empirical risk minimizgtjgmoach. For this
approach, the most important insight of statistical learning theory is thatier ¢o be consistent,
learning algorithms have to choose their functions from some “small” funcpagesonly. There
are many ways how the size of a function space can be quantified. Oreeeddlest ways is to use
shattering coefficients( 7, n) (see Section 2 for details). A typical result in statistical learning the-
ory is that a necessary condition for consistendylsgs(#,n)/n— 0 (cf. Theorem 2.3 in Vapnik,
1995, Section 12.4 of Devroye et al., 1996). That is, the “number aftfoms” s(#,n) in & must
not grow exponentially im, otherwise one cannot guarantee for consistency.

Stated like this, it becomes apparent that the two viewpoints described atworet compatible
with each other. While the discrete optimization approach on any given sattgrgoés to find the
best of all (exponentially many) partitions, statistical learning theory sigde restrict the set of
candidate partitions to have sub-exponential size. So from the statisticahlgéheory perspective,
an algorithm which is considered ideal in the discrete optimization setting willoduge partitions
which converge to the true clustering of the data space.

In practice, for most clustering objective functions and many data setssitretd optimization
approach cannot be performed perfectly as the corresponding ogtonizaoblem is NP hard.
Instead, people resort to heuristics and accept suboptimal solutiorsagpnoach is to use local
optimization procedures potentially ending in local minima only. This is what heppetheK-
means algorithm: even though tkemeans problem for fixeld and fixed dimension is not NP hard,
it is still too hard for being solved globally in practice. Another approach totestruct a relaxation
of the original problem which can be solved efficiently (spectral clusgagran example for this).
For such heuristics, in general one cannot guarantee how closettfistisesolution is to the finite
sample optimum. This situation is clearly unsatisfactory: in general, we neitherguarantees on
the finite sample behavior of the algorithm, nor on its statistical consistency in the limit.

The following alternative approach looks much more promising. Insteatlevhpting to solve
the discrete optimization problem over the set of all partitions, and thentiresoo relaxations
due to the hardness of this problem, we turn the tables. Directly from thetowtsenly consider
candidate partitions in some restricted clggsontaining only polynomially many functions. Then
the discrete optimization problem of minimiziri@, over 7, is not NP hard—formally it can be
solved in polynomially many steps by trying all candidate&iin From a theoretical point of view
this approach has the advantage that the resulting clustering algorithmehpstémtial of being
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consistent. In addition, this approach also has advantages in practiber tlaan dealing with
uncontrolled relaxations of the original problem, we restrict the functiossdia some small subset
Fn of “reasonable” partitions. Within this subset, we then have complete cavieothe solution of
the optimization problem and can find the global optimum. Put another way,amnal€o interpret
this approach as some controlled way to approximate a solution of the NPgtamization problem
on the finite sample, with the positive side effect of obeying the rules of statigrning theory.

This is the approach we want to describe in this paper. In Section 2 we \stliciimstruct
an example which demonstrates the inconsistency in the discrete optimizatieaeppmhen we
will state a general theorem which gives sufficient conditions for clumjesptimization schemes
to be consistent. We will see that the key point is to control the size of thaidnnclasses the
clustering are selected from. In Section 3 we will then introduce an algorithictvis able to work
with such a restricted function class. This algorithm is called nearest r@ighlstering, and in
some sense it can be seen as a clustering-analogue to the well-knoest megghbor classifier for
classification. We prove that nearest neighbor clustering is consistdet minimal assumptions
on the clustering quality function®, andQ. Then we will apply nearest neighbor clustering to a
large variety of clustering objective functions, such askhmeans objective function, normalized
cut and ratio cut, the modularity objective function, or functions baseditnnabetween cluster
similarity ratios. For all these functions we will verify the consistency of astameighbor clustering
in Section 4. Discussion of our results, also in the context of the relateduiteraan be found in
Sections 5 and 6. The proofs of all our results are deferred to thendpp@s some of them are
rather technical.

2. General (In)Consistency Results

In the rest of this paper, we consider a spac#hich is endowed with a probability measure
The task is to construct a clusterifig X — {1,...,K} on this space, whei€ denotes the number
of clusters to construct. We denote the space dfafieasurable functions frord to {1,...,K} by
H. LetQ:H — RT denote a clustering quality function: for each clustering, it tells us “hovdjoo
a given clustering is. This quality function will usually depend on the pridibaimeasureP. An
optimal clustering, according to this objective function, is a clustefing/hich satisfies

f* e argminQ(f).
feF

whereF C # is a fixed set of candidate clusterings. Now assumeRhatunknown, but that we
are given a finite sampl¥, ..., Xy € X which has been drawn i.i.d accordingto Our goal is to
use this sample to construct a clusteriiqgvhich “approximates” an optimal clusterirfg. To this
end, assume th&@, : # — R" is an estimator of) which can be computed based on the finite
sample only (that is, it does not involve any function evaluatibpg for x & {X, ..., Xa}). We then
consider the clustering

fn € argminQn(f).
feIn

Here, 7, is a subset of/, which might or might not be different frot. The general question we
are concerned with in this paper is the question of consistency: undehn edmiclitions do we know

thatQ(f) — Q(*)?
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Note that to avoid technical overload we will assume throughout this pagealtithe minima
(as in the definitions of * and f,) exist and can be attained. If this is not the case, one can always
go over to statements about functions which g&ose to the corresponding infimum. We also
will not discuss issues of measurability in this paper (readers interestedasunadility issues for
empirical processes are referred to Section 1 of van der Vaart aloeyd 996).

2.1 Inconsistency example

In the introduction we suggested that as in the supervised case, the $imefahction clasgf,
might be the key to consistency of clustering. In particular, we arguedotanizing over the
space of all measurable functions might lead to inconsistency. First ofalyauld like to prove
this statement by providing a example. This example will show that if we optimizestecing
objective function over a too large class of functions, the resulting clogeare not consistent.

Example 1 (Inconsistency in general)As data space we choose= [0,1] U [2,3], and as proba-
bility measureP we simply use the normalized Lebesgue measae X. We define the following
similarity function between points iki:

1 ifxe|0,1],ye[0,1]
s(xy)=4q1 ifxe[23],ye23
0 otherwise.

For simplicity, we consider the case where we want to construet X clusters called € and

C,. Given a clustering function fX — {0,1} we call the clusters C:= {x € X | f(x) = 0} and
Cy:={xe X| f(x) = 1}. As clustering quality function Q we use the between-cluster similarity
(equivalent tacut, see Sectiod.2 for details):

Qf) = /xecl/yeczs(X’Y) dP(X) dP(Y).

As an estimator of Q we will use the functiop @here the integrals are replaced by sums over the
data points:

Qn<f>:n(nl_1)i;lézsoq,xj>.

As setF we choose the set of all measurable partitionsXo(note that the same example also holds
true when we only look at the sgtof measurable partitions such that both clusters have a minimal
masse for somee > 0). For alln € N we setf, = F. Let X, ..., Xy € X be our training data. Now
define the functions

0 ifxe{Xy,....%}N[0,1]
F(x) = 0 ifxel0,]] and b(X) = 1 ifxe[2,3
|1 ifxe[2,3 )0 ifxe[0,05\{Xs,.... %}
1

if x € [0.5,1] \ {X1, ..., Xn}

It is obvious that @f*) = 0 and Q,(f,) = 0. As both Q and @ are non-negative, we can
conclude f € argmirg. - Q(f) and f, € argmin._; Qn(f). It is also straightforward to compute
Q(fn) = 1/16 (independently of n). Hence, we have inconsistefi¢y6 = Q(f,) /~ Q(f*) =0.
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Note that the example is set up in a rather natural way. The data spacensdnta perfect
clusters [0,1] and|2, 3]) which are separated by a large margin. The similarity function is the ideal
similarity function for this case, giving similarity 1 to points which are in the sameteiuand
similarity O to points in different clusters. The functidn is the correct clustering. The empirical
clusteringfy, if restricted to the data points, reflects the correct clustering. It is jusettiension”
of the empirical clustering to non-training points which leads to the inconsistanig. Intuitively,
the reason why this can happen is clear: the function spacmes not exclude the unsuitable
extension chosen in the example, the function overfits. This can happaundeethe function class
is too large.

2.2 Main Result

Now we would like to present our first main theorem. It shows thdt,ifs only picked out of

a “small” function classf,, then we can guarantee consistency of clustering. Before stating the
theorem we would like to recall the definition of the shattering coefficientdrciass setting. For
afunction clas¥f : X — {1,...,K} the shattering coefficient of sizeis defined as

SF.) = max [{(F0).,f0x0) | T € ).

To state our theorem, we will also require a pseudo-distdegween functions. A pseudo-distance
is a dissimilarity functiord : X x X — R™ which is symmetric, satisfies the triangle inequality and
the conditionf =g = d(f,g) = 0, but not necessarily the conditidiif,g) =0 — f =g. For
distances between sets of functions we use the standard conve(io) = infsc s gc5d(f,Q).
Our theorem is as follows:

Theorem 1 (Consistency of a clustering optimizing schemellet (X,)nen be a sequence of ran-
dom variables which have been drawn i.i.d. according to some probabiliguneP on some sex’.
Let Fn:= Fa(X1,...,X%n) C H be a sequence of function spaces, &nhd #. Letd: H x H — R be
a pseudo-distance defined 8h Let Q: H — R™ be a clustering quality function, and.Q#H — R™
an estimator of this function which can be computed based on the finite sanfypl&ioally let

%:: U Fn.

Xq,..., % €RY

Define the true and the empirical clusterings as

f* e argminQ(f),
feF

fn € argminQn(f).
fefn
Assume that the following conditions are satisfied:

1. Qu(f) is a consistent estimator of(®) which converges sufficiently fast for allef 7, :

e >0, S(%n,20) SUpP(|Qn(f) — Q(f)| > €) = O,
feFn

661



BUBECK AND VON LUXBURG

2. T, approximatesF in the following sense:

(i) vfe F,d(f, Fn) — Oin probability,
(i) P(fng F)—0.

3. Qis uniformly continuous with respect to the pseudo-distance d betee 7:

Ve > 033(g) > O such thatv'f € 7 Vg€ T : d(f,g) <d(¢) = |Q(f)—Q(g)| <e.

Then the optimization scheme is weakly consistent, thatfis)@-> Q(f*) in probability.

This theorem states sufficient conditions for consistent clustering sshémthe context of the
standard statistical learning theory, the three conditions in the theorerathes natural. The first
condition mainly takes care of the estimation error. Implicitly, it restricts the sizeeofunction
class ¥, by incorporating the shattering coefficient. We decided to state condition 1simatiner
abstract way to make the theorem as general as possible. We will seedatédrdan be used in
concrete applications. Of course, there are many more ways to specffizéhef function classes,
and many of them might lead to better bounds in the end. However, in thiswa@e not so much
concerned with obtaining the sharpest bounds, but we want to demertseageneral concept (as
the reader can see in appendix, the proofs are already long endngtsinsple shattering numbers).
The second condition in the theorem takes care of the approximationletrotively it is clear that
if we want to approximate solutions iff, eventually 7, needs to be “close” tgf. The third
condition establishes a relation between the quality fund@and the distance functiogh if two
clusteringsf andg are close with respect W, then their quality value®(f) andQ(g) are close,
too. We need this property to be able to conclude from “closeness” agiditi@m 2 to “closeness”
of the clustering quality values.

Finally, we would like to point out a few technical treats. First of all, note thatfunction
class#, is allowed to be data dependent. Secondly, as opposed to most results iicainnigik
minimization we do not assume th@}, is an unbiased estimator Qf (that is, we allowEQ,, # Q),
nor doedQ need to be “an expectation” (that is, of the fo@af) = E(Q(f, X)) for someQ). Both
facts make the proof more technical, as many of the standard tools (symmetrizatizentration
inequalities) become harder to apply. However, this is necessary sinoe doriext of clustering
biased estimators pop up all over the place. We will see that many of the pojustering objective
functions lead to biased estimators.

3. Nearest Neighbor Clustering—General Theory

The theorem presented in the last section shows sufficient conditiors whith clustering can be
performed consistently. Now we want to present a generic algorithm whitle used to minimize
arbitrary clustering objective functions. With help of Theorem 1 we can gineve the consistency
of its results for a large variety of clustering objective functions.

We have seen that the key to obtain consistent clustering schemes is to itfoaawappropriate
function class. But of course, given quality functid@andQ,, the question is how such a function
space can be constructed in practice. Essentially, three requiremeat®Heevsatisfied:

e The function spacef, has to be “small”. Ideally, it should only contain polynomially many
functions.
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e The function spacé#y, should be “rich enough”. In the limit — o, we would like to be able to
approximate any (reasonable) measurable function.

e We need to be able to solve the optimization problem argmirQ,(f). This sounds trivial at
first glance, but in practice is far from easy.

One rather straightforward way to achieve all requirements is to use tdarspace of piece-
wise constant functions. Given a partitioning of the data space in small eedlgnly look at
clusterings which are constant on each cell (that is, the clustering sphtsra cell). If we make
sure that the number of cells is only of the order(lng then we know that the number of clus-
terings is at mosK'°9(" = n'°9(K) which is polynomial im. In the following we will introduce a
data-dependent random partition of the space which turns out to bewevgnient.

3.1 Nearest Neighbor Clustering—The Algorithm

We will construct a function clas$, as follows. Given a finite sampl, ..., X, € RY, the number

K of clusters to construct, and a numbare N with K < m < n, randomly pick a subset oh
“seed points”Xs, ..., Xs,. Assign all other data points to their closest seed points, that is for all
j =1,...,mdefine the seZ; as the subset of data points whose nearest seed poigt is1 other
words, the setgy,...,Zy, are the Voronoi cells induced by the seefis ..., Xs,. Then consider

all partitions ofX;, which are constant on all the sets, ..., Zy,. More formally, for given seeds we
define the seff, as the set of all functions

Fo={f:X—-{1... K}|Vj=1..mVzZeZ:f(z)=1(Z)}

Obviously, the function clas$, containsK™ functions, which is polynomial im if the numbem

of seeds satisfiam € O(logn). Given ¥, the most simple polynomial-time optimization algorithm
is then to evaluat®,(f) for all f € 7, and choose the solutiofy, = argming . ¢ Qn(f). We call
the resulting clustering theearest neighbor clusteringnd denote it by NNQGQ,,). The entire algo-
rithm is summarized in Figure 1. We have already published results on the eahpgiformance

Nearest Neighbor Clustering NNCQp), haive implementation

Parameters: number K of clusters to construct, number m € N of seed points
to use (With K<mwn), clustering quality function Q

Input: data set X,={Xg,...,X}, distances dj=d(X,X;)
e Subsanple m seed points fromthe data points, wthout replacenent.

e Build the Voronoi deconposition Zi,...,Zn of X, based on the distances
dij using the seed points as centers

o Define Fni={f: X, — {1...,K}|f constant on all cells Z;}

e For all fe %, evaluate Qu(f).

Output:  f, 1= argming 4 Qn(f)

Figure 1: Nearest neighbor clustering for a general clustering obgeftthctionQy,.
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of the algorithm in von Luxburg et al. (2008), and more results can haedfguSection 3 of Jegelka
(2007). We have found that on finite samples, the algorithm performsisiagly well in terms

of quality function: usingn= logn seed points, the objective function values obtained at the solu-
tions are comparable to theseloimeans or spectral clustering, respectively. Moreover, there exist
efficient ways to computé, using branch and bound methods. Using these methods, the running
time of nearest neighbor clustering usimg= logn seeds is roughly comparable to the one of the
other clustering algorithms. See von Luxburg et al. (2008) and Jegelia¥]) for details on the
experimental results.

3.2 Consistency of Nearest Neighbor Clustering (General Statemgn

Now we want to prove that nearest neighbor clustering is consistent. ilNgee that even though
we can rely on Theorem 1, the consistency proof for nearest naighistering does not come
for free. Letf : X — {1,...,K} be a clustering function. In the following, we will often use the
notation fi for the indicator function of th&-th cluster:

This is a slight abuse of notation, as we already reserved the notigtion the minimizer of the
empirical quality function. However, from the context it will always be clehether we will refer
to f, or fy, respectively, as we will not mix up the lettemgfor the sample size) arkl (a cluster
index).

As distance function between two clusterings we use the 0-1-loss

d(f,g) := P(f(X) £ g(X)[Xe, ..., %)

Here the conditioning is needed for the cases where the functiong are data dependent. Note
that in clustering, people often consider a variant of this distance whicdependent with respect
to the choice of labels, that is they choalé , g) := minP(f(X) # 1(g(X))|X1,. .., Xn), WhereTt
runs over all permutations of the sft, ..., K}. However, we will see that for our purposes it does
not hurt to use the overly sensitive 0-1 distance instead. The main reast & the end of the
day, we only want to compare functions based on their quality values, wloictot change under
label permutations. In general, the theorems and proofs could also benvimitterms ofd. For
better readability, we decided to stick to the standard 0-1 distance, though.

We will see below that in many cases, even in the limit case one would like to usetoh
spaceF which is a proper subset of. For example, one could only be interested in clusterings
where all clusters have a certain minimal size, or where the functions sa&gfgin regularity
constraints. In order to be able to deal with such general function spaeewill introduce a tool
to restrict function classes to functions satisfying certain conditions. Tetuslet

d:H >R

be a functional which quantifies certain aspects of a clustering. In messcae will use func-
tionals® which operate on the individual cluster indicator functidpsFor example®( fy) could
measure the size of clustkeror the smoothness of the cluster boundary. The function glas4l
then be defined as

F={feH|d(fy) >aforallk=1,...,K},
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wherea > 0 is a constant. In general, the functiogakcan be used to encode our intuition about
“what a cluster is”. Note that this setup also includes the general cage-of#, that is the case
where we do not want to make any further restrictionsfonfor example by setting(fx) = 1,
a=0. As itis the case fo, we will usually not be able to compute on a finite sample only.
Hence we also introduce an empirical countergartvhich will be used in the finite sample case.

The following theorem will state sufficient conditions for the consistencyezrest neighbor
clustering. For simplicity we state the theorem for the c&ise RY, but the proofs can also be
carried over to more general spaces. Also, note that we only state therthéw the casd > 2; in
cased = 1 the theorem holds as well, but the formulas look a bit different.

Theorem 2 (Consistency of nearest neighbor clusteringlet X =R%, d > 2, Q: H — R* be a
clustering quality function, and Q # — R* an estimator of this function which can be computed
based on the finite sample only. Similarly, et # — R*, and®, : # — R* an estimator of this
function. Let a> 0 and (an)nen be such that @> a and & — a. Let m=m(n) < n < N. Finally,
denote df,g) the 0-1-loss, and let NN X) be the nearest neighbor of x among X. , Xy, according

to the Euclidean distance. Define the function spaces

F:={f:RY—{1,...,K} | f continuous a.e. andk € {1,...,K} ®(f)> a}
Foi= {F 1R {1, K} | £(X) = F(NNn(X)) andVk € {1,...,K} ®n(f) > an}

Fni= U Fn

X1,..., Xn€RY

Fo 1= {f:RY— {1,...,K} | 3 Voronoi partition of m cells: f constant on all ce}ls
Assume that the following conditions are satisfied:

1. Qu(f) is a consistent estimator of(®) which converges sufficiently fast for all

feFn:
Ve > 0,K™(2n) ™ supP(|Qn(f) — Q(f)| > €) — 0,
fefn

2. ®,(fy) is a consistent estimator df( fi) which converges sufficiently fast for allf 7, -

e > 0,K™(2n) @™ supP (|dy( fi)) — D(fi)| > €) — O,
feTn

3. Qis uniformly continuous with respect to the pseudo-distarfi€egl betweenf and Fn, @S
defined in Condition3) of Theoremt,

4. d(f) = d(fy) is uniformly continuous with respect to the pseudo-distarideg) between
F and F,, as defined in Conditior3j of Theorert,

5. &, decreases slowly enough to a:

K™(2n) (@™ sup P(®n(gk) — P(0k) > a0 —a) — 0,
g€ Fn .k
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6. M— oo,

Then nearest neighbor clustering based on m seed points using quabttiofu, is weakly con-
sistent, that is for f € argmin,_+ Qn(f) and f* € argmin_+ Q(f) we have Q@f,) — Q(f*) in
probability.

This theorem is still rather abstract, but pretty powerful. In the followingailedemonstrate
this by applying it to many concrete clustering objective functions. To detinelgjective functions,
we will from now on adopt the conventiory0= 0.

4. Nearest Neighbor Clustering with Popular Clustering Objctive Functions

In this section we want to study the consistency of nearest neighbor rahgstehen applied to
particular objective functions. For simplicity we assume in this sectionthatRd.

4.1 NNC Using theK-means Objective Function

The K-means objective function is the within-cluster sum of squared distanabed &VSS for
short. To define it properly, for a given clustering functibn R — {1,...,K} we introduce the
following quantities:

1 n K
WSS(1)=1 3 Z X) 1% — cnll? where
e 11 fil (X)X and =13 f(%)
kn—nknzlk k'_ni;k
Ef (X)X
) _ Ef(X)X
WSS(f) = [EZ fie (X)X — e where % )

Here, WS§ plays the role of), and WSS the role d. Let us point out some important facts. First
the empirical quality function is not an unbiased estimator of the true one, thaV8S, # WSS
and Eckn # ¢« (note that in the standard treatmentkofmeans this can be achieved, but not on
arbitrary function classes, see below for some discussion). Hovalegst we havény = [E fi(X)
and[E1 St f(Xi)X = Efc(X)X. Moreover, one should remark that if we define WSB) := WSS
then WS$ WSS -, Pn) wherePj, is the empirical distribution.

Secondly, our setup for proving the consistency of nearest neigiibstering with the WSS
objective function is considerably more complicated than proving the consjstaf the global
minimizer of theK-means algorithm (e.g., Pollard, 1981). The reason is that fdf threeans algo-
rithm one can use a very helpful equivalence which does not holddfarast neighbor clustering.
Namely, if one considers the minimizer of WS8 the space odll possible partitionsthen one can
see that the clustering constructed by this minimizer always builds a Vorantitign withK cells;
the same holds in the limit case. In particular, given the cluster cetitgiene can reconstruct the
whole clustering by assigning each data point to the closest cluster cAster.consequence, to
prove the convergence Bfmeans algorithms one usually studies the convergence of the empirical
cluster centersy , to the true centers,. However, in our case this whole chain of arguments breaks
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down. The reason is that the clusters chosen by nearest neighbericggom the setf, are not
necessarily Voronoi cells, they do not even need to be convex (atecbuare composed by small
Voronoi cells, but the union of “small” Voronoi cells is not a “large” Vo cell). Also, itis not the
case that each data point is assigned to the cluster corresponding tostist claster center. It may
very well happen that a pointbelongs to clusteg;, but is closer to the center of another cluster
than to the center of its own clust€r. Consequently, we cannot reconstruct the nearest neighbor
clustering from the centers of the clusters. This means that we canneegtodhe convergence of
centers, which makes our proof considerably more involved than thefahe standark-means
case.

Due to these technical problems, it will be of advantage to only consideecsushich have a
certain minimal size (otherwise, the cluster quality function WSS is not uniforomyituous). To
achieve this, we use the functionals

CDwss( fk) = [Efk(X), cDWS&“k) = nk(f).

and will only consider clusterings whefe(fy) > a > 0. In practice, this can be interpreted as a
simple means to avoid empty clusters. The consdaran be chosen so small that its only effect is
to make sure that each cluster contains at least one data point. Thepoodigy function spaces
are

F:={f:RY—{1,... K} | f continuous a.e. andk € {1,...,K} Dwss(fx) > a}
Foim {F 1R {1, K} | £(X) = F(NNm(X)) and¥k € {1,....K} Pwss,(fo) > an}

Moreover, for technical convenience we restrict our attention to fibtyameasures which have
a bounded support inside some large ball, that is which satisfyisupp(0,A) for some constant
A > 0. Itis likely that our results also hold in the general case, but the proafdiget even more
complicated. With the notation of Theorem 2 we have:

Theorem 3 (Consistency oNNC(WSS)) Assume thata> a,a, — a,m— o and

m?logn

0.
n(a—an)? -

Then for all probability measures oR® with bounded support, nearest neighbor clustering with
WSSis consistent, that is if > c0 thenWSS f,,) — WSS *) in probability.

This theorem looks very nice and simple. The conditionsgandm are easily satisfied as
soon as these quantities do not converge too fast. For example, if we define

—a+i and m=logn
& = logn —'od

then
mlogn  (logn)®
= — 0.
n(a, — a)2 n
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Moreover, it is straightforward to see from the proofs that this theorestilizvalid if we con-
sider the objective functions W§&nd WSS with| - || instead ofi| - ||%. It also holds for any other
norm, such as thp-normsj| - ||,. However, it does not necessarily hold for powers of norms (in this
sense, the squared Euclidean norm is an exception). The proof #iiviise most crucial property
is

1% — Cnl| = [[% — el < const [[exn — o]

This is straightforward if the triangle inequality holds, but might not be péeséils general powers
of norms.

By looking more carefully at our proofs one can state the following rat@o¥ergence:

Theorem 4 (Convergence Rate foNNC(WSS)) Assume thasuppP C B(0,A) for some constant
A>0and that rfa, —a)2 — «. Lete < 1and & := infg Ef}(X) —a> 0. Then there exists :

N =N((an),a") € N,
Ci =Ci(a,a",g,K,A) >0, C, =Cy(a,a",g,A f*,P) >0,
Cs =C3(a,d,g,K,A) >0, C4 =Cy(a,d,A) >0

such that for n> N the following holds true:

P(IWSS fn) ~WSS(f")] > ¢)

< Crer M4 KM (2n) (Cse‘%z” +8Ke "% a)2> .

At first glance, it seems very tempting to try to use the Borel-Cantelli lemma toftramshe
weak consistency into strong consistency. However, we do not hagrpdicit functional form of
dependency of; on €. The main reason is that in Lemma 11 (Appendix) the condigtwill be
defined only implicitly. If one would like to prove strong consistency of nsamneighbor clustering
with WSS one would have to get an explicit formlg€) in Lemma 11

For a general discussion relating the consistency result of (WW&S) in to the consistency
results by Pollard (1981) and others see Section 5.

4.2 NNC Using Standard Graph-cut Based Objective Functions

In this section we want to look into the consistency of nearest neighbdedhg for graph based
objective functions as they are used in spectral clustering (see vdmltgy2007 for details). Let
s: R4 x RY — R* be a similarity function which is upper bounded by a cons@rfhe two main
guantities we need to define graph-cut based objective functions acatthad the volume. For a
given cluster described by the cluster indicator functipnR? — {0, 1}, we set

cut( fy) := cut(fy, P) := Efi(X1) (1 — fu(X2))s(X1,X2),
vol( fx) :=vol(fx, P) := Efx(X1)s(X1, X2).
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For f € # we can then define the normalized cut and the ratio cut by

cut( fk)
,Vol( i)’

Ncut(f) := Ncut(f,P) := z

RatioCut f ) := RatioCut f, P) z

The empirical estimators of these objective functions will be NEti,) and RatioCutf, Py), in
explicit formulas:

cut(f) := n(nl_ 5 i,,i_lfk“)(l‘ F (X)X, %),
n 1k
vol,(fy) := i 1) | le fi(X)s(Xi, Xj), N ;= = i; (X%
Ncuty(f) == kzl\(jzlt:gt;’ RatioCuh(f) := kilcut:]ifk).
Again we need to define how we will measure the size of the clusters. We will us
Peyi( fx) 1= vol(fy), ®Pneut( k) := vol(fy), Pratiocuf fk) := Efk(X).

with the corresponding empirical quantiti®gy, , Pncut, aNdPratiocur,- Then, with the notations of
Theorem 2, we have:

Theorem 5 (Consistency oNNC(cut), NNC(Ncut) and NNC(RatioCu}) Assume that the simi-
larity function s is bounded by a constant€0, let &, > a, a, — a, m— o and
mélogn
n(a—ay)?2
Then nearest neighbor clustering witht Ncutand RatioCutis universally weakly consistent, that

is for all probability measures, if A~ o we havecut( f,) — cut(f*), Ncut(f,) — Ncut(f*) and
RatioCut f,) — RatioCut f*) in probability.

— 0.

For these objective functions one can also state a rate of convergenaake of shortness we only
state it for the normalized cut:

Theorem 6 (Convergence Rate foNNC(Ncut)) Assume that the similarity function s is bounded
by C> 0 and that rfa, — a)? — . Lete < 1and & := infxvol(f;) —a> 0. Then there exist

N =N((an),a") €N,
C1 =C4(a,a",¢,K,C) >0, C, =Cy(a,a",e,C,K, f*,P) >0,
Cs=Cs(a,,K,C) >0, Cs=C4(a,K,C) > 0.

such that for n> N the following holds true:
P(|Ncut(f,) — Ncut(f*)| > ¢€)

< Cle7C2m + |<m+l(2n)(d+1)r’r12 <C3ec452n L 8Ke n(ansa)Z) .
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4.3 NNC Using the Modularity Objective Function

A slightly different objective functions for graph clustering is the “modityédy which has been put
forward by Newman (2006) for detecting communities in networks. In thigpalpe modularity is
formulated as an objective function to find communities in a finite graph. Hawasst is the case
for Ncut or RatioCut, the modularity cannot be directly minimized. Insteagheatsal relaxation
has been developed to minimize the modularity, see Newman (2006) for detditoude, the
nearest neighbor clustering algorithm can also be used to minimize this objiatstion directly,

without using a relaxation step. Using our own notation we define:

Mod,(f) =
n 1 l
k; nn 1) i; fi (%) f(Xj) (m_l)zl;iS(K,N)LéjS(XJ,X.)—s(xhxj)> ’
Mod(f) =
n f f , d , d - ’ d ).
k;// k(X) f(Y) (/s(x 2) [P(Z)/S(Y Z)dP(Z) — s(X Y)> (P xP)(X,Y)

In the proof we will see that as the limit function MEdis uniformly continuous or#, we do not
need to quantify any functio® or ®, to measure the volume of the clusters. The function classes
are thus

F:={f:RY— {1,...,K}| f continuous a.e,
Fai={f:RI—={1,...,K}| f(X) = F(NNp(X))}.

Theorem 7 (Consistency oNNC(Mod)) Assume that m- « and

m?logn o

Then nearest neighbor clustering wikiod is universally weakly consistent: for all probability
measures, if A~ o thenMod( f,) — Mod( f*) in probability.

4.4 NNC Using Objective Function Based on the Ratio of Within-clusteand
Between-cluster Similarity

Often, clustering algorithms try to minimize joint functions of the within-cluster similaaitg the
between cluster similarity. The most popular choice is the ratio of those twditiegsnwhich is
closely related to the criterion used in Fisher linear discriminant analysisndHyy the between-
cluster similarity corresponds to the cut, and the within similarity of clustemiven by

WS =Lf (Xl) f (Xz)S(Xl, Xz).
Thus the ratio of between- and within-cluster similarity is given as

K cut(fy)
k:1WS( fi) '

BWR(f) =
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Again we use their empirical estimations:

WSh(fi) = Z (%) fi (X)) (X3, X ),

|11

BWRy( f Z C“““ K
k

To measure the size of the cluster we use

Pewr( fi) == WS(fk)
and its natural empirical counterpart. This leads to function spaces

F:={f:RY—{1,... K} | f continuous a.e. andk € {1,...,K} ®Pawr(fx) > a},
Fai= {F RO {1, K} | F(X) = F(NNu(X)) and¥k € {1,...,K} ®awr,(fQ) > an).

Theorem 8 (Consistency oNNC(BWR)) Assume that the similarity function s is bounded by a
constantC> 0, let &, > a,a, — a,m — o and

m?logn
n(a—an)? -

Then nearest neighbor clustering wifWR is universally weakly consistent, that is for all proba-
bility measure if n— o thenBWR( f,) — BWR(f*) in probability.

5. Relation to Previous Work

In this section we want to discuss our results in the light of the existing literamreonsistent
clusterings.

5.1 Standard Consistency Results for Center-based Algorithms

For a few clustering algorithms, consistency results are already knovine. nfost well-known
among them is th&-means algorithm. For this algorithm it has been first proved by PollardL}198
that the global minimizer of th&-means objective function on a finite sample converges to the
global minimizer on the underlying space.

First of all, we would like to point out that the consistency result by Pollag81) can easily
be recovered using our theorems. Let us briefly recall the stakdandans setting. The objective
function whichK-means attempts to optimize is the function WSS, which we already encountered
in the last sections. In the standafdmeans setting the optimization problem is stated over the
space of all measurable functiofi&

f* =argminWSgf).
feH

It is not difficult to prove that the solutiofi* of this optimization problem always has a particular
form. Namely, the solutiorf* forms a Voronoi decompaosition of the space, where the cluster
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centerscy are the centers of the Voronoi cells. Thus, we can rewrite the optimizatidobgon above
equivalently as

f* = argminWSSf)
fegk
whereGg denotes the set of all clusterings for which the clusters are Voronoi @élésoptimization
problem for the finite sample case can be stated analogously:

fn = argminWSS,(f).
fegk

So in this particular case we can sgt = ¥ = Gk. This means that even though the original
optimization problem has been set up to optimize over the hug# stite optimization only needs
to run over the small s&jk. It is well known that the shattering coefficientgg is polynomial inn,
namely it is bounded biKn(@+1K* (cf. Lemma 10). Moreover, the uniform continuity of WSS on
Gk (Condition (3) of Theorem 2) can easily be verified if we assume that titeapility distribution
has compact support. As a consequence, using similar techniques aplindfseeof Theorem 3 we
can prove that the global minimizer of the empirigaineans objective function Wg$onverges
to the global minimizer of the truké-means objective function WSS. By this we recover the well-
known result by Pollard (1981), under slightly different assumptionshis sense, our Theorem 1
can be seen as a blueprint for obtaining Pollard-like results for moregearigective functions and
function spaces.

Are there any more advantages of Theorem 3 inkhmeans setting? At first glance, our result
in Theorem 3 looks similar to Pollard’s result: the global minimizers of both objdtinctions
converge to the true global minimizer. However, in practice there is one inmpalitéerence. Note
that as opposed to many vector quantization problems (cf. Garey et a2), I8@imizing thek-
means objective function is not NP-hardrinthe solution is always a Voronoi patrtition, there exist
polynomially many Voronoi partitions af points, and they can be enumerated in polynomial time
(cf. Inaba et al., 1994). However, the size of the function clgsss still so large that it would
take too long to simply enumerate all its functions and select the best one. Naveelill see
in Lemma 10 that the number of Voronoi partitions ropoints inRY usingK cells is bounded
by n@tDK which is huge even for moderateand K. As a work-around in practice one uses
the well-knownK-meansalgorithm, which is only able to find docal minimum of WSS(f). In
contrast, nearest neighbor clustering works with a different functi@ssowhich is much smaller
than G: it has only sizen'®9€, On this smaller class we are still able to compute ghabal
minimum of WSS(f). Consequently, our result in Theorem 3 is not only a theoretical statement
about some abstract quantity as it is the case for Pollard’s result, bupliespo the algorithm
used in practice. While Pollard’s result abstractly states that the global minijwhinoh cannot
be computed efficiently) converges, our result implies that the resultaseaeneighbor clustering
does converge.

5.2 Consistency of Spectral Clustering

In the previous section we have seen in Theorems 5 and 6 that NNC isteon$is all the standard
graph cut objective functions. Now we want to discuss these resultsimection with the graph cut
literature. Itis well known that the discrete optimization problem of minimizing NouRatioCug

is an NP-hard problem, see Wagner and Wagner (1993). Howeyeoxamate solutions of relaxed
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problems can be obtained by spectral clustering, see von Luxbur@)(& tutorial. Consistency
results for spectral clustering algorithms have been proved in von kgxdual. (2008). These
results show that under certain conditions, the solutions computed byapgastering on finite
samples converge to some kind of “limit solutions” based on the underlyingodistm. In the light
of the previous discussions, this sounds plausible, as the space of seloftigpectral clustering is
rather restricted: we only allow solutions which are eigenfunctions of ieirigegral operators.
Thus, spectral clustering implicitly works with a small function class.

However, it is important to note that the convergence results of spelitsadéing do not make
any statement about the minimizers of Ncut (a similar discussion also holdsafw@rt). The
problem is that on any finite sample, spectral clustering only solves a tiglaxat the original
problem of minimizing Ncuyt. The Ncug-value of this solution can be arbitrarily far away from
the minimal Ncut-value on this sample (Guattery and Miller, 1998), unless one makes cestain a
sumptions which are not necessarily satisfied in a standard statistical sefting§pielman and
Teng, 1996, or Kannan et al., 2004). Thus the convergence statefoetite results computed by
the spectral clustering algorithm cannot be carried over to consistesaojts for the minimizers
of Ncut. One knows that spectral clustering converges, but one mimehave any guarantee about
the Ncut-value of the solution. Here our results for nearest neighbstecing present an improve-
ment, as they directly refer to the minimizer of Ncut. While it is known that spectustering
converges to “something”, for the solutions computed by nearest neighlstering we know that
they converge to the global minimizer of Ncut (or RatioCut, respectively).

5.3 Consistency of Other Clustering Schemes

To the best of our knowledge, apart from results on center-basedthlgs and spectral clustering,
there are very few non-parametric clustering algorithms for which statistizadistency has been
proved so far. The only other major class of algorithms for which congigteas been investigated
is the class of linkage algorithms. While single linkage can be proved to betitdrally consistent”,
that is it can at least discover sufficiently distinct high-density regioot) bomplete and average
linkage are not consistent and can be misleading (cf. Hartigan, 198%).18 more general method
for hierarchical clustering used in Wong and Lane (1983) is statisticaligistent, but essentially
first estimates the density and then constructs density level sets basedestithitor.

Concerning parametric clustering algorithms, the standard setting is a maael-approach.
One assumes that the underlying probability distribution has a certain paiafoetr (for example
a mixture of Gaussians), and the goal is to estimate the parameters of the tiistriltam the sam-
ple. Estimating parameters in parametric models has been intensively investigatatistics, in
particular in the maximum likelihood framework and the Bayesian frameworlaff@verview how
this can be done for clustering see Fraley and Raftery, 1998, or ttkd\bclcachlan and Peel, 2004).
Numerous consistency results are known, but typically they require &t underlying distribu-
tion indeed comes from the model class under consideration. For examgBairesian setting one
can show that in the large sample limit, the posterior distribution will concentratendrthe true
mixture parameters. However, if the model assumptions are not satisfiedec@xamples to con-
sistency can be constructed. Moreover, the consistency results mergiooee are theoretic in the
sense that the algorithm used in practice does not necessarily achievesttamdard approaches to
estimate mixture parameters are the EM algorithm (in a frequentist of MAP setiinigy example
Markov Chain Monte Carlo sampling in a fully Bayesian approach. Howesgett is the case for
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the K-means algorithm, these methods can get stuck in local optima, and no camsetgpwards
the global optimum can be guaranteed. Another way to tackle model-basteritlg problems is
based on the minimum message length or minimum description length principle. Tidarstaef-
erence for MML approaches to learn mixtures is Figueiredo and Jai)2@0 a general overview
on MDL see Gunwald (2007). Consistency results for MML are quite similar to the onethtor
Bayesian approach: if the true distribution indeed comes from the mixture ataisthe number of
components is known, then consistency can be achieved. For gaessriddion consistency of MDL
see Sections 16 and 17.11 ini@wald (2007). Often, MML/MDL approaches are interpreted as a
particular way to work with small function classes, consisting of functionghkvban be described
in a “compact” way. In this sense, this method can also be seen as a wakie¥iag “small”
function classes.

5.4 Sublinear Time Algorithms Using Subsampling

Some algorithms related to our approach have been published in the thdamtigaiter science
community, such as Indyk (1999), Mishra et al. (2001), or Czumaj ainde® (2007). The general
idea is to use subsampling approaches to approximate clustering solutidne, @ove that these
approximations are quite accurate. Given a sample mdints, one draws a subsamplernt n
points, applies some (approximate) clustering algorithm to the subsample, eméxtends this
clustering to the remaining points. Using techniques such as concentrattpraiities, Chernoff
bounds or Hoeffding bounds, one can then prove that the resultinigchgapproximates the best
clustering on the original point set.

While at first glance, this approach sounds very similar to our nearggtbw clustering, note
that the focus in these papers is quite a different one than ours. Thersudit not aim for con-
sistent clustering solutions (that is, solutions which are close to the “trueedhgs solution” of
the underlying space ), but they want to find algorithms to approximate the dplinstgering on a
given finite sample in sublinear time. The sublinearity is achieved by the facalfeady a very
small subsample (sayn = logn) is enough to achieve good approximation guarantees. However,
our main point that it is important to control the size of the underlying functiass; is not revealed
in these papers. As the authors mainly deal Wtimeans type settings, they automatically work
with polynomial function classes of center-based clusterings, and the édsnconsistency does
not arise. Moreover, subsampling is just one way of reducing the functass to a smaller size,
there can be many others. In this sense, we believe that our “small fuctigsi approach is more
general than the subsampling approach.

Finally, one difference between our approach and the subsamplingeegbys the kind of results
of interest. We are mainly concerned with asymptotic results, and on ourchéva approximation
guarantees which are good for large sample siz&he focus of the subsampling papers is non-
asymptotic, dealing with a small or moderate sample sjzad to prove approximation guarantees
in this regime.

5.5 Other Statistical Learning Theory Approaches to Clustering

In the last years there have been several papers which started td kdoktaring from a statistical
learning theory perspective. A general statistical learning theoryoapprto clustering, based on
a very similar intuition as ours, has already been presented in Buhman®) (198re the authors
put forward an “empirical risk approximation” approach for unsusss learning, along the lines
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of empirical risk minimization for the supervised case. The setting undeidsrasion is that the
clustering quality function is an expectation with respect to the true undenyotzability distribu-
tion, and the empirical quality function is the corresponding empirical expestal hen, similar to
the statistical learning theory for supervised learning, generalizationdsozan be derived, for ex-
ample using VC dimensions. Additionally, the authors discuss regularizatoaghes and relate
them to annealing schemes for center-based clusterings.

A different approach has been investigated in Ben-David (2007)e ker author formalizes
the notion of a “cluster description scheme”. Intuitively, a clustering proltan be described by
a cluster description scheme of size N if each clustering can be described usingpints from
the space (and perhaps some additional parameter). For instance, teicéséhfor center-based
clusterings, where the clustering can be described by the centroids BahyDavid then proves
generalization bounds for clustering description schemes which showhehgtobal minimizer of
the empirical quality function converges to the global minimizer of the true qualitgtion. The
proof techniques used in this paper are very close to the ones useddarstamnimum description
length results.

Another class of results abokitmeans algorithms has been proved in Rakhlin and Caponnetto
(2007). After computing covering numbers for the underlying classesuthors study the stability
behavior ofK-means. This leads to statements about the set of “almost-minimizers” (that &t the s
of all functions whose quality is close to the one of the global optimal solutions). As opposed to
our results and all the other results discussed above, the main featuie ayfpnoach is that at the
end of the day, one is able to make statements about the clustering functimselfes, rather than
only about their quality values. In this sense, the approach in Rakhlin apdr@etto (2007) has
more powerful results, but its application is restrictedktoneans type algorithms.

All approaches outlined above implicitly or explicitly rely on the same intuition agpproach:
the function class needs to be “small” in order to lead to consistent clustetitaysever, all pre-
vious results have some restrictions we could overcome in our approashofrall, in the papers
discussed above the quality function needs to be an expectation, and tinea&mpality function
is simply the empirical expectation. Here our results are more general: wemestiuire the qual-
ity functions to be expectations (for example, Ncut cannot be expressad expectation, it is a
ratio of two expectations) nor do we require unbiasedness of the empjuakty function. Second,
the papers discussed above make statements about global optimizesnbtitehlly deal with the
guestion how such a global optimizer can be computed. The case of stéhdagans shows that
this is by no means simple, and in practice one has to use heuristics whicheditmoad optima
only. In contrast, we suggest a concrete algorithm (NNC) which comphe&eglobal optimum
over the current function class, and hence our results not only noabstract global minimizers
which are hard to obtain, but refer to exactly the quantities which are coohpytéhe algorithm.
Finally, our algorithm has the advantage that it provides a frameworke@lirg with more general
clustering objective functions than just center-based ones. This iseoa#ie in the papers above.

Finally, we would like to mention that a rather general but vague discustgonte of the open
issues in statistical approaches to clustering has been led in von Luxbtif§es-David (2005).
Our current paper partly solves some of the open issues raised there.
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6. Discussion

Our paper is concerned with clustering algorithms which minimize certain quafitstibns. Our
main point is that as soon as we require statistical consistency we havekaittofunction classes
Fn which are “small”. Our results have a similar taste as the well-known comespg results for
supervised classification. While in the domain of supervised classificatamtifgsners are well
aware of the effect of overfitting, it seems like this effect has been caetpleverlooked in the
clustering domain.

We would like to highlight a convenient side-effect of working with smalldiion classes. In
clustering, for many objective functions the problem of finding the besditipa of the discrete
data set is an NP-hard problem (for example, this is the case for all lealgraph-cut objective
functions). On the other side, if we restrict the function clgggo have polynomial size (im),
then the trivial algorithm of evaluating all functions i and selecting the best one is inherently
polynomial. Moreover, if the small function class is “close” to the large fumctifass, then the
solution found in the small function class approximates the best solution in thettioted space
of all clusterings.

We believe that the approach of using restricted function classes cagryp@nomising, also
from a practical point of view. It can be seen as a more controlled wagmdtructing approximate
solutions of NP hard optimization problems than the standard approachesabdpiimization or
relaxation. While the effects of the latter cannot be controlled in generayevable to control the
effects of optimizing over smaller function classes by carefully selecfingrhis strategy circum-
vents the problem that solutions of local optimization or relaxation heuristitbearbitrarily far
away from the optimal solution.

The generic clustering algorithm we studied in this article is nearest neighistering, which
produces clusterings that are constant on small local neighborhddsave proved that this algo-
rithm is statistically consistent for a large variety of popular clustering obgétinctions. Thus, as
opposed to other clustering algorithms such astheeans algorithm or spectral clustering, near-
est neighbor clustering is guaranteed to converge to a minimizer of the tiog giotimum on the
underlying space. This statement is much stronger than the results almeasly for K-means or
spectral clustering. Fd{-means it has been proved that the global minimizer of the WSS objec-
tive function on the sample converges to a global minimizer on the underlyamege.g., Pollard,
1981). However, as the standd¢dmeans algorithm only discovers a local optimum on the discrete
sample, this result does not apply to the algorithm used in practice. A relfi¢ed leappens for
spectral clustering, which is a relaxation attempting to minimize Ncut or Ratio©uthis class of
algorithms, it has been shown that under certain conditions the solution céléxed problem on
the finite sample converges to some limit clustering. However, this limit clusterirag iscessarily
the optimizer of the Ncut or RatioCut objective function.

It is interesting to note that the problems about the existing consistency résuksmeans
and spectral clustering are “reverse” to each other: whilekfaneans we know that the global
minimizer converges, but this result does not apply to the algorithm usecatiqe, for spectral
clustering there exist consistency results for the algorithm used in praoticthese results do not
relate to the global minimizer. For both cases, our consistency resultseap@n improvement:
we have constructed an algorithm which provably converges to the true linminimer of WSS or
Ncut, respectively. The same result also holds for a large number afiatitex objective functions
used for clustering.
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We believe that a big advantage of our approach is that both the algoriththestatistical anal-
ysis is not restricted to center-based algorithms only, as it has been #héocasost approaches
in the literature (Buhmann, 1998; Ben-David, 2007; Rakhlin and Capgmr#907). Instead, near-
est neighbor clustering can be used as a baseline method to constrtetimissfor any objective
function. In von Luxburg et al. (2008) we have shown how neareigjhibor clustering can be im-
plemented efficiently using branch and bound, and that in terms of qualitgsi#ts can compete
with algorithms of spectral clustering (for the Ncut objective functionKemeans (for the WSS
objective function). We believe that in particular for unusual objectiveefions for which no state
of the art optimizer exists yet, nearest neighbor clustering is a promisirajitso start with.
We have seen that for many commonly used objective functions, statistizedrgaes for nearest
neighbor clustering can be obtained, and we expect the same to be tmarfgrmore clustering
objective functions.

Finally, it is a fair question how statistical consistency helps in practical agipgits. Is it
any help in solving the big open issues in clustering, such as the questiolectirgg clustering
algorithms for a particular data set, or selecting the number of clusters? Igaherality, the
answer is no. In our opinion, consistency isexessaryequirement which any clustering algorithm
should satisfy. If an algorithm is not consistent, even with a high amourgdtafahe cannot rely on a
clustering constructed on a finite amount of data—and this is not due to caiopatgroblems, but
to inherent statistical problems. Such an algorithm cannot be trusted whstructing results on
a finite sample; given another sample, it might just come up with a completelyatitfelustering.
Or, the more samples one gets, the more “trivial” the solution might becomertualiped spectral
clustering is an example for such an algorithm). In this sense, consistefest isne piece of
evidence to discard unreliable clustering algorithms. In our opinion, it islvard to come up with
sufficientconditions about “what a good clustering algorithm is”. The applicatiordusitering are
just too diverse, and 50 years of clustering literature show that pedpleoragree on a unique
definition of what a good clustering algorithm is. This is the reason why Weueethat it is very
fruitful to start by studying necessary conditions first. Our currepep# meant as a contribution
to this effort.

Appendix A. All Proofs

In this section we concentrate all the proofs.

A.1 The Proof of Theorem 1

The following lemma will be central in our analysis. It allows to take a supremuinoba proba-
bility.

Lemma 9 With the notation in Theorerhwe have:

supP(|Qn(f) —Q(f)[ > €/4)

—~ fen

The proof technique is similar to the one in Devroye et al. (1996), Section TB&unusual term
in the denominator originates in the symmetrization step. In a more standard sétérgwe have
EQn = Q, this term usually “disappears” as it can be lower bounded /8; for example using
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Chebyshev’s inequality (e.g., Section 12.3 of Devroye et al., 1996)ortinfately, this does not
work in our more general case, as we do not assume unbiasednésstaad also alloiLQ,, # Q.
However, note that the ratio in Lemma 9 essentially has the fgpftl — u,). Thus, as soon as the
termu, in the numerator becomes non-trivial (i.es,< 1 or say,u, < 3/4), then the denominator
will only play the role of a small constant (it is lower bounded by 1/4). Thismsehat in the regime
where the numerator is non-trivial, the whole bound will essentially behag¢Hé numerator.
Proof First note that we can replace the data-dependent function glalsg the classF, which
does not depend on the data:

P(sup|Qn(f) —Q(f)[ =€) < P(sup|Qn(f) —Q(f)[ > ¢).
fen e
Now we want to use a symmetrization argument. To this enc;let ., X/, be a ghost sample (that
is a sample drawn i.i.d. according fowhich is independent of our first sampie, ..., X,), and
denote byQ,, the empirical quality function based on the ghost sample.
Let f € 7, be such thatQn(f) — Q(f)| > &; if such anf does not exist then just choo$eas

some other fixed function iff,. Note thatf is a data-dependent function depending on the sample
X1,...,Xn. We have the following inequalities:

P(sup|Qn(f) —Qn(f)[ > €/2)
fefn

~ ~

~

E(P(n(H)-Q

Dl 2 e, X PIQK(D) = QD) < £/2Xa,.... X))
= E(Lg,0)-oqhoePIG(D ~ QD < /2%0..... %)

>E <1Qnoqm>s inf P(IQ4()—Q(f)| < s/2|x1,...,xn)>

fej'—n

= Eigyf-qfe)t ( inf P(|Qn(f) —Q(f)| <&/2[Xq,... ,xn)>

feIn
=P(|Qn(f) —Q(F)| > s)fien;ﬂqum ~-Q(f)| <&/2)
= P(sup|Qn(f) — Q(f)| > &) inf P(IQn(f) — Q(f)| < &/2).
fes, fen

The last step is true because of the definitiorqugote that due to the definition df the event
|Qn(f) —Q(f)| > € is true iff there exists somé € #, such thatQn(f) —Q(f)| > &, which is true

—_— n — P i
iff sup; 5 |Qn(f) —Q(f)| > € (recall that we assumed for ease of notations that all supremum are

attained). Rearranging the inequality above leads to

P(sup|Qn(f) —Qu(f)| > €/2)

fefn
[P(fequn(f)_Q(f)’ >¢) < fig,;nﬂ)(lQn(f)—Q(f)! <t
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Due to the symmetrization we got rid of the quan@Qyf) in the numerator. Furthermore, using
the assumption of the theorem ti@4(f) does not involve any function evaluatiof$x) for x ¢
{X1,...,%n} we can apply a union bound argument to move the supremum in the numeratér ou
the probability:

P(suplQn(f) - Qu(f)I = €/2)

fen

< S(Fn, 2n) SUPP(|Qn(f) — Q4(1)| > €/2)
fefn

< S(n,20) SUPP(|Qn(f) — Q(F)[+]Q(F) — Qp(F)] > £/2)
fefn

< 25(n, 20) SUPP(|Qn(f) — Q(f)] > £/4).
fe?n
This completes the proof of the lemma. |

Now we are ready to prove our first main theorem.

A.2 Proof of Theorem 1

Additionally to the functiondf, and f*, we will define

fn € argminQ(f),
feFn

f* < argmind(f, f*).
feTn

To prove the theorem we have to show that under the conditions stateahyféixede > O the term
P(|Q(fn) —Q(f*)| > €) converges to 0. We can study each "side” of this convergence indepéy:

P(IQ(fn) = Q(f")[ > &) = P(Q(fn) — Q(f") < —&) + P(Q(fn) — Q(") > &).

To treat the “first side” observe thatif € ¥ thenQ(f,) — Q(f*) > 0 by the definition off *. This
leads to

P(Q(fn) —Q(f") < —&) <P(fn ¢ F).

Under Assumptiori2) of Theorem 1 this term tends to 0.
The main work of the proof is to take care of the second side. To this engliv@sf,,) —Q(f*)
in two terms, the estimation error and the approximation error:

Q(fn) —Q(f") = Q(fn) — Q(f7) + Q(fn) — Q(Y).

For a fixede > 0 we have

P(Q(fn) —Q(f") > &) <P(Q(fn) — Q(f7) > €/2) + P(Q(fy) — Q(f") > £/2).

In the following sections we will treat both parts separately.
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A.2.1 ESTIMATION ERROR

The first step is to see that

Q(fn) —Q(fy) < 2supQn(f) —Q(f)].

fefn

Indeed, sinc&n(fn) < Qn(fy) by the definition off, we have

Q(fn) —Q(fy) = Q(fn) — Qn(fn) + Qn(fn) — Qn(fy) +Qn(fy) — Q(fy)
< Q(fn) — Qn(fn) +Qn(fy) —Q(fy)
SZfSEL;p’Qn(f)_Q(f)‘-

Using Lemma 9 we obtain

SUpP(|Qn(f) — Q(f)| > £/16)
fefn

inf P(IQn(f) —Q(f)| <¢€/8)
fefn

P(Q(fn) — Q(fy) > &/2) < 25(%n, 20)

Now observe that under Assumpti¢h) the numerator of the expression in the proposition tends to
0 and the denominator tends to 1, so the whole term tends to 0

A.3 Approximation Error

By definition of f; it is clear that

<P(Q(f)—Q(f") > £/2)
< P(d(f, ) > 3(g/2)).

The right hand side clearly tends to 0 by Assumption (2).

A.4 The Proof of Theorem 2

Before proving Theorem 2, we again need to prove a few technical lenTrhadirst one is a simple
relation between the shattering coefficients of the nearest neighbdiciuctasses.

Lemma 10 Letue N and’fn and/fn be the function sets defined in Theoranthen
S(Fn, U) < S(Fn,u) < KMy@+m,
Proof The first inequality is obvious as we haﬁ C /T; For the second inequality observe that
S(Fn, U) < K™s* (7, U)
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wheres*(?n,u) is the maximal number of different wayspoints can be patrtitioned by cells of
a Voronoi partition ofm points. It is well known (e.g., Section 21.5 of Devroye et al., 1996) that
s*(Fn,u) < U@HD™ for d > 1. Note that ford = 1 a similar inequality holds, we do not consider
this case any further. [ ]

The second lemma relates a function evaluated at a gdimthe same function, evaluated at
the nearest neighbor @fin the training points. This lemma builds on ideas of Fritz (1975).

Lemma 11 Let f: X — {1,...,K} be continuous almost everywhere and
Ln 1= P(F(X) 2 f(NNm(X))[Xs, ., Xn)-

Then for everg > 0 there exists a constant te) > 0 independent of n such that

P(Lp>€) < ge*mb'(e).

Proof By B(x,6) we denote the Euclidean ball of centeand radiu. The first step of the proof
consists in constructing a certain §&{depending org) which satisfies the following statement:

For all € > 0 there exists som&(e) > 0, a measurable set @ RY and a constanf. > u > 0
such that

(@P(D)>1-¢/2

(b) ¥xe D: P(B(x,8)) >u

(c) ¥x € D the function f is constant on(B,d).

Assume we have such a &t Then using Properties (c) and (a) we can see that

< P(X ¢ DIXa, .., X) + P(X € D, [X ~NNa(X)| > 8Xa...., Xo)

< £+P(X €D,|X—NNp(X)| > 3|Xq,...,%).
Using the Markov inequality we can then see that

P(Ln>¢€) <P(P(X€D,|X=NNn(X)[>8[Xi,...,%n) > 5)
= 2P(X € D,|X — NNp(X)| > &)

= 2 [oP(Ix—=NNy(x)| > 8) dP(x).
Due to Property (b) we know that for alle D,
P(Ix—NNn(X)| >8) =P(Vi e {1,...,m},x¢ B(X,3))

= (1-P(B(x,9)))™
<(1-um.
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Settingb(¢) := —log(1—u) > 0 then leads to
P(Lh>¢€) < é[P(D)(l_ um < ée—mt@(s))_

Note that this constarie) will also be used in several of the following lemmas. To finish the proof
of the lemma we have to show how the Betan be constructed. By the assumption of the lemma
we know thatf is continuous a.e., and thatonly takes finitely many values 1.,K. This implies
that the set

C={xeRY:35>0:d(xy) <d= f(x) = f(y)}

satisfiedP(C) = 1. Furthermore, for ang > 0 we define the set
As={xeC:d(xy) <d= f(x)=f(y)}.

We haveUsAs = C, and forg > 6 we haveA; C As. This implies that given some> 0 there exists
somed(g) > 0 such thafP(Ag)) > 1—¢€/4. By construction, all points i) satisfy Property (c).

As the next step, we can see that for ev@ry 0 one hadP(B(x,d)) > 0 almost surely (with
respect t). Indeed, the séfl = {x: 38> 0:[P(B(x,0)) = 0} is a union of sets of probability zero.
So using the fact thd? is separable we see tHatU ) = 0. Thus,P(P(B(X,8)|X) > 0) = 1, which
impliesP(P(B(X,9)|X) > %) — 1. This means that gives> 0 andd > 0 there exists a sét and
a constant > 0 such thatP(A) > 1—¢/4 andVx € A,P(B(x,d)) > u. So all points inA satisfy
Property (b).

Now finally define the seD = A As(). By construction, this set has probabilRyD) > €/2,
so it satisfies Property (a). It satisfies Properties (b) and (c) bytrermtion of A and Ay ¢, respec-

tively. |

A.5 Proof of Theorem 2

To prove this theorem we will verify that the conditions (1) - (3) of Theorkare satisfied for the
function classes studied in Theorem 2.

Lemma 10 proves that Condition (1) of Theorem 2 implies Condition (1) of fidmad.. More-
over, it is obvious that Condition (3) of Theorem 2 implies Condition (3) oédriem 1.

Thus we only have to prove Condition (2) of Theorem 1. We begin byipgothat P(f, ¢
F)— 0. As f, € 7n by definition we have tha®,(fnx) > an forallk=1,...,K. A union bound
argument shows that

P(fn ¢ F) < KsupP(®(fok) < a).
k

Using the same techniques as in the proof of Lemma 9 we can see that

[P((D( fn,k) < a) < [P((Dn(fn,k) - CD( fn,k) > an— a)
< P(sup®n(gv) — P(g) = an—a)

g€ In
SUpP(®n(gk) — P(g) > (an—a)/4)
- g€ In
< 25(%n,2n) inf P(®n(gk) — P(gk) < (an—a)/2)’
9€Tn
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Moreover, we already proved in Lemma 10 th@f,, 2n) < K™(2n)(@+1M  Condition (5) of Theo-
rem 2 then implies the (®(f,x) < a) tends to O

Now we have to prove that for € ¥ the termd(f, ,) := ming+, d(f,g) tends to 0 in proba-
bility. Let f(x) = f(NNy(X)). If f € 7, thend(f, %) < d(f, f), so the following holds true:

P(d(f, %) =€) <P(f ¢ Fn) +P(d(f, ) >¢).

The second term on the right hand side tends to 0 because of Lemma ldalTeitth the first term
on the right hand side, observe that

P(f ¢ %) < KsEp[P(CDn(ﬂ() < an).

Because of Condition (4), for al> 0, f € F andg € /fn there existd(€) > 0 such that
d(f,g) < 3(¢e) = P(fi) — P(g) <e&.
Defineaﬁ = infy ®(fx) —an. Sincef € F there existN such thah > N = a;f] > 0. Forn> N we

have the following inequalities:

P(®n(fx) < an)
= P(®(fi)) — Pn(fic) > O(fi) — an)
= P(®(fk) — D(Fe) + D(fx) — Pn(fi) > O(fi) — an)

< P(®(fi) — @(fi) = (®(fi) —an)/2) +P(O(fi) — Dn(fi) = (P(fi) —an)/2)

< P(®(fi) — (fi)) > an/2) + P(D(fi)) — Pn(Fi) > aa/2)

<P(d(f, ) > 3(ah/2)) + P(supd(g) — Pn(g) > &} /2)
geIn

< 2 mb@/2) 4 P(supd(ge) — Pn(0k) > af/2).
5(an/2) w7

If m— oo then the first term goes ta mdeed,é(aﬁ;/Z) and b(6(arf1/2)) tend to positive constants
sincef € F and thusa,ﬁ — infy ®(fx) —a > 0. For the second term, the key step is to see that by
the techniques used in the proof of Lemma 9 we get

P(Sup®(gk) — Pn(gk) > a}/2)
g€ Fn

SUPP (P(g) — Pn(Gk) > 2,/8)
< 2KM(2n)(d+m? 9=

inf P(®(gk) — Pn(gk) < a}/4)
9efn

Under Condition (2) this term tends to O |
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A.6 The Proofs of the Consistency Theorems 3, 5, 7 and 8

All these theorems are applications of Theorem 2 to specific objectivéidns®, andQ and to
specific functionsb, and®. For all of them, we individually have to check whether the conditions
in Theorem 2 are satisfied. In this section, we do not follow the order ofleerems in the paper.
This is only due to better readability of the proofs.

In most of these proves, we will use the McDiarmid inequality (McDiarmid, 19&®&ich we
recall for the convenience of the reader:

Theorem 12 (McDiarmid inequality) Let (Xn)nen be a sequence of independent random vari-
ables. Let g (R%)" — R be measurable and:s 0 a constant such that for all < i < n we have

sup  g(Xa, .-, Xn) — 91, Xi—1, X, Xi 41, -+, Xn) < C.
X1,.+.,%n, X' €RA
Then ,
_ 22
[P(|g(X1,,Xn) _[Eg(xlv7xn)| > S) <2e n?.

m?logn
n(a—an)?

Moreover, several times we will use the fact that— a,m— « and — 0 implies that

n(a—an)? — o and@ — 0.
Before we look at the “combined” objective functions such as Ncut, Ratio®SS, we will
prove some technical conditions about their “ingredients” cut,Edl(X) and WS.

Lemma 13 (Conditions @), (4), and (5) for cut, vol, Efy(X), and WS) Assume that

m?logn
n(a—an)?2
thenvol, cut, Ef(X) andWS satisfy Conditions3), (4) and ) of Theoren?.

—0

Proof To prove Conditions (2) and (5) we are going to use the McDiarmid inequéliigerve that
if one replaces one variabk by a new oneX/, then vo} changes by at mosCn, cut, changes
by at most £/n, WS(fx) changes by at most2n, andny(f) changes by at most/h. Using the
McDiarmid inequality, this implies that for af] € ﬁ ande >0

n82

P(|voln(gi) — vol(g)| > €) < 26 2,
ﬂ82

P(|cuta(gi) — cut(gh)| > €) < 26 =,

(

2

P(|WSh(gk) — WS(gu)| > €) < 2e 7,
P(Ink(g) — Eg(X)| > €) < 2672

So to prove Condition (2) we have to show that
Ve > 0,KM(2n)d+mgne _ 0

mIogK+(d+1)mZIog(2n)

- +
This follows clearly fromK™(2n)@+Dmene — o ( - 8> and
@ — 0. Moreover, sinca(a— a,)? — o Condition (5) is also true.
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To prove (4) for each of the objective functions, feg € A and fx andgyk be the corresponding
cluster indicator functions for clust&r Then we can see that

|vol(gk) — vol( fi) |_|// (Fe(X ))S(X,Y) dP(X)dP(Y)]
<C 0dP(X)dP(Y)+C 1dP(X)dP(Y)
{fk=0k} {fk=0k}¢
= CP(fk # k)
<Cd(f.9),

Joutg) —eut ] = | | [ K0 (L= i¥)sX.¥) = GX)(L - glY)s(X, ) dPX)P(Y)|

<c//{f | 0dPOXaPLY +C// 1oy TEPOOAPLY)
=C(1-P(f(X) =g(X))?)

=C(1-(1-d(f,9))%)
<2Cd(f,9),

IEf(X) —Eg(X)[ < d(f,9),

IWS() ~WS(G] = | | [ ((X)fY) - GX)aY)ISIX.Y) dPOX)ARLY)|
< /{ L 0dPOOAPY) HC [ 1dPOOAP(Y)
_C(1-P(t=g)?)
=C(1—(1—d(f,))?)
< 2¢d(t,g).

Now we are going to check that the “combined” objective functions NcutpRat, Mod, WSS,
BWR satisfy the conditions of Theorem 2. For many of the objective funstione important step
in the proof is to separate the convergence of the whole term into the gemer of the numerator
and the denominator.

Lemma 14 (Condition (1) for Ncuf) Assume that

m?logn

n

—0

thenNcut satisfies Conditionl) of Theorent.
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Proof We first want to split the deviations of Ncut into the ones of cut and voheetsvely. To this
end we want to show that for arfye #,

{lcut(fi) — cut( f)| < 8} N{]voln( fi) —vol(fi)| < 3}

ol f {1
C {lﬁﬁlnﬁfﬁ - 5&&8‘ <e}.

This can be seen as follows. Assume thait,( fx) — cut(fx)| < & and |voly(fx) — vol(fy)| < e.
If vol (fi) # O then we have (using the facts that(dw} < vol(fx) and that val(fi) > a, > a by

definition of F,):

cuh(f)  cut(fy) _ cuty(fy)vol(fi)—cut(fy) voln(fk)
voln(fx)  vol(fy) voln(fy) vol( fx)

< (cut( fi)+¢) vol( fi) —cut( fi) (vol( fx)—¢€)
= voln( fi) vol(fx)

_ e cut(fy)+vol(fy)
— voln(fy) vol(fx)

<

On the other hand, if v¢fx) = 0 then we have c(fx) = 0, which implies cui(fx) < € by the
assumption above. Thus the following statement holds true:

o[

cut(f) cut(f)  cut(f) SE 2
volo(f)  vol(f)  wvolp(f) “a~ a’
Using the same technique we have the same boun%}fé% - 53?;%;8 which proves our set inclu-

sion.
Now we apply a union bound and the McDiarmid inequality. For the latter, noteftbae
changes on; then cuf(f) and voh(f) will change at most by@/n. Together all this leads to

P(]Ncut(f) — Ncuty,(f)| > ¢€)

cut,(fx) cut(fy)

< KU (1051 5 ~voirrg |~ &%)

< Ksup(P f f)l > —€) + P(|Voln( fi) — Vol (f)| > —

< Ksup( P(| cuty( i) — cut( )] > o) + P(|volo(fi) —vol(f)| > e))
naZEZ

< 4Ke .

To finish we have to prove that

Ve > 0, K™ (2n) (@D ne _, o,

_n<(m+l)|ogK+(d+1)mzlog(2n) +£)
This follows clearly fromK™1(2n)@+mfe-ne — o - and
mlogn _, o, n
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Lemma 15 (Condition (3) for Ncuf) Ncutsatisfies Condition3) of Theoren®.

Proof Letf e F,ge ﬁ In the proof of Lemma 13 we have already seen that

|cut(fi) —cut(gy)| < 2Cd(f,q),

|vol(fx) —vol(gk)| < 2Cd(f,g).
If vol (g) # 0 then we have (using the fact that we always havéfout vol( f)):

cut(f) _ cutlg) _ cut(fi)vol(gc)—cut(gy) vol(fy)
vol(fy)  wvol(gx) vol( fi) vol(gk)

< (cutlgy)+2Cd(f.g)) vol(f)—cut(gq) (vol(g) —2Cd(f,g))
— vol( fx) vol(gk)

__ 2Cd(f,g) vol(gi)+cut(gk)
— vol(f) vol(gx)

< £d(f,9)).

On the other hand if vobk) = 0 then we havécut( fy)| < |vol(fx)| < 2Cd(f,qg), in which case the
following holds true:

cut(f) cut(ge)  cut(fy)
vol(f)  vol(f,)  Vvol(fk)

So all in all we have

2Cd(f,g) _4C
< < — .
= a s ad(f,g)

Ncut(f) — Ncut(g) < %d(f,g).

We can use the same technique to bound [put Ncut( f). This proves that Ncut is Lipschitz and
thus uniformly continuous. |

Lemma 16 (Condition (1) for RatioCu) Assume that

m?logn
n

thenRatioCutsatisfies Conditiof1) of Theoren?.

0

Proof Using exactly the same proof as for Lemma 14 (just changing figlto ny and vol fy) to
E fx(X) and using the fact that dufic) < CE fi(X)) we get

P(| RatioCut( f) — RatioCut f)| > €)

< KsEp<P(]cutn(fk) —cut(fo)] > (s,+a1)K8) +P(e(F) = Efe(X)]| > (S+a1)Ks)> .

Now a simple McDiarmid argument (using again the fact that changing<pnbanges cytby at
most 5/n) gives

nazsz

nazs
P(|RatioCuh(f) — RatioCutf)| > €) < 2Ke &2 +2Ke™ 2,
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We conclude the proof with the same argument as in Lemma 14. [ |

Lemma 17 (Condition (3) for RatioCu) RatioCutsatisfies Condition3) of Theoren®.

Proof This follows by the same proof as Lemma 14, just changing(¥g) to ny, vol( fy) to E f(X)
and using the fact that dufi) < CE fx(X). [ |

Lemma 18 (Condition (1) for BWR) If m?®logn/n — 0, thenBWR satisfies Condition1) of The-
orem2.

Proof Let f € 7, Lete < a/2. If |WSy(fk) — WS(fy)| < € and |cuty(fx) — cut(fy)| < € then

WS(fx) > a/2 > 0 (because Wk fx) > an > asincef € 7). This implies

cuty( fy) cut(fy) _ WS(fy)cuty(fi)—WSn(fi) cut(fy)

WS(f)  WS(f) WS (i) WS(fi)

< WS(fi) (eut( fir) +-&) —(WS( i) —¢) cut( i)
= WS (i) WS(f)

o € WS(fy)+cut( fy)
TWS(f) o WS(fk)

2Ce
N

The analogous statement holds %&% — \7\?;((2% Thus, ife <C/athen

(WS () — WS(fi)| < a%€/(2C)} 1 {] cuta( i) — cut( )| < a%/(20)}

cuty(fy) cut( fy)
< Wsi(f) ~ W(f)

<eg}.

As a consequence, §f< CK/a we have

cuty(fx)  cut(fy)

Wsi(h) ~ ws(f |~ K>

< Ksmkjp([P(]WSn(fk) —WS(fi)| > a%e/(2CK)) + P(| cuty( fi) — cut( f)| > a%e/(2CK))).

P(|BWR(f) — BWR(f)| > €) < K supP <‘
k

Using the McDiarmid inequality together with the fact that changing one pommgés cyt and
WS, by at mostC/(2n), we get fore < CK/a:

4e2

P(|BWR(f) — BWR(f)| > €) < 4Ke a4,
On the other hand, far> CK/awe have
P(|BWRy(f) —BWR(f)| > €)
< P(|BWRy(f) —BWR(f)| > SK/a)

7na4(SK/a)2
<4Ke & .
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So all in all we have proved that

na“(min(s‘CK/a))2

P(|BWR,(f) — BWR(f)| > €) < 2Ke™ s

We conclude the proof with the same argument as in Lemma 14 |

Lemma 19 (Condition (3) for BWR) BWR satisfies Condition3) of Theoren®.

Proof Lete >0, f € F andge ﬁ We have already proved the two following inequalities (in the
proofs of Lemmas 13 and 15):

| cut(fi) — cut(gi)| < 2Cd(f,9g),

|WS(fi) — WS(gk)| < 2Cd(f,9).
If 2Cd(f,g) < a/2, then using that WSx) > awe get W3gx) > a/2 > 0. By the same technique
as at the beginning of Lemma 18 we get
2CK
|BWR(f) —BWR(g)| < ?ZCd(f,g).

Written a bit differently,

a 4C2K
< = — < — )
d(f,g),m:IBWR(f) BWR(g)| < =~ d(f,g)

Now recall that we want to prove that there exidts- 0 such thatd(f,g) < d = |BWR(f) —
BWR(g)| <.
If € < CK/athen we have:

a2 a 4C?K
d(f,g) < 10K E 4C:>\BWR(f)—BWR(Q)\§ >—d(f,g) <e

On the other hand, > CK/athen

2
4C2Kd(f,g) <CK/a<e

d(f,g) < = = |BWR(T) ~ BWR(g)| <

so we have proved the lemma. |

Lemma 20 (Condition (1) for WSS If @ — 0 and thatsuppP C B(0,A), thenWSSsatisfies
Condition @) of Theoren®.

Proof Let f ¢ ?n First note that

1 n K
[WSS(f) -WSS(f)| = |~ szk< X))[1% — Gl — Esz )X —cl?
i=1k=1
1 n K
<|= f — Ckn 21 fi( —q
< ”.Zk; k(X)X — Cicnll ZZ KO0 — el?
1n K
1n2 k:1fk( X1 — exl|® — [Esz )X —el?
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Now we will bound the probability for each of the terms on the right hand skie. the second
term we can simply apply McDiarmid’s inequality. Due to the assumption thati3apB(0,A) we
know that for any two pointg,y € suppP we have||x—y|| < 2A. Thus if one changes one variable
X; then the term 51, 516 fil(Xi) || % — ci||2 will change by at mos#?/(4n). This leads to

_ne?
( ;ka X) 1% — cll” [Esz )X~ ? )<2e

Now we have to take care of the first term, which can be written as

10 K | | ) | 2
ﬁi;k;fk(x) (1% = cnll* = 1% — cl[) -

The triangle inequality gives

1% = cicall® < (1% — el + lleen — )2,
and together with the fact that supg_ B(0,A) this leads to

1 — il = [1% — cl? < BA|ckn — el

So at this point we have

Zl Z fie (X)X — Cionl|® — (1% — ck][2

< 6Ast1p|]ck7n — Ckl|-

We will denote thej-th coordinate of a vectoX by X!. Recall thad denotes the dimensionality of
our space. Using this notation we have

d i n ) 2

=

Our goal will be to apply the McDiarmid inequality to each coordinate. Befazecan do this, we
want to show that

{|nk—[Efk( ’—A+1} N leifk [Efk )XJ’<A+1} C {‘Ck Ck,n|§€}'

To this end, assume that — Efy(X)| <€ and]lzlfk —Ef(X)X)|<e&.

In casek fy(X) # 0 we have

ME i (X)XT — Efe(X) 2251 (X)X
nk[Efk( )
_ (Efi(X) + &) Ef(X)X) — Efi(X) (Efi(X)X! —€)
- nk[Efk(X)
g Ef(X)X] +Efy(X)
T Efi(X)
(A+1)e
a

j i
C—Cn=

<
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and similarly forc, , —c;.

On the other hand, in cagefy(X) = 0 we also have f(X)X! = 0 (as fy is a non-negative
function andX| is bounded by). Together with the assumption this means ﬁv@Llfk(mx’ <ke.
This implies

112

ekl = 3 XX < £ < B2

a

Q

which shows the inclusion stated above. The McDiarmid inequality now yieldsvihhetatements

P(In— Efi(X)| > £) < 2672,

d

Together they show that for the coordinate-wise differences

5 HOOX] ~EROOX)

_2n£2
>e| <26 A,

. . _ 2nale? _ 2nale? _ 2nale?
[P(|C|J(— Clj<n| > 5) < 2e (A2 42 RA? < he max(1A?)(A+1)2

This leads to

d ) . )
P(lloc—Cenll > &) = P(Y lck— ko> > €%) < dsupP(jcy— ¢l > €/Vd)
=1 J

_ 2nale?
< 4de dma>(1,A2)(A+1)2.

Combining all this leads to a bound for the first term of the beginning of thefpro

P (|23 31 (%) (1% — Gnll2 = 1% — c[12) | > €)
< P(sup[|ckn — &l > €/(6A))

< KsupP(|lckn— ck|| > €/(6A))

_ nale?
< 4dKe 18dmax1A2)A2(A+1)2

Now we combine the probabilities for the first and the second term from tjiatiag of the proof
using a union bound to get

8ne2

_ nae
P(|WSS(f) — WSS f)| > €) < 4dKe 1@maiaA?)a%(Ar1)? 4 2@ At

We conclude the proof with the same argument as in Lemma 14. [ |

Lemma 21 (Condition (3) for WSS Assume thasuppP C B(0,A) thenWSSsatisfies Condition
(3) of Theoren®.
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Proof Letf e #,9¢ Fo. We begin with the following inequality, which can be seen by splitting
the expectation in the part whefé = g} and{f # g} and using the fact that suppc B(0,A):

(WSS(f) ~WSS(g)] = [EXics fiX) X = F)[I? = au(X)IX — e(@) |
<AA(f,9) + [(1_g) Tk fkX) (IX = c(F)2 = X — cu(@) %) -

For the second term we have already seen in the proof of the previous l#ratiX — ci(f)||? —
X — ck(g)||? < 6A||ck( ) — ck(g)||. So for the moment we have

|WSS(f) - WSS(g)| < 4A%d(f,0) +6ASED||Ck(f) —c(9)]]-

Now we want to bound the expressifex(f) — ck(g)||. First of all, observe that fi(X) — gk(X)| <
d(f,g) and||Efk(X)X — gk(X)X|| < Ad(f, ).
In casebgk(X) # 0 we have

[ Egk(X) Efi(X)X — Efi(X) Eg(X)X]|

le(f) — ()l =

E f(X)Egk(X)
< NEG(X) (Ef(X)X — Egk(X)X) || + | (Eg(X) = Efk(X)) EGk(X)X|
- E fu(X)Egk(X)
< BEIOONEfk(X)X = ge(X)X]| + AEGK(X)|EGk(X) — (X))
- E f(X)Egk(X)

2A
2A

On the other hand, in cagey(X) = 0 we also havé& gy(X)X = 0 (asgk is a non-negative function
and|X| is bounded byA). This leads to

[Efk(X)X [Egk( ) [Efk(X)X A 2A

ERx)  Eg) | IERx | = adhe) = Zdfo)

llek(f) —ak(@)ll = |l
Combining all results leads to
|WSS(f) —WSS(g)| < 4A%(1+3/a)d(f,0)

which proves the lemma. |

Lemma 22 (Condition (1) for Mod) If m?logn/n — 0, thenMod satisfies Condition1) of Theo-
rem2.

Proof Let f € f. Using McDiarmid inequality one can prove

K
P(

K
Xi) fic(Xj)s(%i, X;) — Z XY)\>s)<2eW
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Now for ease of notation let

K
Qn(f) = n(ni1)3k;i; fk(Xa)fk(Xj)l;iS(x,N)léjS(Xj,N),

— 1 K
Qn(f) = mkzli; fO0OTX) [ 36,2)8P(2) [ X, 2)dP(2)

//fk (Y / s(X Z)d[P(Z)/s(Y,Z)d[P(Z)d([Px[P)(X,Y).

kl

If we have an exponential bound fB(|Q,(f) — Q(f)| > €) then with the above bound we would
have an exponential bound ff| Mod,(f) —Mod(f)| > €). Thus with the same argument than the
one at the end of Lemma 14 the current lemma will be proved.

First note that

P(IQn(f)—Q(f)] > &) < P(IQn(f) = Qn(f)] > £/2) +P(IQn(f) = Q(f)| > £/2).

MoreoverEQn(f) = Q(f) and thus with McDiarmid one can prove that

naz

P(IQn(f) — Q(f)| > &) < 26w
The next step is to use the fact that for real numidebsa,, b, € B(0,C),
lab— anby| = |ab— anb+anb—anbs| < C(|a—an| +|b—bn|).
This implies the following inequalities:

[Qn(f) = Qn(f)]

K 1
< nin—1) i; (n_1)2|;is(><a,x|)|;js(xj,><|)—/s(xi,Z)d[P(z)/s(xj,z)dua(z)
< 2CKsup -

flléisomxu)—/s()q,zwmz) ,

Hence the following:

P(IQn(1) ~ Qn(f)| > &) < P(supl 1; (%)~ [ s(%.Z)dP(2)| > £/ (2CK))

< nsupP(| 1; (%)~ [ s(%.2)dP(2)| > &/(2CK).
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Now to bound the last term we condition &hand use the McDiarmid inequality. Then taking the
expectation yields the exponential bound:

1
a1, X X) - [, 2)0P(@)| 2 ¢/(20K)
1
=Py

P(|

~E(( s(%.X) — [ (%, 2)dP(2)| > £/ (2CK) X))
< (26 )
= 2e*2cn%i2.

All'in all we proved that

2

n82 NE’
P(|Mods(f) —Mod(f)| >¢€) <2e &2 +2(n+1)e %2,

The n in front of the exponential obviously does not matter for the limit, see endeoptbof of
Lemma 14 |

Lemma 23 (Condition (3) for Mod) Mod satisfies Condition3) of Theoren?.

Proof Letf e F,g€ . Following the proof of Lemma 15 we have:

K
— 2
Mod(f) ~Modig) < 5 [ [ €+

— K(C+C?)(1—(1—d(f,9))?)
< 2K(C+C?)d(f,q).

A.7 The Proofs of the Convergence Rates in Theoremsand 6

The following lemma collects all the bounds given in the previous proofs f&SWNVhenever
possible, we used the one-sided McDiarmid inequality.

Lemma 24 Assume thasuppP C B(0,A) for some constant A 0. Let g, := infy Ef}(X) — an.
Then g — a* :=infy Ef(X) —a > 0. For all n and e > O there exists a constant(&j,/2) which
tends to a constant’C> 0 when n— «, and a constant (£/(8A?(1+ 3/a))) (see Lemmad.1 for
more details about b) such that the following holds true

P(IWSS(fn) —WSS1)| > €)

,ﬁnaz%—z _ ng? n(anfa)z neﬁz
m+1 (d4+1)nm? [ _4dKe G1EmMaxIADIAZ(AD)E | Dp 3244 Ke 8 Ke 32
< 2K™ 2 (2n) 2 2 2
_ nace _ ne2 _n(an—a) naj;
1_4dKe 30&imax1A?)A2(A+1)2 _ 9 gpld l-e 2 l-e "8

4K g mh/2) 4 (16A%(1+ 3/a) fe)e /B L3/a),
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A.8 Proof of Theorem 4

First we take care of the last two terms. There eXistavhich depends on the rate of convergence
of a, and ona* such that fon > N’ we have

a,<a’/2

This impliesb(a;;/2) < b(a*/4) (see Lemma 11 for details). Now I€f := b(e/(8A%(1+ 3/a)))
andC, := b(a*/4). Then forn > N’ we have:

4K a—mb(a;/2) (16A2(1+3/3_)/g)e*mb(s/(8A2(1+3/a)))
an
< 8Ka‘e &M+ (16A%(1+3/a) /e)e M
S Cle—CZm
with
C1:= max(8Ka"; 16A2(1+ 3/a) /¢) and Cz := min(Cy; Cy).

C, is a positive constant which dependsaa*, A € andP. C; depends oK, a, a*, € andA.

Since we assume(a, — a)> — oo there exists\” which depends on the rate of convergence of
a, and ona* such thanh > N” implies:

(an a)? _nay n(an—a)
e <1/2 and € 2 <eg &8

This means that fon > N” :

2 +2

Ke™ n(mga) Ke™ "% _ n(an a)?
>+ 5> <4Ke
an a) nag
1- 1—e "8

Finally letN = maxN’,N”) and

8dK
C3 =
N Ne2
1—4dKe soamaxiA)A?(A+12 _ D@ ga?
2
, a 1
Cy :=min( ;

616dmax(1, A2)A2(A+1)2’ 3280

Sincee < 1 we have with these notations for> N:

naZe
4d Ke 616dmax(1,A2)A2(A+1)2 +2e” 32A4

2
— < (Cz/2)e CE M,
1—4dKe 30aimax1A?)A2(A+1)2 _ D@~ %

Allin all Theorem 4 is proved. |

The Proof of Theorem 6works analogously, we just replace the above lemma by to following
one:
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Lemma 25 Assume that the similarity function s is bounded by G. Let g, := infivol(f;) — ax.
Then g — infvol(f?) —a> 0. For all n ande > 0 there exists a constan{&,/(2S)) which tends
to a constant C> 0 when n— o, and a constant (@s/(8SK)) (see Lemmad.1 for more details
about b) such that the following holds true

P(| Neut( f,) — Neut(f*)| > €)

2 __ nas? _n(an-a)? _ na;?

1 d+1 4e 204&-K e 3X e 12&

< 2K™+L(2n)(d+D) i = =
1-4Ke 51x2k2 1-e 8c2 1-e 322

40K e/ (20)) 4. 1ECK g mitee/(2CK)),
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