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Abstract
For undiscounted reinforcement learning in Markov decision processes (MDPs) we consider the
total regret of a learning algorithm with respect to an optimal policy. Inorder to describe the
transition structure of an MDP we propose a new parameter: AnMDP hasdiameter Dif for any
pair of statess,s′ there is a policy which moves froms to s′ in at mostD steps (on average).
We present a reinforcement learning algorithm with total regret Õ(DS

√
AT) afterT steps for any

unknown MDP withSstates,A actions per state, and diameterD. A corresponding lower bound of
Ω(

√
DSAT) on the total regret of any learning algorithm is given as well.

These results are complemented by a sample complexity boundon the number of suboptimal
steps taken by our algorithm. This bound can be used to achieve a (gap-dependent) regret bound
that is logarithmic inT.

Finally, we also consider a setting where the MDP is allowed to change a fixed number ofℓ
times. We present a modification of our algorithm that is ableto deal with this setting and show a
regret bound ofÕ(ℓ1/3T2/3DS

√
A).

Keywords: undiscounted reinforcement learning, Markov decision process, regret, online learn-
ing, sample complexity

1. Introduction

In a Markov decision process (MDP)M with finite state spaceS and finite action spaceA , a learner
in some states∈ S needs to choose an actiona∈ A . When executing actiona in states, the learner
receives a random rewardr drawn independently from some distribution on[0,1] with mean ¯r(s,a).
Further, according to the transition probabilitiesp(s′|s,a), a random transition to a states′ ∈ S

occurs.
Reinforcement learning of MDPs is a standard model for learning with delayed feedback. In

contrast to important other work on reinforcement learning—where the performance of thelearned
policy is considered (see, e.g., Sutton and Barto 1998, Kearns and Singh1999, and also the discus-
sion and references given in the introduction of Kearns and Singh 2002)—we are interested in the
performance of the learning algorithmduring learning. For that, we compare the rewards collected
by the algorithm during learning with the rewards of an optimal policy.

∗. An extended abstract of this paper appeared inAdvances in Neural Information Processing Systems21 (2009), pp. 89–
96.
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An algorithmA starting in an initial states of an MDPM chooses at each time stept (possibly
randomly) an actionat . As the MDP is assumed to be unknown except the setsS andA , usually
an algorithm will map the history up to stept to an actionat or, more generally, to a probability
distribution overA . Thus, an MDPM and an algorithmA operating onM with initial states
constitute a stochastic process described by the statesst visited at time stept, the actionsat chosen
by A at stept, and the rewardsrt obtained (t ∈ N). In this paper we will considerundiscounted
rewards. Thus, theaccumulated rewardof an algorithmA afterT steps in an MDPM with initial
states, defined as

R(M,A,s,T) :=
T

∑
t=1

rt ,

is a random variable with respect to the mentioned stochastic process. The value 1
T E [R(M,A,s,T)]

then is the expected average reward of the process up to stepT. The limit

ρ(M,A,s) := lim
T→∞

1
T E [R(M,A,s,T)]

is called theaverage rewardand can be maximized by an appropriate stationarypolicy π : S → A

which determines an optimal action for each state (see Puterman, 1994). Thus, in what follows we
will usually consider policies to be stationary.

The difficulty of learning an optimal policy in an MDP does not only depend onthe MDP’s size
(given by the number of states and actions), but also on its transition structure. In order to measure
this transition structure we propose a new parameter, thediameter Dof an MDP. The diameterD is
the time it takes to move from any states to any other states′, using an appropriate policy for each
pair of statess, s′:

Definition 1 Consider the stochastic process defined by a stationary policyπ : S → A operating
on an MDP M with initial state s. Let T(s′|M,π,s) be the random variable for the first time step in
which state s′ is reached in this process. Then thediameterof M is defined as

D(M) := max
s6=s′∈S

min
π:S→A

E
[

T(s′|M,π,s)
]

.

In Appendix A we show that the diameter is at least log|A | |S |−3. On the other hand, depending
on the existence of states that are hard to reach under any policy, the diameter may be arbitrarily
large. (For a comparison of the diameter to other mixing time parameters see below.)

In any case, a finite diameter seems necessary for interesting bounds on the regretof any algo-
rithm with respect to an optimal policy. When a learner explores suboptimal actions, this may take
him into a “bad part” of the MDP from which it may take up toD steps to reach again a “good
part” of the MDP. Thus, compared to the simpler multi-armed bandit problem where each arma is
typically exploredlogT

g times (depending on the gapg between the optimal reward and the reward
for arma)—see, for example, the regret bounds of Auer et al. (2002a) for theUCB algorithms and
the lower bound of Mannor and Tsitsiklis (2004)—the best one would expect for the general MDP
setting is a regret bound ofΘ

(

D|S ||A | logT
)

. The alternative gap-independent regret bounds of
Õ(
√

|B|T) andΩ(
√

|B|T) for multi-armed bandits with|B| arms (Auer et al., 2002b) correspond-
ingly translate into a regret bound ofΘ(

√

D|S ||A |T) for MDPs with diameterD.
For MDPs with finite diameter (which usually are calledcommunicating, see, e.g., Puterman

1994) the optimal average rewardρ∗ does not depend on the initial state (cf. Puterman 1994, Sec-
tion 8.3.3), and we set

ρ∗(M) := ρ∗(M,s) := max
π

ρ(M,π,s).
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The optimal average reward is the natural benchmark1 for a learning algorithmA, and we define the
total regretof A afterT steps as

∆(M,A,s,T) := Tρ∗(M)−R(M,A,s,T).

In the following, we present our reinforcement learning algorithm UCRL2 (a variant of the
UCRL algorithm of Auer and Ortner, 2007) which uses upper confidencebounds to choose an
optimistic policy. We show that the total regret of UCRL2 after T steps isÕ(D|S |

√

|A |T). A
corresponding lower bound ofΩ(

√

D|S ||A |T) on the total regret of any learning algorithm is given
as well. These results establish the diameter as an important parameter of an MDP. Unlike other
parameters that have been proposed for various PAC and regret bounds, such as themixing time
(Kearns and Singh, 2002; Brafman and Tennenholtz, 2002) or thehitting timeof an optimal policy
(Tewari and Bartlett, 2008) (cf. the discussion below) the diameter only depends on the MDP’s
transition structure.

1.1 Relation to Previous Work

We first compare our results to the PAC bounds for the well-known algorithmsE3 of Kearns and
Singh (2002), and R-Max of Brafman and Tennenholtz (2002) (see also Kakade, 2003). These
algorithms achieveε-optimal average reward with probability 1− δ after time polynomial in1

δ , 1
ε ,

|S |, |A |, and the mixing timeTmix
ε (see below). As the polynomial dependence onε is of order 1

ε3 ,

the PAC bounds translate intoT2/3 regret bounds at the best. Moreover, both algorithms need the
ε-return mixing time Tmix

ε of an optimal policyπ∗ as input parameter.2 This parameterTmix
ε is the

number of steps until the average reward ofπ∗ over theseTmix
ε steps isε-close to the optimal average

rewardρ∗. It is easy to construct MDPs of diameterD with Tmix
ε ≈ D

ε . This additional dependence
on ε further increases the exponent in the above mentioned regret bounds for E3 and R-max. Also,
the exponents of the parameters|S | and |A | in the PAC bounds of Kearns and Singh (2002) and
Brafman and Tennenholtz (2002) are substantially larger than in our bound. However, there are
algorithms with better dependence on these parameters. Thus, in the sample complexity bounds for
the Delayed Q-Learning algorithm of Strehl et al. (2006) the dependence on states and actions is of
order|S ||A |, however at the cost of a worse dependence of order1

ε4 on ε.
The MBIE algorithm of Strehl and Littman (2005, 2008)—similarly to our approach—applies

confidence bounds to compute an optimistic policy. However, Strehl and Littmanconsider only a
discounted reward setting. Their definition of regret measures the difference between the rewards3

of an optimal policy and the rewards of the learning algorithmalong the trajectory taken by the
learning algorithm. In contrast, we are interested in the regret of the learning algorithm in respect
to the rewards of the optimal policyalong the trajectory of the optimal policy.4 Generally, in dis-
counted reinforcement learning only a finite number of steps is relevant, depending on the discount

1. It can be shown that maxAE [R(M,A,s,T)] = Tρ∗(M) + O(D(M)) and maxA R(M,A,s,T) = Tρ∗(M) + Õ
(√

T
)

with high probability.
2. The knowledge of this parameter can be eliminated by guessingTmix

ε to be 1,2, . . ., so that sooner or later the correct
Tmix

ε will be reached (cf. Kearns and Singh 2002; Brafman and Tennenholtz 2002). However, since there is no
condition on when to stop increasingTmix

ε , the assumed mixing time eventually becomes arbitrarily large, so that the
PAC bounds become exponential in the trueTmix

ε (cf. Brafman and Tennenholtz, 2002).
3. Actually, the state values.
4. Indeed, one can construct MDPs for which these two notions of regret differ significantly. E.g., set the discount

factor γ = 0. Then any policy which maximizes immediate rewards achieves 0 regretin the notion of Strehl and
Littman. But such a policy may not move to states where the optimal reward isobtained.
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factor. This makes discounted reinforcement learning similar to the setting with trials of constant
length from a fixed initial state as considered by Fiechter (1994). For this case logarithmic online
regret bounds in the number of trials have already been given by Auer and Ortner (2005). Also, the
notion of regret is less natural than in undiscounted reinforcement learning: when summing up the
regret in the individual visited states to obtain the total regret in the discounted setting, somehow
contrary to the principal idea of discounting, the regret at each time step counts the same.

Tewari and Bartlett (2008) propose a generalization of theindex policiesof Burnetas and Kate-
hakis (1997). These index policies choose actions optimistically by using confidence bounds only
for the estimates in the current state. The regret bounds for theindex policiesof Burnetas and Kate-
hakis (1997) and the OLP algorithm of Tewari and Bartlett (2008) areasymptoticallylogarithmic
in T. However, unlike our bounds, these bounds depend on the gap between the “quality” of the
best and the second best action, and these asymptotic bounds also hide anadditive term which is
exponential in the number of states. Actually, it is possible to prove a corresponding gap-dependent
logarithmic bound for our UCRL2 algorithm as well (cf. Theorem 4 below). This bound holds uni-
formly over time and under weaker assumptions: While Tewari and Bartlett (2008) and Burnetas
and Katehakis (1997) consider onlyergodicMDPs in whichanypolicy will reach every state after
a sufficient number of steps, we make only the more natural assumption of a finite diameter.

Recently, Bartlett and Tewari (2009) have introduced the REGAL algorithm (inspired by our
UCRL2 algorithm) and show—based on the methods we introduce in this paper—regret bounds
where the diameter is replaced with a smaller transition parameterD1 (that is basically an upper
bound on the span of thebiasof an optimal policy). Moreover, this bound also allows the MDP to
have sometransientstates that are not reachable under any policy. However, the bound holds only
when the learner knows an upper bound on this parameterD1. In case the learner has no such upper
bound, a doubling trick can be applied, but then the bound’s dependence on|S | deteriorates from|S |
to |S |3/2. Bartlett and Tewari (2009) also modify our lower bound example to obtain alower bound
of Ω(D1

√

|S ||A |T) with respect to their new transition parameterD1. Still, in the given example
D1 =

√
D, so that in this case their lower bound matches our lower bound.

2. Results

We summarize the results achieved for our algorithm UCRL2 (which will be described in the next
section), and also state a corresponding lower bound. We assume an unknown MDPM to be learned,
with S:= |S | states,A := |A | actions, and finite diameterD := D(M). Only S andA are known to
the learner, and UCRL2 is run with confidence parameterδ.

Theorem 2 With probability of at least1−δ it holds that for any initial state s∈ S and any T> 1,
the regret ofUCRL2 is bounded by

∆(M,UCRL2,s,T) ≤ 34·DS
√

AT log
(

T
δ
)

.

It is straightforward to obtain from Theorem 2 the following sample complexity bound.

Corollary 3 With probability of at least1−δ the average per-step regret ofUCRL2 is at mostε for
any

T ≥ 4·342 · D2S2A
ε2 log

(

34DSA
δε

)

steps.
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It is also possible to give a sample complexity bound on the number of suboptimalsteps UCRL2
takes, which allows to derive the following gap-dependent logarithmic bound on the expected regret.

Theorem 4 For any initial state s∈ S , any T≥ 1 and anyε > 0, with probability of at least1−3δ
the regret ofUCRL2 is

∆(M,UCRL2,s,T) ≤ 342 ·
D2S2Alog

(

T
δ
)

ε
+ εT.

Moreover setting

g := ρ∗(M)−max
s∈S

max
π:S→A

{

ρ(M,π,s) : ρ(M,π,s) < ρ∗(M)
}

to be the gap in average reward between best and second best policy in M, the expected regret of
UCRL2 (with parameterδ := 1

3T ) for any initial state s∈ S is

E [∆(M,UCRL2,s,T)] < 342 · D2S2Alog(T)

g
+1+∑

s,a

⌈

1+ log2( max
π:π(s)=a

Tπ)
⌉

max
π:π(s)=a

Tπ,

where Tπ is the smallest natural number such that for all T≥ Tπ the expected average reward after
T steps isg

2-close to the average reward ofπ. Using the doubling trick to set the parameterδ, one
obtains a corresponding bound (with larger constant) without knowledgeof the horizon T.

These new bounds are improvements over the bounds that have been achieved by Auer and
Ortner (2007) for the original UCRL algorithm in various respects: the exponents of the relevant
parameters have been decreased considerably, the parameterD we use here is substantially smaller
than the corresponding mixing time of Auer and Ortner (2007), and finally, the ergodicity assump-
tion is replaced by the much weaker and more natural assumption that the MDP has finite diameter.

The following is an accompanying lower bound on the expected regret.

Theorem 5 For any algorithmA, any natural numbers S,A ≥ 10, D ≥ 20logAS, and T≥ DSA,
there is an MDP M with S states, A actions, and diameter D,5 such that for any initial state s∈ S

the expected regret ofA after T steps is

E [∆(M,A,s,T)] ≥ 0.015·
√

DSAT.

Finally, we consider a modification of UCRL2 that is also able to deal with changing MDPs.

Theorem 6 Assume that the MDP (i.e., its transition probabilities and reward distributions) isal-
lowed to change (ℓ−1) times up to step T , such that the diameter is always at most D. Restart-

ing UCRL2 with parameterδ
ℓ2 at steps

⌈

i3

ℓ2

⌉

for i = 1,2,3. . ., the regret (now measured as the sum

of missed rewards compared to theℓ optimal policies in the periods during which the MDP remains
constant) is upper bounded by

65· ℓ1/3T2/3DS
√

Alog
(

T
δ
)

with probability of at least1−δ.

5. As already mentioned, the diameter of any MDP withSstates andA actions is at least logA S−3.
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For the simpler multi-armed bandit problem, similar settings have already been considered by
Auer et al. (2002b), and more recently by Garivier and Moulines (2008), and Yu and Mannor (2009).
The achieved regret bounds areO(

√
ℓT logT) in the first two mentioned papers, while Yu and Man-

nor (2009) derive regret bounds ofO(ℓ logT) for a setting with side observations on past rewards in
which the number of changesℓ need not be known in advance.

MDPs with a different model of changing rewards have already been considered by Even-Dar
et al. (2005) and Even-Dar et al. (2009), respectively. There, thetransition probabilities are assumed
to be fixed and known to the learner, but the rewards are allowed to change at every step (however,
independently of the history). In this setting, an upper bound ofO(

√
T) on the regret against an

optimal stationary policy (with the reward changes known in advance) is best possible and has been
derived by Even-Dar et al. (2005). This setting recently has been further investigated by Yu et al.
(2009), who also show that for achieving sublinear regret it is essential that the changing rewards
are chosen obliviously, as an opponent who chooses the rewards depending on the learner’s history
may inflict linear loss on the learner. It should be noted that although the definition of regret in
the nonstochastic setting looks the same as in the stochastic setting, there is an important difference
to notice. While in the stochastic setting the average reward of an MDP is always maximized by
a stationary policyπ : S → A , in the nonstochastic setting obviously a dynamic policy adapted to
the reward sequence would in general earn more than a stationary policy.However, obviously no
algorithm will be able to compete with the best dynamic policy for all possible reward sequences,
so that—similar to the nonstochastic bandit problem, compare to Auer et al. (2002b)—one usually
competes only with a finite set of experts, in the case of MDPs the set of stationary policiesπ : S →
A . For different notions of regret in the nonstochastic MDP setting see Yu et al. (2009).

Note that all our results scale linearly with the rewards. That is, if the rewards are not bounded
in [0,1] but taken from some interval[rmin, rmax], the rewards can simply be normalized, so that the
given regret bounds hold with additional factor(rmax− rmin).

3. The UCRL 2 Algorithm

Our algorithm is a variant of the UCRL algorithm of Auer and Ortner (2007). As its predecessor,
UCRL2 implements the paradigm of “optimism in the face of uncertainty”. That is, it defines a
setM of statisticallyplausibleMDPs given the observations so far, and chooses an optimistic
MDP M̃ (with respect to the achievable average reward) among these plausible MDPs. Then it
executes a policỹπ which is (nearly) optimal for the optimistic MDP̃M. More precisely, UCRL2
(see Figure 1) proceeds in episodes and computes a new policyπ̃k only at the beginning of each
episodek. The lengths of the episodes are not fixed a priori, but depend on the observations made.
In Steps 2–3, UCRL2 computes estimates ˆrk (s,a) and p̂k (s′|s,a) for the mean rewards and the
transition probabilities from the observations made before episodek. In Step 4, a setMk of plausible
MDPs is defined in terms of confidence regions around the estimated mean rewards ˆrk(s,a) and
transition probabilities ˆpk (s′|s,a). This guarantees that with high probability the true MDPM is
in Mk. In Step 5,extended value iteration(see below) is used to choose a near-optimal policyπ̃k on
an optimistic MDPM̃k ∈Mk. This policyπ̃k is executed throughout episodek (Step 6). Episodek
ends when a states is visited in which the actiona = π̃k(s) induced by the current policy has been
chosenin episodek equally often asbeforeepisodek. Thus, the total number of occurrences of
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any state-action pair is at most doubled during an episode. The countsvk(s,a) keep track of these
occurrences in episodek.6

3.1 Extended Value Iteration: Finding Optimistic Model and Optimal Policy

In Step 5 of the UCRL2 algorithm we need to find a near-optimal policyπ̃k for an optimistic
MDP M̃k. While value iteration typically calculates an optimal policy for a fixed MDP, we also
need to select an optimistic MDP̃Mk that gives almost maximal optimal average reward among all
plausible MDPs.

3.1.1 PROBLEM FORMULATION

We can formulate this as a general problem as follows. LetM be the set of all MDPs with (common)
state spaceS , (common) action spaceA , transition probabilities ˜p(·|s,a), and mean rewards ˜r (s,a)
such that

‖p̃(·|s,a)− p̂(·|s,a)‖1 ≤ d(s,a), (1)

|r̃ (s,a)− r̂(s,a)| ≤ d′(s,a) (2)

for given probability distributions ˆp(·|s,a), values ˆr(s,a) in [0,1], d(s,a) > 0, andd′(s,a) ≥ 0.
Further, we assume thatM contains at least one communicating MDP, that is, an MDP with finite
diameter.

In Step 5 of UCRL2, thed(s,a) and d′(s,a) are obviously the confidence intervals as given
by (4) and (3), while the communicating MDP assumed to be inMk is the true MDPM. The task
is to find an MDPM̃ ∈ M and a policyπ̃ : S → A which maximizeρ(M̃, π̃,s) for all statess.7

This task is similar tooptimistic optimalityin bounded parameter MDPsas considered by Tewari
and Bartlett (2007). A minor difference is that in our case the transition probabilities are bounded
not individually but by the 1-norm. More importantly, while Tewari and Bartlett (2007) give a
converging algorithm for computing the optimal value function, they do not bound the error when
terminating their algorithm after finitely many steps. In the following, we will extendstandard
undiscounted value iteration (Puterman, 1994) to solve the set task.

First, note that we may combine all MDPs inM to get a single MDP with extended action setA ′.
That is, we consider an MDP̃M+ with continuous action spaceA ′, where for each actiona∈A , each
admissible transition probability distribution ˜p(·|s,a) according to (1) and each admissible mean
reward ˜r(s,a) according to (2) there is an action inA ′ with transition probabilities ˜p(·|s,a) and mean
reward ˜r(s,a).8 Then for each policỹπ+ on M̃+ there is an MDPM̃ ∈M and a policyπ̃ : S → A

on M̃ such that the policies̃π+ andπ̃ induce the same transition probabilities and mean rewards on
the respective MDP. (The other transition probabilities inM̃ can be set to ˆp(·|s,a).) On the other
hand, for any given MDP̃M ∈M and any policỹπ : S →A there is a policỹπ+ onM̃+ so that again
the same transition probabilities and rewards are induced byπ̃ on M̃ andπ̃+ on M̃+. Thus, finding
an MDPM̃ ∈M and a policyπ̃ on M̃ such thatρ(M̃, π̃,s) = maxM′∈M ,π,s′ ρ(M′,π,s′) for all initial
statess, corresponds to finding an average reward optimal policy onM̃+.

6. Since the policỹπk is fixed for episodek, vk(s,a) 6= 0 only for a = π̃k(s). Nevertheless, we find it convenient to use
a notation which explicitly includes the actiona in vk(s,a).

7. Note that, as we assume thatM contains a communicating MDP, if an average reward ofρ is achievable in one state,
it is achievable in all states.

8. Note that inM̃+ the set of available actions now depends on the state.
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Input: A confidence parameterδ ∈ (0,1), S andA .

Initialization: Sett := 1, and observe the initial states1.

For episodesk = 1,2, . . . do

Initialize episodek:

1. Set the start time of episodek, tk := t.
2. For all(s,a) in S ×A initialize the state-action counts for episodek, vk(s,a) := 0.

Further, set the state-action counts prior to episodek,

Nk (s,a) := #{τ < tk : sτ = s,aτ = a} .

3. Fors,s′ ∈ S anda ∈ A set the observed accumulated rewards and the transition
counts prior to episodek,

Rk (s,a) :=
tk−1

∑
τ=1

rτ1sτ=s,aτ=a,

Pk
(

s,a,s′
)

:= #
{

τ < tk : sτ = s,aτ = a,sτ+1 = s′
}

.

Compute estimates ˆrk (s,a) := Rk(s,a)
max{1,Nk(s,a)} , p̂k (s′|s,a) := Pk(s,a,s′)

max{1,Nk(s,a)} .

Compute policy π̃k:

4. Let Mk be the set of all MDPs with states and actions as inM, and with tran-
sition probabilities ˜p(·|s,a) close to ˆpk (·|s,a), and rewards ˜r(s,a) ∈ [0,1] close
to r̂k (s,a), that is,

∣

∣r̃(s,a)− r̂k
(

s,a
)∣

∣ ≤
√

7log(2SAtk/δ)
2max{1,Nk(s,a)} and (3)

∥

∥

∥
p̃
(

·|s,a
)

− p̂k
(

·|s,a
)

∥

∥

∥

1
≤

√

14Slog(2Atk/δ)
max{1,Nk(s,a)} . (4)

5. Use extended value iteration (see Section 3.1) to find a policyπ̃k and an optimistic
MDP M̃k ∈Mk such that

ρ̃k := min
s

ρ(M̃k, π̃k,s) ≥ max
M′∈Mk,π,s′

ρ(M′,π,s′)− 1√
tk

.

Execute policyπ̃k:

6. While vk(st , π̃k(st)) < max{1,Nk(st , π̃k(st))} do
(a) Choose actionat = π̃k(st), obtain rewardrt , and

observe next statest+1.
(b) Updatevk(st ,at) := vk(st ,at)+1.
(c) Sett := t +1.

Figure 1: The UCRL2 algorithm.
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Input: Estimates ˆp(·|s,a) and distanced(s,a) for a state-action pair(s,a), and
the states inS sorted descendingly according to theirui value.
That is, letS := {s′1,s

′
2, . . . ,s

′
n} with ui(s′1) ≥ ui(s′2) ≥ . . . ≥ ui(s′n).

1. Set

p(s′1) := min
{

1, p̂(s′1|s,a)+ d(s,a)
2

}

, and

p(s′j) := p̂(s′j |s,a) for all statess′j with j > 1.

2. Setℓ := n.

3. While ∑s′j∈S p(s′j) > 1 do

(a) Resetp(s′ℓ) := max{0,1−∑s′j 6=s′ℓ
p(s′j)}.

(b) Setℓ := ℓ−1.

Figure 2: Computing the inner maximum in the extended value iteration (5).

3.1.2 EXTENDED VALUE ITERATION

We denote the state values of thei-th iteration byui(s). Then we get for undiscounted value iteration
(Puterman, 1994) oñM+ for all s∈ S :

u0(s) = 0,

ui+1(s) = max
a∈A

{

r̃ (s,a) + max
p(·)∈P (s,a)

{

∑
s′∈S

p(s′) ·ui(s
′)

}

}

, (5)

where ˜r (s,a) := r̂(s,a)+d′(s,a) are the maximal possible rewards according to condition (2), and
P (s,a) is the set of transition probabilities ˜p

(

·|s,a
)

satisfying condition (1).

While (5) is a step of value iteration with an infinite action space, maxpp ·ui is actually a linear
optimization problem over the convex polytopeP (s,a). This implies that (5) can be evaluated
considering only the finite number of vertices of this polytope.

Indeed, for a given state-action pair the inner maximum of (5) can be computed inO(S) compu-
tation steps by an algorithm introduced by Strehl and Littman (2008). For the sake of completeness
we display the algorithm in Figure 2. The idea is to put as much transition probabilityas possible
to the state with maximal valueui(s) at the expense of transition probabilities to states with small
valuesui(s). That is, one starts with the estimates ˆp(s′j |s,a) for p(s′j) except for the states′1 with

maximalui(s), for which we setp(s′1) := p̂(s′1|s,a)+ 1
2d(s,a). In order to makep correspond to

a probability distribution again, the transition probabilities froms to states with smallui(s) are re-
duced in total by1

2d(s,a), so that‖p− p̂(·|s,a)‖1 = d(s,a). This is done iteratively. Updating
∑s′j∈S p(s′j) with every change ofp for the computation of∑s′j 6=s′ℓ

p(s′j), this iterative procedure
takesO(S) steps. Thus, sorting the states according to their valueui(s) at each iterationi once,ui+1

can be computed fromui in at mostO
(

S2A
)

steps.
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3.1.3 CONVERGENCE OFEXTENDED VALUE ITERATION

We have seen that value iteration on the MDPM̃+ with continuous action is equivalent to value
iteration on an MDP with finite action set. Thus, in order to guarantee convergence, it is sufficient
to assure that extended value iteration never chooses a policy with periodictransition matrix. (In-
tuitively, it is clear that optimal policies with periodic transition matrix do not matter aslong as
it is guaranteed that such a policy is not chosen by value iteration, compareto Sections 8.5, 9.4,
and 9.5.3. of Puterman 1994. For a proof see Appendix B.) Indeed, extended value iteration always
chooses a policy with aperiodic transition matrix: In each iteration there is a single fixed states′1
which is regarded as the “best” target state. For each states, in the inner maximum an action with
positive transition probability tos′1 will be chosen. In particular, the policy chosen by extended
value iteration will have positive transition probability froms′1 to s′1. Hence, this policy is aperiodic
and has state independent average reward. Thus we obtain the followingresult.

Theorem 7 LetM be the set of all MDPs with state spaceS , action spaceA , transition probabil-
ities p̃(·|s,a), and mean rewards̃r (s,a) that satisfy(1) and (2) for given probability distributions
p̂(·|s,a), valuesr̂(s,a) in [0,1], d(s,a) > 0, and d′(s,a) ≥ 0. If M contains at least one communi-
cating MDP, extended value iteration converges. Further, stopping extended value iteration when

max
s∈S

{

ui+1(s)−ui(s)
}

−min
s∈S

{

ui+1(s)−ui(s)
}

< ε,

the greedy policy with respect toui is ε-optimal.

Remark 8 When value iteration converges, a suitable transformation ofui converges to the bias
vector of an optimal policy. Recall that for a policyπ the biasλ(s) in state s is basically the
expected advantage in total reward (for T→ ∞) of starting in state s over starting in the stationary
distribution (the long term probability of being in a state) ofπ. For a fixed policyπ, the Poisson
equation

λ = r−ρ1+Pλ

relates the bias vectorλ to the average rewardρ, the mean reward vectorr, and the transi-
tion matrix P . Now when value iteration converges, the vectorui − minsui(s)1 converges to
λ−minsλ(s)1. As we will see in inequality(11) below, the so-calledspan maxsui(s)−minsui(s)
of the vectorui is upper bounded by the diameter D, so that this also holds for the span of the bias
vectorλ of the optimal policy found by extended value iteration, that is,maxsλ(s)−minsλ(s)≤ D.
Indeed, one can show that this holds for any optimal policy (cf. also Section 4 of Bartlett and Tewari,
2009).

Remark 9 We would like to note that the algorithm of Figure 2 can easily be adapted to the al-
ternative setting of Tewari and Bartlett (2007), where each single transition probability p(s′|s,a)
is bounded as0≤ b−(s′,s,a) ≤ p(s′|s,a) ≤ b+(s′,s,a) ≤ 1. However, concerning convergence one
needs to make some assumptions to exclude the possibility of choosing optimal policies with periodic
transition matrices. For example, one may assume (apart from other assumptions already made by
Tewari and Bartlett 2007) that for all s′,s,a there is an admissible probability distribution p(·|s,a)
with p(s′|s,a) > 0. Note that for Theorem 7 to hold, it is similarly essential that d(s,a) > 0. Alter-
natively, one may apply an aperiodicity transformation as described in Section 8.5.4 of Puterman
(1994).
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Now returning to Step 5 of UCRL2, we stop value iteration when

max
s∈S

{

ui+1(s)−ui(s)
}

−min
s∈S

{

ui+1(s)−ui(s)
}

<
1√
tk

, (6)

which guarantees by Theorem 7 that the greedy policy with respect toui is 1√
tk

-optimal.

4. Analysis of UCRL 2 (Proofs of Theorem 2 and Corollary 3)

We start with a rough outline of the proof of Theorem 2. First, in Section 4.1,we deal with the ran-
dom fluctuation of the rewards. Further, the regret is expressed as thesum of the regret accumulated
in the individual episodes. That is, we set theregret in episode kto be

∆k := ∑
s,a

vk(s,a)
(

ρ∗− r̄(s,a)
)

,

wherevk(s,a) now denotes the final counts of state-action pair(s,a) in episodek. Then it is shown
that the total regret can be bounded by

∑
k

∆k +
√

5
2T log

(

8T
δ
)

with high probability.
In Section 4.2, we consider the regret that is caused by failing confidenceregions. We show that

this term can be upper bounded by
√

T with high probability. After this intermezzo, the regret of
episodes for which the true MDPM ∈Mk is examined in Section 4.3. Analyzing the extended value
iteration scheme in Section 4.3.1 and using vector notation, we show that

∆k ≤ vk
(

P̃k−I
)

wk +2∑
s,a

vk(s,a)
√

7log(2SAtk/δ)
2max{1,Nk(s,a)} +2∑

s,a

vk(s,a)√
tk

,

whereP̃k is the assumed transition matrix (iñMk) of the applied policy in episodek, vk are the visit
counts at the end of that episode, andwk is a vector with‖wk‖∞ ≤ D(M)

2 . The last two terms in
the above expression stem from the reward confidence intervals (3) and the approximation error of
value iteration. These are bounded in Section 4.3.3 when summing over all episodes. The first term
on the right hand side is analyzed further in Section 4.3.2 and split into

vk(P̃k−I)wk = vk(P̃k−Pk)wk +vk(Pk−I)wk

≤
∥

∥vk(P̃k−Pk)
∥

∥

1‖wk‖∞ +vk(Pk−I)wk,

wherePk is the true transition matrix (inM) of the policy applied in episodek. Substituting for
P̃k−Pk the lengths of the confidence intervals as given in (4), the remaining term that needs analysis
is vk(Pk − I)wk. For the sum of this term over all episodes we obtain in Section 4.3.2 a high
probability bound of

∑
k

vk(Pk−I)wk ≤ D
√

5
2T log

(

8T
δ
)

+Dm,

wherem is the number of episodes—a term shown to be logarithmic inT in Appendix C.2. Sec-
tion 4.3.3 concludes the analysis of episodes withM ∈Mk by summing the individual regret terms
over all episodesk with M ∈ Mk. In the final Section 4.4 we finish the proof by combining the
results of Sections 4.1–4.3.
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4.1 Splitting into Episodes

Recall thatrt is the (random) reward UCRL2 receives at stept when starting in some initial states1.
For given state-action countsN(s,a) afterT steps, thert are independent random variables, so that
by Hoeffding’s inequality

P

{ T

∑
t=1

rt ≤ ∑
s,a

N(s,a)r̄(s,a)−
√

5
8T log

(

8T
δ
)

∣

∣

∣

∣

(

N(s,a)
)

s,a

}

≤
(

δ
8T

)5/4

<
δ

12T5/4
. (7)

Thus we get for the regret of UCRL2 (now omitting explicit references toM and UCRL2)

∆(s1,T) = Tρ∗−
T

∑
t=1

rt < Tρ∗−∑
s,a

N(s,a)r̄(s,a)+
√

5
8T log

(

8T
δ
)

with probability at least 1− δ
12T5/4 . Denoting the number of episodes started up to stepT by m,

we have∑m
k=1vk(s,a) = N(s,a) and∑s,aN(s,a) = T. Therefore, writing∆k := ∑s,avk(s,a)

(

ρ∗ −
r̄(s,a)

)

, it follows that

∆(s1,T) ≤
m

∑
k=1

∆k +
√

5
8T log

(

8T
δ
)

(8)

with probability at least 1− δ
12T5/4 .

4.2 Dealing with Failing Confidence Regions

Let us now consider the regret of episodes in which the set of plausible MDPsMk does not contain
the true MDPM, ∑m

k=1 ∆k1M 6∈Mk
. By the stopping criterion for episodek we have (except for

episodes wherevk(s,a) = 1 andNk(s,a) = 0, when∑s,avk(s,a) = 1≤ tk holds trivially)

∑
s,a

vk(s,a) ≤ ∑
s,a

Nk(s,a) = tk−1.

Hence, denotingM (t) to be the set of plausible MDPs as given by (3) and (4) using the estimates
available at stept, we have due toρ∗ ≤ 1 that

m

∑
k=1

∆k1M 6∈Mk
≤

m

∑
k=1

∑
s,a

vk(s,a)1M 6∈Mk
≤

m

∑
k=1

tk1M 6∈Mk
=

T

∑
t=1

t
m

∑
k=1

1tk=t,M 6∈Mk

≤
T

∑
t=1

t1M 6∈M (t) ≤
⌊T1/4⌋

∑
t=1

t1M 6∈M (t) +
T

∑
t=⌊T1/4⌋+1

t1M 6∈M (t)

≤
√

T +
T

∑
t=⌊T1/4⌋+1

t1M 6∈M (t).

Now,P
{

M 6∈M (t)
}

≤ δ
15t6 (see Appendix C.1), and since

T

∑
t=⌊T1/4⌋+1

1
15t6 ≤ 1

15T6/4
+

Z ∞

T1/4

1
15t6 dt =

1

15T6/4
+

1

75T5/4
≤ 6

75T5/4
<

1

12T5/4
,

we haveP{∃t : T1/4 < t ≤T : M 6∈M (t)}≤ δ
12T5/4 . It follows that with probability at least 1− δ

12T5/4 ,

m

∑
k=1

∆k1M 6∈Mk
≤

√
T. (9)
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4.3 Episodes withM ∈Mk

Now we assume thatM ∈Mk and start by considering the regret in a single episodek. The optimistic
average reward̃ρk of the optimistically chosen policỹπk is essentially larger than the true optimal
average rewardρ∗, and thus it is sufficient to calculate by how much the optimistic average rewardρ̃k

overestimates the actual rewards of policyπ̃k. By the assumptionM ∈Mk, the choice of̃πk andM̃k

in Step 5 of UCRL2, and Theorem 7 we get thatρ̃k ≥ ρ∗− 1√
tk

. Thus for the regret∆k accumulated
in episodek we obtain

∆k ≤ ∑
s,a

vk(s,a)
(

ρ∗− r̄(s,a)
)

≤ ∑
s,a

vk(s,a)
(

ρ̃k− r̄(s,a)
)

+∑
s,a

vk(s,a)√
tk

. (10)

4.3.1 EXTENDED VALUE ITERATION REVISITED

To proceed, we reconsider the extended value iteration of Section 3.1. Asan important observation
for our analysis, we find that for any iterationi the range of the state values is bounded by the
diameter of the MDPM, that is,

max
s

ui(s)−min
s

ui(s) ≤ D. (11)

To see this, observe thatui(s) is the total expectedi-step reward of an optimal non-stationaryi-step
policy starting in stateson the MDPM̃+ with extended action set (as considered for extended value
iteration). The diameter of this extended MDP is at mostD as it contains by assumption the actions
of the true MDPM. Now, if there were statess′,s′′ with ui(s′′)−ui(s′) > D, then an improved value
for ui(s′) could be achieved by the following nonstationary policy: First follow a policywhich
moves froms′ to s′′ most quickly, which takes at mostD steps on average. Then follow the optimal
i-step policy fors′′. Since onlyD of the i rewards of the policy fors′′ are missed, this policy gives
ui(s′) ≥ ui(s′′)−D, contradicting our assumption and thus proving (11).

It is a direct consequence of Theorem 8.5.6. of Puterman (1994), thatwhen the convergence
criterion (6) holds at iterationi, then

|ui+1(s)−ui(s)− ρ̃k| ≤
1√
tk

(12)

for all s∈ S , whereρ̃k is the average reward of the policyπ̃k chosen in this iteration on the optimistic
MDP M̃k.9 Expandingui+1(s) according to (5), we get

ui+1(s) = r̃k(s, π̃k(s))+∑
s′

p̃k
(

s′|s, π̃k(s)
)

·ui(s
′)

and hence by (12)
∣

∣

∣

∣

(

ρ̃k− r̃k(s, π̃k(s))

)

−
(

∑
s′

p̃k
(

s′|s, π̃k(s)
)

·ui(s
′)−ui(s)

)∣

∣

∣

∣

≤ 1√
tk

. (13)

Setting rk :=
(

r̃k
(

s, π̃k(s)
))

s to be the (column) vector of rewards for policỹπk,
P̃k :=

(

p̃k (s′|s, π̃k(s))
)

s,s′ the transition matrix of̃πk on M̃k, andvk :=
(

vk
(

s, π̃k(s)
))

s the (row)

9. This is quite intuitive. We expect to receive average rewardρ̃k per step, such that the difference of the state values
after i +1 andi steps should be aboutρ̃k.
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vector of visit counts for each state and the corresponding action chosen by π̃k, we can use (13)—
recalling thatvk(s,a) = 0 for a 6= π̃k(s)—to rewrite (10) as

∆k ≤ ∑
s,a

vk(s,a)
(

ρ̃k− r̄(s,a)
)

+∑
s,a

vk(s,a)√
tk

= ∑
s,a

vk(s,a)
(

ρ̃k− r̃k(s,a)
)

+∑
s,a

vk(s,a)
(

r̃k(s,a)− r̄(s,a)
)

+∑
s,a

vk(s,a)√
tk

≤ vk
(

P̃k−I
)

ui +∑
s,a

vk(s,a)
(

r̃k(s,a)− r̄(s,a)
)

+2∑
s,a

vk(s,a)√
tk

.

Since the rows ofP̃k sum to 1, we can replaceui by wk where we set

wk(s) := ui(s)−
minsui(s)+maxsui(s)

2
,

such that it follows from (11) that‖wk‖ ≤ D
2 . Further, since we assumeM ∈Mk, r̃k(s,a)− r̄(s,a)≤

|r̃k(s,a)− r̂k(s,a)|+ |r̄(s,a)− r̂k(s,a)| is bounded according to (3), so that

∆k ≤ vk
(

P̃k−I
)

wk +2∑
s,a

vk(s,a)
√

7log(2SAtk/δ)
2max{1,Nk(s,a)} +2∑

s,a

vk(s,a)√
tk

. (14)

Noting that max{1,Nk(s,a)} ≤ tk ≤ T we get from (14) that

∆k ≤ vk
(

P̃k−I
)

wk +

(

√

14log
(

2SAT
δ
)

+2

)

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
. (15)

4.3.2 THE TRUE TRANSITION MATRIX

Now we want to replace the transition matrix̃Pk of the policyπ̃k in the optimistic MDPM̃k by the
transition matrixPk :=

(

p(s′|s, π̃k(s))
)

s,s′ of π̃k in the true MDPM. Thus, we write

vk
(

P̃k−I
)

wk = vk
(

P̃k−Pk +Pk−I
)

wk

= vk
(

P̃k−Pk
)

wk +vk
(

Pk−I
)

wk. (16)

The first term.Since by assumptioñMk andM are in the set of plausible MDPsMk, the first term
in (16) can be bounded using condition (4). Thus, also using that‖wk‖∞ ≤ D

2 we obtain

vk
(

P̃k−Pk
)

wk = ∑
s

∑
s′

vk
(

s, π̃k(s)
)

·
(

p̃k
(

s′|s, π̃k(s)
)

− p
(

s′|s, π̃k(s)
)

)

·wk(s
′)

≤ ∑
s

vk
(

s, π̃k(s)
)

·
∥

∥p̃k ( · |s, π̃k(s))− p(·|s, π̃k(s))
∥

∥

1 · ‖wk‖∞

≤ ∑
s

vk
(

s, π̃k(s)
)

·2
√

14Slog(2AT/δ)

max{1,Nk (s, π̃k(s))}
· D

2

≤ D
√

14Slog
(

2AT
δ
)

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
. (17)

This term will turn out to be the dominating contribution in our regret bound.
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The second term.The intuition about the second term in (16) is that the counts of the state visitsvk

are relatively close to the stationary distributionµk of the transition matrixPk, for whichµkPk = µk,
such thatvk

(

Pk−I
)

should be small. For the proof we define a suitable martingale and make use
of the Azuma-Hoeffding inequality.

Lemma 10 (Azuma-Hoeffding inequality, Hoeffding 1963)Let X1,X2, . . . be a martingale differ-
ence sequence with|Xi | ≤ c for all i. Then for allε > 0 and n∈N,

P
{

∑n
i=1Xi ≥ ε

}

≤ exp
(

− ε2

2nc2

)

.

Denote the unit vectors withi-th coordinate 1 and all other coordinates 0 byei . Lets1,a1,s2, . . . ,aT ,
sT+1 be the sequence of states and actions, and letk(t) be the episode which contains stept. Con-
sider the sequenceXt :=

(

p(·|st ,at)−est+1

)

wk(t)1M∈Mk(t)
for t = 1, . . . ,T. Then for any episodek

with M ∈Mk, we have due to‖wk‖∞ ≤ D
2 that

vk(Pk−I)wk =
tk+1−1

∑
t=tk

(

p(·|st ,at)−est

)

wk

=

( tk+1−1

∑
t=tk

p(·|st ,at)−
tk+1−1

∑
t=tk

est+1 +estk+1
−estk

)

wk

=
tk+1−1

∑
t=tk

Xt +wk(stk+1)−wk(stk)

≤
tk+1−1

∑
t=tk

Xt +D .

Also due to ‖wk‖∞ ≤ D
2 , we have |Xt | ≤ (‖p(·|st ,at)‖1 + ‖est+1‖1)

D
2 ≤ D. Further,

E
[

Xt
∣

∣s1,a1, . . . ,st ,at
]

= 0, so thatXt is a sequence of martingale differences, and application of
Lemma 10 gives

P

{

T

∑
t=1

Xt ≥ D
√

2T · 5
4 log

(

8T
δ
)

}

≤
(

δ
8T

)5/4

<
δ

12T5/4
.

Since for the number of episodes we havem≤ SAlog2

(

8T
SA

)

as shown in Appendix C.2, summing
over all episodes yields

m

∑
k=1

vk(Pk−I)wk1M∈Mk
≤

T

∑
t=1

Xt +mD

≤ D
√

5
2T log

(

8T
δ
)

+DSAlog2

(

8T
SA

)

(18)

with probability at least 1− δ
12T5/4 .
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4.3.3 SUMMING OVER EPISODES WITHM ∈Mk

To conclude Section 4.3, we sum (15) over all episodes withM ∈Mk, using (16), (17), and (18),
which yields that with probability at least 1− δ

12T5/4

m

∑
k=1

∆k1M∈Mk
≤

m

∑
k=1

vk
(

P̃k−Pk
)

wk1M∈Mk
+

m

∑
k=1

vk
(

Pk−I
)

wk1M∈Mk

+
m

∑
k=1

(

√

14log
(

2SAT
δ
)

+2

)

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}

≤ D
√

14Slog
(

2AT
δ
)

·
m

∑
k=1

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}

+D
√

5
2T log

(

8T
δ
)

+DSAlog2

(

8T
SA

)

+

(

√

14log
(

2SAT
δ
)

+2

) m

∑
k=1

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
. (19)

Recall thatN(s,a) := ∑k vk(s,a) such that∑s,aN(s,a) = T and Nk(s,a) = ∑i<k vi(s,a). By the
criterion for episode termination in Step 6 of the algorithm, we have thatvk(s,a) ≤ Nk(s,a). Using
that forZk = max

{

1,∑k
i=1zi

}

and 0≤ zk ≤ Zk−1 it holds that (see Appendix C.3)

n

∑
k=1

zk√
Zk−1

≤
(√

2+1
)√

Zn ,

we get

∑
s,a

∑
k

vk(s,a)
√

max{1,Nk(s,a)}
≤
(√

2+1
)

∑
s,a

√

N(s,a).

By Jensen’s inequality we thus have

∑
s,a

∑
k

vk(s,a)
√

max{1,Nk(s,a)}
≤
(√

2+1
)√

SAT, (20)

and we get from (19) after some minor simplifications that with probability at least 1− δ
12T5/4

m

∑
k=1

∆k1M∈Mk
≤ D

√

5
2T log

(

8T
δ
)

+DSAlog2

(

8T
SA

)

+

(

2D
√

14Slog
(

2AT
δ
)

+2

)

(√
2+1

)√
SAT. (21)

4.4 Completing the Proof of Theorem 2

Finally, evaluating (8) by summing∆k over all episodes, we get by (9) and (21)

∆(s1,T) ≤
m

∑
k=1

∆k1M /∈Mk
+

m

∑
k=1

∆k1M∈Mk
+
√

5
8T log

(

8T
δ
)

≤
√

5
8T log

(

8T
δ
)

+
√

T +D
√

5
2T log

(

8T
δ
)

+DSAlog2

(

8T
SA

)

+

(

2D
√

14Slog
(

2AT
δ
)

+2

)

(√
2+1

)√
SAT (22)
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with probability at least 1− δ
12T5/4 − δ

12T5/4 − δ
12T5/4 . Further simplifications (given in Appendix C.4)

yield that for anyT > 1 with probability at least 1− δ
4T5/4

∆(s1,T) ≤ 34DS
√

AT log
(

T
δ
)

. (23)

Since∑∞
T=2

δ
4T5/4 < δ the statement of Theorem 2 follows by a union bound over all possible values

of T.

4.5 Proof of Corollary 3

In order to obtain the PAC bound of Corollary 3 we simply have to find a sufficiently largeT0 such
that for allT ≥ T0 the per-step regret is smaller thanε. By Theorem 2 this means that for allT ≥ T0

we shall have

34DS
√

AT log
(

T
δ
)

T
< ε, or equivalently T >

342D2S2Alog
(

T
δ
)

ε2 . (24)

SettingT0 := 2α log
(α

δ
)

for α := 342D2S2A
ε2 we have due tox > 2logx (for x > 0)

T0 = α log
(α

δ
· α

δ

)

> α log
(

2
α
δ

log
(α

δ

))

= α log
(T0

δ
)

,

so that (24) as well as the corollary follow.

5. The Logarithmic Bound (Proof of Theorem 4)

To show the logarithmic upper bound on the expected regret, we start with a bound on the number of
steps in suboptimal episodes (in the spirit ofsample complexity boundsas given by Kakade, 2003).
We say that an episodek is ε-bad if its average regret is more thanε, where the average regret of an
episode of lengthℓk is ∆k

ℓk
with10 ∆k = ∑tk+1−1

t=tk (ρ∗− rt). The following result gives an upper bound
on the number of steps taken inε-bad episodes.

Theorem 11 Let Lε(T) be the number of steps taken byUCRL2 in ε-bad episodes up to step T .
Then for any initial state s∈ S , any T> 1 and anyε > 0, with probability of at least1−3δ

Lε(T) ≤ 342D2S2Alog
(

T
δ
)

ε2 .

Proof The proof is an adaptation of the proof of Theorem 2 which gives an upper bound of

O
(

DS
√

LεAlog(AT/δ)
)

on the regret∆′
ε(s,T) in ε-bad episodes in terms ofLε. The theorem

then follows due toεLε ≤ ∆′
ε(s,T).

Fix someT > 1, and letKε andJε be two random sets that contain the indices of theε-bad
episodes up to stepT and the corresponding time steps taken in these episodes, respectively. Then
by an application of Hoeffding’s inequality similar to (7) in Section 4.1 and a union bound over all
possible values ofLε, one obtains that with probability at least 1−δ,

∑
k∈Kε

tk+1−1

∑
t=tk

rt ≥ ∑
k∈Kε

∑
s,a

vk(s,a)r̄(s,a)−
√

2Lε log
(

T
δ
)

.

10. In the following we use the same notation as in the proof of Theorem 2.
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Further, by summing up all error probabilitiesP
{

M 6∈M (t)
}

≤ δ
15t6 for t = 1,2, . . . one has

P

{

∑
k∈Kε

∆k1M 6∈Mk
> 0

}

≤ δ .

It follows that with probability at least 1−2δ

∆′
ε(s,T) ≤

√

2Lε log
(

T
δ
)

+ ∑
k∈Kε

∆k1M∈Mk
. (25)

In order to bound the regret of a single episode withM ∈Mk we follow the lines of the proof of
Theorem 2 in Section 4.3. Combining (15), (16), and (17) we have that

∆k ≤ vk
(

Pk−I
)

wk +

(

2D
√

14Slog
(

2AT
δ
)

+2

)

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
. (26)

In Appendix D we prove an analogon of (20), that is,

∑
k∈Kε

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
≤
(√

2+1
)

√

LεSA. (27)

Then from (25), (26), and (27) it follows that with probability at least 1−2δ

∆′
ε(s,T) ≤

√

2Lε log
(

T
δ
)

+

(

2D
√

14Slog
(

2AT
δ
)

+2

)

·
(√

2+1
)

·
√

LεSA

+ ∑
k∈Kε

vk(Pk−I)wk1M∈Mk
. (28)

For the regret term of∑k∈Kε vk(Pk−I)wk1M∈Mk
we use an argument similar to the one applied

to obtain (18) in Section 4.3.2. Here we have to consider a slightly modified martingale difference
sequence

Xt =
(

p(·|st ,at)−est+1

)

wk(t)1M∈Mk(t)
1t∈Jε

for t = 1, . . . ,T to get (using the bound on the number of episodes given in Appendix C.2)

∑
k∈Kε

vk(Pk−I)wk1M∈Mk
≤ ∑

t∈Jε

Xt +DSAlog2

(

8T
SA

)

≤
T(Lε)

∑
t=1

Xt +DSAlog2

(

8T
SA

)

, (29)

where we setT(L) := min
{

t : #{τ ≤ t,τ ∈ Jε} = L
}

. The application of the Azuma-Hoeffding
inequality in Section 4.3.2 is replaced with the following consequence of Bernstein’s inequality for
martingales.

Lemma 12 (Freedman 1975)Let X1,X2, . . . be a martingale difference sequence. Then

P

{

n

∑
i=1

Xi ≥ κ,
n

∑
i=1

X2
i ≤ γ

}

≤ exp

(

− κ2

2γ+ 2κ
3

)

.
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Application of Lemma 12 withκ = 2D
√

L log(T/δ) andγ = D2L yields that forL ≥ log(T/δ)
D2 it

holds that

P

{

T(L)

∑
t=1

Xt > 2D
√

L log
(

T
δ
)

}

}

<
δ
T

. (30)

On the other hand, ifL < log(T/δ)
D2 , we have

T(L)

∑
t=1

Xt ≤ DL = D
√

L
√

L <
√

L
√

log
(

T
δ
)

< 2D
√

L log
(

T
δ
)

. (31)

Hence, (30) and (31) give by a union bound over all possible values of Lε that with probability at
least 1−δ

T(Lε)

∑
t=1

Xt ≤ 2D
√

Lε log
(

T
δ
)

.

Together with (29) this yields that with probability at least 1−δ

∑
k∈Kε

vk(Pk−I)wk1M∈Mk
≤ 2D

√

Lε log
(

T
δ
)

+DSAlog2

(

8T
SA

)

.

Thus by (28) we obtain that with probability at least 1−3δ

∆′
ε(s,T) ≤

√

2Lε log
(

T
δ
)

+

(

2D
√

14Slog
(

2AT
δ
)

+2

)

·
(√

2+1
)

·
√

LεSA

+2D
√

Lε log
(

T
δ
)

+DSAlog2

(

8T
SA

)

.

This can be simplified to

∆′
ε(s,T) ≤ 34DS

√

LεAlog
(

T
δ
)

(32)

by similar arguments as given in Appendix C.4. SinceεLε ≤ ∆′
ε(s,T), we get

Lε ≤ 342 ·
D2S2Alog

(

T
δ
)

ε2 , (33)

which proves the theorem.

Now we apply Theorem 11 to obtain the claimed logarithmic upper bound on the expected
regret.
Proof of Theorem 4 Upper boundingLε in (32) by (33), we obtain for the regret∆′

ε(s,T) accumu-
lated inε-bad episodes that

∆′
ε(s,T) ≤ 342 ·

D2S2Alog
(

T
δ
)

ε
with probability at least 1−3δ. Noting that the regret accumulated outside ofε-bad episodes is at
mostεT implies the first statement of the theorem.

For the bound on the expected regret, first note that the expected regret of each episode in which
an optimal policy is executed is at mostD, whereas due to Theorem 11 the expected regret ing

2-bad
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episodes is upper bounded by 342 · 2·D2S2Alog(T)
g + 1, asδ = 1

3T . What remains to do is to consider
episodesk with expected average regret smaller thang

2 in which however a non-optimal policỹπk

was chosen.
First, note that for each policyπ there is aTπ such that for allT ≥ Tπ the expected average

reward afterT steps isg
2-close to the average reward ofπ. Thus, when a policyπ is played

in an episode of length≥ Tπ either the episode isg2-bad (in expectation) or the policyπ is op-
timal. Now we fix a state-action pair(s,a) and consider the episodesk in which the number
of visits vk(s,a) in (s,a) is doubled. The corresponding episode lengthsℓk(s,a) are not neces-
sarily increasing, but thevk(s,a) are monotonically increasing, and obviouslyℓk(s,a) ≥ vk(s,a).
Since thevk(s,a) are at least doubled, it takes at most⌈1+ log2(maxπ:π(s)=aTπ)⌉ episodes until
ℓk(s,a) ≥ vk(s,a) ≥ maxπ:π(s)=aTπ, when any policyπ with π(s) = a applied in episodek that is
not g

2-bad (in expectation) will be optimal. Consequently, as only episodes of length smaller than
maxπ:π(s)=aTπ have to be considered, the regret of episodesk wherevk(s,a) < maxπ:π(s)=aTπ is up-
per bounded by⌈1+ log2(maxπ:π(s)=aTπ)⌉maxπ:π(s)=aTπ. Summing over all state-action pairs, we
obtain an additional additive regret term of

∑
s,a

⌈

1+ log2( max
π:π(s)=a

Tπ)
⌉

max
π:π(s)=a

Tπ,

which concludes the proof of the theorem.

6. The Lower Bound (Proof of Theorem 5)

We first consider the two-state MDP depicted in Figure 3. That is, there aretwo states, the initial
states◦ and another statesp, andA′ =

⌊

A−1
2

⌋

actions. For each actiona, let the deterministic rewards
ber(s◦,a) = 0 andr(sp,a) = 1. For all but a single “good” actiona∗ let p(sp|s◦,a) = δ := 4

D , whereas
p(sp|s◦,a∗) = δ + ε for some 0< ε < δ specified later in the proof. Further, letp(s◦|sp,a) = δ for
all a. The diameter of this MDP isD′ = 1

δ = D
4 . For the rest of the proof we assume that11 δ ≤ 1

3.

�� ��

1−δ−ε

δ

... δ ...

1−δ
δ+ε

1−δ

s s0 1

Figure 3: The MDP for the lower bound. The single actiona∗ with higher transition probability
from states◦ to statesp is shown as dashed line.

Considerk :=
⌊

S
2

⌋

copies of this MDP where only one of the copies has such a “good” actiona∗.
To complete the construction, we connect thek copies into a single MDP with diameter less thanD,

11. Otherwise we haveD < 12, so that due to the made assumptionsA> 2S. In this case we employ a different construc-
tion: UsingS−1 actions, we connect all states to get an MDP with diameter 1. With the remaining A−S+1 actions
we set up a bandit problem in each state as in the proof of the lower bound of Auer et al. (2002b) where only one
state has a better action. This yieldsΩ(

√
SAT) regret, which is sufficient, sinceD is bounded in this case.
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Figure 4: The composite MDP for the lower bound. Copies of the MDP of Figure 3 are arranged in
anA′-ary tree, where thes◦-states are connected.

using at mostA−A′ additional actions. This can be done by introducingA′+1 additional actions per
state with deterministic transitions which do not leave thesp-states and connect thes◦-states of the
k copies by inducing anA′-ary tree structure on thes◦-states (one action for going toward the root,
A′ actions going toward the leaves—see Figure 4 for a schematic representation of the composite
MDP). The reward for each of those actions is zero in any state. The diameter of the resulting MDP
is at most 2(D

4 +⌈logA′ k⌉), which is twice the time it takes to travel to or from the root for any state
in the MDP. Thus we have constructed an MDPM with ≤ Sstates,≤ A actions, and diameter≤ D,
for which we will show the claimed lower bound on the regret.

Actually, in the analysis we will consider the simpler MDP where alls◦-states are identified.
We set this state to be the initial state. This MDP is equivalent to a single MDPM′ like the one in
Figure 3 withkA′ actions which we assume in the following to be taken from{1, . . . ,kA′}. Note that
learning this MDP is easier (as the learner is allowed to switch between different s◦-states without
any cost for transition), while its optimal average reward is the same.

We prove the theorem by applying the same techniques as in the proof of the lower bound for the
multi-armed bandit problem of Auer et al. (2002b). The pair(s∗◦,a

∗) identifying the copy with the
better action and the better action is considered to be chosen uniformly at random from{1, . . . ,k}×
{1, . . . ,A′}, and we denote the expectation with respect to the random choice of(s∗◦,a

∗) asE∗ [·].
We show thatε can be chosen such thatM′ and consequently also the composite MDPM forces
regretE∗ [∆(M,A,s◦,T)] ≥ E∗ [∆(M′,A,s∗◦,T)] > 0.015

√
D′kA′T on any algorithmA.

We writeEunif [·] for the expectation when there is no special action (i.e., the transition probabil-
ity from s◦ to sp is δ for all actions), andEa [·] for the expectation conditioned ona being the special
actiona∗ in M′. As already argued by Auer et al. (2002b), it is sufficient to considerdeterministic
strategies for choosing actions. Indeed, any randomized strategy is equivalent to an (apriori) random
choice from the set of all deterministic strategies. Thus, we may assume that any algorithmA maps
the sequence of observations up to stept to an actionat .

Now we follow the lines of the proof of Theorem A.2 as given by Auer et al.(2002b). Let the
random variablesNp, N◦ andN∗

◦ denote the total number of visits to statesp, the total number of visits
to states◦, and the number of times actiona∗ is chosen in states◦, respectively. Further, writest as
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usual for the state observed at stept. Then sinces◦ is assumed to be the initial state, we have

Ea [Np] =
T

∑
t=1

Pa [st = sp] =
T

∑
t=2

Pa [st = sp] =

=
T

∑
t=2

(

Pa [st = sp|st−1 = s◦]Pa [st−1 = s◦]+Pa [st = sp|st−1 = sp]Pa [st−1 = sp]
)

≤ δ
T

∑
t=2

Pa [st−1 = s◦,at 6= a∗]+ (δ+ ε)
T

∑
t=2

Pa [st−1 = s◦,at = a∗]+ (1−δ)Ea [Np]

≤ δEa [N◦−N∗
◦ ]+ (δ+ ε)Ea [N∗

◦ ]+ (1−δ)Ea [Np] .

Taking into account that choosinga∗ instead of any other action ins◦ reduces the probability of
staying in states◦, it follows that (usingD′ = 1

δ )

Ea
[

R(M′,A,s,T)
]

≤ Ea [Np] ≤ Ea [N◦−N∗
◦ ]+

δ+ε
δ Ea [N∗

◦ ]

= Ea [N◦]+Ea [N∗
◦ ]εD′

≤ Eunif [N◦]+Ea [N∗
◦ ]εD′

= Eunif [T −Np]+Ea [N∗
◦ ]εD′

= T −Eunif [Np]+Ea [N∗
◦ ]εD′. (34)

Now denoting the step where the first transition froms◦ to sp occurs byτ◦p, we may lower bound
Eunif [Np] by the law of total expectation as

Eunif [Np] =
T

∑
t=1

Eunif [Np|τ◦p = t]Punif [τ◦p = t] =
T

∑
t=1

Eunif [Np|τ◦p = t] (1−δ)t−1δ

≥
T−1

∑
t=1

T − t
2

(1−δ)t−1δ =
δT
2

T−1

∑
t=1

(1−δ)t−1− δ
2

T−1

∑
t=1

t(1−δ)t−1

=
δT
2

· 1− (1−δ)T−1

δ
− δ

2

(

1− (1−δ)T

δ2 − T(1−δ)T−1

δ

)

=
T −T(1−δ)T−1

2
− 1

2δ
+

(1−δ)T

2δ
+

T(1−δ)T−1

2

=
T
2
− 1

2δ
+

(1−δ)T

2δ
≥ T

2
− 1

2δ
=

T
2
− D′

2
. (35)

Therefore, combining (34) and (35) we obtain

Ea
[

R(M′,A,s,T)
]

≤ T
2

+Ea [N∗
◦ ]εD′ +

D′

2
. (36)

As A chooses its actions deterministically based on the observations so far,N∗
◦ is a function of

the observations up to stepT, too. A slight difference to Auer et al. (2002b) is that in our setting
the sequence of observations consists not just of the rewards but alsoof the next state, that is,
upon playing actionat the algorithm observesst+1 andrt . However, since the immediate reward is
fully determined by the current state,N∗

◦ is also a function of just the state sequence, and we may
boundEa [N∗

◦ ] by the following lemma, adapted from Auer et al. (2002b).
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Lemma 13 Let f : {s◦,sp}T+1 → [0,B] be any function defined on state sequencess ∈ {s◦,sp}T+1

observed in the MDP M′. Then for any0≤ δ ≤ 1
2, any0≤ ε ≤ 1−2δ, and any a∈ {1, . . . ,kA′},

Ea [ f (s)] ≤ Eunif [ f (s)]+
B
2
· ε√

δ

√

2Eunif [N∗◦ ].

The proof of Lemma 13 is a straightforward modification of the respective proof given by Auer
et al. (2002b). For details we refer to Appendix E.

Now let us assume thatε ≤ δ. (Our final choice ofε below will satisfy this requirement.) By our
assumption ofδ ≤ 1

3 this yields thatε ≤ δ ≤ 1
3 ≤ 1−2δ. Then, sinceN∗

◦ is a function of the state
sequence withN∗

◦ ∈ [0,T], we may apply Lemma 13 to obtain

Ea [N∗
◦ ] ≤ Eunif [N

∗
◦ ]+

T
2

ε
√

D′
√

2Eunif [N∗◦ ]. (37)

An immediate consequence of (35) is that∑kA′
a=1Eunif [N∗

◦ ] ≤ T
2 + D′

2 , which yields by Jensen’s in-

equality that∑kA′
a=1

√

2Eunif [N∗◦ ] ≤
√

kA′(T +D′). Thus we have from (37)

kA′

∑
a=1

Ea [N∗
◦ ] ≤ T

2
+

D′

2
+

εT
2

√
D′
√

kA′(T +D′)

≤ T
2

+
D′

2
+

εT
2

√
D′kA′T +

εTD′

2

√
kA′.

Together with (36) this gives

E∗
[

R(M′,A,s,T)
]

=
1

kA′

kA′

∑
a=1

Ea [R(M,A,s,T)]

≤ T
2

+
εTD′

2kA′ +
εD′2

2kA′ +
ε2TD′

2kA′
√

D′kA′T +
ε2TD′2

2kA′
√

kA′ +
D′

2
.

Calculating the stationary distribution, we find that the optimal average rewardfor the MDPM′

is δ+ε
2δ+ε . Hence, the expected regret with respect to the random choice ofa∗ is at least

E∗
[

∆(M′,A,s,T)
]

=
δ+ ε
2δ+ ε

T −E∗ [R(M,A,s,T)]

≥ δ+ ε
2δ+ ε

T − T
2
− εTD′

2kA′ −
εD′

2kA′ ·D
′− ε2TD′

2kA′
√

D′kA′T − ε2TD′

2kA′
√

D′kA′ ·
√

D′− D′

2
.

Since by assumption we haveT ≥ DSA≥ 16D′kA′ and thusD′ ≤ T
16kA′ , it follows that

E∗
[

∆(M′,A,s,T)
]

≥ εT
4δ+2ε

− εTD′

2kA′ −
εD′

2kA′ ·
T

16kA′ −
ε2TD′

2kA′
√

D′kA′T − ε2TD′

2kA′
√

D′kA′
√

T
16kA′ −

D′

2

=
εT

4δ+2ε
− εTD′

(

1
2kA′ +

1

32k2A′2

)

− ε2TD′

kA′
√

D′kA′T

(

1
2

+
1

8
√

kA′

)

− D′

2
.
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Now we chooseε := c
√

kA′
TD′ , wherec := 1

5. Then because of1δ = D′ ≤ T
16kA′ it follows that ε ≤

c 1
4D′ = δ

20 (so that alsoε ≤ δ as needed to get (37)), and further14δ+2ε ≥ 1
4+1/8D′. Hence we obtain

E∗
[

∆(M′,A,s,T)
]

≥
(

c

4+ 1
8

− c
2kA′ −

c

32k2A′2 −
c2

2
− c2

8
√

kA′

)

√
D′kA′T − D′

2
.

Finally, we note that
D′

2
≤ 1

2

√
D′
√

T
16kA′ =

1
8kA′

√
D′kA′T,

and since by assumptionS,A≥ 10 so thatkA′ ≥ 20, it follows that

E∗
[

∆(M′,A,s,T)
]

> 0.015
√

D′kA′T,

which concludes the proof.

7. Regret Bounds for Changing MDPs (Proof of Theorem 6)

Consider the learner operates in a setting where the MDP is allowed to changeℓ times, such that the
diameter never exceedsD (we assume an initial change at timet = 1). For this task we define the
regret of an algorithmA up to stepT with respect to the average rewardρ∗(t) of an optimal policy
at stept as

∆′(A,s,T) :=
T

∑
t=1

ρ∗(t)− rt ,

wherert is as usual the reward received byA at stept when starting in states.

The intuition behind our approach is the following: When restarting UCRL2 every
(

T
ℓ

)2/3
steps,

the total regret for periods in which the MDP changes is at mostℓ1/3T2/3. For each other period
we have regret of̃O

(

(T
ℓ )1/3

)

by Theorem 2. Since UCRL2 is restarted onlyT1/3ℓ2/3 times, the total
regret isÕ

(

ℓ1/3T2/3
)

.
Because the horizonT is usually unknown, we use an alternative approach for restarting which

however exhibits similar properties: UCRL2′ restarts UCRL2 with parameterδ
ℓ2 at stepsτi =

⌈

i3

ℓ2

⌉

for i = 1,2,3, . . . . Now we prove Theorem 6, which states that the regret of UCRL2′ is bounded by

∆′(UCRL2′,s,T) ≤ 65· ℓ1/3T2/3DS
√

Alog
(

T
δ
)

with probability at least 1−δ in the considered setting.

Let n be the largest natural number such that
⌈

n3

ℓ2

⌉

≤ T, that is,n is the number of restarts up to

stepT. Thenn3

ℓ2 ≤ τn ≤ T ≤ τn+1−1 < (n+1)3

ℓ2 and consequently

ℓ2/3T1/3−1 ≤ n ≤ ℓ2/3T1/3. (38)

The regret∆c incurred due to changes of the MDP can be bounded by the number of steps taken
in periods in which the MDP changes. This is maximized when the changes occur during theℓ
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longest periods, which contain at mostτn+1−1− τn−ℓ+1 steps. Hence we have

∆c ≤ τn+1−1− τn−ℓ+1

≤ 1
ℓ2 (n+1)3− 1

ℓ2 − 1
ℓ2 (n− ℓ+1)3

= 3n2

ℓ +6n
ℓ −3n− 1

ℓ2 + ℓ−3+31
ℓ . (39)

For ℓ ≥ 2 we get by (39) and (38) that

∆c ≤ 3
n2

ℓ
+ ℓ ≤ 3

ℓ4/3T2/3

ℓ
+ ℓ = 3ℓ1/3T2/3 + ℓ,

while for ℓ = 1 we obtain also from (39) and (38) that

∆c ≤ 3n2 +3n ≤ 3T2/3 +3T1/3.

Thus the contribution to the regret from changes of the MDP is at most

∆c ≤ 3ℓ1/3T2/3 +3T1/3 + ℓ

≤ 6ℓ1/3T2/3 + ℓ1/3ℓ2/3

≤ 6ℓ1/3T2/3 + ℓ1/3T2/3

≤ 7ℓ1/3T2/3 . (40)

On the other hand, if the MDP does not change between the stepsτi and min{T,τi+1}, the
regret∆(sτi ,Ti) for theseTi := min{T,τi+1}− τi steps is bounded according to Theorem 2 (or more
precisely (23)). Therefore, recalling that the confidence parameter ischosen to beδ

ℓ2 , this gives

∆(sτi ,Ti) ≤ 34DS
√

TiAlog
(

ℓ2Ti
δ
)

≤ 34
√

3DS
√

Ti

√

Alog
(

T
δ
)

with probability 1− δ
4ℓ2T5/4

i

. As ∑n
i=1Ti = T, we have by Jensen’s inequality∑n

i=1
√

Ti ≤
√

n
√

T.

Thus, summing over alli = 1, . . . ,n, the regret∆ f in periods in which the MDP does not change is
by (38)

∆ f ≤
n

∑
i=1

∆(sτi ,Ti) ≤ 34
√

3DS
√

n
√

T
√

Alog
(

T
δ
)

≤ 34
√

3DSℓ1/3 T2/3
√

Alog
(

T
δ
)

(41)

with probability at least 1−∑n
i=1

δ
4ℓ2T5/4

i

. We conclude the proof by bounding this latter probability.

For
⌊

ℓ2

3

⌋

< i < n,

Ti =

⌈

(i +1)3

ℓ2

⌉

−
⌈

i3

ℓ2

⌉

≥ (i +1)3

ℓ2 − i3

ℓ2 −
ℓ2−1

ℓ2

=
3i2

ℓ2 +
3i +2− ℓ2

ℓ2 ≥ 3i2

ℓ2 ,
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and consequently 1
ℓ2T5/4

i

≤ 1
i2 . This together withTi ≥ 1 then yields

1−
n

∑
i=1

δ

4ℓ2T5/4
i

≥ 1−
⌊ℓ2/3⌋
∑
i=1

δ
4ℓ2 −

n−1

∑
i=⌊ℓ2/3⌋+1

δ
4i2

− δ
4ℓ2

> 1− ℓ2

3
· δ
4ℓ2 −

δ
4

∞

∑
i=1

1
i2
− δ

4

= 1− δ
3
− δ

4
· π2

6
> 1−δ.

As ∆′(UCRL2′,s,T) ≤ ∆c +∆ f , combining (40) and (41) yields

∆′(UCRL2′,s,T) ≤ 7ℓ1/3T2/3 +34
√

3DSℓ1/3 T2/3
√

Alog
(

T
δ
)

with probability at least 1− δ, and Theorem 6 follows, since the claimed bound holds trivially for
Alog

(

T
δ
)

< log4.

8. Open Problems

There is still a gap between the upper bound on the regret of Theorem 2 and the lower bound of
Theorem 5. We conjecture that the lower bound gives the right exponents for the parametersSandD
(concerning the dependence onScompare also the sample complexity bounds of Strehl et al., 2006).
The recent research of Bartlett and Tewari (2009) also poses the question whether the diameter in our
bounds can be replaced by a smaller parameter, that is, by the span of the bias of an optimal policy.
As the algorithm REGAL.C of Bartlett and Tewari (2009) demonstrates, this isat least true when
this value is known to the learner. However, in the case of ignorance, currently this replacement of
the diameterD can only be achieved at the cost of an additional factor of

√
S in the regret bounds

(Bartlett and Tewari, 2009). The difficulty in the proof is that while the spanof an optimal policy’s
bias vector in theassumedoptimistic MDP can be upper bounded by the diameter of thetrueMDP
(cf. Remark 8), it is not clear how the spans of optimal policies in the assumedand the true MDP
relate to each other.

A somehow related question is that oftransientstates, that is, the possibility that some of the
states are not reachable under any policy. In this case the diameter is unbounded, so that our bounds
become vacuous. Indeed, our algorithm cannot handle transient states: for any time step and any
transient states, UCRL2 optimistically assumes maximal possible reward ins and a very small but
still positive transition probability tos from any other state. Thus insisting on the possibility of
a transition tos, the algorithm fails to detect an optimal policy.12 The assumption of having an
upper bound on an optimal policy’s bias resolves this problem, as this boundindirectly also gives
some information on what the learner may expect from a state that has not been reached so far and
thus may be transient. Consequently, with the assumed knowledge of such anupper bound, the
REGAL.C algorithm of Bartlett and Tewari (2009) is also able to deal with transient states.

12. Actually, one can modify UCRL2 to deal with transient states by assuming transition probability 0 for all transitions
not observed so far. This is complemented by an additional exploration phase between episodes where, for example,
the state-action pair with the fewest number of visits is probed. While this algorithm gives asymptotically the same
bounds, these however contain a large additive constant for all the episodes that occur before the transition structure
assumed by the algorithm is correct.
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Appendix A. A Lower Bound on the Diameter

We are going to show a more general result, from which the bound on the diameter follows. For a
given MDP, letT∗(s|s0) be the minimal expected time it takes to move from states0 to states.

Theorem 14 Consider an MDP with state spaceS and A states. Let d0 be an arbitrary distribution
overS , andU ⊆ S be any subset of states. Then the sum of the minimal expected transition times
to states inU when starting in an initial state distributed according to d0 is bounded as follows:

T (U|d0) := ∑
s∈U

∑
s0∈S

d0(s0)T∗(s|s0) ≥ min
0≤nk≤Ak,k≥0,

∑k nk=|U|

∑
k

k ·nk.

We think this bound is tight. The minimum on the right hand side is attained when thenk are
maximized for smallk until |U| is exhausted. ForA≥ 2, this gives an average (over the states inU)
expected transition time of at least logA |U|−3 to states inU. Indeed, for|U| = ∑m−1

k=0 Ak +nm we

haveAm+1−A
(A−1)2 < |U|

(

1+ 1
A−1

)

as well asm≥ logA

( |U|
2

)

, so that

m−1

∑
k=0

kAk +m·nm = m|U|+
m−1

∑
k=0

(k−m)Ak

= m|U|+ m
A−1

− Am+1−A
(A−1)2

> |U|
(

m−1− 1
A−1

)

≥ |U|
(

logA

(

|U|
2

)

−1− 1
A−1

)

≥ |U|(logA |U|−3) .

In particular, choosingU = S gives the claimed lower bound on the diameter.

Corollary 15 In any MDP with S states and A≥ 2 actions, the diameter D is lower bounded by
logAS−3.

Remark 16 For given S,A the minimal diameter is not always assumed by an MDP with determin-
istic transitions. Consider for example S= 4 and A= 2. Any deterministic MDP with four states
and two actions has diameter at least 2. However, Figure 5 shows a corresponding MDP whose
diameter is3

2.
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Figure 5: An MDP with four states and two actions whose diameter is3
2. In each state two actions

are available. One action leads to another state deterministically, while the other action
causes a random transition to each of the two other states with probability1

2 (indicated as
dashed lines).

Proof of Theorem 14 Let a∗(s0,s) be the optimal action in states0 for reaching states, and let
p(s|s0,a) be the transition probability to stateswhen choosing actiona in states0.

The proof is by induction on the size ofU. For |U| = 0,1 the statement holds.
For |U| > 1 we have

T (U|d0) = ∑
s0∈S

∑
s∈U

d0(s0)T∗(s|s0)

= ∑
s0∈S

∑
s∈U\{s0}

d0(s0)T∗(s|s0)

= ∑
s0∈S

∑
s∈U\{s0}

d0(s0)

(

∑
s1∈S

p
(

s1|s0,a
∗(s0,s)

)

T∗(s|s1)+1

)

= ∑
s0∈S

d0(s0)∑
a

∑
s∈U\{s0},
a∗(s0,s)=a

(

∑
s1∈S

p(s1|s0,a)T∗(s|s1)+1

)

= ∑
s0∈S

d0(s0)∑
a

(

∑
s1∈S

∑
s∈Us0,a

p(s1|s0,a)T∗(s|s1)+ |Us0,a|
)

,

whereUs0,a :=
{

s∈U \{s0} : a∗(s0,s) = a
}

.
If all Us0,a ⊂U, we apply the induction hypothesis and obtain for suitablenk(s0,a)

∑
s0∈S

d0(s0)∑
a

(

∑
s1∈S

∑
s∈Us0,a

p(s1|s0,a)T∗(s|s1)+ |Us0,a|
)

≥ ∑
s0∈S

d0(s0)∑
a

(

∑
k

k ·nk(s0,a)+ |Us0,a|
)

= ∑
s0∈S

d0(s0)∑
a

∑
k

(k+1) ·nk(s0,a),

since∑k nk(s0,a) = |Us0,a|. Furthermore,nk(s0,a) ≤ Ak and |U| − 1 ≤ ∑a |Us0,a| ≤ |U|. Thus
settingn′k = ∑s0

d0(s0)∑ank−1(s0,a) for k≥ 1 andn′0 = |U|−∑k≥1n′k satisfies the conditions of the
statement. This completes the induction step for this case.
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If Us0,a = U for some pair(s0,a) (i.e., for all target statess∈ U the same action is optimal
in s0), then we construct a modified MDP with shorter transition times. This is achieved by modi-
fying one of the actions to give a deterministic transition froms0 to some state inU (which is not
reached deterministically by choosing actiona). For the modified MDP the induction step works
and the lower bound can be proven, which then also holds for the originalMDP.

Appendix B. Convergence of Value Iteration (Proof of Theorem 7)

As sufficient condition for convergence of value iteration, Puterman (1994) assumes only that all
optimal policies have aperiodic transition matrices. Actually, the proof of Theorem 9.4.4 of Put-
erman (1994)—the main result on convergence of value iteration—needs this assumption only at
one step, that is, to guarantee that the optimal policy identified at the end of theproof has aperiodic
transition matrix. In the following we give a proof sketch of Theorem 7 that concentrates on the
differences to the convergence proof given by Puterman (1994).

Lemma 9.4.3 of Puterman (1994) shows that value iteration eventually choosesonly policiesπ
that satisfyPπρ

∗ = ρ∗, wherePπ is the transition matrix ofπ andρ∗ is the optimal average reward
vector. More precisely, there is ani0 such that for alli ≥ i0

max
π:S→A

{rπ +Pπui} = max
π∈E

{rπ +Pπui},

whererπ is the reward vector of the policyπ, andE := {π : S → A |Pπρ
∗ = ρ∗}.

Unlike standard value iteration, extended value iteration always chooses policies with aperiodic
transition matrix (cf. the discussion in Section 3.1.3). Thus when consideringonly aperiodic policies
F := {π : S →A |Pπ is aperiodic} in the proof of Lemma 9.4.3, the same argument shows that there
is ani′0 such that for alli ≥ i′0

max
π∈F

{rπ +Pπui} = max
π∈E∩F

{rπ +Pπui}. (42)

Intuitively, (42) shows that extended value iteration eventually chooses only policies fromE∩F .
With (42) accomplished, the proof of Theorem 9.4.4, the main result on convergence of value

iteration, can be rewritten word by word from Puterman (1994), withE replaced withE∩F and
using (42) instead of Lemma 9.4.3. Thus, unlike in the original proof where the optimal policyπ∗

identified at the end of the proof is inE, in our caseπ∗ is in E∩F . Here Puterman (1994) uses
the assumption thatall optimal policies have aperiodic transition matrices to guarantee thatπ∗ has
aperiodic transition matrix. In our case,π∗ has aperiodic transition matrix by definition, as it is in
E∩F .

Then by the aperiodicity ofPπ∗ , the result of Theorem 9.4.4 follows, and one obtains analo-
gously to Theorem 9.4.5 (a) of Puterman (1994) that

lim
i→∞

(ui+1−ui) = ρ∗. (43)

As the underlying MDPM̃+ is assumed to be communicating (so thatρ∗ is state-independent),
analogously to Corollary 9.4.6 of Puterman (1994) convergence of extended value iteration follows
from (43). Finally, with the convergence of extended value iteration established, the error bound for
the greedy policy follows from Theorem 8.5.6 of Puterman (1994).
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Appendix C. Technical Details for the Proof of Theorem 2

This appendix collects some technical details, starting with an error bound for our confidence inter-
vals.

C.1 Confidence Intervals

Lemma 17 For any t≥ 1, the probability that the true MDP M is not contained in the set of plau-
sible MDPsM (t) at time t (as given by the confidence intervals in(3) and (4)) is at most δ

15t6 , that
is

P
{

M 6∈M (t)
}

<
δ

15t6 .

Proof Consider a fixed state-action pair(s,a) and assume some given number of visitsn> 0 in (s,a)
before stept. Denote the estimates for transition probabilities and rewards obtained from thesen
observations by ˆp(·|s,a) and ˆr (s,a), respectively. Let us first consider the probability with which a
confidence interval for the transition probabilities fails. The random event observed for the transition
probability estimates is the state to which the transition occurs. Generally, theL1-deviation of the
true distribution and the empirical distribution overm distinct events fromn samples is bounded
according to Weissman et al. (2003) by

P

{

∥

∥p̂(·)− p(·)
∥

∥

1 ≥ ε
}

≤ (2m−2)exp
(

−nε2

2

)

. (44)

Thus, in our case we havem= S (for each possible transition there is a respective event), so that
setting

ε =

√

2
n

log
(

2S20SAt7

δ

)

≤
√

14S
n

log
(

2At
δ
)

,

we get from (44)

P

{

∥

∥

∥
p(·|s,a)− p̂(·|s,a)

∥

∥

∥

1
≥
√

14S
n

log
(

2At
δ
)

}

≤ 2Sexp

(

−n
2
· 2
n

log
(

2S20SAt7

δ

)

)

=
δ

20t7SA
.

For the rewards we observe real-valued, independent identically distributed (i.i.d.) random vari-
ables with support in[0,1]. Hoeffding’s inequality gives for the deviation between the true mean ¯r
and the empirical mean ˆr from n i.i.d. samples with support in[0,1]

P

{

∣

∣r̂ − r̄
∣

∣≥ εr

}

≤ 2exp
(

−2nε2
r

)

.

Setting

εr =

√

1
2n

log
(

120SAt7

δ

)

≤
√

7
2n

log
(

2SAt
δ
)

,

we get for state-action pair(s,a)

P

{

∣

∣r̂ (s,a)− r̄(s,a)
∣

∣≥
√

7
2n

log
(

2SAt
δ
)

}

≤ 2exp

(

−2n· 1
2n

log
(

120SAt7

δ

)

)

=
δ

60t7SA
.
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Note that when there haven’t been any observations, the confidence intervals trivially hold with
probability 1 (for transition probabilities as well as for rewards). Hence aunion bound over all
possible values ofn = 1, . . . , t −1 gives (now writingN(s,a) for the number of visits in(s,a))

P

{

∣

∣r̂ (s,a)− r̄(s,a)
∣

∣≥

√

7log
(

2SAt
δ
)

2max{1,N(s,a)}

}

≤
t−1

∑
n=1

δ
60t7SA

<
δ

60t6SA
and

P

{

∥

∥

∥
p(·|s,a)− p̂(·|s,a)

∥

∥

∥

1
≥

√

14Slog
(

2At
δ
)

max{1,N(s,a)}

}

≤
t−1

∑
n=1

δ
20t7SA

<
δ

20t6SA
.

Summing these error probabilities over all state-action pairs we obtain the claimedboundP
{

M /∈
M (t)

}

< δ
15t6 .

C.2 A Bound on the Number of Episodes

Since in each episode the total number of visits to at least one state-action pairdoubles, the number
of episodesm is logarithmic inT. Actually, the number of episodes becomes maximal when all
state-action pairs are visited equally often, which results in the following bound.

Proposition 18 The number m of episodes ofUCRL2 up to step T≥ SA is upper bounded as

m ≤ SAlog2

(

8T
SA

)

.

Proof Let N(s,a) := #{τ < T +1 : sτ = s,aτ = a} be the total number of observations of the state-
action pair(s,a) up to stepT. In each episodek < m there is a state-action pair(s,a) with vk(s,a) =
Nk(s,a) (or vk(s,a) = 1, Nk(s,a) = 0). LetK(s,a) be the number of episodes withvk(s,a) = Nk(s,a)
andNk(s,a) > 0. If N(s,a) > 0, thenvk(s,a) = Nk(s,a) impliesNk+1(s,a) = 2Nk(s,a), so that

N(s,a) =
m

∑
k=1

vk(s,a) ≥ 1+ ∑
k:vk(s,a)=Nk(s,a)

Nk(s,a) ≥ 1+
K(s,a)

∑
i=1

2i−1 = 2K(s,a).

On the other hand, ifN(s,a) = 0, then obviouslyK(s,a) = 0, so that generally,N(s,a) ≥ 2K(s,a)−1
for any state-action pair(s,a). It follows that

T = ∑
s,a

N(s,a) ≥ ∑
s,a

(

2K(s,a)−1
)

. (45)

Now, in each episode a state-action pair(s,a) is visited for which eitherNk(s,a) = 0 or Nk(s,a) =
vk(s,a). Hence,m≤ 1+SA+∑s,aK(s,a), or equivalently∑s,aK(s,a) ≥ m−1−SA. This implies

∑
s,a

2K(s,a) ≥ SA2∑s,a K(s,a)/SA ≥ SA2
m−1
SA −1.

Together with (45) this gives

T ≥ SA
(

2
m−1
SA −1−1

)

,

which yields
m ≤ 1+2SA+SAlog2

(

T
SA

)

,

and the claimed bound onm follows for T ≥ SA.
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C.3 The Sum in(19)

Lemma 19 For any sequence of numbers z1, . . . ,zn with 0≤ zk ≤ Zk−1 := max
{

1,∑k−1
i=1 zi

}

n

∑
k=1

zk√
Zk−1

≤
(√

2+1
)√

Zn .

Proof We prove the statement by induction overn.
Base case:We first show that the lemma holds for alln with ∑n−1

k=1 zk ≤ 1. Indeed, in this caseZk = 1
for k≤ n−1 and hencezn ≤ 1. It follows that

n

∑
k=1

zk√
Zk−1

=
n−1

∑
k=1

zk +zn ≤ 1+1 <
(√

2+1
)

Zn.

Note that this also shows that the lemma holds forn = 1, since∑0
k=1zk = 0≤ 1.

Inductive step:Now let us consider natural numbersn such that∑n−1
k=1 zk > 1. By the induction

hypothesis we have
n

∑
k=1

zk√
Zk−1

≤
(√

2+1
)

√

Zn−1 +
zn√
Zn−1

.

Sincezn ≤ Zn−1 = ∑n−1
k=1 zk andZn−1 +zn = Zn, we further have

(√
2+1

)

√

Zn−1 +
zn√
Zn−1

=

√

(√
2+1

)2
Zn−1 +2

(√
2+1

)

zn +
z2
n

Zn−1

≤
√

(√
2+1

)2
Zn−1 +

(

2+2
√

2+1
)

zn

=

√

(√
2+1

)2
Zn−1 +

(√
2+1

)2
zn

=
(√

2+1
)

√

Zn−1 +zn =
(√

2+1
)√

Zn ,

which proves the lemma.

C.4 Simplifying (22)

Combining similar terms, (22) yields that with probability at least 1− δ
4T5/4

∆(s1,T) ≤ DS
√

AT

(

3
2

√

1
A · 5

2 log
(

8T
δ
)

+2
(√

2+1
)

√

14log
(

2AT
δ
)

+
√

8+2+ 1√
A

)

+DSAlog2

(

8T
SA

)

. (46)

We assumeA ≥ 2, since the bound is trivial otherwise. Also, for 1< T ≤ 342Alog
(

T
δ
)

we have

∆(s1,T)≤34
√

AT log
(

T
δ
)

trivially. ConsideringT > 34Alog
(

T
δ
)

we haveA< 1
34log( T

δ )

√

AT log
(

T
δ
)

and also log2(8T) < 2log(T), so that

DSAlog2

(

8T
SA

)

< 2
34DS

√

AT log
(

T
δ
)

.
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Further,T > 34Alog
(

T
δ
)

also implies log
(

2AT
δ
)

≤ 2log
(

T
δ
)

and log
(

8T
δ
)

≤ 2log
(

T
δ
)

. Thus, we

have by (46) that for anyT > 1 with probability at least 1− δ
4T5/4

∆(s1,T) ≤ DS
√

AT log
(

T
δ
)

(

3
2

√

5
2 +2

(√
2+1

)√
28+

√
8+2+ 1√

2
+ 2

34

)

≤ 34DS
√

AT log
(

T
δ
)

.

Appendix D. Technical Details for the Proof of Theorem 4: Proof of (27)

For a given index setKε of episodes we would like to bound the sum

∑
k∈Kε

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
= ∑

s,a

m

∑
k=1

vk(s,a)
√

max{1,Nk(s,a)}
1k∈Kε .

We will do this by modifying the sum so that Lemma 19 becomes applicable. Compared to the
setting of Lemma 19 there are some “gaps” in the sum caused by episodes/∈ Kε. In the following
we show that the contribution of episodes that occur after stepLε := ∑k∈Kε ∑s,avk(s,a) is not larger
than the missing contributions of the episodes/∈ Kε. Intuitively speaking, one may fill the episodes
that occur after stepLε into the gaps of episodes/∈ Kε as Figure 6 suggests.

����
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����
����

�������
�������
�������
�������

������
������
������
������

������
������
������
������

�����
�����
�����
�����

Lε

Figure 6: Illustration of the proof idea. Shaded boxes stand for episodes ∈ Kε, empty boxes for
episodes/∈ Kε. The contribution of episodes after stepLε can be “filled into the gaps” of
episodes/∈ Kε before stepLε.

Let ℓε(s,a) := ∑k∈Kε vk(s,a), so that∑s,aℓε(s,a)= Lε. We consider a fixed state-action pair(s,a)
and skip the reference to it for ease of reading, so thatNk refers to the number of visits to(s,a)
up to episodek, andN denotes the total number of visits to(s,a). Further, we abbreviatedk :=
√

max{1,Nk}, and letmε := max{k : Nk < ℓε} be the episode containing theℓε-th visit to (s,a).
Due tovk = Nk+1−Nk we have

vmε = (Nmε+1− ℓε)+(ℓε −Nmε). (47)

SinceNmε = ∑mε−1
k=1 vk, this yields

ℓε − Nmε +
mε−1

∑
k=1

vk = ℓε =
m

∑
k=1

vk1k∈Kε

=
mε−1

∑
k=1

vk1k∈Kε +
(

Nmε+1− ℓε
)

1mε∈Kε +
(

ℓε −Nmε

)

1mε∈Kε +
m

∑
k=mε+1

vk1k∈Kε ,
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or equivalently,

(

Nmε+1− ℓε
)

1mε∈Kε +
m

∑
k=mε+1

vk1k∈Kε =
(

ℓε −Nmε

)

1mε /∈Kε +
mε−1

∑
k=1

vk1k/∈Kε . (48)

By (47) and due todk ≥ dmε for k≥ mε we have

m

∑
k=1

vk

dk
1k∈Kε ≤

mε−1

∑
k=1

vk

dk
1k∈Kε +

ℓε −Nmε

dmε

1mε∈Kε

+
1

dmε

(

(

Nmε+1− ℓε
)

1mε∈Kε +
m

∑
k=mε+1

vk1k∈Kε

)

.

Hence, we get together with (48), using thatdk ≤ dmε for k≤ mε

m

∑
k=1

vk

dk
1k∈Kε ≤

mε−1

∑
k=1

vk

dk
1k∈Kε +

ℓε −Nmε

dmε

1mε∈Kε

+
1

dmε

(

(

ℓε −Nmε

)

1mε /∈Kε +
mε−1

∑
k=1

vk1k/∈Kε

)

≤
mε−1

∑
k=1

vk

dk
1k∈Kε +

ℓε −Nmε

dmε

1mε∈Kε +
ℓε −Nmε

dmε

1mε /∈Kε +
mε−1

∑
k=1

vk

dk
1k/∈Kε

=
mε−1

∑
k=1

vk

dk
+

ℓε −Nmε

dmε

.

Now definev′k as follows: letv′k := vk for k < mε andv′mε := ℓε −Nmε . Then we have just seen that

m

∑
k=1

vk

dk
1k∈Kε ≤

mε

∑
k=1

v′k
dk

.

Since further∑mε
k=1v′k = ℓε we get by Lemma 19 that

mε

∑
k=1

v′k
dk

≤
(√

2+1
)

√

ℓε .

As ∑s,aℓε(s,a) = Lε, we finally obtain by Jensen’s inequality

∑
k∈Kε

∑
s,a

vk(s,a)
√

max{1,Nk(s,a)}
≤
(√

2+1
)

√

LεSA,

as claimed.

Appendix E. Proof of Lemma 13

Let us first recall some notation from Section 6. ThusPa [·] denotes the probability conditioned
on a being the “good” action, while the probability with respect to a setting where allactions in
states◦ are equivalent (i.e.,ε = 0) is denoted byPunif [·]. Let S := {s◦,sp} and denote the state
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observed at stepτ by sτ and the state-sequence up to stepτ by sτ = s1, . . . ,sτ. Basically, the proof
follows along the lines of the proof of Lemma A.1 of Auer et al. (2002b). Thefirst difference is that
our observations now consist of the sequence ofT + 1 states instead of a sequence ofT observed
rewards. Still it is straightforward to get analogously to the proof of Aueret al. (2002b), borrowing
the notation, that for any functionf from {s◦,sp}T+1 to [0,B],

Ea [ f (s)]−Eunif [ f (s)] ≤ B
2

√

2log(2)KL
(

Punif
∥

∥Pa
)

, (49)

where KL(P‖Q) denotes for two distributionsP,Q the Kullback-Leibler divergencedefined as

KL(P‖Q) := ∑s∈ST+1 P{s} log2

(

P{s}
Q{s}

)

. It holds that (cf. Auer et al., 2002b)

KL
(

Punif
∥

∥Pa
)

=
T

∑
t=1

KL
(

Punif
[

st+1
∣

∣st]
∥

∥

∥
Pa
[

st+1
∣

∣st]
)

, (50)

where KL(P{st+1|st}‖Q{st+1|st}) := ∑s
t+1∈S t+1 P{st+1} log2

(

P{st+1|st}
Q{st+1|st}

)

. By the Markov property

and the fact that the actionat is determined by a sequencest ∈ S t we have (similar to Auer et al.,
2002b)

KL
(

Punif
[

st+1
∣

∣st]
∥

∥

∥
Pa
[

st+1
∣

∣st]
)

= ∑
s

t+1∈S t+1

Punif
[

st+1] log2

(

Punif [st+1|st ]

Pa [st+1|st ]

)

= ∑
s

t∈S t

Punif
[

st] ∑
s′∈S

Punif
[

st+1 = s′|st] log2

(

Punif [s′|st ]

Pa [s′|st ]

)

= ∑
s

t−1∈S t−1

Punif
[

st−1] ∑
(s′′,a′)∈S×A

Punif
[

st = s′′,at = a′|st−1]

· ∑
s′∈S

Punif
[

st+1 = s′|st−1,st = s′′,at = a′
]

log2

(

Punif
[

s′|st−1,st = s′′,at = a′
]

Pa [s′|st−1,st = s′′,at = a′]

)

= ∑
s

t−1∈S t−1

Punif
[

st−1]
kA′

∑
a′=1

∑
s′′∈S

Punif
[

st = s′′,at = a′|st−1]

· ∑
s′∈S

Punif
[

s′|s′′,a′
]

log2

(

Punif [s′|s′′,a′]
Pa [s′|s′′,a′]

)

.

Since log2
(

Punif[s′|s′′,a′]
Pa[s′|s′′,a′]

)

6= 0 only fors′′ = s◦ anda′ being the special actiona, we get

KL
(

Punif
[

st+1
∣

∣st]
∥

∥

∥
Pa
[

st+1
∣

∣st]
)

=

= ∑
s

t−1∈S t−1

Punif
[

st−1]
Punif

[

st = s◦,at = a|st−1] · ∑
s′∈S

Punif
[

s′|s◦,a
]

log2

(

Punif [s′|s◦,a]

Pa [s′|s◦,a]

)

= Punif [st = s◦,at = a] ∑
s′∈S

Punif
[

s′|s◦,a
]

log2

(

Punif [s′|s◦,a]

Pa [s′|s◦,a]

)

= Punif [st = s◦,at = a]

(

δ log2

(

δ
δ+ ε

)

+(1−δ) log2

(

1−δ
1−δ− ε

))

. (51)

To complete the proof we use the following lemma.

1597



JAKSCH, ORTNER AND AUER

Lemma 20 For any0≤ δ ≤ 1
2 andε ≤ 1−2δ we have

δ log2

(

δ
δ+ ε

)

+(1−δ) log2

(

1−δ
1−δ− ε

)

≤ ε2

δ log(2)
.

Indeed, application of Lemma 20 together with (50) and (51) gives that

KL
(

Punif
∥

∥Pa
)

=
T

∑
t=1

KL
(

Punif
[

st+1
∣

∣st]
∥

∥

∥
Pa
[

st+1
∣

∣st]
)

≤
T

∑
t=1

Punif [st = s◦,at = a]
ε2

δ log(2)
= Eunif [N

∗
◦ ]

ε2

δ log(2)
,

which together with (49) yields

Ea [ f (s)]−Eunif [ f (s)] ≤ B
2
· ε√

δ

√

2Eunif [N∗◦ ],

as claimed by Lemma 13.

Proof of Lemma 20 Consider

hδ(ε) :=
ε2

δ
−δ log

(

δ
δ+ ε

)

− (1−δ) log

(

1−δ
1−δ− ε

)

.

We show thathδ(ε) ≥ 0 for δ ≤ 1
2 and 0≤ ε ≤ ε0, where

ε0 :=
1
2
−δ+

1
2

√

1−2δ.

Indeed,hδ(0) = 0 for all δ, while for the first derivative

h′δ(ε) :=
∂
∂ε

hδ(ε) = 2· ε
δ

+
δ

δ+ ε
− 1−δ

1−δ− ε

we haveh′δ(ε) ≥ 0 for δ ≤ 1
2 and 0≤ ε ≤ ε0. It remains to show thatδ ≤ 1

2 andε ≤ 1−2δ imply
ε ≤ ε0. Indeed, forδ ≤ 1

2 andε ≤ 1−2δ we have

ε− ε0 ≤ 1−2δ− ε0 =
1
2
−δ− 1

2

√

1−2δ =
1
2

(

(1−2δ)−
√

1−2δ)
)

≤ 0.
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