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Abstract

For undiscounted reinforcement learning in Markov decigicocesses (MDPs) we consider the
total regretof a learning algorithm with respect to an optimal policy. drder to describe the
transition structure of an MDP we propose a new parameterMB® hasdiameter Dif for any
pair of statess, s’ there is a policy which moves fromto s’ in at mostD steps (on average).
We present a reinforcement learning algorithm with totgreeé(DS\/AT) after T steps for any
unknown MDP withS statesA actions per state, and diamelerA corresponding lower bound of
Q(+/DSAT) on the total regret of any learning algorithm is given as well

These results are complemented by a sample complexity bautite number of suboptimal
steps taken by our algorithm. This bound can be used to achidgap-dependent) regret bound
that is logarithmic inT .

Finally, we also consider a setting where the MDP is allowedhange a fixed number &f
times. We present a modification of our algorithm that is abldeal with this setting and show a
regret bound o©(¢/3T2/3DSV/A).

Keywords: undiscounted reinforcement learning, Markov decisiorcess, regret, online learn-
ing, sample complexity

1. Introduction

In a Markov decision process (MDR) with finite state spacg and finite action spacé, a learner
in some stats € S needs to choose an actiare 4. When executing actioain states, the learner
receives a random rewardirawn independently from some distribution [@n1] with meanr (s, a).
Further, according to the transition probabilitipés'|s,a), a random transition to a statee §
occurs.

Reinforcement learning of MDPs is a standard model for learning with ddlégedback. In
contrast to important other work on reinforcement learning—where ttferpgance of thdearned
policy is considered (see, e.g., Sutton and Barto 1998, Kearns and Bd@ghand also the discus-
sion and references given in the introduction of Kearns and Singh)2002 are interested in the
performance of the learning algoriththuring learning For that, we compare the rewards collected
by the algorithm during learning with the rewards of an optimal policy.

x. An extended abstract of this paper appearedtivances in Neural Information Processing Syst2in&009), pp. 89—
96.

(©2010 Thomas Jaksch, Ronald Ortner and Peter Auer.
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An algorithm$l starting in an initial stats of an MDPM chooses at each time stefpossibly
randomly) an actiom;. As the MDP is assumed to be unknown except the $etad 4, usually
an algorithm will map the history up to stégo an actiona; or, more generally, to a probability
distribution over4. Thus, an MDPM and an algorithn®R( operating onM with initial states
constitute a stochastic process described by the siatested at time step, the actions; chosen
by 2 at stept, and the rewards; obtained { € N). In this paper we will consideundiscounted
rewards. Thus, thaccumulated rewardf an algorithm2( after T steps in an MDPM with initial

states, defined as
T

R(M,Q{,S,T) = I,
2

is a random variable with respect to the mentioned stochastic processarﬁhért\lE [R(M, 2,5, T)]
then is the expected average reward of the process up td stEpe limit

p(M,2A,s) ::TIian%]E[R(M,QL,s,T)]

is called theaverage rewardand can be maximized by an appropriate statiomadicy 1t: § — 4
which determines an optimal action for each state (see Puterman, 1994).iM hat follows we
will usually consider policies to be stationary.

The difficulty of learning an optimal policy in an MDP does not only depentherMDP’s size
(given by the number of states and actions), but also on its transition sgubtwrder to measure
this transition structure we propose a new parameteditdraeter Dof an MDP. The diameteD is
the time it takes to move from any statéo any other statd, using an appropriate policy for each
pair of states, S':

Definition 1 Consider the stochastic process defined by a stationary palicy — A4 operating
on an MDP M with initial state s. Let [§|M, 11,s) be the random variable for the first time step in
which state sis reached in this process. Then ttiameterof M is defined as
D(M) := max min E[T(S|M,ms)].
SASESTLS—A

In Appendix A we show that the diameter is at Ieas%cpm — 3. On the other hand, depending
on the existence of states that are hard to reach under any policy, theatianag be arbitrarily
large. (For a comparison of the diameter to other mixing time parameters see)below

In any case, a finite diameter seems necessary for interesting boundsregrétof any algo-
rithm with respect to an optimal policy. When a learner explores suboptirtiahacthis may take
him into a “bad part” of the MDP from which it may take up b steps to reach again a “good
part” of the MDP. Thus, compared to the simpler multi-armed bandit problemendech arna is
typically explored'c’%T times (depending on the ggpbetween the optimal reward and the reward
for arma)—see, for example, the regret bounds of Auer et al. (2002a) fdo @ algorithms and
the lower bound of Mannor and Tsitsiklis (2004)—the best one wouldaxXpethe general MDP
setting is a regret bound @(D]SH%[ IogT). The alternative gap-independent regret bounds of
O(1/]B|T) andQ(,/|B|T) for multi-armed bandits withB| arms (Auer et al., 2002b) correspond-
ingly translate into a regret bound & /D|5||4|T) for MDPs with diameteD.

For MDPs with finite diameter (which usually are calledmmunicatingsee, e.g., Puterman
1994) the optimal average rewgptl does not depend on the initial state (cf. Puterman 1994, Sec-
tion 8.3.3), and we set

p*(M):=p*(M,s) = mTz[:’txp(M,n,s).
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The optimal average reward is the natural benchinfanka learning algorithn®(, and we define the
total regretof 2 afterT steps as

AM,2A,sT) :=Tp*(M)—R(M,2,s,T).

In the following, we present our reinforcement learning algorithmrRU2 (a variant of the
UCRL algorithm of Auer and Ortner, 2007) which uses upper confidémmeands to choose an
optimistic policy. We show that the total regret ofcHL2 after T steps isO(D|S|/[4[T). A
corresponding lower bound 6f(,/D|S||4|T) on the total regret of any learning algorithm is given
as well. These results establish the diameter as an important parameter ofRarUMIBe other
parameters that have been proposed for various PAC and regmrddyauch as thmixing time
(Kearns and Singh, 2002; Brafman and Tennenholtz, 2002) drittieg time of an optimal policy
(Tewari and Bartlett, 2008) (cf. the discussion below) the diameter orpgrt#s on the MDP’s
transition structure.

1.1 Relation to Previous Work

We first compare our results to the PAC bounds for the well-known algoritthef Kearns and
Singh (2002), and R-Max of Brafman and Tennenholtz (2002) (seekdkade, 2003). These
algorithms achieve-optimal average reward with probability-16 after time polynomial ir%, %
|S|, 14|, and the mixing tim&™ (see below). As the polynomial dependencesds of orders%,
the PAC bounds translate inf/2 regret bounds at the best. Moreover, both algorithms need the
g-return mixing time " of an optimal policyrt* as input parametér.This parameteT,™™ is the
number of steps until the average rewardtobver thes@,™* steps i€-close to the optimal average
rewardp*. It is easy to construct MDPs of diame@with T"X ~ %. This additional dependence
on ¢ further increases the exponent in the above mentioned regret bauriesdnd R-max. Also,
the exponents of the parametés$ and | 4| in the PAC bounds of Kearns and Singh (2002) and
Brafman and Tennenholtz (2002) are substantially larger than in ourdbodowever, there are
algorithms with better dependence on these parameters. Thus, in the samplexity bounds for
the Delayed Q-Learning algorithm of Strehl et al. (2006) the deperd@nstates and actions is of
order|S$||4|, however at the cost of a worse dependence of og%jen €.

The MBIE algorithm of Strehl and Littman (2005, 2008)—similarly to our apgte—applies
confidence bounds to compute an optimistic policy. However, Strehl and Littosider only a
discounted reward setting. Their definition of regret measures theatifferbetween the rewarfds
of an optimal policy and the rewards of the learning algoritalong the trajectory taken by the
learning algorithm In contrast, we are interested in the regret of the learning algorithm preces
to the rewards of the optimal poli@glong the trajectory of the optimal poli¢y Generally, in dis-
counted reinforcement learning only a finite number of steps is relevgregndeng on the discount

1. It can be shown that maxE [R(M,2(,s,T)] = Tp*(M) + O(D(M)) and max R(M,2,s,T) = Tp*(M) + O(VT)
with high probability.

2. The knowledge of this parameter can be eliminated by gueiﬁi‘ﬁgo be 12, ..., so that sooner or later the correct
TsmiX will be reached (cf. Kearns and Singh 2002; Brafman and Tenrian®002). However, since there is no
condition on when to stop increasiﬁ'g‘”x, the assumed mixing time eventually becomes arbitrarily large, so that the
PAC bounds become exponential in the tWQ@X (cf. Brafman and Tennenholtz, 2002).

3. Actually, the state values.

4. Indeed, one can construct MDPs for which these two notions oétreliffer significantly. E.g., set the discount
factory = 0. Then any policy which maximizes immediate rewards achieves 0 riggtleé notion of Strehl and
Littman. But such a policy may not move to states where the optimal rewalstamed.
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factor. This makes discounted reinforcement learning similar to the setting veith af constant
length from a fixed initial state as considered by Fiechter (1994). For &sis logarithmic online
regret bounds in the number of trials have already been given by AdeDener (2005). Also, the
notion of regret is less natural than in undiscounted reinforcementitganvhen summing up the
regret in the individual visited states to obtain the total regret in the disctbgetting, somehow
contrary to the principal idea of discounting, the regret at each time stepiscthe same.

Tewari and Bartlett (2008) propose a generalization ofntdex policiesof Burnetas and Kate-
hakis (1997). These index policies choose actions optimistically by usirfideace bounds only
for the estimates in the current state. The regret bounds fandes policieof Burnetas and Kate-
hakis (1997) and the OLP algorithm of Tewari and Bartlett (2008)aasenptoticallylogarithmic
in T. However, unlike our bounds, these bounds depend on the gap Ibetfneet&quality” of the
best and the second best action, and these asymptotic bounds also hiliditewe term which is
exponential in the number of states. Actually, it is possible to prove a gameing gap-dependent
logarithmic bound for our @RL2 algorithm as well (cf. Theorem 4 below). This bound holds uni-
formly over time and under weaker assumptions: While Tewari and Bart@®3j2and Burnetas
and Katehakis (1997) consider ordygodicMDPs in whichany policy will reach every state after
a sufficient number of steps, we make only the more natural assumptiomdtkadiameter.

Recently, Bartlett and Tewari (2009) have introduced the REGAL algur{ihspired by our
UcRrL2 algorithm) and show—based on the methods we introduce in this papeettegmds
where the diameter is replaced with a smaller transition pararbatéthat is basically an upper
bound on the span of tHaas of an optimal policy). Moreover, this bound also allows the MDP to
have somearansientstates that are not reachable under any policy. However, the bolohldrdy
when the learner knows an upper bound on this pararigtein case the learner has no such upper
bound, a doubling trick can be applied, but then the bound’s depeadeng| deteriorates froms|
to |§|%/2. Bartlett and Tewari (2009) also modify our lower bound example to obtaiwer bound
of Q(D1+/]S]]A4|T) with respect to their new transition parameigr. Still, in the given example
D, = v/D, so that in this case their lower bound matches our lower bound.

2. Results

We summarize the results achieved for our algoritharU2 (which will be described in the next
section), and also state a corresponding lower bound. We assumersowm{DPM to be learned,
with S:= | S| statesA := | 4| actions, and finite diamet& := D(M). Only § and 4 are known to
the learner, and ORL2 is run with confidence parameig&r

Theorem 2 With probability of at leasf. — d it holds that for any initial state s S and any T> 1,
the regret ofUCRL2 is bounded by

A(M,UcRL2,s,T) < 34-DSy/ATlog(%).

It is straightforward to obtain from Theorem 2 the following sample complexatynial.

Corollary 3 With probability of at leasi — d the average per-step regret &fCRL2 is at mosk for
any

T >4.3

2 D2SPA log [ 24PSA
e 9\ T
steps.
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It is also possible to give a sample complexity bound on the number of subostieps ERL2
takes, which allows to derive the following gap-dependent logarithmicdourihe expected regret.

Theorem 4 For any initial state s= §, any T> 1 and anye > 0, with probability of at leas. — 3%
the regret ofUCRL2 is

D2SPAlog ()

AM,UCRL2,sT) < 342. +€T.

Moreover setting

=p*(M) — M :p(M (M
g:i=p"(M)—max max {p(M,ms): p(M.TLS) < p"(M)}
to be the gap in average reward between best and second best policytire xpected regret of
UcCRL2 (with paramete := %) for any initial state s= § is
2
E[AM,UcrL2,5,T)] < 3. 25 A00(T)

TTT(S)=a TTTI(S)=a

+1+ 3 [1+logy( max Tn)| max Tr,
sa

where T;is the smallest natural number such that for alBTT;; the expected average reward after
T steps ig-close to the average reward af Using the doubling trick to set the parametgrone
obtains a corresponding bound (with larger constant) without knowledgee horizon T.

These new bounds are improvements over the bounds that have bésreddiy Auer and
Ortner (2007) for the original UCRL algorithm in various respects: thmaents of the relevant
parameters have been decreased considerably, the par&nve¢ense here is substantially smaller
than the corresponding mixing time of Auer and Ortner (2007), and fina#yetgodicity assump-
tion is replaced by the much weaker and more natural assumption that the 840Rite diameter.

The following is an accompanying lower bound on the expected regret.

Theorem 5 For any algorithm®(, any natural numbers,® > 10, D > 20log, S, and T> DSA,
there is an MDP M with S states, A actions, and diamet@rddgch that for any initial state s §
the expected regret @f after T steps is

E[A(M,2(,s,T)] > 0.015- VDSAT.
Finally, we consider a modification of&kL2 that is also able to deal with changing MDPs.

Theorem 6 Assume that the MDP (i.e., its transition probabilities and reward distributiona)-is
lowed to change/(— 1) times up to step T, such that the diameter is always at most D. Restart-

ing UCRL2 with parameter}2 at steps '72 fori=1,2,3..., the regret (now measured as the sum

of missed rewards compared to theptimal policies in the periods during which the MDP remains
constant) is upper bounded by

65-(1/37%3Ds, /Alog (1)

5. As already mentioned, the diameter of any MDP v@tates and\ actions is at least lggS— 3.

with probability of at leastL — .
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For the simpler multi-armed bandit problem, similar settings have already besitemd by
Auer et al. (2002b), and more recently by Garivier and Moulines (R@0®1 Yu and Mannor (2009).
The achieved regret bounds &¢,/¢T logT) in the first two mentioned papers, while Yu and Man-
nor (2009) derive regret bounds©f/logT) for a setting with side observations on past rewards in
which the number of changéseed not be known in advance.

MDPs with a different model of changing rewards have already beesidered by Even-Dar
et al. (2005) and Even-Dar et al. (2009), respectively. Therdrainsition probabilities are assumed
to be fixed and known to the learner, but the rewards are allowed to elzmyery step (however,
independently of the history). In this setting, an upper boun®@fT) on the regret against an
optimal stationary policy (with the reward changes known in advance) ipbasible and has been
derived by Even-Dar et al. (2005). This setting recently has beé¢heiuinvestigated by Yu et al.
(2009), who also show that for achieving sublinear regret it is es$émdibithe changing rewards
are chosen obliviously, as an opponent who chooses the rewagresdieg on the learner’s history
may inflict linear loss on the learner. It should be noted that although theitéafi of regret in
the nonstochastic setting looks the same as in the stochastic setting, there is @arihghiderence
to notice. While in the stochastic setting the average reward of an MDP is svayimized by
a stationary policyrt: $ — A4, in the nonstochastic setting obviously a dynamic policy adapted to
the reward sequence would in general earn more than a stationary gadasever, obviously no
algorithm will be able to compete with the best dynamic policy for all possiblenga@quences,
so that—similar to the nonstochastic bandit problem, compare to Auer et aR{Ro@ne usually
competes only with a finite set of experts, in the case of MDPs the set of statipaliciesrt: § —

4. For different notions of regret in the nonstochastic MDP setting sed al1 €009).

Note that all our results scale linearly with the rewards. That is, if the gsvare not bounded
in [0, 1] but taken from some intervémin, rmax, the rewards can simply be normalized, so that the
given regret bounds hold with additional factomax— rmin)-

3. The UcRL 2 Algorithm

Our algorithm is a variant of the UCRL algorithm of Auer and Ortner (20@% its predecessor,
UcRrL2 implements the paradigm of “optimism in the face of uncertainty”. That is, ihdefa
set M of statistically plausible MDPs given the observations so far, and chooses an optimistic
MDP M (with respect to the achievable average reward) among these plausilfts.MChen it
executes a polic§t which is (nearly) optimal for the optimistic MDRI. More precisely, GRL2
(see Figure 1) proceeds in episodes and computes a new pRlmyly at the beginning of each
episodek. The lengths of the episodes are not fixed a priori, but depend on geswalbions made.
In Steps 2-3, @RL2 computes estimatay (5,a) and pk(s|s,a) for the mean rewards and the
transition probabilities from the observations made before episddeStep 4, a sebs of plausible
MDPs is defined in terms of confidence regions around the estimated meardsej(s,a) and
transition probabilitie(s'|s,a). This guarantees that with high probability the true MBIFs

in My. In Step 5extended value iteratiofsee below) is used to choose a near-optimal padticgn

an optimistic MDPM, € M. This policyTi is executed throughout episokgStep 6). Episodé
ends when a stateis visited in which the actioa = Ti(s) induced by the current policy has been
chosenin episodek equally often adeforeepisodek. Thus, the total number of occurrences of
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any state-action pair is at most doubled during an episode. The ocqusta) keep track of these
occurrences in episode®

3.1 Extended Value Iteration: Finding Optimistic Model and Optimal Policy

In Step 5 of the WWRL2 algorithm we need to find a near-optimal polifly for an optimistic
MDP M. While value iteration typically calculates an optimal policy for a fixed MDP, we als
need to select an optimistic MDA, that gives almost maximal optimal average reward among all
plausible MDPs.

3.1.1 FRROBLEM FORMULATION

We can formulate this as a general problem as follows Meie the set of all MDPs with (common)
state spacg, (common) action spac@, transition probabilitiep (*|s,a), and mean rewardy§, a)
such that

d(s,a), (1)
d'(s,a) (2

Hﬁ(‘sﬂ a) - ﬁ("sva)Hl <
IF(s,a) —f(s,a) <

for given probability distribution9(*|s,a), valuesr{s,a) in [0,1], d(s,a) > 0, andd’(s,a) > 0.
Further, we assume that’ contains at least one communicating MDP, that is, an MDP with finite
diameter.

In Step 5 of WERL2, thed(s,a) andd’(s,a) are obviously the confidence intervals as given
by (4) and (3), while the communicating MDP assumed to b@fnis the true MDPM. The task
is to find an MDPM € % and a policyft: § — 4 which maximizep(M,fts) for all statess.”
This task is similar taptimistic optimalityin bounded parameter MDPas considered by Tewari
and Bartlett (2007). A minor difference is that in our case the transitiobghitities are bounded
not individually but by the 1-norm. More importantly, while Tewari and Bart{@007) give a
converging algorithm for computing the optimal value function, they do nahtddhe error when
terminating their algorithm after finitely many steps. In the following, we will extetahdard
undiscounted value iteration (Puterman, 1994) to solve the set task.

First, note that we may combine all MDPsi to get a single MDP with extended action $&t
That s, we consider an MDA with continuous action spac®, where for each actioac 4, each
admissible transition probability distributiop(-[s,a) according to (1) and each admissible mean
rewardr{s,a) according to (2) there is an actionit with transition probabilitiep(*|s,a) and mean
rewardrTs,a).8 Then for each policyit* on M* there is an MDAV € M and a policyft: § — 4
on M such that the policiefr™ andft induce the same transition probabilities and mean rewards on
the respective MDP. (The other transition probabilities/ircan be set tg (*|s,a).) On the other
hand, for any given MDR € M and any policyft: § — 4 there is a policyitt onM* so that again
the same transition probabilities and rewards are inducdddoyM andftt onM+. Thus, finding
an MDPM € M and a policyit on M such thap(M, 7t,s) = maxycqr g P(M’,T.8) for all initial
statess, corresponds to finding an average reward optimal policiion

6. Since the policyi is fixed for episodé, vi(s,a) # 0 only fora = Ti(s). Nevertheless, we find it convenient to use
a notation which explicitly includes the actiarin vi(s, a).

7. Note that, as we assume tlfdt contains a communicating MDP, if an average reward isfachievable in one state,
it is achievable in all states.

8. Note that inM* the set of available actions now depends on the state.
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Input: A confidence parametére (0,1), S and 4.
Initialization: Sett := 1, and observe the initial stasg.

For episodek=1,2,...do
Initialize episodek:

1. Set the start time of episod@iety :=t.
2. Forall(s,a) in S x 4 initialize the state-action counts for episdde(s,a) := 0.
Further, set the state-action counts prior to epidqde

Nk (s,a) :=#{1 <tx:S=sa =a}.

3. Fors, s € § anda € 4 set the observed accumulated rewards and the tran
counts prior to episodie

t—1

R«(s,a) := ZX Mls—sa=-a
=

P(sas) =#{t<t:ss=sa=as1=95}.

Re(s,a) P(sas)

Compute estimates (S,8) := raqi N say] M LN (ST

Pk (S]s,a) =
Compute policy Ti:
4. Let My be the set of all MDPs with states and actions aMinand with tran-
sition probabilitiespT-|s,a) close topk (-|s,a), and rewards (3,a) € [0,1] close
tofk(s,a), thatis,

f(sa)—f(sa)| < | pmeiddy and ©)
|pClsa)—pe(lsa)|, < \/oarees- @

5. Use extended value iteration (see Section 3.1) to find a prliapd an optimisti
MDP My € M, such that

~ 1
Ok := minp(My, Ti,s) > max p(M',1;s)— —.
Pi=minp(Mi T s) = | max el IV

Execute policyTi:

6. While vi(s, Tk(s)) < max{1,Nk(s,Tk(s))} do
(a) Choose actiog; = Tk(s), obtain reward;, and
observe next statg, 1.
(b) Updatevi(s,a) := Vk(s,a) + 1.
(c) Sett:=t+1.

sition

Figure 1: The W&RL2 algorithm.
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Input: Estimates(:|s,a) and distancel(s, a) for a state-action paifs, a), and
the states ity sorted descendingly according to theivalue.

Thatis, letS :=={s|,S,, ..., s} With ui(s}) > Ui(s,) > ... > ui(s,).

1. Set

p(s) = min{1,p(g[sa)+ 5"}, and
p(sj) p(sjls,a) for all statess; with j > 1.

2. Setl:=n.
3. While 3 ¢c p(sj) > 1do

() Resep(s)) :=max{0,1—- 3¢ ¢ P(S))}-
(b) Setl:=¢—1.

Figure 2: Computing the inner maximum in the extended value iteration (5).

3.1.2 EXTENDED VALUE |ITERATION

We denote the state values of ikt iteration byui(s). Then we get for undiscounted value iteration
(Puterman, 1994) oM™ for all s€ S:

uw(s) = 0,
Uii1(S) = r;&X{F (s,a) +p(.{23€§,a>{% p(d)-ui(d)}}, (5)

whererTs,a) := f(s,a) +d'(s,a) are the maximal possible rewards according to condition (2), and
P(s,a) is the set of transition probabilitiqzs(qs, a) satisfying condition (1).

While (5) is a step of value iteration with an infinite action space, gpax; is actually a linear
optimization problem over the convex polytof¥s,a). This implies that (5) can be evaluated
considering only the finite number of vertices of this polytope.

Indeed, for a given state-action pair the inner maximum of (5) can be deehpuO(S) compu-
tation steps by an algorithm introduced by Strehl and Littman (2008). Foakteef completeness
we display the algorithm in Figure 2. The idea is to put as much transition probaslippssible
to the state with maximal valug(s) at the expense of transition probabilities to states with small
valuesui(s). That is, one starts with the estimate;[s,a) for p(s;) except for the stats; with
maximalui(s), for which we setp(s;) := p(s}|s,a) + 3d(s,a). In order to makep correspond to
a probability distribution again, the transition probabilities fremo states with small;(s) are re-
duced in total byd(s,a), so that|p — p(-|s,a) |1 = d(s,a). This is done iteratively. Updating
Yses p(s’j) with every change op for the computation OESIJ_#S? p(s’j), this iterative procedure
takesO(S) steps. Thus, sorting the states according to their vali® at each iterationonce,u; 1
can be computed fror; in at mostO(S*A) steps.
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3.1.3 GONVERGENCE OFEXTENDED VALUE ITERATION

We have seen that value iteration on the MBIP with continuous action is equivalent to value
iteration on an MDP with finite action set. Thus, in order to guarantee coeneeg it is sufficient
to assure that extended value iteration never chooses a policy with pdriasition matrix. (In-
tuitively, it is clear that optimal policies with periodic transition matrix do not matteloag as

it is guaranteed that such a policy is not chosen by value iteration, corp&ections 8.5, 9.4,
and 9.5.3. of Puterman 1994. For a proof see Appendix B.) Indeedidedevalue iteration always
chooses a policy with aperiodic transition matrix: In each iteration there is &dimgd states;
which is regarded as the “best” target state. For each staighe inner maximum an action with
positive transition probability t@) will be chosen. In particular, the policy chosen by extended
value iteration will have positive transition probability fra@nto s;. Hence, this policy is aperiodic
and has state independent average reward. Thus we obtain the foll@sirg

Theorem 7 Let M be the set of all MDPs with state spageaction spaced, transition probabil-
ities f(+|s,a), and mean rewardB(s,a) that satisfy(1) and (2) for given probability distributions
p(-|s,a), valuesf(s,a) in [0,1], d(s,a) > 0, and d(s,a) > 0. If M contains at least one communi-
cating MDP, extended value iteration converges. Further, stopping @égtevalue iteration when

max{ui;(s) = ui(s) } —min{uia(s) — (9} <,
the greedy policy with respect tq is -optimal.

Remark 8 When value iteration converges, a suitable transformation;afonverges to the bias
vector of an optimal policy. Recall that for a poligythe biasA(s) in state s is basically the
expected advantage in total reward (for-F ) of starting in state s over starting in the stationary
distribution (the long term probability of being in a state)f For a fixed policyr, the Poisson
equation

A=r—pl+PA

relates the bias vectoA to the average rewarg, the mean reward vector, and the transi-
tion matrix P. Now when value iteration converges, the vectpr— minsu;(s)1 converges to
A —minsA(s)1. As we will see in inequalitfl1) below, the so-calledpan maxui(s) — minsu;(s)

of the vector; is upper bounded by the diameter D, so that this also holds for the span aithe b
vector of the optimal policy found by extended value iteration, thatiaxA(S) —minsA(s) < D.
Indeed, one can show that this holds for any optimal policy (cf. also $etwbBartlett and Tewari,
20009).

Remark 9 We would like to note that the algorithm of Figure 2 can easily be adapted to the al-
ternative setting of Tewari and Bartlett (2007), where each single tramsfirobability pS'|s,a)

is bounded a® < b~ (s,s,a) < p(sis,a) < b*(s,sa) < 1. However, concerning convergence one
needs to make some assumptions to exclude the possibility of choosing pptiares with periodic
transition matrices. For example, one may assume (apart from othanmgsfons already made by
Tewari and Bartlett 2007) that for all ss,a there is an admissible probability distributior{-{s, a)

with p(s|s,a) > 0. Note that for Theorem 7 to hold, it is similarly essential thés, d) > 0. Alter-
natively, one may apply an aperiodicity transformation as described in $e8tt4 of Puterman
(1994).
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Now returning to Step 5 of ORL2, we stop value iteration when

max{uis1(s) - ui(s)} — min{uia(s) —ui(9)} < \/1tT< (6)

which guarantees by Theorem 7 that the greedy policy with respmﬂ%-optimal.

4. Analysis of UcrL 2 (Proofs of Theorem 2 and Corollary 3)

We start with a rough outline of the proof of Theorem 2. First, in Sectionwieldeal with the ran-
dom fluctuation of the rewards. Further, the regret is expressed agrthef the regret accumulated
in the individual episodes. That is, we set thgret in episode ko be

A= ka(s, a)(p*—r(sa)),
Sa

wherev(s,a) now denotes the final counts of state-action gia) in episodek. Then it is shown
that the total regret can be bounded by

ZAkJr \/3Tlog (&)
with high probability.

In Section 4.2, we consider the regret that is caused by failing confidegmms. We show that
this term can be upper bounded 4T with high probability. After this intermezzo, the regret of
episodes for which the true MDR& € 9 is examined in Section 4.3. Analyzing the extended value
iteration scheme in Section 4.3.1 and using vector notation, we show that

vksa

Ay < Uk(lak—I)’wk-i-szk(Sa a) 223?({??\1'2‘(8/2}
§a

whereP; is the assumed transition matrix (ih) of the applied policy in episode vy are the visit
counts at the end of that episode, and is a vector with||wy||. < ( ). The last two terms in
the above expression stem from the reward confidence mtervalsqamarapprommatlon error of

value iteration. These are bounded in Section 4.3.3 when summing over allepishe first term
on the right hand side is analyzed further in Section 4.3.2 and split into

(B~ Dwy = v(Bc— P)wy+ vk(Pc— Iwy
(| ok (B — B) || 1w oo + vk (P — T)w,

where P is the true transition matrix (i) of the policy applied in episodk. Substituting for
P« — P the lengths of the confidence intervals as given in (4), the remaining tetmads analysis
is vx(Px — I)wg. For the sum of this term over all episodes we obtain in Section 4.3.2 a high

probability bound of
Z’uk(Pk—I)wk < Dy/3Tlog (%) +Dm,

wherem is the number of episodes—a term shown to be logarithmit in Appendix C.2. Sec-
tion 4.3.3 concludes the analysis of episodes Mtk M, by summing the individual regret terms
over all episode& with M € M. In the final Section 4.4 we finish the proof by combining the
results of Sections 4.1-4.3.

IN
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4.1 Splitting into Episodes

Recall thatr; is the (random) reward €RL2 receives at stefpwhen starting in some initial stag.
For given state-action counit¥(s, a) afterT steps, the; are independent random variables, so that
by Hoeffding's inequality

il 5\%* )
/5 8
]P{IE rtggaN(s,a)rTsa 2Tlog (5 ’ (s,a)) } (8T) < 17574 @)

Thus we get for the regret of tRL2 (now omitting explicit references td and UCRL2)

-
Als.T) = Tp'= 3 1t < Tp' =5 N(sa)(sa) + /5T log ()
sa

t=

with probability at least - 12T5/4 Denoting the number of episodes started up to Stdyy m,
we havey ', vk(s,a) = N(s,a) andys,N(s,a) = T. Therefore, writingy := ys4V(s,a) (p* —
r(s,a)), it follows that

A(sy,T) < gAw 2Tlog (%) (8)
k=1

with probability at least + 12T5/4

4.2 Dealing with Failing Confidence Regions

Let us now consider the regret of episodes in which the set of plausibledf, does not contain
the true MDPM, 3¢ Aclyzqq. By the stopping criterion for episodewe have (except for
episodes wherg(s,a) = 1 andNk(s,a) = 0, wheny s, vk(s,a) = 1 <t holds trivially)

z Vk(s,a) < Z Nk(s,a) = tx— 1.
sa sa

Hence, denoting/ (t) to be the set of plausible MDPs as given by (3) and (4) using the estimates
available at step, we have due tp* < 1 that

m

m
kz Ak]lMng < z ZVk S, a ]IMQW[k < Z tk]lMngk th Z ﬂtk t, Mg My
=1

k=1sa
Tl/4J
< Zt]lmgM < ZitllMng() z t]lmgM(t)
Tl/4
< VT+ Z thygar)-
t=TY4)+1

Now, P {M ¢ M (t)} < 25 (see Appendix C.1), and since

< 1 _ 1 R T 1 _ 6 1
tu;mlas - 156/4+/T1/4T5w  15T6/4 T 75754 = 75754  1275/4

we haveP {3t : TV4 <t <T:M¢& M (t )} < It follows that with probability at least &

2T5/4 2T5/4 1

k=1
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4.3 Episodes withM € My

Now we assume thal € My and start by considering the regret in a single episodée optimistic
average rewar@ of the optimistically chosen policik is essentially larger than the true optimal
average reward*, and thus it is sufficient to calculate by how much the optimistic average rgward
overestimates the actual rewards of pofigy By the assumptio € 2, the choice off, andMy

in Step 5 of LLRL2, and Theorem 7 we get thag > p* — % Thus for the regref\ accumulated
in episodek we obtain

A < ZVk(S, a) (p* - r_(sva Z S a) (pk _r S a (10)
5a §a

QJ

4.3.1 EXTENDED VALUE ITERATION REVISITED

To proceed, we reconsider the extended value iteration of Section 3dn ifxgportant observation
for our analysis, we find that for any iteratiorthe range of the state values is bounded by the
diameter of the MDRM, that is,

msaxui (s)— msin ui(s) <D. (11)

To see this, observe that(s) is the total expectedstep reward of an optimal non-stationasstep
policy starting in stats on the MDPM* with extended action set (as considered for extended value
iteration). The diameter of this extended MDP is at mdsts it contains by assumption the actions
of the true MDPM. Now, if there were states, s” with u;(s”) — ui(s') > D, then an improved value
for ui(s') could be achieved by the following nonstationary policy: First follow a polidyich
moves froms’ to 8" most quickly, which takes at moBt steps on average. Then follow the optimal
i-step policy fors”. Since onlyD of thei rewards of the policy fos” are missed, this policy gives
ui(s') > ui(s’) — D, contradicting our assumption and thus proving (11).

It is a direct consequence of Theorem 8.5.6. of Puterman (1994)wtiext the convergence
criterion (6) holds at iteratioin then

|Ui+1(S) — Ui(s) — Pkl < f (12)

for all SES, wherepy is the average reward of the polify chosen in this iteration on the optimistic
MDP My.® Expandingui 1(s) according to (5), we get

Ui+1(S) = Tk(s,Tk() + Bk (Ss. Tw(s)) - ui(s)
S

and hence by (12)

1
(Berits i) - (5 <isius) we)-us )| < 13)
Setting r¢ = (fk(s.Tk(s))), to be the (column) vector of rewards for policyi,

B = (Px (S|s.Tw(9)) ) the transition matrix offf on My, andvy ;= (Vk(s, Tk(9))) the (row)

9. This is quite intuitive. We expect to receive average revarder step, such that the difference of the state values
afteri + 1 andi steps should be abofi.
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vector of visit counts for each state and the corresponding action rclhysg, we can use (13)—
recalling thaty(s,a) = O for a # Ti(s)—to rewrite (10) as

A < s,zal\/k(s,a)(ﬁk_r_(s’a))+;ka/s%ka)
- SZaVk(S,a)( Fk(s,a)) +ka s.a)(fi(s,a) — +;Vk\(/8£—ka

< wlBe Dt Juisalfisa) - sa) 123 (f

Since the rows of% sum to 1, we can replaag by wyx where we set

mingU; (S) + maxu;(S)
2 )

such that it follows from (11) thatwy|| < 2. Further, since we assurivee M, fk(s,a) —(s,a) <
IFk(s,a) —Fk(s,a)| +|r(s,a) — fk(s,a)| is bounded according to (3), so that

A < ”k(R_I)wk-l-ZZVk(s,a)\/W
sa

Noting that max1,Nk(s,a)} <tx < T we get from (14) that

N < (B T)wi+ («/14Iog(256/“) +2> &Za \/mazl{((ls}jk)(s 5 (15)

4.3.2 THE TRUE TRANSITION MATRIX

Wi (S) :=Uui(s) —

(14)

Now we want to replace the transition matifi% of the policyfy in the optimistic MDPViy by the
transition matrixP := (p(s'|s, fik(s))) ¢ of fi in the true MDPM. Thus, we write

vk(ﬁ(—I)'wk = vk(l?k—Pk—i-Pi(—I)wk
= vk(Pk—Pk)wk—i-vk(H(—I)wk. (16)

The first term.Since by assumptioll, andM are in the set of plausible MDP&, the first term
in (16) can be bounded using condition (4). Thus, also using|[ttegl. < % we obtain

w(Pc— P)wx = zgvk(s,ﬁk(s)).<r3k(s’]s,fn<(s))—p(s’\s,ﬁ'k(s))>-Wk(s’)

< ZVk $.T(s)) - || (- Is, Tac(s)) — P18, TW(9)) || - [l

_ 14Slog(2AT/5) D
= ZV" S.Ti(s)) 2\/max{l Ne(s.Tu(s))} 2

2AT Vk S, a
< Dy/14Slog( Z NG (17)

This term will turn out to be the dominating contribution in our regret bound.
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The second terniThe intuition about the second term in (16) is that the counts of the statewisits
are relatively close to the stationary distributpagof the transition matrixP, for which p P« = pu,

such tha‘wk(Pk - I) should be small. For the proof we define a suitable martingale and make use
of the Azuma-Hoeffding inequality.

Lemma 10 (Azuma-Hoeffding inequality, Hoeffding 1963)Let X, X, ... be a martingale differ-
ence sequence with;| < c for all i. Then for alle > 0and ne NN,

P{301X > e} < exp(- ).

Denote the unit vectors witihth coordinate 1 and all other coordinates OpylLets;, a1, S, ..., ar,
sr+1 be the sequence of states and actions, ark{tebe the episode which contains stefCon-
sider the sequencg := (p(-|s,a) —es, 1) Wity Lyeag,, fort=1,...,T. Then for any episodk
with M € 9, we have due twy||» < 2 that

ter1—1

ok(Pe—Dwg = t; (P(|s,a) —es)w

tr1—1 tp1—1
= p(-|s,a) — es,;tes . —e >'wk
<tZk t;k Si1T €S, —es,

tkr1—1

— t;k Xe + Wic(Ste 1) — Wie(Sy)

tipa—1

< ; X +D.

Also due to |lwille < 2, we have [X| < (||p(|s,a)|1 + He5[+1||1)% < D.  Further,

E [Xt\sl,al,...,s{,at] = 0, so thatX; is a sequence of martingale differences, and application of
Lemma 10 gives

{Z)Q>D\/W} <8§r>5/4<12_|i/4,

Since for the number of episodes we hawel SAIogz( ) as shown in Appendix C.2, summing
over all episodes yields

m T
Z (Pc—Dwilyeag < le[+mD
k=1 t=

D/3Tlog (%) + DSAlog, (%) (18)

IA

with probability at least + 2T5/4
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4.3.3 SUMMING OVER EPISODES WITHM € M

To conclude Section 4.3, we sum (15) over aII episodes With M, using (16), (17), and (18),

which yields that with probability at least1-—2- 12T5/4

Z Ak]IMeM( < Z Uk(ﬁk—I‘ﬂ'k)’lﬂklh\nep\[I< + Z Uk(Pk—I)’wk]lMng
k=1 k=1
/14] ZSAT 2 Vk(s,a)
i Z < °9(5F) + ) Z 5 v Mmax{1,Ng(s,a)}
D/14Slog (2T) 3 W(s,8)
= o9 Z Z 3 v/max{1,Ng(s,a)}
+Dy/3Tlog (&) + DSAog, (&)

(Vw3 2) 5 5 B g

kK=1Sa

Recall thatN(s,a) := Y, Vk(s,a) such thatys,N(s,a) = T andNg(s,a) = JiVi(s,a). By the
criterion for episode termination in Step 6 of the algorithm, we havewlata) < Nx(s,a). Using
that forZ, = max{1, z!‘:lzi} and 0< z < Zx_1 it holds that (see Appendix C.3)

A

k;m < <\f2+1> N~
we get |

Vk S a

sag \/max{l Nk(s,a)} — <f+1> z m
By Jensen’s inequality we thus have
Vk(s,a)
Z \/maxgl Ne(s.a)} ~ (erl) VSAT, (20)

and we get from (19) after some minor simplifications that with probability at lbas—;

m
D> Alvens < meLDSAIogZ(%)
k=1
+<m Pﬂm@?ﬂ%)@@+gwyw. (21)

4.4 Completing the Proof of Theorem 2

12]'5/4

Finally, evaluating (8) by summindy over all episodes, we get by (9) and (21)
m m
AsT) <Y Dcllygag + S Allyeag +1/3Tlog (%)
K=1 k=1
\/2Tlog (&) + VT +Dy/3Tlog (&) + DSAlog, (L)

+ <2D, /14Slog (2T) +2> (\f2+ 1) VSAT (22)
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with probability at least + 12T5/4 12%/4 12T5/4 Further simplifications (given in Appendix C.4)

yield that for anyT > 1 with probability at least +

4T5/4

A(s1,T) < 34DS,/ATlog (). (23)

SinceyT_, Fi/‘t < d the statement of Theorem 2 follows by a union bound over all possible values
of T. [

4.5 Proof of Corollary 3

In order to obtain the PAC bound of Corollary 3 we simply have to find a seffity largeTy such
that for allT > Ty the per-step regret is smaller tharBy Theorem 2 this means that for @ll> Ty
we shall have

34DS, /ATlog ()

342D?SAlog (§) ‘

T < g, or equivalently T > o2 (24)
SettingTo := 2alog () fora: M we have due ta > 2logx (for x > 0)
_ Toa () = T
To = orIog(6 6)>or|og<26Iog<6))_orlog(5),
so that (24) as well as the corollary follow. |

5. The Logarithmic Bound (Proof of Theorem 4)

To show the logarithmic upper bound on the expected regret, we start wotlmallon the number of
steps in suboptimal episodes (in the spirisample complexity bounds given by Kakade, 2003).
We say that an episod@as -badif its average regret is more thanwhere the average regret of an
episode of lengtly is Ak with0 A, = zt““ (p* —rt). The following result gives an upper bound
on the number of steps takengrbad episodes.

Theorem 11 Let Lg(T) be the number of steps taken BZRL2 in e-bad episodes up to step T.
Then for any initial state s S, any T > 1 and anye > 0, with probability of at leasiiL — 3
D2SAlog (§)

Le(T) < 342 =

Proof The proof is an adaptation of the proof of Theorem 2 which gives aremuppund of
O(DS\/LEAIog(AT/ES)) on the regretd,(s, T) in e-bad episodes in terms &f. The theorem

then follows due teLe < AL(S,T).

Fix someT > 1, and letKe and J. be two random sets that contain the indices of aHmad
episodes up to step and the corresponding time steps taken in these episodes, respectheaty. T
by an application of Hoeffding’s inequality similar to (7) in Section 4.1 and amubiound over all
possible values dfg, one obtains that with probability at least-B,

tera—1

> 3 = 3 S w(sailsa)—y/2elog(3).
keRe 1=tk keKe Sa

10. In the following we use the same notation as in the proof of Theorem 2.
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Further, by summing up all error probabllltlﬁ’s{M Z Mt )} % fort =1,2,... one has

k€ '3

It follows that with probability at least 25

Ni(s,T) < y/2Lelog () + % Alyeag- (25)

In order to bound the regret of a single episode witke My we follow the lines of the proof of
Theorem 2 in Section 4.3. Combining (15), (16), and (17) we have that

2AT V(s @)
DN < v(Po— T wi+ <2D\/14SIog(6)+2> &Za NG (26)

In Appendix D we prove an analogon of (20), that is,

Vk S a
keRe S,Za\/max{l N(s,a)} <\[+1) LeSA. (27)

Then from (25), (26), and (27) it follows that with probability at least 25

N(sT) < 2|_8|og(g)+(2D,/145|og(2§)+2)-(xf2+1)-\/TSA

+ 'Uk(Pk—I)wk]lMeMk . (28)
ke £

For the regret term of k. vk( Pk — I)wklycqq We Use an argument similar to the one applied
to obtain (18) in Section 4.3.2. Here we have to consider a slightly modified malgidgference
sequence

X = (p("st,at) _63+1)wk(t)]lMeM<t)]lt€Jg
fort =1,...,T to get (using the bound on the number of episodes given in Appendix C.2)
> (P—Dwidyeag < X; +DSAlog, (&)

keKe tede
T(Le)

< Zl X +DSAog, (£) , (29)
t=

where we sefl (L) := min{t : #{t1 <t,1 € J} = L}. The application of the Azuma-Hoeffding
inequality in Section 4.3.2 is replaced with the following consequence of Bénfsinequality for
martingales.

Lemma 12 (Freedman 1975)Let X, Xo, ... be a martingale difference sequence. Then

n n 2
]P{_lei > K, _inzgv} < exp<—2y:2|<>.
i= i= 3
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Application of Lemma 12 wittk = 2D+/Llog(T /) andy = D?L yields that forL > 'ogl(jﬂ it

holds that
IP{T(L)Xt 2D, /Llog (1) }} 0 (30)
> ogl = < =.
) W) gy<v

On the other hand, if < Iogé%, we have

T(L)
3 % = DL=DVLVL < Viylog(}) < 2D, /Llog (T). (31)

Hence, (30) and (31) give by a union bound over all possible valties that with probability at

least 1- 0
T(Le)

Zl X < 2Dy/Lelog(%).

Together with (29) this yields that with probability at least &

> ok(Pc—Dwilyeng, < 2Dy/Lelog(z) +DSAog, (£3) -

keKe

Thus by (28) we obtain that with probability at least B

A(sT) < 2L£|og(g)+<2D,/14S|og(2§)+2>-(\72+1)-\/LESA
+2Dy/L¢log (%) +DSAog, (L) -

This can be simplified to

Ay (s,T) < 34DS,/L¢Alog(F) (32)
by similar arguments as given in Appendix C.4. Siate < A[(s,T), we get
D?SAlog (&
L, < 342. —29(5)’ (33)
€
which proves the theorem. |

Now we apply Theorem 11 to obtain the claimed logarithmic upper bound on thecid
regret.
Proof of Theorem 4 Upper boundind.¢ in (32) by (33), we obtain for the regra{(s, T) accumu-
lated ine-bad episodes that

D?SAlog (+
A(sT) < 342-—9(5)

with probability at least - 30. Noting that the regret accumulated outsides-dfad episodes is at
mosteT implies the first statement of the theorem.

For the bound on the expected regret, first note that the expectetotgaeh episode in which
an optimal policy is executed is at md3t whereas due to Theorem 11 the expected regr%tb’ad
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episodes is upper bounded byz?,&"jzszgw +1,asd= 3# What remains to do is to consider
episodek with expected average regret smaller t@im which however a non-optimal policik
was chosen.

First, note that for each polici there is aT; such that for allT > T;; the expected average
reward afterT steps is%-close to the average reward af Thus, when a policyt is played
in an episode of length- T either the episode ig—bad (in expectation) or the policy is op-
timal. Now we fix a state-action pafs,a) and consider the episodésin which the number
of visits w(s,a) in (s,a) is doubled. The corresponding episode lendit{s,a) are not neces-
sarily increasing, but the(s,a) are monotonically increasing, and obviouglys,a) > w(s,a).
Since thev(s,a) are at least doubled, it takes at mo$tt- log,(MaX;ys)—a Tn)| episodes until
(s, @) > Vk(s,a) > Maxcrs)—a I, When any policyrt with Ti(s) = a applied in episodé that is
not %-bad (in expectation) will be optimal. Consequently, as only episodes ofilemgaller than
MaX;rs—a Tn have to be considered, the regret of episddeierevi(s,a) < MaXgps—a T is Up-
per bounded by 1+ log, (MaXcr(s)—a Tn) | Ma%rs)—a Tr: SUMmMing over all state-action pairs, we
obtain an additional additive regret term of

> [1+logy( max T)| max Tr,

& TTr(s)=a TTI(s)=a

which concludes the proof of the theorem. |

6. The Lower Bound (Proof of Theorem 5)

We first consider the two-state MDP depicted in Figure 3. That is, therevarstates, the initial
states, and another statg, andA' = L%J actions. For each actian let the deterministic rewards
ber(s,,a) =0andr(s,a) = 1. For all but a single “good” actioa’ let p(s|s.,a) =6:= %, whereas
p(s|s.,a*) = 0+ € for some O< € < & specified later in the proof. Further, Ip{s,|s,a) = & for

all a. The diameter of this MDP i®’ = 3 = 2. For the rest of the proof we assume #d < 1.

1-6—-¢

Figure 3: The MDP for the lower bound. The single actanwith higher transition probability
from states, to states, is shown as dashed line.

Considek := | 3| copies of this MDP where only one of the copies has such a “good” agtion
To complete the construction, we connectkleopies into a single MDP with diameter less than

11. Otherwise we hav® < 12, so that due to the made assumptidns 2S. In this case we employ a different construc-
tion: UsingS— 1 actions, we connect all states to get an MDP with diameter 1. With the rem&nrirs+ 1 actions
we set up a bandit problem in each state as in the proof of the lower bdukgko et al. (2002b) where only one
state has a better action. This yield&y/SAT) regret, which is sufficient, sind® is bounded in this case.
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Figure 4: The composite MDP for the lower bound. Copies of the MDP oftEi§are arranged in
anA'-ary tree, where ths,-states are connected.

using at mosA— A’ additional actions. This can be done by introducig 1 additional actions per
state with deterministic transitions which do not leavedhstates and connect tlse-states of the

k copies by inducing ai'-ary tree structure on th&-states (one action for going toward the root,
A actions going toward the leaves—see Figure 4 for a schematic represeutatie composite
MDP). The reward for each of those actions is zero in any state. The @inoféhe resulting MDP

is at most 2% + [logy K]), which is twice the time it takes to travel to or from the root for any state
in the MDP. Thus we have constructed an MBIRvith < Sstates< A actions, and diametet D,

for which we will show the claimed lower bound on the regret.

Actually, in the analysis we will consider the simpler MDP wheresalktates are identified.
We set this state to be the initial state. This MDP is equivalent to a single MOIRe the one in
Figure 3 withkA' actions which we assume in the following to be taken fidim .., kA'}. Note that
learning this MDP is easier (as the learner is allowed to switch between diffgrstates without
any cost for transition), while its optimal average reward is the same.

We prove the theorem by applying the same techniques as in the proof ofirddound for the
multi-armed bandit problem of Auer et al. (2002b). The gaira*) identifying the copy with the
better action and the better action is considered to be chosen uniformidatmdrom{1,... k} x
{1,...,A’}, and we denote the expectation with respect to the random choic, af) asE, [].
We show thak can be chosen such thiell and consequently also the composite MBIFforces
regretE, [A(M,2,s,,T)] > E, [A(M',2(,s!,T)] > 0.015/D’kAT on any algorithr.

We writeEnit [-] for the expectation when there is no special action (i.e., the transition pkobab
ity from s, to s, is & for all actions), and, [-] for the expectation conditioned @rbeing the special
actiona* in M’. As already argued by Auer et al. (2002b), it is sufficient to congiééerministic
strategies for choosing actions. Indeed, any randomized strategynaleqtto an (apriori) random
choice from the set of all deterministic strategies. Thus, we may assumestagarithm2( maps
the sequence of observations up to stepan actiorg;.

Now we follow the lines of the proof of Theorem A.2 as given by Auer e{2002h). Let the
random variableBl,, N, andN* denote the total number of visits to statethe total number of visits
to states,, and the number of times acti@f is chosen in state,, respectively. Further, writg as
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usual for the state observed at stefphen sinces, is assumed to be the initial state, we have

T T
Fa[N] = t;IPa & =s] = tZZIPa s =s|=

= T;(Pa[st =5|s-1=5|Pals-1=5]+Pals =s|s-1=s]Pals-1=5])

T T

< 6;1Pa[st,1=so,at#a*]+(6+s);Pa[aflzso,at=a*]+(1—5)1Ea[Nl]
t= =

< OEa[No — NI+ (+€)Ea[NJ]+ (1—-3)Ea[N].

Taking into account that choosirgj instead of any other action is reduces the probability of
staying in states,, it follows that (usingD’ = %)

Ea [RIM, 2,5 T)] < Ea[N] < Ea[No—Ni]+ SEE [N]]
= Ea [No] ‘HEa {N:] ED,
< Eunif [No] + Ea [NZ] eD’
= Eynif [T - Nl] +Eq [N:] eD’
= T —Euit[N] + Ea[N;]eD'. (34)

Now denoting the step where the first transition fresrto s occurs byt,,, we may lower bound
Eunit [N,] by the law of total expectation as

Eyni [N\] = ZlEumf N T, —t] Pynit [TO\ —t ZlEunlf N T, —t} (1- 6>t 5

T_14 T-1 T-1
ZT Tt 5‘15—5l (1- ) —5Zt1 5
2
(

3T 1—-(1-9T1 6< —(1-3"T T@1-9)T 1>

v

2 5 2 2 5
_T-TA-3"' 1 (1-97 +T(1—6)T*1
B 2 25 25 2

T 1 @1-" _ T 1 T D
= ——— > = =

2 %" ® ~2 2% 2 2 (35)

Therefore, combining (34) and (35) we obtain

D/
E.
As 2l chooses its actions deterministically based on the observations $§ fara function of
the observations up to stdp too. A slight difference to Auer et al. (2002b) is that in our setting

the sequence of observations consists not just of the rewards bubfailse next state, that is,
upon playing actiora; the algorithm observes, 1 andr;. However, since the immediate reward is
fully determined by the current statd is also a function of just the state sequence, and we may
boundIE, [N?] by the following lemma, adapted from Auer et al. (2002b).

T
Ea [RIM', 2,5 T)] < EJFIE‘.ﬂ[N:]sD’Jr (36)
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Lemma 13 Let f: {s,,5}7*1 — [0,B] be any function defined on state sequences(s,,s} !
observed in the MDP K Then forany0 < 8 < %, any0 < £ < 1— 25, and any a {1,...,kA’},

B ¢
Ea[f(s)] < Eunit[f(s)]+ 28
The proof of Lemma 13 is a straightforward modification of the respectigefgyiven by Auer
et al. (2002b). For details we refer to Appendix E.
Now let us assume that< . (Our final choice o€ below will satisfy this requirement.) By our
assumption od < 1 this yields that < 6 < % < 1-2d. Then, sinceN? is a function of the state
sequence witiN} € [0, T], we may apply Lemma 13 to obtain

2]Eunif [N:] .

Ea[Ncﬂ < IEunlf *5\/>\/ 21Eunlf (37)
An immediate consequence of (35) is t@;ﬁ/lEun.f N < T s+ 5 D' which yields by Jensen’s in-
equality thaty ¥, \/2Eynit [N2] < \/kA(T +D’). Thus we have from (37)
kA

/

/

Y Ea[N;] < ;r >, i\ﬂ\/kA’(T—i—D’)

a=1

£+ e VDRAT + 22 STD VKA.
Together with (36) this gives

kA
E, [RM,2,sT)] = k;, ZEa (M,21,8,T)]

T eTD eD? ¢€2TD €2T D2
— / / /
S stoam Tam T VORAT+ 5 VA

Calculating the stationary distribution, we find that the optimal average refoartie MDP M’

is 26518 Hence, the expected regret with respect to the random cho&eiofit least

o+¢
20+¢€
0+¢ T eTD €D

E. [AM,2,sT)] = T-E,[RM,2,s,T)]

ore o~ ETY it - ETY i VB
= Wtre 2 KA KA~ KA kK

Since by assumption we hafe> DSA> 16D’kA and thusD’ < 16kA,, it follows that

E, [AM,2,s,T)]
eT eTD gD T

2 / /
e“TD e2TD
VD'KAT — v D'kA

> — — . _

= 4542 2kA KA 16kA KA 2kA 16kA’
L ! 1 eTD (1, 1

= i3 1D <2kA, + 32(2A/2> o VOKAT (5+ 2 ) - ?
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Now we choose& :=c TD, wherec ;= z. Then because c% D' < 16kA/ it follows thate <
Cay = 2 (o that als@ < & as needed to get (37)), and furthge- > 4+11/8D’ Hence we obtain
B [AM 2sT)] > [t ¢ ) vowat-2
* I 4+ KA 32A2 2 8VKA 2’
Finally, we note that
CAP Wyl L DKAT
2 — 2 16kA ~ 8KA
and since by assumptid@)A > 10 so thakA > 20, it follows that
E, [AM',2,s,T)] > 0.015VD'KAT,
which concludes the proof. |

7. Regret Bounds for Changing MDPs (Proof of Theorem 6)

Consider the learner operates in a setting where the MDP is allowed to chéimgss, such that the
diameter never exceed(we assume an initial change at tirne- 1). For this task we define the
regret of an algorithn( up to stepl’ with respect to the average rewgrt{t) of an optimal policy

at stept as
A(A,s,T) le — Ty,

wherer; is as usual the reward received #yat stept when starting in state

The intuition behind our approach is the following: When restartiqrL2 every(%)z/3 steps,
the total regret for periods in which the MDP changes is at mb8T2/3. For each other period
we have regret 0®((T)¥?) by Theorem 2. Since RL2 is restarted onl§f /3¢2/3 times, the total
regret isO(¢£X/3T2/3).

Because the horizon is usually unknown, we use an alternative approach for restarting which
however exhibits similar properties:dgL2’ restarts ERL2 with parameteré at stepg; = hzl

fori =1,2,3,.... Now we prove Theorem 6, which states that the regretofi?’ is bounded by

N(UcRrL2,sT) < 65-¢/°T%/°DS, /Alog (3)

with probability at least & in the considered setting.
Let n be the largest natural number such tﬁ%ﬂ < T, thatis,nis the number of restarts up to

3
stepT. Then?—i <Th<T<Th1—1< %

and consequently
(RT3 1 < n < P2RTYR, (38)

The regret). incurred due to changes of the MDP can be bounded by the number stakem
in periods in which the MDP changes. This is maximized when the changes dagng the/
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longest periods, which contain at magt 1 —1— 1,1 Steps. Hence we have

A < Tn+1_1 Th- F+1
< FM+D°—F-E(—+1)°
1
- 3”7+6%—3n—72+€—3+3?. (39)

For¢ > 2 we get by (39) and (38) that
2 4/312/3
Ac < 3”7 Lo <3t

while for £ = 1 we obtain also from (39) and (38) that

+0 = 33123 4y,

Ac < 3% +3n < 3T2343TY3,
Thus the contribution to the regret from changes of the MDP is at most

%1/3T2/3+3T1/3+€
661/3T2/3+£1/3£2/3
661/3T2/3_+_£l/3-|-2/3

703723 (40)

Ac

(VAN VAN VAN VAN

On the other hand, if the MDP does not change between the stepsl minT, 11}, the
regretA(sy, Ti) for theseT; := min{T,Ti;+1} — Ti Steps is bounded according to Theorem 2 (or more
precisely (23)). Therefore, recalling that the confidence parametaogsen to bel%, this gives

A(sy,T) < 34DS\/'IW(TT) < 34V/3DSVT \/AIOT%

with probability 1— e 5/4 As 3 ,Ti =T, we have by Jensen’s inequalify ; v/Ti < vVnvT.

Thus, summing over all=1 ,Nn, the regret) in periods in which the MDP does not change is
by (38)

Ae < ZlAs[ ,Ti) < 34V/3DSynvT/Alog (%)
< 34/3DS/RT%3, /Alog (1) (41)

with probability at least + 5 15 5/4 We conclude the proof by bounding this latter probability.

-

(i+1°3 B 22—

For{ J<|<n

v

z 02 02
32 3i+2-¢2 3i2
et e e
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and consequentIyZTlT/4 < 3. This together witHT; > 1 then yields

2
n o V/3J bo) n-1 5 5
1- —< 2= 1- “o — — 5
i;‘wZTiSM i; ae? i:Lé§3J+14'2 4
L, 28 821 3
3 42 422 4
5 & 1

AsA'(UcRL?,s,T) < Ac+A¢, combining (40) and (41) yields
N(UCRLZ,sT) < 7037231 34y/3DS//3 123 /Alog(I)

with probability at least + 9, and Theorem 6 follows, since the claimed bound holds trivially for
Alog(§) < log4. [ |

8. Open Problems

There is still a gap between the upper bound on the regret of Theorem tha lower bound of
Theorem 5. We conjecture that the lower bound gives the right expof@rnhe parameteSandD
(concerning the dependence®oompare also the sample complexity bounds of Strehl et al., 2006).
The recent research of Bartlett and Tewari (2009) also poses ¢éstiopuwhether the diameter in our
bounds can be replaced by a smaller parameter, that is, by the span @sloé #n optimal policy.
As the algorithm REGAL.C of Bartlett and Tewari (2009) demonstrates, thislisast true when
this value is known to the learner. However, in the case of ignorancesntlyrthis replacement of
the diameteD can only be achieved at the cost of an additional factoy'8fin the regret bounds
(Bartlett and Tewari, 2009). The difficulty in the proof is that while the splan optimal policy’s
bias vector in thessumeaptimistic MDP can be upper bounded by the diameter otrineMDP
(cf. Remark 8), it is not clear how the spans of optimal policies in the assaméthe true MDP
relate to each other.

A somehow related question is thattodinsientstates, that is, the possibility that some of the
states are not reachable under any policy. In this case the diameter isxdedpso that our bounds
become vacuous. Indeed, our algorithm cannot handle transient dtatesy time step and any
transient stats, UCRL2 optimistically assumes maximal possible reward and a very small but
still positive transition probability t@ from any other state. Thus insisting on the possibility of
a transition tos, the algorithm fails to detect an optimal polity. The assumption of having an
upper bound on an optimal policy’s bias resolves this problem, as this bodindctly also gives
some information on what the learner may expect from a state that hasertdached so far and
thus may be transient. Consequently, with the assumed knowledge of sugpanbound, the
REGAL.C algorithm of Bartlett and Tewari (2009) is also able to deal withsieari states.

12. Actually, one can modify ORL2 to deal with transient states by assuming transition probability 0 for allitiams
not observed so far. This is complemented by an additional exploratiasegbetween episodes where, for example,
the state-action pair with the fewest number of visits is probed. While thisidigogives asymptotically the same
bounds, these however contain a large additive constant for all thedegishat occur before the transition structure
assumed by the algorithm is correct.
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Appendix A. A Lower Bound on the Diameter

We are going to show a more general result, from which the bound on tireetiafollows. For a
given MDP, letT *(s|sp) be the minimal expected time it takes to move from stat® states.

Theorem 14 Consider an MDP with state spaceand A states. Letgbe an arbitrary distribution
overS, and U C § be any subset of states. Then the sum of the minimal expected transitien time
to states inU when starting in an initial state distributed according tpid bounded as follows:

T(U|dp) := z Z do(s0) T*(s|so) > min K- ng.
FR s T 0<n<AK k>0,
0 Sknk=14

We think this bound is tight. The minimum on the right hand side is attained whemy tiee
maximized for smalk until | 1| is exhausted. Fok > 2, this gives an average (over the stategl)n
expected transition time of at least Jog!| — 3 to states intZ. Indeed, forl U| = 3 A+ ny we

havef—% (A 12 < || (1+ £&;) as well agm > logs (14, so that

m-1 m-1

S kA4mng = ma+ Y (k—m)A*
o

Am+1_A
A-1 (A-1)2
U (m—1-z%)

o (%) -1 )

> | U|(loga|U[-3).

= mU|l+

AV

In particular, choosing! = $ gives the claimed lower bound on the diameter.

Corollary 15 In any MDP with S states and A 2 actions, the diameter D is lower bounded by
log, S—3.

Remark 16 For given SA the minimal diameter is not always assumed by an MDP with determin-
istic transitions. Consider for example=S4 and A= 2. Any deterministic MDP with four states
and two actions has diameter at least 2. However, Figure 5 shows asmwnding MDP whose
diameter is3.
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Figure 5: An MDP with four states and two actions whose diamet%r Is each state two actions
are available. One action leads to another state deterministically, while the otioer a
causes a random transition to each of the two other states with probétﬁlitgticated as
dashed lines).

Proof of Theorem 14 Let a*(sy,S) be the optimal action in stat for reaching state, and let
p(s|so,a) be the transition probability to stasavhen choosing actioa in states.

The proof is by induction on the size @f. For|U| = 0,1 the statement holds.

For|u| > 1 we have

T(Uldo) = 3 % do(s0) T*(S/0)

= do(s0) T*(SI0)

- co(s0)( 3 plsisoa(%.9) T (s + 1)
SIES

- ey 3 <S§5 p(s1]%0,8) T*(sls1) + 1)

a*(sp,s)=a

- Sy (3 S pelna T Ul

S0ES a \5ESscUsya

wherelg, o = {s€ U\ {0} : a*(%0,5) = a}.
If all s, a C U, we apply the induction hypothesis and obtain for suital(ey, a)

S o)y (35 ploiena) T (85 + ol
SHES

a \sieSselya

5 cb(s) 3 ( S kendsoa)+|tal)

SHES

= Y dlx) 3 Y (k1) (0.2

SHES

Y

since S Nk(S0,a) = |Us,a|- Furthermoreng(so,a) < A and |U| — 1 < Y,|Us,a| < |U|. Thus
settingn = 3¢, do(S0) ¥ aMk—1(S0, @) for k> 1 andny = | U| — S~ N satisfies the conditions of the
statement. This completes the induction step for this case.
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If Us,a = U for some pair(sp,a) (i.e., for all target states € U the same action is optimal
in 59), then we construct a modified MDP with shorter transition times. This is aahieyenodi-
fying one of the actions to give a deterministic transition freyto some state irtZ (which is not
reached deterministically by choosing actian For the modified MDP the induction step works
and the lower bound can be proven, which then also holds for the origiD& |

Appendix B. Convergence of Value Iteration (Proof of Theorem ¥

As sufficient condition for convergence of value iteration, Putermaf@4)l8ssumes only that all
optimal policies have aperiodic transition matrices. Actually, the proof of fldme®.4.4 of Put-
erman (1994)—the main result on convergence of value iteration—neisdgsgumption only at
one step, that is, to guarantee that the optimal policy identified at the endmfabiehas aperiodic
transition matrix. In the following we give a proof sketch of Theorem 7 tlumicentrates on the
differences to the convergence proof given by Puterman (1994).

Lemma 9.4.3 of Puterman (1994) shows that value iteration eventually chanlggoliciestt
that satisfyPrp* = p*, wherePy is the transition matrix oftandp* is the optimal average reward
vector. More precisely, there is @nsuch that for all > ig

max {TT[+ Pr[U|} == maX{’l"n+ Pr[ui},
mTS—A4 ek

wherery is the reward vector of the poliay, andE := {11: § — 4| Prp* = p*}.

Unlike standard value iteration, extended value iteration always chooSetep with aperiodic
transition matrix (cf. the discussion in Section 3.1.3). Thus when consideniggperiodic policies
F:={m: S — 4| Pyis aperiodig in the proof of Lemma 9.4.3, the same argument shows that there
is anig such that for all > ij

neF ncENF

Intuitively, (42) shows that extended value iteration eventually choasggolicies fromENF.

With (42) accomplished, the proof of Theorem 9.4.4, the main result onecgerce of value
iteration, can be rewritten word by word from Puterman (1994), itteplaced withE N F and
using (42) instead of Lemma 9.4.3. Thus, unlike in the original proof whereptimal policyrt*
identified at the end of the proof is i, in our casat is in ENF. Here Puterman (1994) uses
the assumption thatll optimal policies have aperiodic transition matrices to guaranteatthads
aperiodic transition matrix. In our case, has aperiodic transition matrix by definition, as it is in
ENF.

Then by the aperiodicity oPy, the result of Theorem 9.4.4 follows, and one obtains analo-
gously to Theorem 9.4.5 (a) of Puterman (1994) that

lm (a1 — ) = (43)

As the underlying MDPM* is assumed to be communicating (so tpatis state-independent),
analogously to Corollary 9.4.6 of Puterman (1994) convergence ofaadievalue iteration follows
from (43). Finally, with the convergence of extended value iteration ksitegol, the error bound for
the greedy policy follows from Theorem 8.5.6 of Puterman (1994). |
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Appendix C. Technical Details for the Proof of Theorem 2

This appendix collects some technical details, starting with an error boundfconfidence inter-
vals.

C.1 Confidence Intervals

Lemma 17 For any t> 1, the probability that the true MDP M is not contained in the set of plau-
sible MDPs (t) at time t (as given by the confidence interval§¢3hand (4)) is at most-2;, that
is

156

P{MgM1)} < —6.

Proof Consider a fixed state-action péira) and assume some given number of vigits 0 in (s, a)
before stefi. Denote the estimates for transition probabilities and rewards obtained femarth
observations by (:|s,a) andr(s,a), respectively. Let us first consider the probability with which a
confidence interval for the transition probabilities fails. The randomteeserved for the transition
probability estimates is the state to which the transition occurs. Generally!ttieviation of the
true distribution and the empirical distribution owardistinct events frorm samples is bounded
according to Weissman et al. (2003) by

P{[p()-p(), > ¢} < (@"~2)exp(-%). (44)

Thus, in our case we hawa = S (for each possible transition there is a respective event), so that
setting
2 2520sAF 145 2At
=\ lea (564 < /S Fea ().
we get from (44)

A 145 2At S 2520SA¥
>4/ — <At <
{Hp (-|s,a) — p(|s,a)”l_ - Iog(é)} < 2exp< > Iog( )
%
20t’SA
For the rewards we observe real-valued, independent identically distili.i.d.) random vari-

ables with support if0, 1]. Hoeffding’s inequality gives for the deviation between the true nrean
and the empirical meanffom ni.i.d. samples with support ij©, 1]

P{\f—ﬂ 2&} §2exp(—2ne,2).

. _ \/1 Iog(12(BAt7) < \/27n|°g(256At)7

we get for state-action pafs, a)

]P{\f(s,a)—r_(s,a)\z 27nlog(2%At)} < 2eXp(—2 |og(1zosm7>>

0
607SA

Setting
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Note that when there haven’t been any observations, the confiddrceais trivially hold with
probability 1 (for transition probabilities as well as for rewards). Henamian bound over all
possible values afi = 1,...,t — 1 gives (now writingN(s,a) for the number of visits iris, a))

X 3 7|Og(256At) t-1 5 5
_ > <
ef rsa sl it B < 5 R e

. 14Slog (%!) 15 5
IP{H'O('|S""‘)_'O("S”a‘)le\/max{l,N(se?a)}} < 2 2075A " 20°5A

Summing these error probabilities over all state-action pairs we obtain the ch'medIP{M ¢
M)} < 1—36 [ |

C.2 A Bound on the Number of Episodes

Since in each episode the total number of visits to at least one state-acticlophlies, the number
of episodegn is logarithmic inT. Actually, the number of episodes becomes maximal when all
state-action pairs are visited equally often, which results in the followingdhoun

Proposition 18 The number m of episodes OfcRL2 up to step T> SA is upper bounded as
m < SAlog, (£5).

Proof LetN(s,a):=#{t1 < T+ 1:s =s,a = a} be the total number of observations of the state-
action pair(s,a) up to stepl . In each episodk < mthere is a state-action pds, a) with vi(s,a) =
Nk(s,a) (orvk(s,a) =1, Nk(s,a) = 0). LetK(s,a) be the number of episodes with(s, a) = Nk(s, a)
andNg(s,a) > 0. If N(s,a) > 0, thenvi(s,a) = Nk(s,a) impliesNi1(S,a) = 2Nk(s, &), so that

m K(sa)

Nisa) = § w(sa) > 1+ Ne(s,a) > 1+ Zl 2-1 = oK),

k=1 kv (s,2)=Nk(s,a) i=
On the other hand, (s, a) = 0, then obviouslK (s,a) = 0, so that generallj\(s,a) > 253 — 1
for any state-action pais,a). It follows that

T=SYN(sa) > 5 (262 _1). (45)
> > (2% -)

Now, in each episode a state-action pai@) is visited for which eitheNg(s,a) = 0 or Nk(s,a) =

Vk(s,a). Hencem < 14-SA+ 5 ,K(s,a), or equivalentlyy s ,K(s,a) > m—1—SA This implies

S oK(sa) > gARSsaK(sa)/SA 5 gaRA -1,
sa
Together with (45) this gives
T> SA(zm??*l—l),
which yields
m < 1+ 2SA+ SAlog; (25) »
and the claimed bound anfollows for T > SA [ |
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C.3 The Sumin(19)
Lemma 19 For any sequence of numbers z.,z, with0 <z < Z, 1 := max{l Z. 1 z,}

> s
&V T

Proof We prove the statement by induction over
Base caseWe first show that the lemma holds for awith $7~7z < 1. Indeed, in this casg = 1
for k <n-1 and hence, < 1. It follows that

(\/§+1) VZn.

n n-1
Z
= zk+zn§1+1<(\f2+1)z.
k;\/zk—l k; "

Note that this also shows that the lemma holdsifer 1, sincez‘k’zlzk =0<1.
Inductive step:Now let us consider natural numberssuch thaty—;z > 1. By the induction
hypothesis we have

n

2

Sincez, < Z,_1= zﬂ;}zk andZ,_1+ z, = Z,, we further have

(\/54- 1) Zn 1+ %

(\f2+1> anJF\/% - \/<\@+1>22n1+2(\f2+1)2n+2:%1

< \/<\ﬁ+ 1)22n_1+ (2+2\ﬁ+ 1) Z,

_ \/(ﬁ+1)zzn1+ (\f2+ 1>22n
= (V2+1) vzt = (V2+1) vz,

which proves the lemma. |

C.4 Simplifying (22)
Combining similar terms, (22) yields that with probability at Ieas{%

As,T) < DS\/A7T< %-3log () +2(v2+1) \/14l0g(ZT) + B+ 2+ ﬁ\>
+DSAog, (&). (46)
We assume > 2, since the bound is trivial otherwise. Also, fordT < 342Alog(%) we have

A(s1,T) <34, /ATlog (%) trivially. ConsideringT > 34Alog (&) we haveA < e (T) ATlog (%)
3
and also log(8T) < 2log(T), so that

DSAlog, (£§) < ZDS\/ATlog() -
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Further, T > 34Alog () also implies lof %T) < 2log(F) and log(&) < 2log(§). Thus, we

have by (46) that for any > 1 with probability at least + 4T5/4

DS, /ATlog (%) ( \f+2(f+1)ﬁ+\f+2+ +34>
34DS,/ATlog ().

Appendix D. Technical Details for the Proof of Theorem 4: Prod of (27)

A(S]_,T)

IN

IN

For a given index sef, of episodes we would like to bound the sum

Vk(s,a) B m Vk(s,a)
keKe s,a \/max{l, Nk(S, a)} a Sak=1 \/max{l, Nk(S, a)}

We will do this by modifying the sum so that Lemma 19 becomes applicable. Codthpiathe
setting of Lemma 19 there are some “gaps” in the sum caused by epigdtedn the following
we show that the contribution of episodes that occur afterlstep Sk, >savk(S, @) is not larger
than the missing contributions of the episodels;. Intuitively speaking, one may fill the episodes
that occur after step into the gaps of episodesK, as Figure 6 suggests.

]lkng.

Figure 6: lllustration of the proof idea. Shaded boxes stand for emsoede, empty boxes for
episodest K. The contribution of episodes after stepcan be “filled into the gaps” of
episodest K¢ before stephe.

Letle(s a) := Yek, vk(S,a), sothaty s . /e (s,a) = Le. We consider a fixed state-action pgira)
and skip the reference to it for ease of reading, so Matefers to the number of visits s, a)
up to episodek, andN denotes the total number of visits ts a). Further, we abbreviatey :=
vmax{1,Ng}, and letm := max{k : Nx < ¢} be the episode containing tlg-th visit to (s,a).
Due tovk = Nk, 1 — N¢ we have

Vma - (Nms_t,_]_—Eg)‘i‘(eg—Nnk) (47)
SinceNm, = y¢; ", this yields

me—1 m
le — Nm + Z Vk = lg = ZVk]lkng
k=1

me—

Z Vidlkek, + NmeJrl—gs)ﬂmgeKE (E Nm)ﬂmng+ z Vidlkek, ,
k=1 k=me+1
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or equivalently,

m me—1
(ng+1 - Es) ﬂmeKE + z Vk]lkng = (fs - ng) ]1m€¢KE + Z Vk]lkgéKg' (48)
k=mg+1 k=1
By (47) and due tal > dn, for k > me we have
m mg—1
*]lkeKE < *]lkng + ]lrmng
k; di k; d Orm,
1
+ . <(ng+l gs)]lmgng + z Vk]lkeKE>
Me k=mg+1
Hence, we get together with (48), using that dy, for k < mg
m me—1
Vi Vk e —N
> Eﬂkng < - ke&+%1m€eKs
K=1 K k=1 YK me
1 mt
. <(€e —No)Imgk. + 3 Vkﬂkm)
me k=1
m—ly, le—N le—N m—ly,
k e — Nm e Nm K
< 7]lk £ +—"1 £ +—1 £ + —1 £
k; dh I K I T kZl d KE<
me—1 Vk gg - NmE
- — 4+ .
& O,

Now definev, as follows: letv, := v for k < me andvy,, := £ — Ny,. Then we have just seen that

11 .
z keke < Z de
Since furthery * ; Vi, = (¢ we get by Lemma 19 that
T v
Z k< (\f + 1) V0 .
As S sale(s @) = Le, we finally obtain by Jensen’s inequality

k(s @) < (\f2+ 1) V/LeSA,

keng sa \/maX{l, Nk(s,a)}

as claimed. ]

Appendix E. Proof of Lemma 13

Let us first recall some notation from Section 6. Theg-] denotes the probability conditioned
on a being the “good” action, while the probability with respect to a setting wheradibns in
states, are equivalent (i.e.g = 0) is denoted byPnit[-]. LetS := {s,,s} and denote the state
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observed at stepby s; and the state-sequence up to stdyy s' = s,...,S;. Basically, the proof
follows along the lines of the proof of Lemma A.1 of Auer et al. (2002b). fitts¢ difference is that
our observations now consist of the sequencé ef1 states instead of a sequenceTobbserved
rewards. Still it is straightforward to get analogously to the proof of Aatexl. (2002b), borrowing
the notation, that for any functiohfrom {s,,s}"+* to [0, B],

Ea[f ()] — Eunt[f(s)] < 2\/2 109(2) KL (Pyn|[Pa), (49)

where KL(P||Q) denotes for two distribution®,Q the Kullback-Leibler divergencelefined as

KL (P||Q) := ¥ se 1 P{s} 0, ( gﬁ) It holds that (cf. Auer et al., 2002b)

KL (Punit]|Pa) :tiKL <]Punif [st41]s'] ‘

Pa [si]s'] ), (50)

where KL(P{s1|s'}|Q{st1|8'}) := T gtr1c i1 P{s "1} log, (ggﬂi%) By the Markov property
and the fact that the actiom is determined by a sequensec ' we have (similar to Auer et al.,
2002b)

KL (Punif [5t+1‘st] HIPa [Stﬂ‘st] ) _ Z Pyt [SIH] log, (IPler[S(+1|-9t])

st+icst+l Palsials!]
Punit [S’]st]
= Punit [ s Punit [s11 = s log (“
sét uni [ ]SZS uni [ + ‘ :| 2 IPa[S"st]

= P ynif [St_l] Z Pynit [St =g a= a/|3t_l]
st-1gst-1 (8",a)esxAa

gz Punit [S11=9|s" s =9, a = 4] Iogz<
cs

Punit [§]s' 1,5 =", =&
Pa[s|stl,5 =9 a = &]

kA

= Pyni [st1 Punif (s =& a = a|st ™t
817%5[71 unif [3 ]azlslés unif [St o s ]

1Al Punif[sl|5”’al]>
=Y Punit[]97,d ] lo ( )
S’gﬁ f[ ‘ ] gz IPa[S’]S”,a’]

IPunif[sllsl/ya,]

Since log (W

) #+ 0 only fors” = s, anda’ being the special actiom we get

KL (Punit [s51] '] |

Pa[siiafs'] ) =

- - Punit[S]s., 2]
s unif [3 ] unif [St So, & |s ] 5%5 unif [ s, ] 92 Pa[s]s,q]
_ e _ ) Pynit[S']ss, 8]
= Punt[s =s.,a =4 s%gIPumf [s’]so,a] log, (w
0 1-9o

To complete the proof we use the following lemma.
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Lemma 20 Forany0 <3< % ande < 1— 20 we have

5 1-8 g
3log, (M> + (1-9)log, (1_5_8> = dlog(2)

Indeed, application of Lemma 20 together with (50) and (51) gives that

KL (Punit|[Pa) = tiKL <]Punif ETIEN ‘

Pa[sals'] )
2 82

T
< T = = —_— B * J—
< tZLIPumf § =s,& =4 510g(2) Eunif [N;] 510g(2) )

which together with (49) yields

(o8]

€

Ea[f(s)] = Eunit [f(s)] < 5+ —= v/ 2Bunit [NS],
2 /3

as claimed by Lemma 13.

Proof of Lemma 20 Consider

hs(g) := 862 —5log <6i£> —(1-3)log (11663> .

We show thahjs(€) > 0 for & < 3 and 0< € < &g, where

1 1
€= §—6+§\/1—26.

Indeed hs(0) = O for all §, while for the first derivative

9
o€

0 1-9

/ . _
N (€) = 51c 1-0-¢

€
h5(8) = 28+

we havehj(e) > 0 for & < 1 and 0< € < go. It remains to show tha < 3 ande < 1— 25 imply
€ < gg. Indeed, fo < % ande < 1-— 25 we have

1 1
e—g < 1—25—8025—5—5\/1—25 =

(1-28)—/1-28)) <O

NI =
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