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Abstract
This paper presents a statistical model for expressing preferences through rankings, when the num-
ber of alternatives (items to rank) is large. A human ranker will then typically rank only the most
preferred items, and may not even examine the whole set of items, or know how many they are.
Similarly, a user presented with the ranked output of a search engine, will only consider the highest
ranked items. We model such situations by introducing a stagewise ranking model that operates
with finite ordered lists called top-t orderings over an infinite space of items. We give algorithmsto
estimate this model from data, and demonstrate that it has sufficient statistics, being thus an expo-
nential family model with continuous and discrete parameters. We describe its conjugate prior and
other statistical properties. Then, we extend the estimation problem to multimodal data by intro-
ducing anExponential-Blurring-Mean-Shiftnonparametric clustering algorithm. The experiments
highlight the properties of our model and demonstrate that infinite models over permutations can
be simple, elegant and practical.

Keywords: permutations, partial orderings, Mallows model, distancebased ranking model, expo-
nential family, non-parametric clustering, branch-and-bound

1. Introduction

The stagewise ranking model of Fligner and Verducci (1986), also known asgeneralized Mallows
(GM), has been recognized as particularly appropriate for modeling the human process of ranking.
This model assigns a permutationπ over n items a probability that decays exponentially with its
distance to acentral permutationσ. Here we study this class of models in the limitn→ ∞, with
the assumption that out of the infinitely many items ordered, one only observesthose occupying the
first t ranks.

Ordering an infinite number of items is common in retrieval tasks: search engines, programs that
match a face, or a fingerprint, or a biological sequence against a database, all output the firstt items
in a ordering over virtually infinitely many objects. We shall call this output atop-t ordering. Unlike
machines, people can only reliably rank a small number of items. The GM model has been success-
fully used to model human ranking decisions. We can view the difference between the standard
GM model and theInfinite GM modelthat we introduce here as the difference between an election
where each voter returns an ordering of a small number of preselected candidates (nominees) and a
“grassroots” election process, where everyone can nominate and order their own favourites from a
virtually unlimited population. For instance, the difference between “Order the following issues by
how much you care about them” vs. “List in order the issues that you caremost about” illustrates
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the difference between the standard and the Infinite GM models. By these examples, we argue that
the Infinite GM corresponds to realistic scenarios. An even more realistic scenario, that we will not
tackle for now, is one where a voter (ranker) does not have access tothe whole population of items
(e.g., a search engine only orders a subset of the web, or a reviewer only evaluates a subset of the
submissions to a conference).

After defining the infinite GM model, we show that it has sufficient statistics andgive algorithms
for estimating its parameters from data in the Maximum Likelihood (ML) framework. To be noted
that our model will have an infinite number of parameters, of which only a finitenumber will be
constrained by the data from any finite sample.

Then, we consider the non-parametric clustering of top-t ranking data. Non-parametric cluster-
ing is motivated by the fact that in many real applications the number of clustersis not known and
outliers are possible. Outliers are known to throw off estimation in an exponential model, unless
the tails are very heavy. We introduce an adapted version of the well known Gaussian Blurring
Mean-Shift algorithm (Carreira-Perpiñán, 2006) (GBMS) that we call exponential blurring Mean
Shift (EBMS).

2. The Infinite Generalized Mallows Model

In this section, we give definitions of key terms used in the article and introduce theInfinite Gener-
alized Mallows(IGM) model.

2.1 Permutations, Infinite Permutations and top-t Orderings

A permutationσ is a function from a set ofitems{ i1, i2, . . . in} to the set ofranks1 : n. W.l.o.g.
the set of items can be considered to be the set 1 :n. Thereforeσ(i) denotes therank of item i and
σ−1( j) denotes the item at rankj in σ.

There are many other ways to represent permutations, of which we will usethree, theranked
list, thematrixand theinversion tablerepresentation; all three will be defined shortly.

In this paper, we consider permutations over a countable set of items, assumed for convenience
to be the the set of positive natural numbersP= {1, 2, . . . , i . . .}. It is easy to see that the notations
σ(i),σ−1( j) extend immediately to countable items. This will be the case with the other definitions;
hence, from now on, we will always consider that the set of items isP.

Any permutationσ can be represented by the (infinite)ranked list(σ−1(1)|σ−1(2)| . . . |σ−1( j)|
. . .). For example, letσ = (2|3|1|5|6|4| . . . |3n−1|3n|3n−2| . . .). Thenσ(1) = 3 means that item 1
has rank 3 in this permutation;σ(2) = 1 means that item 2 has rank 1, etc. Conversely,σ−1(1) = 2
andσ−1(3 j) = 3 j−2 mean that the first in the list representation ofσ is item 2, and that at rank 3j
is to be found item 3j−2, respectively. Often we will call the list representation of a permutation
anordering.

A top-t orderingπ is the prefix(π−1(1)|π−1(2)| . . . |π−1(t)) of some infinite ordering. For in-
stance, the top-3 ordering of the aboveσ is (2|3|1).

A top-t ordering can be seen as defining a set consisting of those infinite orderings which start
with the prefixπ. If we denote bySP the set of all permutations overP and bySP−t = {σ ∈
SP |σ(i) = i, for i = 1 : t} the subgroup of all permutations that leave the top-t ranks unchanged,
then a top-t orderingπ corresponds to a unique element of the right cosetSP/SP−t .

We will use Greek letters likeπ and σ for both full permutations and for top-t orderings to
keep the notation light. But we will distinguish almost always between “centralpermutations”
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ideal infinite objects denoted byσ, and observed orderings, denoted byπ, which by virtue of being
observed, are always top-t , that is, truncated. Hence, unless otherwise stated,π will denote a
top-t ordering, whileσ will denote an infinite permutation.

2.2 The Permutation Matrix Representation and the Inversion Table

Now we introduce the two other ways use to represent permutations and top-t orderings.
For anyσ, thepermutation matrixΣ corresponding toσ hasΣi j = 1 iff σ(i) = j andΣi j = 0

otherwise. Ifσ is an infinite permutation,Σ will be an infinite matrix with exactly one 1 in every
row and column. For two permutationsσ,σ′ over P, the matrix productΣΣ′ corresponds to the
function compositionσ′ ◦σ.

The matrixΠ of a top-t orderingπ is a truncation of some infinite permutation matrixΣ. It has
t columns, each with a single 1 inπ−1( j), for j = 1 : t.

For example, ifσ = (2|3|1|7|4| . . .) andπ = (2|3|1) is its top-3 ordering, then

Σ =









0 0 1 0 0 . . .
1 0 0 0 0 . . .
0 1 0 0 0 . . .
0 0 0 0 1 . . .
. . . . . . . . . . . . . . . . . .









and Π =









0 0 1
1 0 0
0 1 0
0 0 0
. . . . . . . . .









. (1)

For a permutationσ and a top-t orderingπ, the matrixΣTΠ corresponds to the list of ranks inσ of
the items inπ. In this context, one can considerσ as a one-to-one relabeling of the setP.

The inversion tableof a permutationσ, with respect to the identity permutation id is an infinite
sequence of non-negative integers(s1, s2, . . .) which are best defined algorithmically and recur-
sively. We consider the ranked list(1|2|3| . . .). In it, we findσ−1(1) the first item ofσ, and count
how many positions past the head of the list it lies. This iss1, and it always equalsσ−1(1)−1. Then
we delete the entryσ−1(1) from the list, and look upσ−1(2); s2 is the number of positions past the
head of this list where we findσ−1(2). We then deleteσ−1(2) as well and proceed to findσ−1(3),
which will give uss3, etc. By induction, it follows that an infinite permutation can be represented
uniquely by the list(s1, s2, . . .). Hencesj ∈ {0,1,2, . . .}, and, denoting by 1[p] the function which is
1 if the predicatep is true and is 0 otherwise, we have

sj(σ) = σ−1( j)−1− ∑
j ′< j

1[σ−1( j ′)<σ−1( j)].

It is also easy to see that, ifπ is a top-t ordering, it can be uniquely represented by an inversion table
of the form(s1, . . .st). If π is the top-t ordering of an infinite permutationσ, then the inversion table
of π is thet-prefix of the inversion table ofσ. This property makes the inversion table particularly
convenient for our purposes.

For example, ifσ = (2|3|1|7|4| . . .) andπ = (2|3|1), thens1(σ) = s1(π) = 1, s2(σ) = s2(π) = 1,
s3(σ) = s3(π) = 0, s4(σ) = 3, s5(σ) = 0, etc.

The inversion table has a particularly simple interpretation in the matrix representation ofσ or
π: s1 equals the number of zeros preceding 1 in column 1; we delete the row containing this 1, then
count the number of zeros in column 2 preceding the 1 to obtains2; we delete the row containing
this 1, then go to column 3 to count the zeros preceding the 1 in column 3 in orderto obtains3, and
so on. The reader can verify thats1:3(π) = (1, 1, 0) from the matrixΠ in Equation (1) above.
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Another property of the inversion table is that it can be defined with respect to any infinite
permutationσ0, by letting the ordered list corresponding toσ0 replace the list(1|2|3| . . .) in the
above definition of the inversion table as follows:

sj(σ|σ0) = σ0(σ−1( j))−1− ∑
j ′< j

1[σ0(σ−1( j ′))<σ0(σ−1( j))]. (2)

In other words, 1+sj is the rank ofσ−1( j) in σ0
∣
∣
P\{σ−1(1),...σ−1( j−1)} .

In matrix representation,s1(σ|σ0) is the number of 0’s preceding the 1 in the first column of
ΣT

0 Σ; after we delete the row containing this 1,s2(σ|σ0) is the number of 0’s preceding the 1 in the
second column, and so on. For a top-t orderingπ, this operation is done on the matrixΣT

0 Π.
For example, forπ = (3|2|1) andσ0 = (3|4|2|1| . . .) the matrix representation is

ΣT
0 Π =









1 0 0
0 0 0
0 1 0
0 0 1
. . . . . . . . .









,

ands1(π|σ0) = 0, s2(π|σ0) = 1, s3(π|σ0) = 1.
If σ0 is given,π is completely determined by the inversion tables1:t(π|σ). Equation (2) can

be interpreted as a recursive algorithm to constructπ from σ, which we briefly describe here. We
imagineσ to be an ordered list of available items. From it, we choose the first rank inπ by skipping
the firsts1 ranks inσ and pickingπ−1(1) = σ−1(s1+1). Onceπ−1(1) is picked, this item is deleted
from the orderingσ. From this new list of available items, the second rank inπ is picked by
skipping the firsts2 ranks, and chosing the item in the(s2+1)-th rank. This item is also deleted,
and one proceeds to chooseπ−1(3), π−1(4), . . .π−1(t), etc. in a similar manner. This reconstruction
algorithm proves that the representation(s1:t) uniquely determinesπ. It is also easy to see that ifπ
is a prefix ofσ, that is, ifπ−1( j) = σ−1( j) for j = 1 : t, thens1 = s2 = . . .= st = 0.

For an example we now show how to reconstructπ = (3|2|1) usingσ = (3|4|2|1| . . .). Recall
that the inversion table ofπ is given bys1(π|σ) = 0, s2(π|σ) = 1, s3(π|σ) = 1.

Stage π σ Comments
Initial () (3|4|2|1| . . .)
j = 1 (3) (6 3|4|2|1| . . .) Skips1 = 0 ranks fromσ, then assign the current item toπ−1(1)
j = 2 (3|2) (6 3|4|6 2|1| . . .) Skips2 = 1 ranks fromσ, then assign the current item toπ−1(2)
j = 3 (3|2|1) (6 3|4|6 2|6 1| . . .) Skips3 = 1 ranks fromσ, then assign the current item toπ−1(3)

The definition of the inversion tables is identical to the first equation of Section 3 from Fligner
and Verducci (1986). A reciprocal definition of the inversion table is used by Meil̆a et al. (2007)
and Stanley (1997) and is typically denoted by(V1,V2, . . .). The “V” form of the inversion table is
closely related to the inversion table we use here. We discuss this relationshipin Section 7.

2.3 Kendall Type Divergences

For finite permutations ofn itemsπ andσ,

dK(π,σ) =
n−1

∑
j=1

sj(π|σ) =
n−1

∑
j=1

sj(σ|π)
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denotes theKendall distance(Mallows, 1957) (orinversion distance) which is a metric. In the
above, the indexj runs only ton−1 because for a finite permutation,sn≡ 0. The Kendall distance
represents the number of adjacent transpositions needed to turnπ into σ. An extension of the
Kendall distance which has been found very useful for modeling purposes was introduced by Fligner
and Verducci (1986). It is

dθ(π,σ) =
n−1

∑
j=1

θ jsj(π|σ),

with θ = (θ1, . . .θn−1) a vector of real parameters, typically non-negative. Note thatdθ is in general
not symmetric, nor does it always satisfy the triangle inequality.

For the case of countable items, we introduce the divergence

dθ(π,σ) =
t

∑
j=1

θ jsj(π|σ), (3)

whereπ is a top-t ordering,σ is a permutation inSP, andθ = (θ1:t) a vector ofstrictly positive
parameters.1

Whenθ j are all equaldθ(π,σ) is proportional to the Kendall distance betweenσ and the set of
orderings compatible withπ and counts the number of inversions needed to makeσ compatible with
π. In general, this “distance” between a top-t ordering and an infinite ordering is aset distance.2

2.4 A Probability Model over top-t Rankings of Infinite Permutations

Now we are ready to introduce theInfinite Generalized Mallows(IGM) model. We start with the
observation that as any top-t ordering can be represented uniquely by a sequence oft natural num-
bers, defining a distribution over the former is equivalent to defining a distribution over the latter,
which is a more intuitive task. In keeping with the GM paradigm of Fligner and Verducci (1986),
eachsj is sampled independently from a discrete exponential with parameterθ j > 0.

P(sj) =
1

ψ(θ j)
e−θ j sj , sj = 0, 1, 2, . . . . (4)

The normalization constantψ is

ψ(θ j) =
∞

∑
k=0

e−θ jk =
1

1−e−θ j
, (5)

and the expectation ofsj is E[sj |θ j ] =
e−θ j

1−e−θ j
= 1

eθ j−1
the well known expectation of the discrete

geometric distribution. Now we fix a permutationσ. Since anyπ is uniquely defined byσ and
the inversion tables1:t(π|σ), Equations (4) and (5) define a distribution over top-t orderings, by
Pθ,σ(π) = ∏t

j=1P(sj(π|σ)). This is equivalent to

Pθ,σ(π) = e−∑t
j=1[θ j sj (π|σ)+lnψ(θ j )]. (6)

1. Definition 3 can be easily extended to a pairσ,σ′ ∈ SP, but in this case the divergence will often take infinite values.
2. A set distance, often called “distance” between two sets, is the minimum distance between elements in different sets,

that is,δ(A,B) = minx∈A,y∈B δ(x,y) for a metric or divergenceδ. The set distance is not a metric, as it can easily be
shown by counterexample.
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The abovePθ,σ(π) has at-dimensional real parameterθ and an infinite-dimensional discrete param-
eterσ. The normalization constant∏t

j=1 ψ(θ j) ensures that

∑
π∈top-t orderings ofP

Pθ,σ(π) = 1.

In contrast with the finite GM, the parametersθ j must be strictly positive for the probability distri-
bution to exist. The most probableπ for any givent hass1(π|σ) = . . . = st(π|σ) = 0. This is the
top-t prefix of σ.

The permutationσ is called thecentral permutationof Pθ,σ. The parametersθ control the spread
around the modeσ. Largerθ j correspond to more concentrated distributions. These facts are direct
extensions of statements about the GM model from Fligner and Verducci (1986) and therefore the
detailed proofs are omitted.

What is different about the IGM model definition w.r.t its finite counterpart isthat the parameter
σ is now an infinite sequence instead of a finite one. Another difference is theadded condition that
θ j > 0 which ensures thatψ(θ j) is finite. This condition is not necessary in the finite case, which
leads to the non-identifiability3 of the parameterσ.

If θ1 = θ2 = . . . = θ the IGM model is called asingle parameterIGM model. In this case
Equation (6) simplifies to

Pθ,σ(π) = e−θ∑t
j=1 sj (π|σ)−t lnψ(θ).

2.5 The IGM Model is a Marginal Distribution

Any top-t orderingπ stands for a set of infinite sequences starting withs1:t(π|σ). Therefore,Pθ,σ(π)
can be viewed as the marginal ofs1:t in the infinite product space defined by the distribution

Pθ,σ(s) = e−∑∞
j=1[θ j sj+lnψ(θ j )] s∈ N×N× . . . .

Because every infinite sequences uniquely determines an infinite permutation, the distribution (6)
also represents the probability of theπ element of the right cosetSP/SP−t , that is, the set of infinite
permutations that have(π−1(1)|π−1(2)| . . . |π−1(t)) as a prefix. This fact was noted by Fligner and
Verducci (1986) in the context of finite number of items. Thus, the IGM model (6) is the infinite
counter part of the GM model.

Note also that the expected value ofsj is the mean of the geometric distributionE[sj ] =
1

eθ j−1
≡

ξ j . Thus, the mean value parametrization of the IGM can be easily derived (proof omitted):

Pξ,σ(π) =
t

∏
j=1

ξsj (π|σ)
j

(ξ j +1)sj (π|σ)+1
. (7)

It is clear by now that the IGMPθ,σ is an exponential family model over the sample space
(s1, s2, . . .) (note that hereσ plays no role). It is also evidently an exponential family model inθ
over complete or top-t permutations. The next section will demonstrate that, less evidently, the IGM
is in fact in the exponential family with respect to the discrete parameterσ as well.

3. The non-identifiability of the GM model is however not a severe problemfor estimation, and can be removed by
imposingθ j ≥ 0 (Meilă et al., 2007).
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3. Estimating the Model From Data

We are given a set ofN top-t orderingsSN. Eachπ ∈ SN can have a different lengthtπ; all π are
sampled independently from aPθ,σ with unknown parameters. We propose to estimateθ, σ from
this data in the ML paradigm. We will start by rewriting the log-likelihood of the model,in a way
that will uncover a set of sufficient statistics. Then we will show how to estimate the model based
on the sufficient statistics.

3.1 Sufficient Statistics

For any square (infinite) matrixA∈RP×P, denote byL(A) = ∑i> j Ai j the sum of the elements below
the diagonal ofA. Let Lσ(A) = L(ΣTAΣ), and let1 be a vector of all 1’s. For anyπ, let tπ be its
length and denotetmax= maxSN tπ, T = ∑SN

tπ, and byn the number of distinct items observed in
the data. As we shall see,tmax is the dimension of the concentration parameterθ, n is the order of
the estimated central permutationσ, andT counts the total number of items in the data, playing a
role akin to the sample size.

Proposition 1 Let{Nj ,q j ,Q j} j≥0 represent the following statistics: Nj is the number ofπ∈ SN that
have length tπ ≥ j (in other words, that contain rank j); qj is the vector[qi, j ]i∈P, with qi, j being the
number of times i is observed in rank j in the dataSN, Qj = [Qii ′, j ]i′,i∈P is a matrix whose element
Qii ′, j counts how many timesπ(i) = j and π(i′)< j. Then,

lnPθ,σ(SN) = −∑
j≥1

[θ jLσ(Rj)+Nj lnψ(θ j)] with Rj = q j1T −Q j , (8)

To prove this result, we first introduce an alternative expression for theinversion tablesj(π|σ).
Let the data setSN consist of a single permutationπ and defineq j(π),Q j(π) andRj(π) similar to
q j ,Q j ,Rj above. Then we have

Proposition 2
sj(π|σ) = Lσ(q j(π)1T −Q j(π)). (9)

Proof Let Q0 be the infinite matrix that has 1 above the main diagonal and 0 elsewhere,(Q0)i j = 1
iff j > i and letΠ: j denote thej-th column ofΠ. It is then obvious thatL(A) = trace(Q0A) for any
A.

By definition,sj represents the number of 0’s preceding 1 in columnj, minus all the 1’s in the
submatrix(ΣTΠ)1:σ(π−1( j))−1,1: j−1. In other words,

sj(π|σ) = ∑
l≥1

(Q0ΣTΠ: j)l (1−ΣTΠ:1−ΣTΠ:2− . . .ΣTΠ: j−1)l ,

= (1− ∑
j ′< j

ΣTΠ: j ′)
TQ0ΣTΠ: j ,

= 1TQ0ΣTΠ: j − ∑
j ′< j

ΠT
: j ′ΣQ0ΣTΠ: j ,

= traceQ0ΣTΠ: j1T − ∑
j ′< j

traceΠ: jΠT
: j ′ΣQ0ΣT ,

= traceQ0ΣT [Π: j1T − ∑
j ′< j

Π: jΠT
: j ′Σ],

= L(ΣT [Π: j1T − ∑
j ′< j

Π: jΠT
: j ′ ]Σ) = Lσ(Π: j1T − ∑

j ′< j

Π: jΠT
: j ′).
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We use the fact that multiplying left byQ0 counts the zeros preceding 1 in a column in the first
equality, traceAB= traceBA in the fourth and fifth equations, and the identity1TΣ = 1T in the last
equation. We now note thatΠ: j = q j(π) and∑ j ′< j Π: jΠT

: j ′ = Q j(π) and the result follows. 2

Proof of Proposition 1. The log-likelihood ofSN is given by

lnPθ,σ(SN) = − ∑
π∈SN

[
t

∑
j=1

πθ jsj(π|σ)+ lnψ(θ j)

]

,

= −∑
j≥1

[

θ j ∑
π∈SN

sj(π|σ)+Nj lnψ(θ j)

]

.

BecauseLσ is a linear operator, the sum overπ ∈ SN equals

Lσ[( ∑
π∈SN

q j(π))1T − ∑
π∈SN

Q j(π))].

It is easy to verify now that the first sum representsq j and the second one representsQ j .
2

The sufficient statistics for the single parameter IGM model are described by the following
corollary.

Corollary 3 Denote
q= ∑

j

q j , Q= ∑
j

Q j , R = q1T −Q. (10)

If θ1 = θ2 = . . .= θ then the log-likelihood of the dataSN can be written as

lnPθ,σ(SN) = −θLσ(R)−T lnψ(θ). (11)

Note thatqi , Qii ′ represent respectively the number of times itemi is observed in the data and
the number of times itemi′ precedesi in the data.

Proposition 1 and Corollary 3 show that the infinite modelPθ,σ hassufficient statistics. The
result is obtained without any assumptions on the lengths of the observed permutations. The data
π ∈ SN can have different lengthstπ, tπ may be unbounded, and may even be infinite.

As the parametersθ,σ of the model are infinite, the sufficient statisticsRj (or R) are infinite
matrices. However, for any practically observed data set,tmax will be finite and the total number
of items observed will be finite. Thus,Nj ,Rj will be 0 for any j > tmax andR= ∑ j∈PRj will have
non-zero entries only for the items observed in someπ∈ SN. Moreover, with a suitable relabeling of
the observed items, one can reduceRj to a matrix of dimensionn, the number of distinct observed
items. The rest of the rows and columns ofRj will be 0 and can be discarded. So in what follows
we will assume thatRj and the other sufficient statistics have dimensionn.

3.2 ML Estimation: The Case of a Singleθ

We now go on to estimateθ andσ starting with the case of equalθ j , that is,θ1 = θ2 = . . . = θ. In
this case, Equation (11) shows that the estimation ofθ andσ decouple. For any fixedσ, Equation
(11) attains its maximum overθ at

θ = ln(1+T/Lσ(R)). (12)
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In contrast to the above explicit formula, for the finite GM, the likelihood has no analytic solution
for θ (Fligner and Verducci, 1986). The estimated value ofθ increases whenLσ(R) decreases. This
has an intuitive interpretation. The lower triangle ofΣTRΣ counts the “out of order” events w.r.t.
the chosen modelσ. Thus,Lσ(R) can be seen as a residual, which is normalized by the “sample
size” T. Equation (12) can be re-written asLσ(R)/T = 1/(eθ−1) ≡ ξ. In other words, the mean
value parameterξ equals the average residual. This recovers a well-known fact about exponential
family models. In particular, if the residual is small, that isLσ(R) has low counts, we conclude that
the distribution is concentrated, hence has a highθ.

EstimatingσML amounts to minimizingLσ(R) w.r.t σ, independently of the value ofθ. The
optimal σ according to Corollary 3 is the permutation that minimizes the lower triangular partof
ΣTRΣ. To find it we exploit an idea first introduced in Meilă et al. (2007). This idea is to search for
σ = (i1|i2|i3| . . .) in a stepwise fashion, starting from the top itemi1 and continuing down.

Assuming for a moment thatσ = (i1|i2|i3| . . .) is known, the cost to be minimizedLσ(R) can be
decomposed columnwise as

Lσ(R) = ∑
l 6=i1

Rli1 + ∑
l 6=i1,i2

Rli2 + ∑
l 6=i1,i2,i3

Rli3 + . . . ,

where the number of non-trivial terms is one less than the dimension ofR. It is on this decomposition
that the search algorithm is based. Reading the above algorithmically, we cancomputeLσ(R), for
any givenσ by the following steps

1. zero out the diagonal ofR
2. sum over columni1 of the resulting matrix
3. remove row and columni1
4. repeat recursively from step 2 fori2, i3, . . ..

If now σ is not known, the above steps 2, 3 become the components of a search algorithm, which
works by trying everyi1 in turn, saving the partial sums, then continuing down for a promisingi1
value to try alli2’s that could follow it, etc. This type of search is represented by asearch tree,
whose nodes are candidate prefixes forσ.

The search tree hasn! nodes, one for each possible ordering of the observed items. Finding
the lowest cost path through the tree is equivalent to minimizingLσ(R). Branch-and-bound (BB)
(Pearl, 1984) algorithms are methods to explore the tree nodes in a way that guarantees that the
optimum is found, even though the algorithm may not visit all the nodes in the tree. The number
of nodes explored in the search forσML depends on the individual sufficient statistics matrixR. It
was shown by Meil̆a et al. (2007) that in the worst case, the number of nodes searched can be a
significant fraction ofn! and as such intractable for all but smalln. However, if the data distribution
is concentrated around a mode, then the search becomes tractable. The more concentrated the data,
the more effective the search.

We call the BB algorithm for estimatingσ the SIGMA *, by analogy with the nameA∗ under
which such algorithms are sometimes known. The algorithm is outlined in Figure 1.In this figure,
A is anadmissible heuristic; Pearl (1984) explains their role. By default, one can useA≡ 0. A
higher bound than 0 will accelerate the search; some of the admissible heuristics of Mandhani and
Meilă (2009) can be used for this purpose.

In addition to this slow but exact algorithm, various heuristic search techniques can be used
to explore the search tree of the problem. Two of them which showed good performance for the
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standard GM model and which transfer immediately to the infinite model are the greedy search
(GREEDYR) and the the SORTR heuristic of Fligner and Verducci (1988), both described in Figure
2. The SORTR computes the costs of the first step of BB, then outputs the permutationσ that sorts
these costs in increasing order. The algorithm as proposed by Fligner and Verducci (1988) also
performs limited search around thisσ. For simplicity, this was not included in the pseudocode, but
can be implemented easily.

The GREEDYR replaces BB with greedy search on the same sufficient statistics matrix. This
algorithm was used by Cohen et al. (1999), where a factor of 2 approximation bound w.r.t. the cost
was also shown to hold.

A third heuristic is related to the special caset = 1, when eachπ contains only 1 element. This
is the situation of, for example, a search engine returning just the best matchto a query. Fort = 1, as
Q is 0, the optimal ordering is the one minimizingLσ(q1T) = [0 1 . . . n−1]ΣTq. This is obviously
the ordering that sorts the items in descending order of their frequencyq.

In conclusion, to estimate the parameters from data in a single parameter case,one first computes
the sufficient statistics, then a prefix ofσ is estimated by exact or heuristic methods, and finally, with
the obtained ordering of the observed items, one can compute the estimate ofθ.

3.3 ML Estimation: The Case of Generalθ

Maximizing the likelihood of the dataSN is equivalent, by Proposition 1, with minimizing

J(θ,σ) = ∑
j

[θ jLσ(Rj)+Nj lnψ(θ j)] = Lσ(∑
j

θ jRj

︸ ︷︷ ︸

Rθ

)+ function ofθ. (13)

This estimation equation does not decouple w.r.tθ andσ. Minimization is however possible, due to
the following two observations. First, for any fixed set ofθ j values, minimization w.r.tσ is possible
by the algorithms described in the previous section. Second, for fixedσ, the optimalθ j parameters
can be found analytically by

θ j = ln(1+Nj/Lσ(Rj)). (14)

The two observations immediately suggest an alternating minimization approach to obtaining
θML,σML. The algorithm is given in Figure 3. For the optimization w.r.tσ exact minimization can
be replaced with any algorithm that decreases the r.h.s of (13). As both steps increase the likelihood,
the algorithm will stop in a finite number of steps at a local optimum.4

3.4 Identifiability and Consistency Results

One remarkable property of the IGM, which is easily noted by examining the likelihood in (8)
or (11), is that the data will only constrain a finite number of parameters of themodel. The log-
likelihood (8) depends only on the parametersθ1:tmax. Maximizing likelihood will determineθ1:tmax

leaving the otherθ j parameters undetermined.

4. The reader may have noted thatPθ,σ is an exponential family model. For exponential family models withcontinuous
parameters over a convex set, the likelihood is log-concave and an iteration like the one presented here would end at
the global optimum. For our model, however, the parameterσ is discrete; moreover, the set ofσ’s forms the vertices
of a convex polytope. One can show theoretically and practically that optimizing Lσ(R) can have multiple optima
and hence one cannot expect to always find a global maximum for the likelihood. However, we suspect that under the
conditions that make optimization tractable, that is, a concentrated data distribution, existence of a global optimum
may be proved.
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Algorithm SIGMA *

Input matrixR∈ R
n×n of sufficient statistics

Initialize

S= {σ̄ /0}, σ̄ /0 =the empty ordering,j = 0, C(σ̄ /0) = B(σ̄ /0) = 0

Do

removeσ̄ ∈ argmin
σ̄∈S

B(σ̄) from S

if length(σ̄) = n (Return)

Output σ̄, B(σ̄) =C(σ̄) andStop.

else(Expandσ̄)

for i j+1 ∈ {1 : n}\ σ̄
1. create nodēσ′ = (i1| . . . , |i j |i j+1)

2. v j+1(σ̄′) = ∑l∈{1:n}\σ̄′Rli j+1

3. calculateC(σ̄′) =C(σ̄)+v j+1, calculateA(σ̄′)
4. B(σ̄′) =C(σ̄′)+A(σ̄′)
5. store node(σ̄′, j +1,C(σ̄′), B(σ̄′)) in S

Figure 1: Algorithm SIGMA * outline. S is the set of nodes to be expanded;σ̄ = (i1| . . . , |i j) des-
ignates a top-j ordering, that is, a node in the tree at levelj. The cost of the path̄σ is
given byC(σ̄) = ∑ j

j ′=1 ∑l 6∈{i1: j′}
Rli l , andA(σ̄) is a lower bound on the cost to go from̄σ,

possibly 0. The total estimated cost of nodeσ̄ is B(σ̄) = C(σ̄)+A(σ̄), which is used to
predict which is the most promising path through the tree. In an implementation, nodeσ̄
stores:σ̄ = (i1| . . . , |i j), j = |σ̄|,C(σ̄), B(σ̄).

Let n be the number of distinct items observed in the data. Fromσ, we can estimate at most its
restriction to the items observed, that is, the restriction ofσ to the set

⋃
π∈SN
{π−1(1),π−1(2), . . . ,

π−1(tπ)}. The next proposition shows that the ML estimate will always be a permutation which puts
the observed items before any unobserved items.

Proposition 4 LetSN be a sample of top-t orderings, and letσ be a permutation overP that ranks
at least one unobserved item i0 before an item observed inSN. Then there exists another permutation
σ̃ which ranks all observed items before any unobserved items, so that forany parameter vector
(θ1:t), Pθ,σ(SN)< Pθ,σ̃(SN).

Proof For an itemi0 not observed in the data,qi0, j ,Qi0i, j andRi0i, j are 0, for anyj = 1 : t and any
observed itemi. Hence rowi0 in anyRj is zero. Also note that if we switch among each other items
that were not observed, there is no effect in the likelihood. Hence, w.l.o.gwe assume thati0 has
rank j0 in σ and is followed by an itemi which is observed.
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Algorithm SORTR

Input matrixR∈ R
n×n of sufficient statistics with 0 diagonal

1. compute the column sums ofR, r l = ∑k Rkl, l = 1 : n

2. sortr l , l = 1 : n in increasing order

Output σ the sorting permutation

Algorithm GREEDYR

Input matrixR∈ R
n×n of sufficient statistics with 0 diagonal

1. setV = 1 : n the set of unused items

2. Repeat forj = 1 : n−1

(a) computer l = ∑k∈V Rkl, l ∈V the column sums of a submatrix ofR

(b) let l∗ = argminl∈Vr l

(c) setσ−1( j) = l∗, V←V \{l∗}

3. setσ−1(n) to the last remaining item inV

Output σ

Figure 2: Heuristic algorithms to estimate a central permutation: SORTR and GREEDYR. The
elementsRii are never part of anysj , hence to simplify the code we assume they are set
to 0.

Algorithm ESTIMATESIGMATHETA

Input Sufficient statisticsRj ,Nj , j = 1 : tmax

Initial parameter valuesθ1:tmax > 0

Iterate until convergence:

1. CalculateRθ = ∑ j θ jRj

2. Find the orderingσ = argminσLσ(Rθ) (exactly by SIGMA * or by heuristics)

3. Estimateθ j = ln(1+Nj/Lσ(Rj))

Output σ, θ1:tmax

Figure 3: Algorithm ESTIMATESIGMATHETA.
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The idea of the proof is to show that if we switch itemsi0 andi the lower triangle of anyRj will
not increase, and for at least oneRj it will strictly decrease.

For this, we examine rowi of someRj . We haveQii0, j = 0 andQii0, j = qi, j . Sincei is observed
then for at least onej we haveRii0, j > 0. Denote byσ′ the permutation which is equal toσ except
for switchingi andi0. The effect of switchingi andi0 on Rj is to switch elementsRii0, j andRi0i, j .
Since the latter is always 0 and the former is greater or equal to 0, it follows that Lσ′(Rj)≤ Lσ(Rj)
for any j, and that the inequality is strict for at least onej. By examining the likelihood expression
in Equation (8), we can see that for any positive parametersθ1: j we have lnPθ,σ(SN)< lnPθ,σ′(SN).

By successive switches like the one described here, we can move all observed items before the
unobserved items in a finite number of steps. Let the resulting permutation beσ̃. In this process, the
likelihood will be strictly increasing at each step, therefore the likelihood ofσ̃ will be higher than
that ofσ. 2.

In other wordsσML is a permutation of the observed items, followed by the unobserved items
in any order. Hence the ordering of the unobserved items is completely non-identifiable (naturally
so). But not even the restriction ofσ to the observed items is always completely determined. This
can be seen by the following example. Assume the data consists of the the two top-t orderings
(a|b|c), (a|b|d). Then(a|b|c|d) and(a|b|d|c) are both ML estimates forσ; hence, it would be more
accurate to say that the ML estimate ofσ is thepartial ordering(a|b|{c,d}). The reasonσML is not
unique overa,b,c,d in this example is that the data has no information about the relative ranking
c,d, neither directly by observingc,d together in the sameπ, nor indirectly, via a third item. This
situation is likely to occur for the rarely observed items, situated near the endsof the observedπ’s.
Thus this kind of inderterminacy will affect predominantly the last ranks ofσML. Another kind of
indeterminacy can occur when the data is ambiguous w.r.t the ranking of two itemsc,d, that is,
whenRcd = Rdc > 0. This situation can occur at any rank, and will occur more often for values of
theθ j parameters near 0. However, observing more data mitigates this problem. Also, since more
observations typically increase the counts more for the first items inσ, this type of indeterminacy is
also more likely to occur for the later ranks ofσML.

Thus, in general, there is a finite set of permutations of the observed items which have equal
likelihood. We expect that these permutations will agree more on their first ranks and less in the
last ranks. The exact ML estimation algorithm SIGMA * described here will return one of these
permutations.

We now discuss the convergence of the parameter estimates to their true values. The IGM
model hast real parametersθ j , j = 1 : t and a discrete and infinite dimensional parameter, the
central permutationσ. We give partial results on the consistency of the ML estimators, under the
assumption that the true model is an IGM model and thatt the length of the observed permutations
is fixed or bounded.

Before we present the results, we need to make some changes in notation. In this section we
will denote byq̂, R̂, etc the statistics obtained from a sample, normalized by the sample sizeN. We
useq, R, etc for the asymptotic, population based expectation of a statistic under the true modelPid,θ
(single parameter or multiple parameters as will be the case). For instance ˆqi, j = ∑π∈SN

qi, j(π)/N
represents the frequency ofi appearing in positionj in the sample, whileqi, j is the probability of
this event underPid,θ. For simplicity of notation, the dependence ofN is omitted.

We will show that under weak conditions, the statistics of the typeq, Q, R converge to their
expectations, which in turn will entail convergence of the estimates based onthem. The proofs are
in Appendix A.1.
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Proposition 5 Let σ be any infinite permutation. If the true model is Pid,θ (multiple parameters)
and t is fixed, thenlimN→∞ Lσ(R̂j) = Lσ(Rj) for any j= 1 : t.

Since we can assume w.l.o.g. that the central permutation of the true model is the identity permu-
tation, this proposition implies that for any IGM, with single or multiple parameters, and for anyσ,
the statisticsLσ(R̂j) are consistent whent is constant.

Proposition 6 If the true model is Pid,θ (multiple or single parameter) and t is fixed, then for any
infinite permutationσ, denote bŷθ j(σ) (or θ̂(σ)) the ML estimate ofθ j (or θ) given that the estimate
of the central permutation isσ. Then for j= 1 : t

lim
N→∞

θ̂ j(σ) = θ j(σ),

lim
N→∞

θ̂(σ) = θ(σ),

where the limits should be taken in the sense of convergence in probability.

Proposition 7 Assume that the true model is Pid,θ, t is fixed, andθ j ≥ θ j+1 for j = 1 : t−1. Let
σ 6= id be an infinite permutation. Then, P[Lid(R̂j) < Lσ(R̂j)] → 1. Consequently, P[Lid(R̂) <
Lσ(R̂)]→ 1.

The consequences of these results are as follows. Assume the true modelhas a single parameter, and
we are estimating a single parameter IGM model. Then, the likelihood of an infinite permutationσ
is given byR̂= ∑t

j=1 R̂j . By Proposition 7, for anyσ other than the true one, the likelihood will be
lower than the likelihood of the true permutation, except in a vanishingly small set of cases. This
result is weaker than ideal, since ideally we would like to prove that the likelihood of the trueσ
is higher than that of all other permutations simultaneously. We intend to pursuethis topic, but to
leave the derivation of stronger and results for a further publication.

Proposition 6 shows that, if the correctσ is known, then theθ j parameters, or alternatively the
singleθ parameter, are consistent.

In the multiple parameter IGM case, for any fixedθ, the likelihood ofσ is given by R̂ =

∑t
j=1 θ jR̂j . Hence, by Proposition 7, in this case too, for any givenσ different from the true central

permutation, the likelihood ofσ will be lower than the likelihood of the true model permutation.
The reader will note that these results can be easily extended to the case ofboundedt.

4. Non-parametric Clustering

The above estimation algorithms can be thought of as finding aconsensus orderingfor the ob-
served data. When the data have multiple modes, the natural extension to optimizing consensus is
clustering, that is, finding the groups of the population that exhibit consensus.

Having defined a distance and a method for estimating ML parameters gives one access to a large
number of the existing clustering paradigms originally defined for Euclidean data. For instance,
the extensions of the K-means and EM algorithms to infinite orderings is immediate, and so are
extensions to other distance-based clustering methods. Here we will present only one clustering
method, a theExponential Blurring Mean-Shift (EBMS), but which illustrates well the issues of
clustering in the space of top-t orderings. The EBMS is a nonparametric clustering method.
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Algorithm EBMS

Input Top-t orderingsSN = {πi}i=1:N, with lengthti ; optionally, a scale parameterθ

1. Forπi ∈ SN computeqi ,Qi ,Ri the sufficient statistics of a single data point.

2. Reduce data set by counting only the distinct permutations to obtain reduced S̃N and
countsNi ≥ 1 for each orderingπi ∈ S̃N.

3. Forπi ,π j ∈ S̃N calculate Kendall distancedi j = dK(πi ,π j).

4. (Optional, ifθ not given in input) Setθ by solving the equation

Eθ[d(S̃N)] =
tπe−θ

1−e−θ −
tπ

∑
j=1

je−θ

1−e− jθ

where we setEθ[d(S̃N)] to be the average of pairwise distances in step 3.

5. Forπi ∈ S̃N (Compute weights and shift)

(a) Forπ j ∈ S̃N: setαi j =
exp(−θdi j )

∑n
j′=1 exp(−θdi j ′ )

(b) CalculateR̄i = ∑π j∈S̃N
Njαi j Rj

(c) Estimateσi the “central” permutation that optimizes̄Ri

(exactly or by heuristics)

(d) Setπi ← σi(1 : tπ)

6. Go to step 2, until noπi changes.

Output S̃N

Figure 4: The EBMS algorithm.

Nonparametric clustering is motivated by the fact that in many real applicationsthe number of
clusters is unknown and outliers exist. We consider an adapted version ofthe well known blur-
ring mean-shift algorithm for ranked data (Fukunaga and Hostetler, 1975; Cheng, 1995; Carreira-
Perpĩnán, 2006). We choose the exponential kernel with bandwidth1

θ > 0: Kθ(π,σ) = e−θd(π,σ)

ψ(θ) .
Under the Kendall distancedK(π,σ) the kernel has the same form as the one parameter Mallows’
model. The kernel estimator ofπi is given by

r̂(πi) =
n

∑
j=1

Kθ(πi ,π j)

∑n
k=1Kθ(πi ,πk)

π j =
n

∑
j=1

e−θdK(πi ,π j )

∑n
k=1e−θdK(πi ,πk)

π j ,

which does not depend on the normalizing constantψ(θ) in Mallows’ model.
The EBMS algorithm is summarized in Figure 4. It shift the “points” (i.e., top-t orderings)

to new locations obtained by a locally weighted combination of all the data. Thus,every π is
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MEILĂ AND BAO

“attracted” towards its closest neighbors; as the shifting is iterated the data collapse into one or
more clusters. The algorithm has ascale parameterθ. The scale influences the size of the local
neighborhood of a top-t ordering, and thereby controls the granularity of the final clustering: for
small θ values (large neighborhoods), points will coalesce more and few large clusters will form;
for largeθ’s the orderings will cluster into small clusters and singletons. In the EBMS algorithm,
we estimate the scale parameterθ at each iteration by solving the equation in step (d).

Practical experience shows that blurring mean-shift merges the points intocompact clusters in
a few iterations and then these clusters do not change but simply approacheach other until they
eventually merge into a single point (Carreira-Perpiñán, 2006). Therefore, to obtain a meaningful
clustering, a proper stopping criterion should be proposed in advance.For ranked data, this is not
the case: since at each iteration step we round the local estimator into the nearest permutation, the
algorithm will stop in a finite number of steps, when no ordering moves from its current position.
Moreover, because ranked data is in a discrete set, we can also perform an accelerating process. As
soon as two or more orderings become identical, we replace thisclusterwith a single ordering with
a weight proportional to the cluster’s number of members. The total number of iterations remains
the same as for the original exponential blurring mean-shift but each iteration uses a data set with
fewer elements and is thus faster.

In the algorithm one evaluates distances between top-t orderings. There are several ways in
which to turndK(π,σ) into ad(π1,π2), where both terms are top-t orderings, containing different
sets of items. Critchlow (1985) studied them, and here we adopt ford(π1,π2) what is called the set
distance, that is, the distance between the sets of infinite orderings compatiblewith π1 respectively
π2.

We chose this formulation rather than others because this distance equals 0 whenπ1 = π2, and
this is good, one could even argue necessary, for clustering. In addition, it can be calculated by a
relatively simple formula, inspired by Critchlow (1985). Let

A the set intersection of orderingsπ1,π2 t1, t2 lengths ofπ1,π2

B π1\A, the items inπ1 not in π2 nA,B,C the number of items inA, B,C
C π2\A, the items inπ2 not in π1 k j the index inπ1 of the j-th item not inA

l j the index inπ2 of the j-th item not inA

Then

d(π1,π2) = dK((π1)|A,(π2)|A)+nBnC+nBt1−
nB

∑
j=1

k j −
nB(nB−1)

2
+nCt2−

nC

∑
j=1

l j −
nC(nC−1)

2
.

(15)

π1 B1 B2 −→ π̃1 B1 B2 C1 C2 C3 C4

π2 C1 C2 C3 C4 −→ π̃2 C1 C2 C3 C4 B1 B2

Figure 5: An example of obtaining two partial orderingsπ̃1, π̃2 compatible respectively withπ1,π2

that achieve the set distance. Empty spaces represent the common items, whileB and
C symbols mark the items inB, respectivelyC. The distanced(π1,π2) is the Kendall
distance betweeñπ1 andπ̃2.
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The intuitive interpretation of this distance is given in Figure 5. We extendπ1 andπ2 to two
longer orderings̃π1, π̃2, so that: (i)π̃1, π̃2 have identical sets of items, (ii)̃π1 is the closest ordering
to π2 which is compatible withπ1, and (iii) reciprocally,π̃2 is the closest ordering toπ1 which
is compatible withπ2. We obtainπ̃1 by taking all items inπ2 but not inπ1 and appending them
at the end ofπ1 while preserving their relative order. A similar operation gives usπ̃2. Then,
d(π1,π2) = dK(π̃1, π̃2), and Equation (15) expresses this value.

5. The Conjugate Prior

The existence of sufficient statistics implies the existence of a conjugate prior(DeGroot, 1975)
for the parameters of model (6). Here we introduce the general form ofthis prior and show that
computing with the conjugate prior (or posterior), is significantly harder thancomputing with the
likelihood (6).

We shall assume for simplicity that all top-t rankings have the samet. Consequently, our pa-
rameter space consists of the real positive vectorθ1:t and the discrete infinite parameterΣ.

We define the prior parameters as a set of “fictitious sufficient statistics”, by analogy with the
sufficient statistics for model (6). For this we first make a few straightforward observations about
the sufficient statisticsq j , Q j , j = 1 : t as follows:

Q1 ≡ 0,

Qii ′, j ≥ 0 for all i, i′, j,

∑
i

qi, j = Nj for all j,

Q j1 = ( j−1)q j for all j > 1.

Therefore

Rj = q j1T −Q j =

{

Q j

(
1

j−111T − I
)

for j > 1

q11T for j = 1
.

Now we letν denote theprior strength, representing the equivalent sample size, andλ1, Λ j , j = 2 : t
be the prior parameters corresponding to the sufficient statisticsq1, Q2:t , normalized as follows.

Proposition 8 Let ν > 0, λ1 be a vector andΛ j , j = 2 : t denote a set of possibly infinite matrices
satisfying

λ1 ≥ 0,

Λii ′, j ≥ 0 for all i, i′, j,

Λ j1 = ( j−1)λ j for all j > 1 (by definition),

1Tλ j = 1 for all j.

DenoteΛ= {ν, λ1, Λ2:t} and

R0
j =

{

Λ j

(
1

j−111T − I
)

for j > 1

λ11T for j = 1
.

Define the distribution
PΛ(σ,θ) ∝ e−ν∑t

j=1[θ j L(ΣTR0
j Σ)+lnψ(θ j )], (16)

which is a conjugate prior for the model Pθ,σ(π) defined in (6).
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Proof Given observed permutationsπ1:N with sufficient statisticsRj , j = 1 : t, the posterior distri-
bution of(σ,θ) is updated by

P(θ,σ |Λ,π1:N) ∝ e−∑t
j=1[(νLσ(R0

j )+Lσ(Rj ))θ j+(N+ν) lnψ(θ j )],

= e
−(N+ν)∑t

j=1[θ j Lσ

(

νR0
j +Rj

N+ν

)

+lnψ(θ j )]

.

If the hyperparametersν,λ1,Λ2:t satisfy the conditions of the proposition, then the new hyperparam-
etersΛ′ = {ν+N, (νλ1+q1)/(ν+N), (νΛ j +Q j)/(ν+N), j = 2 : t} satisfy the same conditions.
2.

The conjugate prior is defined in (16) only up to a normalization constant.5 As it will be shown
below, this normalization constant is not always computable in closed form. Another aspect of con-
jugacy is that one prefers the conjugate hyperparameters to representexpectations of the sufficient
statistics under somePθ,σ. The conditions in Proposition 8 are necessary, but not sufficient to ensure
this fact.

To simplify the notations, we write

S∗j = Lσ(νR0
j +Rj). (17)

This notation reflects the fact thatS∗j is the counterpart in the posterior of thesj in the distribution
Pθ,σ(π). If N = 0, thenS∗j = νLσ(R0

j ). The value ofS∗j depends onσ and the hyperparameters,
but does not depend onθ. The following result shows that for any fixedS∗j , the posterior can be
integrated overθ j in closed form.

Proposition 9 Let PΛ(σ,θ) be defined as in (16) and S∗j be defined by (17). Then,

PΛ(θ j |σ) = BetaS∗j ,ν+1(e
−θ j ),

where Betaα,β denotes the Beta distribution.

Proof sketchReplacingψ(θ j) with its value (5) yields

PΛ(θ j |σ) ∝ e−S∗j θ j (1−e−θ j )ν,

from which the desired result follows by a change of variable. 2

As a consequence, we have that

PΛ(σ) ∝
t

∏
j=1

Beta(S∗j (σ),1+ν). (18)

In the above, the notationBeta(x,y) is used to denote the special function Beta defined asBeta(x,y)=
Γ(x)Γ(y)
Γ(x+y) .

We have shown thus that closed form integration over the continuous parametersθ j is possible.
The summation over the discrete parameters poses much harder problems. Welist them here.

5. The general form of a conjugate prior may include factors inσ andθ which do not depend onΛ. For simplicity of
the exposition, we do not consider such a form here.
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A first unsolved question is the range of the variablesS∗j . While thesj variables in the infinite
GM model are always integers ranging from 0 to infinity, theS∗j variables can have non-integer
values ifν or Λ j are non-integer. The latter is almost always the case, since under the conditions of
Proposition 8,Λ j is not integer unless all its elements are 0 or 1. Second,Λ j must have an infinite
number of non-null entries, which may create problems for its numerical representation. And finally,
there can be dependencies betweenS∗j values for differentj ’s. Hence, the factored expression (18)
should not be interpretedas implying the independence of theS∗j ’s.

We illustrate these points by a simple example. Assume that the conjugate prior hyperparameters
are equivalent to the fictitious sample{π1 = (1|2|3| . . .),π2 = (2|1|3| . . .)}. Then,

ν = 2, λ1 =





0.5
0.5
0



 Λ2 =





− 0.5 0
0.5 − 0
0 0 −



 , Λ3 =





− 0 0
0 − 0
1 1 −



 ,

R0
1 =





− 0.5 0.5
0.5 − 0.5
0 0 −



 , R0
2 =





− 0 0.5
0 − 0.5
0 0 −



 , R0
3 =





− 0 0
0 − 0
0 0 −



 .

For this example, there are two central rankingsσ1 = (1|2|3| . . .) andσ2 = (2|1|3| . . .) which have
the sameS∗1:3 = (1, 0, 0), but noσ with S∗j ≡ 0. Assume now that we are given justR0

1:3, ν = 2 and
S∗1(σ) = 1 for someσ. BecauseS∗1+2 is the sum of ranks ofπ−1

1,2(1) in σ, we can easily infer that
the first two items inσ must be either(1|2) or (2|1) since any otherσ will have S∗1 6= 1. But, for
either of these possibilities, the computation ofS∗2(σ) from R0

2 givesS∗2(σ) = 0. Hence, knowingS∗1
informs aboutS∗2 (in fact determines it completely), showing thatS∗1,S

∗
2 are not independent.

Due to the above difficulties, computing the normalization constant of the posterior is an open
problem. However, under some restrictive conditions, we are able to compute the normalization
constant of the posterior in closed form.

Proposition 10 If ν and Λ1:t are all integer, the S∗j variables are independent, and the range of
values of S∗j is P then

P(S∗j = k) = (N+ν)Beta(k+1,N+1+ν),

and consequently
PΛ,ν(θ1:t ,S

∗
1:t) = (N+ν)te−∑t

j=1[θ j S∗j+(N+ν) lnψ(θ j )].

The proof is given in Appendix A.1.
Now we examine the case of a single parameter IGM. The conjugate prior is given byν > 0 and

a single matrixR0 corresponding to the normalized sufficient statistics matrixR,

Pν,R0(θ,σ) ∝ e−θL(ΣT νR0Σ)+tν lnψ(θ), (19)

The posterior is
Pν,R0(θ,σ |π1:N) ∝ e−L(θΣT(νR0+R)Σ)+t(ν+N) lnψ(θ)].

Denote for simplicityN′ = N+ν, R′ = (R+νR0)/(N+ν), S∗(σ) = Lσ(N′R′). Then, the parameter
θ again follows a Beta distribution givenσ,

PN′,R′(θ |σ) ∝ BetaS∗, tN′+1(e
−θ).
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After integratingθ out, we obtain

PN′,R′(σ) ∝ Beta(S∗(σ), tN′+1).

Finally, let us note that that the priors in (16) and (19) are both informativewith respect toσ.
By replacing the termLσ(R0

j ) (respectivelyLσ(R0)) with somer j > 0 (respectivelyr > 0) one can
obtain a prior that is independent ofσ, hence uninformative. However, this prior is improper.

6. Experiments

In this section, we conduct experiments on singleθ estimation, generalθ estimation, real data sets,
and clustering.

6.1 Estimation Experiments, Singleθ

In these experiments we generated data from an infinite GM model with constant θ j = ln2, ln4
and estimated the central permutation and the parameterθ. To illustrate the influence oft, tπ was
constant over each data set. The results are summarized in Table 1.

Note that whileθ appears to converge, the distancedK(σML,σ) remains approximately the same.
This is due to the fact that, as eitherN or t increase,n, the number of items to be ranked, increases.
Thus the distancedK will be computed between ever longer permutations. The least frequent items
will have less support from the data and will be those misranked. We have confirmed this by
computing the distance between the trueσ and our estimate, restricted to the firstt ranks. This was
always 0, with the exception ofn= 200,θ = 0.69, t = 2 when it averaged 0.04 (2 cases in 50 runs)
(A more detailed analysis of the ordering errors will be presented in the next subsection.)

Even so the table shows that most ordering errors are no larger than 1. We also note that the
sufficient statisticR is an unbiased estimate of the expectedR. Hence, for any fixed length̃t of σML,
the σ estimated fromR should converge to the trueσ (see also Fligner and Verducci, 1988). The
θML based on the trueσ is also unbiased and asymptotically normal.

6.2 Estimation Experiments, Generalθ

We now generated data from an Infinite GM model withθ1 = ln2 or ln4 andθ j = 2−( j−1)/2θ1 for
j > 1. As before,tπ was fixed in each experiment at the values 2, 4, 8. We first look at the results for
t = 8 in more detail. As the estimation algorithm has local optima, we initialized theθ parameters
multiple times. The initial values were (i) the constant value 0.1 (chosen to be smaller than the
correct values of allθ j ), (ii) the constant values 1 and respectively 2 depending whetherθ1 = ln2 or
θ1 = ln4 and (iii) the trueθ parameters. The case (ii) ensured that the initial point is higher than all
correct values for all the estimatedθ j .

Figure 6 shows the estimated values ofθ j for different sample sizesN ranging in{200, 500,
1000, 2000}. By comparing the respective (i) and (ii) panels, one sees that the final result was
insensitive to the initial values and always close to the trueθ j . The results were also identical to the
results for the initialization (iii), and this was true for all the experiments we performed. Therefore,
in the subsequent plots, we only display results for one initialization, (i).

Qualitatively, the results are similar to those for singleθ, with the main difference stemming
from the fact that, with decreasingθ j values, the sampling distribution of the data is spread more,
especially w.r.t the lower ranks.
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Estimates ofθ (mean stdev)
θ N 200 500 1000 2000

mean std mean std mean std mean std
t = 2 0.68 0.04 0.68 0.03 0.68 0.03 0.68 0.024

0.69 t = 4 0.67 0.03 0.69 0.02 0.69 0.01 0.69 0.01
t = 8 0.68 0.02 0.69 0.01 0.69 0.01 0.69 0.007
t = 2 1.34 0.13 1.37 0.09 1.39 0.05 1.37 0.04

1.38 t = 4 1.40 0.06 1.38 0.05 1.39 0.03 1.38 0.03
t = 8 1.37 0.03 1.38 0.03 1.38 0.02 1.38 0.01

Ordering error
θ N 200 500 1000 2000

dK = 0 dK = 1 dK = 0 dK = 1 dK = 0 dK = 1 dK = 0 dK = 1
t = 2 0.42 0.36 0.28 0.36 0.40 0.38

0.69 t = 4 0.36 0.36 0.40 .44 0.32 0.30
t = 8 0.32 0.34 0.44 0.40 0.38 0.32
t = 2 0.82 0.18 0.92 0.08 0.76 0.24 0.90 0.08

1.38 t = 4 0.92 0.08 0.92 0.08 0.88 0.12 0.88 0.10
t = 8 0.84 0.16 0.92 0.08 0.76 0.20 0.16 0.88

Number observed itemsn
θ N 200 500 1000 2000

mean std mean std mean std mean std
t = 2 9.24 0.92 10.76 0.66 11.88 1.16 12.68 1.07

0.69 t = 4 11.92 0.81 12.92 1.04 14.32 1.10 14.88 1.01
t = 8 16.04 0.89 17.36 0.99 18.16 1.07 19.40 0.91
t = 2 5.68 0.74 6.04 0.79 6.76 0.78 7.32 0.55

1.38 t = 4 7.72 0.84 8.16 0.74 8.68 0.75 9.48 0.82
t = 8 11.52 0.65 12.52 0.58 13.24 0.66 13.40 0.71

Table 1: Results of estimation experiments, single parameter IGM. Top: mean and standard devi-
ation of θML for two values of the trueθ and for differentt values and sample sizesN.
Middle: the proportion of cases when the ordering error, that is, the number inversions
w.r.t the trueσ−1 was 0, respectively 1. Bottom: number of observed itemsn (mean and
standard deviation). Each estimation was replicated 25 or more times.

This figure allows us to observe the “asymmetry” of the error inθML. The estimates seem to
biased towards larger values, especially for higherj and less data. There is a theoretical reason for
this. Recall that by Equation (12)θ is a decreasing function ofLσ(R). If the trueσ is not optimal
for the givenR, due to sample variance, thenθML will tend to overestimateθ. HenceθML is abiased
estimate ofθ. If however, due to imperfect optimization, the estimatedσML is not optimal and has
higher cost thanσ, thenθML will err towards underestimation. In Figures 6 and 7 the bias is always
positive, indicating that the minimization overσ is done well (even though it is not guaranteed to
reach optimality).
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Now we consider the recovery of the central permutationσ. From our previous remarks, we
expect to see more ordering errors in the bottom ranks ofσML, where the distribution is less concen-
trated (smallerθ j ) and there is less data available. To visualize these effects easier, it is interesting
to look at rankings with smallt. Whent is small, 2, 4 or 8, the total number of items to be ranked
(Figure 8) is several times larger thant for our experiments. Thus the estimation algorithm has to put
together an ordering over this many items, when only groups oft = 2,4, . . . were observed together.
As an additional confounding effect, the top elements will be oversampled, so the information about
the lower ranks will have to be inferred indirectly by pooling the information from the whole data
set. This is what the algorithm is doing, and Figure 9 shows how well it succeeds in that.

The figure displays the ordering error betweenσML and the trueσ for each rank, which is
measured bysj(σML|σ). Recall that the total number of inversions betweenσML andσ is the sum
of all sj ; similarly, the total number of errors inσML up to rankr is given by∑r

j=1sj(σML|σ). All
plots illustrate the same general tendency of thesj values to increaseslowlywith j. The increase is
slower when there are more observations per rank, that is whenN andt are larger, and when theθ j

are larger (thus the data distribution is more concentrated).

6.3 Experiments on Real Data Sets, With Generalθ, Tied Parameters

The next experiment was conducted with the data collected by Cohen et al. (1999). The data consists
of a list of 157 universities, the queries, and a set of 21 search engines, the “experts”. Each search
engine outputs a list of up totmax= 30 URL’s when queried with the name of the university. The
data set provides also a “target” output for each query, which is the university’s home page.

Hence, we have 147 estimation problems (10 universities with no data), with sample sizeN≤ 21
(as some experts return empty lists) and with variable length data ranging fromt = 1 to t = 30. Fig-
ure 10 gives a summary view of number of samples for each rankNj , j = 1 : t, the number of distinct
itemsn and the cumulative number of ranks observed (i.e.,T = ∑ j≤30Nj ). These values suggest
that estimating a fully parameterized model with distinctθ1:30 may lead to overfitting and therefore
we estimate several parameterizations, all having the formΘr = (θ1,θ2, . . .θr−1,θr ,θr , . . .θr). In
other words, ranks 1 :r−1 have distinct parameters, while the following ranks share parameterθr .
We callθ1:r−1 thefreeparameters andθr thetiedparameter. Forr = 1 we have the single parameter
model, and forr = tmax= 30 we have the fully parameterized model.

Estimating a model withr parameters is done by a simple modification of the ESTIMATESIG-
MATHETA algorithm which is left to the reader.

The estimation algorithm was started from the fixed valueθ j = 0.1 for all runs. The number of
iterations to convergence range between 10 and 50, with typical value 18.The running time was
around per model estimated.

In Figure 11 we give a synopsis of the values of theθ parameters under different models. The
single parameter models yieldsθ values in the range [0.007, 0.104] with the 10%, 50% and 90%
quantiles being respectively 0.009, 0.018,and 0.032. The parametersθ are on average decreasing in
all models, with the free parameters higher than the tied parameters for the remaining ranks. This is
true on average only, while for individual samples some of the free parameters may be smaller than
the tied parameter.

Notice also that for the models with fewer parameters the values of the free parameters tend to
be higher than the corresponding values in models with more parameters. Compare for instance the
values ofθ1 in the two-parameter model withθ1 in the 30 parameter model.
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θ1 = ln2 θ1 = ln4
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Figure 6: Estimation of the parametersθ1:t for t = 8, different sample sizesN =
200, 500, 1000, 2000, different true parametersθ, and different initializations: (i)θ j ←
0.1, (ii) θ j ← 1 or 2. For each experimental condition, the corresponding graph displays
box plots of the obtained estimates ofθ j , j = 1 : 8 for 50 random samples, with thej on
the horizontal axis. The continuous line crossing the box plots marks the truevalues of
the parametersθ1:8 (exponential decay starting from the givenθ1).

For each query and each model size, we computed the rank of the true university home page,
that is, thetarget, under the estimated central permutationσML. Assuming the search engines are
reasonably good, this rank is an indirect indicator of the goodness of a model. In addition, for each
query, we selected one model by BIC and calculated the target ranks forthese models. Table 2 gives
the mean and median of the target rank for each model, as well as for the BICselection. The rank
is assigned totmax+1= 31 if the target is not among the items returned by the search engines.

It is evident that while BIC’s performance is better than selecting a one-parameter model, it is
not optimal w.r.t the ranking of the target home page.

We used a modified form of the BIC criterion, that takes into account that thecontinuous pa-
rameters are not all estimated from the same sample size. We have derived6 the following formula

6. The derivation is omitted, being outside the scope of this paper.
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Figure 7: Same as Figure 6 fort = 2 andt = 4 and a single initial pointθ j ≡ 0.1.

for BIC:

BIC(r) = lnPσ,θ(SN)−
1
2

r

∑
j=1

lnN′j (20)

whereN′j = Nj for j < r andN′r = ∑t
j ′=r Nj . This expression approximates the marginal distribution

of the model w.r.t the continuous parameter. The discrete parameterσ is not marginalized out. This
parameter has always the same dimension, dictated by the observed data, and independent ofr. In
any finite data situation, the parameter will be finite. Therefore we can see themodel selection
problem as a model selection overr and a very large but finite set of discreteσ’s. Maximizing
the BIC in (20) is equivalent with maximizing the BIC over this much larger set ofmodels, if one
assumes that the ML estimation procedure attains a global optimum.

Next, we tested the ESTIMATESIGMATHETA algorithm on the Jester data of Goldberg et al.
(2001).7 This data set represents a set of 100 jokes, which were scored by approximately 25,000
people. From the numerical scores, we obtained a partial ordering overthe jokes rated by each
individual. Mao and Lebanon (2008) also analyzed this data set and found that it was multimodal.
To obtain data sets closer to unimodality, we picked a person at random (this isperson 945 in the
data) and extracted theN nearest neighbors of this ranking, forN = 200 andN = 12,000. The
smaller data set was expected to be more concentrated than the larger data set.

7. Available athttp://goldberg.berkeley.edu.
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Figure 8: Number of items observed forN = 200, 500, 1000, 2000, different parametersθ andt =
2,4,8. Each box plot represents the distribution of the number of items over 50 random
samples.

We ran the ESTIMATESIGMATHETA on this data set with different values ofr. The log-
likelihoods obtained on the training set and the BIC values are shown in Figure 12.

As expected, the likelihood is highest or nearly so for the model with maximum number of free
parameters (forN = 12,000 the likelihood is not monotonic due to imperfect optimization overσ).
However, the BIC is not monotonic. For the largeN case, where the data is dispersed, it chooses a
model withr = 76 parameters. The estimatedθ j values range in[0.05, 0.07] for j = 1 : 30 (nearly
all ranks that haveNj = 12000) but become higher, up to 0.2 for the ranks that have smallerNj ’s.
For the smaller and more concentrated data set, BIC has equal values for three different models: the
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Figure 9: Ordering errors forN = 200, 500, 1000, 2000, different parametersθ j , andt = 2,4,8.
The error for a rankj is given bysj(σML|σtrue). Each box plot represents the distribution
of sj over 50 random samples.
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Figure 10: Summaries of the universities data: boxplots of the number of samples per rank, (a),
histogram of total items observedT (b), histogram of the numbern of distinct items
observed (c), over all 147 queries.
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Figure 11: Boxplots of theΘ estimates over all queries for model with 2, 7, and 30 parameters. The
vertical axis of the scale islogarithmic, base 10, that is, 0 corresponds toθ j = 1 and−2
to θ j = 0.01. For clarity, the distribution of the tied parameter (which is always the last
parameter) is replicated forj = r : tmax. The horizontal line marks the mean value ofθ
in the single parameter model.

Model size 1 2 3 4 5 6 7 8 9 10 30 BIC
Mean rank (good) 5.3 5.7 4.2 4.2 4.1 4.1 4.4 4.5 5.0 5.2 5.1 5.5
Median rank (good) 3 3 1.5 2 2 2 2 2 2 3 3 3
Mean rank (all) 16.5 16.1 15.4 15.5 15.5 15.6 15.8 15.7 15.9 16.0 16.017.5
Median rank (all) 13 15 11 11 12 9 10 10 11 11 11 18

Table 2: Mean and median of the rank of the target web page under each model, and under the BIC
selected model. These statistics are computed once over all 147 universitiesand once over
a subset of 41 universities where the target is always ranked in the first 30; the subset is
labeled as “good”.
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Figure 12: Log likelihood and BIC values per data point on two subsamples from the Jester data
set. The circles mark the maxima of the log-likelihood, respectively BIC.

single parameter model, the full parameter model, and an intermediate model withr = 36. This is
not so suprising as it may appear, sinceNj = N for j ≥ 36, and the estimatedθ j values in this range
are all very close to 0.1. Thus, the three models will effectively differ only in the way they model
ranks 37 : 43.

This finding suggests that the single parameter (infinite) Mallows model is a goodmodel locally,
in the space of thejester data. The largeN experiment indicates otherwise, which agrees both
with our common sense assumption that this data is multimodal, and with the finding of Mao and
Lebanon (2008). In Mao and Lebanon (2008) a non-parametric Mallows model was used (more
about this model in Section 7.3); our experiment supports their use of a single parameter model.

6.4 Clustering Experiments

The first experiment was with artificial data. We generated sample orderings with 3 clusters of
150 rankings each. Each clusterk was sampled from an Infinite GM model with a single spread
parametersθk, with θ1, θ2, θ3 equal to 1.5, 1.0, 0.7 respectively. The cluster centers are random
permutations of infinitely many objects. In addition, each data set contains 50 outliers. In each data
set all data had the same lengtht. We experimented withtπ = 4,6,8.

We ran the Exponential Blurring Mean-Shift, K-means, and EM Model-based clustering algo-
rithms 10 times on samples from this distribution. For EBMS, the scale parameter was estimated
based on the average of pairwise distances. In step 5c of the algorithm, thenew ranking can be
much longer than the original partial ranking. As seen above, the last ranks are subject to noise and
overfitting. Therefore we truncated the new ranking to the length of numberof observed items.

For the K-means and model-based algorithms, we experiment with different numbers of clus-
ters, and report the best classification error with respect to the true clustering. This puts these two
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algorithms at an advantage w.r.t EBMS, but as Table 3 shows, even so the nonparametric algorithm
achieves the best performance.

Note that the error rate in Table 3 is computed including the outliers, that is, we compared a
true clustering with 53 clusters (3 clusters and 50 singletons) to the clusteringobtained when the
algorithm converged.

For EM and K-means the number of clusters associated with the lowest classification errors was
between 3 and 5. From the table we see that the K-means and model based approach identified
three primary clusters correctly. K-means did not have the ability of identifying the outliers, so it
just assigned each outlier into one of those primary clusters. The model-based approach assigned
outliers into primary clusters too, but it also gave more uncertainty on the outliers (the probabili-
ties of outliers belonging to their assigned cluster were relatively smaller than data from primary
clusters).

The running time per data set of EBMS was under a minute, and the number of iterations to
convergence followed the pattern typical of mean-shift algorithms and wasnever larger than 10.

Next, we examine data on college course preferences in the Republic of Ireland. Each prospec-
tive student applies by ranking up to 10 degree course in order of preference. Extensive details of
the college applications system are available athttp://www.cao.ie.

The data used in our analysis was previously studied by Gormley and Murphy (2006). They
found that the geographical positions of the institution had a significant influence on choice of
courses which complicated the interpretation of the vocational callings. Our analysis focuses on
the subset of students who applied to Trinity College Dublin (TR) and University College Dublin
(DN), both located in the capital of Ireland. These two universities offeredn= 228 degree courses.
There were 1095 female and 862 male applicants who only put TR and DN courses in their top-5
preferences. The EBMS algorithm is applied to top-5 rankings for the female and male applicants
separately.

Table 4 shows these clustering results. For the female applicants the first cluster mostly consists
of Art, Law and Business courses. Since the largest cluster contains about three quarters of the data,
we run the EBMS clustering again for the applicants within this cluster and find four major sub-
groups in term of vocational callings: Law, Business, Drama, and English. The clustering results
for male applicants show 5 clusters, plus a singleton. We run EBMS again forthe largest cluster, and
find three major sub-groups in term of vocational callings: Finance, Law,and History. As Gormley
and Murphy (2006) discovered in their experiments, for the subset of Dublin applicants, there are
differences between the clustering of females and males in the central permutations, but similarities
too. The main similarity is that the grouping is vocational. Each group contains courses in both
universities, with no strong preference for one versus the other. Second, a large proportion of both
genders opt for business, economics and law disciplines. For the females, the Arts courses are also
highly favored. As Gormley and Murphy (2006) explains, the Arts course is a broad liberal arts

Top-t rankings EBMS K-means EM

t = 4 0.0030 (0.0001) 0.1014 (0.0038) 0.1008 (0.0025)
t = 6 0.0014 (0.0001) 0.0986 (0.0010) 0.1000 (0.0000)
t = 8 0.0002 (0.0001) 0.0972 (0.0010) 0.1000 (0.0000)

Table 3: Classification Errors: mean and standard deviation of 10 randomsamples.
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course which can be followed with many different specializations later on. Hence, its high ranking
in several clusters is an indication that female candidates want to leave more options open later. In
general, the central rankings of each cluster are very clearly separating the pool of candidates into
various profiles.

Males
cluster size 657 143 35 13 13

1st choice BESS (TR) Engineering (TR) Science (DN) Science (DN) Medicine (TR)
2nd choice Commerce (DN) Science (DN) Science (TR) Science (TR) Medicine (DN)
3rd choice Business and Law (DN) Engineering (DN) Mathematics (TR) Medicine (TR) Pharmacy (TR)
4th choice Arts (DN) Computer Science (DN) Theoretical Physics (TR) Medicine (DN) Dental Science (TR)
5th choice Economics and Finance (DN)Computer Science (TR) Theoretical Physics (DN) Pharmacy (TR) Veterinary Medicine (DN)

Females
cluster size 725 162 141 41 26

1st choice Arts (DN) Arts (DN) Arts (DN) Physiotherapy (DN) Physiotherapy (TR)
2nd choice Law (DN) Psychology (DN) Psychology (DN) Physiotherapy (TR) Physiotherapy (DN)
3rd choice BESS (TR) Psychology (TR) Psychology (TR) Radiation Therapy (TR) Science (DN)
4th choice Business and Law (DN) Science (DN) Law (DN) Radiography (DN) Medicine (DN)
5th choice Law (TR) Science (TR) Social Science (DN) Occupational Therapy (TR) Medicine (TR)

Table 4: EBMS Clustering of female and male applicants. BESS stands for Business, Economic
and Social Science, TR for Trinity College Dublin and DN for University College Dublin.

7. Discussion and Related Work

In this section, we discuss the relation between IGM and GM, other related models and algorithms,
and draw the brief conclusion.

7.1 Relation to the GM Model

It is useful to compare the various aspects of the IGM presented here withthe respective aspects of
the standard GM. We do so now, highlighting also which of them were alreadypublished and which
are new.

• s representation. This was introduced by Fligner and Verducci (1986) for the GM model.
For finite number of itemsn, j ranges in 1 :n−1 andsj in 0 : n− j +1.

• marginal distributions, Pθ,σ, over top-t orderings. It is also introduced by Fligner and
Verducci (1986). The main difference with the IGM model is in the normalization constant,
which has the expression

t

∏
j=1

ψ j(θ j) with ψ j(θ j) =
1−e−(n− j+1)θ j

1−e−θ j
. (21)

Also, for the GM model, the underlying spaceSn is finite, while for the IGM,SP is uncount-
able.

• sufficient statistics as in Proposition 1.Proposition 1 represents a new result for the GM as
well. The only difference is in the replacement ofψ(θ j) with ψ j(θ j) from (21) in (8). The
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nearest previous result is that of Meilă et al. (2007) which establishes sufficient statistics for
the GM model over complete permutations.

If we have a single parameter GM model and complete permutations, then it is easy to see that
∑ j Q j represents the sufficient statistics forσ alone. In computer science estimatingσ in this
context is called theconsensus rankingproblem, or theminimum feedback arc setproblem.
In this case, by settingt = n for all permutations, the sufficient statistics defined in (8) reduce
to the previously known∑ j Q j . Thus, our main contribution in this respect is to prove that
not knowingθ, and not observing complete permutations still results in an exponential family
model with sufficient statistics.

• θ estimation. In the GM case, this is a convex unidimensional optimization solved numeri-
cally (Fligner and Verducci, 1986; Meilă et al., 2007).

• σ estimation by SIGMA * The SIGMA * and ESTIMATESIGMATHETA algorithms can be
used for the GM model as well, with the estimation ofθ performed numerically. The closed
form Equation (12) can serve as a very good initial point for the iterativeoptimization algo-
rithm. Note that while the heuristics SORTR and GREEDYR are simple, they could not have
been applied before to the GM model over top-t orderings because it was not known that this
model has sufficient statistics forσ.

• conjugate prior Fligner and Verducci (1990) introduced an informative prior forθ, which
had a single “sufficient statistics” parameter. They used it with a uniform prior overσ, noting
that this prior cannot be normalized or integrated analytically. The informative conjugate
prior for θ andσ introduced in Section 5 applies also to the standard GM. Again, the main
formal change is replacingψ(θ j) by ψ j(θ j). With this change, we lose the elegant closed
form integration overθ proved in Proposition 9. The GM conjugate prior will not be in
general integrable in closed form overθ. The uninformative prior for the IGM becomes of
course a proper prior in the GM case. If we set all ther j parameters to the same value, we
obtain exactly the same prior as Fligner and Verducci (1990).

Often a non-informative prior is used as a regularizer for the ML estimator,turning it into
a Maximum A-Posteriori (MAP)estimator. This is possible for the IGM and GM too. All
one needs to do is to replace, in the inputs to the estimation algorithms, the data sufficient
statistics with the posterior sufficient statistics.

• EBMS clustering The algorithm adapts seamlessly to finite number of items.

7.2 Other Models and Algorithms for Finite Permutations

This work acknowledges its roots in the work of Fligner and Verducci (1986) on stagewise ordering
models and in the recent paper Meilă et al. (2007). The latter shows for the first time that GM
models have sufficient statistics, and describes an exact but non-polynomial algorithm to find the
central permutation. While similarities exist between the algorithm of Meilă et al. (2007) and the
SIGMA * algorithm presented here, we stress that our representation (based on the inversion table
(sj) j=1:t) is differentfrom the representation (denotedVj ) in Meilă et al. (2007).

In fact, the two representations could be called reciprocal, as for any given complete permuta-
tion π, finite or infinite,sj(π|id) =Vj(π−1|id). This difference is trivial if complete permutations are
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observed, but not for missing data. In particular, the distribution ofVj for top-t orderings does not
seem to have sufficient statistics forj > 2 even in the case of finite permutations. Thesj representa-
tion has another advantage thatVj has not: for any finite data set, a parametersj is either completely
determined or completely undetermined the data, whereas in the reciprocalVj representationall V j

are weakly constrained by data.

While both our SIGMA * and the algorithm of Meil̆a et al. (2007) perform branch-and-bound
search on a matrix of sufficient statistics, the sufficient statistics in this paperare derived by an
entirely different method, and cannot be obtained by naively replacing the sufficient statistics of
Meilă et al. (2007).

It may be noted that the costLσ(R) bears a striking similarity to the cost function used by
Quadrianto et al. (2010) in the context of matching by the method of kernelized sorting. The latter
cost function can be expressed as traceKΣTLΣ, to be minimized overΣ. The authors show that
this problem is quadratic in the matrixΣ whenK,L are symmetric, positive definite matrices and
use a quadratic relaxation algorithm to optimize it efficiently. The costLσ(R) can be rewritten as
traceQ0ΣTRΣ whereQ0 is the upper triangular matrix defined in the proof of Proposition 2. The
main difference between our cost function and the one of Quadrianto et al. (2010) is the fact that
ours involves the non-symmetric matricesQ0,Rand is not a quadratic problem inΣ.

An interesting application of the GM model to multimodal data is Lebanon and Lafferty (2003),
where theσ’s play the role of the data, so the parameter estimation is done entirely differently.
In an early work Critchlow (1985) examines several classes of (Haussdorf) distances for partial
orderings. Murphy and Martin (2003) cluster ranking data by the EM algorithm and in Gormley
and Murphy (2005, 2006) the EM is used for the purpose of analyzing Irish voting patterns and
college applications. The base model used by the latter papers is is not the Mallows model but the
Plackett-Luce model (Plackett, 1975; Luce, 1959). The estimation of this model from data is much
more difficult and, as Gormley and Murphy (2005) show, can be only done approximately. Busse
et al. (2007) use thesj representation in the context of EM clustering of partial orderings, without
however recognizing the existence of sufficient statistics.

A greedy algorithm for consensus ordering with partially observed data isintroduced in Cohen
et al. (1999). Meil̆a et al. (2007) show that their cost function optimized is closely related to the
log-likelihood of the Mallows’ model, using a modified form of theQ matrix defined in (10). This
algorithm, like GREEDYR, does not estimate aθ parameter. Cohen et al. (1999) introduce a compu-
tational improvement based on interpreting a valueQii ′ > 0.5 as an arc fromi to i′. They note that
it is sufficient to search for the optimal permutation in eachstrongly connected componentof the
resulting directed graph, which can sometimes greatly reduce the dimension ofthe search space.

If a permutationπ is not complete, Cohen et al. (1999) replaces the unobservedQii ′(π) with
the value 0.5. This ad-hoc procedure allows the GREEDYR to run on top-t rankings, but it is not
statistically correct, since the optimized cost will not be a likelihood. If we use the correct matrix of
sufficient statisticsR, then the reduction procedure based on strongly connected componentsdoes
not apply any more.

7.3 Other Models and Algorithms For Infinite Permutations

All the above works deal with permutations on finite sets. In fairness to Cohen et al. (1999) we
remark that their work, although non-rigorous with respect to incomplete permutations, is motivated
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by the same problem as ours, that is, dealing with a very large set of items, ofwhich only some are
ranked by the “voters”.

The paper of Thoma (1964) studies the space of infinite permutations which differ from the
identity in a finite number of positions. In the vocabulary of the present paper, these would be
the infinite permutations at finite distancedK from σ. In a single parameter infinite GM, these
infinite permutations are the only ones which have non-zero probability. Whilefrom a probabilistic
perspective the two views are equivalent, from a practical perspective they are not. We prefer to
consider in our sample space all possibile orderings, including those with vanishing probability. It
is the latter who are more representative of real experiments. For instance, in the university web
sites ranking experiment, our model assumed that there is a “true” central permutation from which
the observations were generated as random perturbations. This is already an idealization. But we
also have the liberty to assume that the observations are very long orderings which are close to the
central permutation only in their highest ranks, and which can diverge arbitrarily far from it in the
latter ranks. We consider this a more faithful scenario than assuming in addition that the observation
must be identical to the central permutation (and hence to each other!) on allbut a finite number of
ranks.

Recently Mao and Lebanon (2008) introduced a kernel density estimator and estimation algo-
rithm, that elegantly allows partial orderings of a large variety oftypesto be modeled together. The
kernel is the single parameter Mallows’ model, withθ as kernel width. One of the interesting con-
tributions of this paper is an algorithm for averaging thed(π̃1, π̃2) over all (infinite) permutations
π̃1, π̃2 compatible with given partial orderingsπ1,π2. The relation with EBMS is evident. It is also
evident that within EBMS one could incorporate the average distance as calculated by Mao and
Lebanon (2008) instead of the current set distance, with everything else staying the same. Since
the average distance is always larger than the set (minimum) distance for top-t permutations, and in
particular it is not 0, the optimal kernel widthθ will have different values.

7.4 Conclusion

We have introduced a natural extension of stagewise ordering to the the case of infinitely many
items. The new probabilistic model preserves the elegant properties of its finite counterpart: it has
sufficient statistics, an exact estimation algorithm (albeit intractable in the worst case) and tractable
heuristics that work well when the data come from a unimodal distribution. Sampling, distance
computations, clustering extend to this class of models in a natural way.

We have paid particular attention to non-parametric clustering by mean-shift blurring, showing
by experiments that the algorithm is practical and effective. This illustrates our view of the utility
of the IGM model. The IGM, an exponential model with a simple, intuitive distribution, should
be seen as a building block for more complex distributions, as needed by the data at hand. For
instance, the extension to finite mixtures (that is, parametric clustering and multimodal distributions)
is immediate. It is also an open problem to extend the kernel density estimator of Mao and Lebanon
(2008) to infinite models and GM models with multiple parameters.

We are not aware of any statistical work on estimating parametric models over infinite orderings.
There are also no previous results on sufficient statistics for finite partialorderings, so the present
paper can be said be first in this respect as well.

One important advantage of having a model with multiple parameters, withn finite or infinite,
is that each rank can be modeled by a separate parameterθ j (the standard GM/IGM) or one can
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tie the parameters of different ranks (the way we did in Section 6). This way, one can use larger
θ j values to penalize the errors in the first ranks more, and smallerθ j values for the lower ranks,
where presumably more noise in the orderings is permissible. This property of the model fits well
with human perception of “distance” between orderings, or with the noise wemay expect in human
generated data.

Tying the parameters for the lower ranks is also important for reducing variance. If the observed
data have different lengthst, then necessarilyNj ≥ Nj ′ for j ′ > j. In other words, for largerj ’s
we may have less data available to estimateθ j . Tying the parameters has the benefic effect of
smoothing theθ j values, as it was shown in all the experiments with real data. Another way to
smooth the parameters is to use an uninformative prior as a regularizer. Thisway, too, eachθ j can
be regularized separately by the hyperparameterr j . This hyperparameter has a clear meaning—it
is the expectation ofsj in the fictitious sample; therefore, a user can easily tune the strength of the
prior using Equation (7) withr j in place ofξ j . This equation will give for anyr j a valueθ0

j towards
which theθ j value will be shrunk. Shrinkage via the conjugate prior can be done for the finite GM
as well, except that the relation (7) will be implicit instead of closed form.

Beyond its mathematical elegance and simplicity of use, we believe that an infinite model has
practical importance as well. In many instances the number of items to rank is very large. Search
engines come immediately to mind, understood as algorithms for retrieval by inexact matching from
a large database. Under this umbrella fall not only the well-known web search engines, but also the
various specialized algorithms for finding matches in biological data bases, like Sequest (Eng et al.,
1994) and Blast (Altschul et al., 1990). These algorithms output rankedlists, from which the human
user interprets only the topt entries. The data base, that is, the set of items, is usually not fixed;
typically it is growing as more proteins, genes, web pages are discovered. It is natural under this
scenario to assume thatn is potentially infinite. As we have shown, this does not make working
with the data more difficult, and occasionally makes it faster.
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Appendix A. Proofs

We give the proofs for the asymptotic results in the following subsection.

A.1 Proofs for the Asymptotic Results

Proof of Proposition 5We start with the observation that underPid,θ any observed top-t rankingπ is
a function of the variabless1:t who are independently distributed according to discrete exponential
laws. For eachsj the empirical CDF converges to the true CDF and, as we know, this entails the fact
that for any functionf overN, the sample expectation off converges to the true expectation off ;
see for example, van der Vaart (1998). This also holds for the joint distribution ofs1:t and functions
of s1:t . In other words, the sample expectation of any functionf (π) is consistent, whenπ ranges
over all top-t permutations.
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Now considerLσ(Rj) for a fixed σ. By definition, Lσ(Rj(π)) = sj(π|σ) and Lσ(R̂j) is the
sample expectation ofsj(π|σ). According to the definition ofsj(π|σ) in (2), this is a function
of π−1(1), . . .π−1( j) and the fixedσ. It follows by the argument above thatLσ(R̂j) converges to
Lσ(Rj) for any j and anyσ.

Note that forσ = id the argument is simpler, sinceL(Rj) = sj . 2

We now refer to a property of the Mallows model introduced by Fligner and Verducci (1988).
An IGM Pσ,θ hascomplete consensusif for any two itemsi, i′ with i ≺σ i, we have thatP[i ≺π i′]>
P[i′ ≺π i]. The following result is a modified form of Theorem 2 of Fligner and Verducci (1988) that
applies to truncated infinite permutations.

Proposition 11 (Complete consensus)The IGM model Pσ,θ with

θ j ≥ θ j+1, (22)

has complete consensus. Moreover, condition (22) entails that for any fixed t, any j= 1 : t, and any
items i, i′ with σ(i)< σ(i′)

Rii ′, j < Ri′i, j .

Proof Fix i, i′ as above. Letπ be a (complete) permutation wherei ≺π i′. Let us denote byπ′ the
permutation obtained by transposingi andi′ in π; denoteπ(i) = k, π(i′) = k′, k′ > k.

We want to show that under the condition of the proposition,Pσ,θ(π)≥Pσ,θ(π′). We first observe
that

sj(π′) =







sj(π) for j < kor j > k′

sj(π)+ i′− i− r for j = kandr = |{x| i < σ(x)< i′, π(x)< k}|
sj(π)orsj(π)+1 for k< j < k′

sj(π)− r ′ for j = k′andr ′ = |{x| i < σ(x)< i′, π(x)> k′}|

.

Note also thatr + r ′ ≤ i′− i−1 or, in other words,i′− i− r > r ′. Now, we look at the likelihood
ratioPσ,θ(π)/Pσ,θ(π′):

ln[Pσ,θ(π)/Pσ,θ(π′)] =
k′

∑
j=k

θ j [sj(π′)−sj(π)],

≥ θk[sk(π′)−sk(π)]+θk′ [sk′(π′)−sk′(π)],
= θk(i

′− i− r)−θk′r
′,

≥ θkr
′−θk′r

′ = (θk−θk′)r
′ ≥ 0.

It follows thatPσ,θ(π)≥Pσ,θ(π′). Moreover, ifπ(i) = j,π(i′) = j +1 for somej then this inequality
is strict. Now letA= {π | i ≺π i′} be the set of all permutationsπ as defined above; its complement
B equals{π′ | i′ ≺π′ i}. It is immediate that from the above thatPσ,θ(A) = Pσ,θ(i ≺ i′) > Pσ,θ(B) =
Pσ,θ(i′ ≺ i), which proves the first claim of the proposition.

For the second claim, fixi, i′ with σ(i) < σ(i′), a rank j and another rankj ′ > j. Takeπ such
that π(i) = j andπ(i′) = j ′, and letπ′ be the permutation obtained by transposingi and i′ in π.
Then obviouslyPσ,θ(π) > Pσ,θ(π′). Rii ′, j , by definition, is the total probability of permutations of
the formπ with j ′ = j +1, j +2, . . ., while Ri′i, j is the total probability of permutations of the form
π′. Therefore,Rii ′, j > Ri′i, j . 2
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Proof of Proposition 5From Proposition 11 it follows that if the true central permutation is the
identity, thenLid(Rj) < Lσ(Rj) for any σ 6= id. Let ε = Lσ(Rj)− Lid(Rj) > 0. Then, because of
the consistency ofLσ(Rj) for anyσ, it follows thatPid,θ[Lid(R̂j)−Lσ(R̂j)> Lid(Rj)−Lσ(Rj)+ε =
0] → 0. 2

Proof of Proposition 6 This proof follows from the consistency ofLσ(Rj). Since the ML esti-
mate ofθ j is a continuous function ofLσ(Rj) it will be consistent as well. Similarly, for the single
parameter IGM, the ML estimate ofθ is a continuous function of(Lσ(Rj), j = 1 : t), and therefore
it is consistent as well. 2

Proof of Proposition 10Given the observed rankings{π1:N} and the hyperparametersν, Λ1:t

the marginal distribution of the central permutationσ can be expressed in terms ofS∗j :

P(S∗j = k) ∝ Beta(k+1,N+1+ν) =
Γ(k+1)Γ(N+1+ν)

Γ(k+N+2+ν)
= f (k),

f (k+1)
f (k)

=
Γ(k+2)Γ(N+1+ν)

Γ(k+N+3+ν)
÷

Γ(k+1)Γ(N+1+ν)
Γ(k+N+2+ν)

=
k+1

N+k+2+ν
,

f (k) =
k!

(N+2+ν) · · ·(N+1+ν+k)
× f (0) =

k!
(N+1+ν) · · ·(N+1+ν+k)

.

We prove in Lemma 12 that∑∞
k=0 f (k) = 1

(N+ν) . Therefore, the normalization constant ofP(S∗j ) is
1/(N+ν) and the conclusion of the Proposition follows. 2

Lemma 12 ∑∞
k=0

k!
(N+ν+1)···(N+ν+1+k) =

1
(N+ν) .

Proof of Lemma 12We write the general term of the series as a difference

1
N+ν

−
1

(N+ν+1)
=

1!
(N+ν)(N+ν+1)

,

1!
(N+ν)(N+ν+1)

−
1!

(N+ν+1)(N+ν+2)
=

2!
(N+ν)(N+ν+1)(N+ν+2)

,

...

Through mathematical induction we can prove that

K

∑
k=0

k!
(N+ν+1) · · ·(N+ν+1+k)

+
(K+1)!

(N+ν)(N+ν+1) · · ·(N+K+ν+1)
=

1
(N+ν)

.

Moreover, for fixedN,ν,

(K+1)!
(N+ν)(N+ν+1) · · ·(N+K+ν+1)

=
(K+1)!(N+ν−1)!
(N+K+ν+1)!

,

=
(N+ν−1)!

(K+2)(K+3) · · ·(N+K+ν+1)
,

= O(k−(N+ν)).

From this the desired result follows. 2
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MEILĂ AND BAO

G. Lebanon and J. Lafferty. Conditional models on the ranking poset. InAdvances in Neural
Information Processing Systems, number 15, Cambridge, MA, 2003. MIT Press.

R.D. Luce.Individual Choice Behavior. Wiley, New York, 1959.

C.L. Mallows. Non-null ranking models.Biometrika, 44:114–130, 1957.

B. Mandhani and M. Meil̆a. Better search for learning exponential models of rankings. In David
VanDick and Max Welling, editors,Artificial Intelligence and Statistics AISTATS, number 12,
2009.

Y. Mao and G. Lebanon. Non-parametric modelling of partially ranked data.Journal of
Machine Learning Research, 9:2401–2429, 2008. URLjmlr.csail.mit.edu/papers/v9/
lebanon08a.html.
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