
Journal of Machine Learning Research 11 (2010) 451-490 Submitted 4/09; Revised 12/09; Published 2/10

Information Retrieval Perspective to Nonlinear Dimensionality
Reduction for Data Visualization

Jarkko Venna JARKKO.VENNA@NUMOS.FI

Jaakko Peltonen JAAKKO .PELTONEN@TKK .FI

Kristian Nybo KRISTIAN .NYBO@TKK .FI

Helena Aidos HELENA.AIDOS@TKK .FI

Samuel Kaski SAMUEL.KASKI @TKK .FI

Aalto University School of Science and Technology
Department of Information and Computer Science
P.O. Box 15400, FI-00076 Aalto, Finland

Editor: Yoshua Bengio

Abstract
Nonlinear dimensionality reduction methods are often usedto visualize high-dimensional data, al-
though the existing methods have been designed for other related tasks such as manifold learning.
It has been difficult to assess the quality of visualizationssince the task has not been well-defined.
We give a rigorous definition for a specific visualization task, resulting in quantifiable goodness
measures and new visualization methods. The task isinformation retrievalgiven the visualization:
to find similar data based on the similarities shown on the display. The fundamental tradeoff be-
tween precision and recall of information retrieval can then be quantified in visualizations as well.
The user needs to give the relative cost of missing similar points vs. retrieving dissimilar points,
after which the total cost can be measured. We then introducea new method NeRV (neighbor
retrieval visualizer) which produces an optimal visualization by minimizing thecost. We further
derive a variant for supervised visualization; class information is taken rigorously into account
when computing the similarity relationships. We show empirically that the unsupervised version
outperforms existing unsupervised dimensionality reduction methods in the visualization task, and
the supervised version outperforms existing supervised methods.
Keywords: information retrieval, manifold learning, multidimensional scaling, nonlinear dimen-
sionality reduction, visualization

1. Introduction

Visualization of high-dimensional data sets is one of the traditional applicationsof nonlinear di-
mensionality reduction methods. In high-dimensional data, such as experimental data where each
dimension corresponds to a different measured variable, dependencies between different dimensions
often restrict the data points to a manifold whose dimensionality is much lower than the dimension-
ality of the data space. Many methods are designed formanifold learning, that is, to find and unfold
the lower-dimensional manifold. There has been a research boom in manifold learning since 2000,
and there now exist many methods that are known to unfold at least certain kinds of manifolds suc-
cessfully. Some of the successful methods include isomap (Tenenbaum etal., 2000), locally linear
embedding (LLE; Roweis and Saul, 2000), Laplacian eigenmap (LE; Belkinand Niyogi, 2002a),
and maximum variance unfolding (MVU; Weinberger and Saul, 2006).
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It has turned out that the manifold learning methods are not necessarily good for information
visualization. Several methods had severe difficulties when the output dimensionality was fixed
to two for visualization purposes (Venna and Kaski, 2007a). This is natural since they have been
designed to find a manifold, not to compress it into a lower dimensionality.

In this paper we discuss the specific visualization task of projecting the data topoints on a two-
dimensional display. Note that this task is different from manifold learning, incase the inherent
dimensionality of the manifold is higher than two and the manifold cannot be represented perfectly
in two dimensions. As the representation is necessarily imperfect, defining andusing ameasure
of goodnessof the representation is crucial. However, in spite of the large amount of research
into methods for extracting manifolds, there has been very little discussion on what a good two-
dimensional representation should be like and how the goodness should bemeasured. In a recent
survey of 69 papers on dimensionality reduction from years 2000–2006(Venna, 2007) it was found
that 28 (≈ 40%) of the papers only presented visualizations of toy or real data sets as a proof of
quality. Most of the more quantitative approaches were based on one of two strategies. The first is
to measure preservation of all pairwise distances or the order of all pairwise distances. Examples of
this approach include the multidimensional scaling (MDS)-type cost functionslike Sammon’s cost
and Stress, methods that relate the distances in the input space to the output space, and various cor-
relation measures that assess the preservation of all pairwise distances.The other common quality
assurance strategy is to classify the data in the low-dimensional space and report the classification
performance.

The problem with using the above approaches to measure visualization performance is that their
connection to visualization is unclear and indirect at best. Unless the purpose of the visualization
is to help with a classification task, it is not obvious what the classification accuracy of a projection
reveals about its goodness as a visualization. Preservation of pairwise distances, the other widely
adopted principle, is a well-defined goal; it is a reasonable goal if the analyst wishes to use the
visualization to assess distances between selected pairs of data points, butwe argue that this is not
the typical way how an analyst would use a visualization, at least in the earlystages of analysis when
no hypothesis about the data has yet been formed. Most approaches including ours are based on
pairwise distances at heart, but we take into account the context of eachpairwise distance, yielding
a more natural way of evaluating visualization performance; the resulting method has a natural and
rigorous interpretation which we discuss below and in the following sections.

In this paper we make rigorous the specific information visualization task of projecting a high-
dimensional data set onto a two-dimensional plane for visualizing similarity relationships. This task
has a very natural mapping into an information retrieval task as will be discussed in Section 2. The
conceptualization as information retrieval explicitly reveals the necessary tradeoff between preci-
sion and recall, of making true similarities visible and avoiding false similarities. Thetradeoff can
be quantified exactly once costs have been assigned to each of the two error types, and once the total
cost has been defined, it can be optimized as will be discussed in Section 3.We then show that the
resulting method, called NeRV forneighbor retrieval visualizer, can be further extended to super-
vised visualization, and that both the unsupervised and supervised methods empirically outperform
their alternatives. NeRV includes the previous method called stochastic neighbor embedding (SNE;
Hinton and Roweis, 2002) as a special case where the tradeoff is set sothat only recall is maximized;
thus we give a new information retrieval interpretation to SNE.

452



DIMENSIONALITY REDUCTION FORV ISUALIZATION

This paper extends our earlier conference paper (Venna and Kaski,2007b) which introduced
the ideas in a preliminary form with preliminary experiments. The current paper gives the full
justification and comprehensive experiments, and also introduces the supervised version of NeRV.

2. Visualization as Information Retrieval

In this section we define formally the specific visualization task; this is a novel formalization of
visualization as aninformation retrieval task. We first give the definition for a simplified setup in
Section 2.1, and then generalize it in Section 2.2.

2.1 Similarity Visualization with Binary Neighborhood Relationships

In the following we first define the specific visualization task and a cost function for it; we then
show that the cost function is related to the traditional information retrieval measuresprecisionand
recall.

2.1.1 TASK DEFINITION: SIMILARITY V ISUALIZATION

Let {xi}
N
i=1 be a set of input data samples, and let each samplei have aninput neighborhood Pi ,

consisting of samples that are close toi. Typically, Pi might consist of all input samples (other than
i itself) that fall within some radius ofi, or alternativelyPi might consist of a fixed number of input
samples most similar toi. In either case, letr i be the size of the setPi .

The goal of similarity visualizationis to produce low-dimensional output coordinates{yi}
N
i=1

for the input data, usable in visual information retrieval. Given any samplei as a query, in visual
information retrieval samples are retrieved based on the visualization; the retrieved result is a set
Qi of samples that are close toyi in the visualization; we callQi theoutput neighborhood. TheQi

typically consists of all input samplesj (other thani itself) whose visualization coordinatesy j are
within some radius ofyi in the visualization, or alternativelyQi might consist of a fixed number
of input samples whose output coordinates are nearest toyi . In either case, letki be the number
of points in the setQi . The number of points inQi may be different from the number of points in
Pi ; for example, if many points have been placed close toyi in the visualization, then retrieving all
points within a certain radius ofyi might yield too many retrieved points, compared to how many
are neighbors in the input space. Figure 1 illustrates the setup.

The remaining question is what is a good visualization, that is, what is the costfunction. Denote
the number of samples that are in bothQi andPi by NTP,i (true positives), samples that are inQi but
not inPi by NFP,i (false positives), and samples that are inPi but notQi by NMISS,i (misses). Assume
the user has assigned a costCFP for each false positive andCMISS for each miss. The total costEi

for queryi, summed over all data points, then is

Ei = NFP,iCFP+NMISS,iCMISS . (1)

2.1.2 RELATIONSHIP TO PRECISION AND RECALL

The cost function of similarity visualization (1) bears a close relationship to thetraditional measures
of information retrieval, precision and recall. If we allowCMISS to be a function of the total number
of relevant pointsr, more specificallyCMISS(r i) = C′

MISS/r i , and take the cost per retrieved point by
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Figure 1: Diagram of the types of errors in visualization.

dividing byki , the total cost becomes

E(ki , r i) =
1
ki

E(r i) =
1
ki

(NFP,iCFP+NMISS,iCMISS(r i))

= CFP
NFP,i

ki
+

C′
MISS

ki

NMISS,i

r i

= CFP(1−precision(i))+
C′

MISS

ki
(1− recall(i)) .

The traditional definition of precision for a single query is

precision(i) =
NTP,i

ki
= 1−

NFP,i

ki
,

and recall is

recall(i) =
NTP,i

r i
= 1−

NMISS,i

r i
.

Hence, fixing the costsCFP andCMISS and minimizing (1) corresponds to maximizing a specific
weighted combination of precision and recall.

Finally, to assess performance of the full visualization the cost needs to beaveraged over all
samples (queries) which yields mean precision and recall of the visualization.

2.1.3 DISCUSSION

Given a high-dimensional data set, it is generally not possible to show all thesimilarity relation-
ships within the data on a low-dimensional display; therefore, all linear or nonlinear dimensionality
reduction methods need to make a tradeoff about which kinds of similarity relationships they aim
to show on the display. Equation (1) fixes the tradeoff given the costs of the two kinds of errors.
Figure 2 illustrates this tradeoff (computed with methods introduced in Section 3)with a toy ex-
ample where a three-dimensional sphere surface is visualized in two dimensions. If we take some
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query point in the visualization and retrieve a set of points close-by in the visualization, in display
A such retrieval yields few false positives but many misses, whereas in display B the retrieval yields
few misses but many false positives. The tradeoff can also be seen in the (mean) precision-recall
curves for the two visualizations, where the number of retrieved points is varied to yield the curve.
VisualizationA reaches higher values of precision, but the precision drops much before high recall
is reached. VisualizationB has lower precision at the left end of the curve, but precision does not
drop as much even when high recall is reached.

Note that in order to quantify the tradeoff, both precision and recall needto be used. This
requires a rich enough retrieval model, in the sense that the number of retrieved points can be
different from the number of relevant points, so that precision and recall get different values. It is
well-known in information retrieval that if the numbers of relevant and retrieved items (here points)
are equal, precision and recall become equal. The recent “local continuity” criterion (Equation
9 in Chen and Buja, 2009) is simply precision/recall under this constraint; wethus give a novel
information retrieval interpretation of it as a side result. Such a criterion is useful but it gives
only a limited view of the quality of visualizations, because it corresponds to a limitedretrieval
model and cannot fully quantify the precision-recall tradeoff. In this paper we will use fixed-radius
neighborhoods (defined more precisely in Section 2.2) in the visualizations,which naturally yields
differing numbers of retrieved and relevant points.

The simple visualization setup presented in this section is a novel formulation of visualization
and useful as a clearly defined starting point. However, for practical use it has a shortcoming: the
overly simple binary fixed-size neighborhoods do not take into accountgrades of relevance. The
cost function does not penalize violating the original similarity ordering of neighbor samples; and
the cost function penalizes all neighborhood violations with the same cost. Next we will introduce
a more practical visualization setup.

2.2 Similarity Visualization with Continuous Neighborhood Relationships

We generalize the simple binary neighborhood case by defining probabilisticneighborhoods both in
the (i) input and (ii) output spaces, and (iii) replacing the binary precisionand recall measures with
probabilistic ones. It will finally be shown that for binary neighborhoods, interpreted as a constant
high probability of being a neighbor within the neighborhood set and a constant low probability
elsewhere, the measures reduce to the standard precision and recall.

2.2.1 PROBABILISTIC MODEL OF RETRIEVAL

We start by defining the neighborhood in the output space, and do that bydefining a probability
distribution over the neighbor points. Such a distribution is interpretable as a model about how the
user does the retrieval given the visualization display.

Given the location of the query point on the display,yi , suppose that the user selects one point
at a time for inspection. Denote byq j|i the probability that the user choosesy j . If we can define
such probabilities, they will define aprobabilistic model of retrievalfor the neighbors ofyi .

The form ofq j|i can be defined by a few axiomatic choices and a few arbitrary ones. Sincethe
q j|i are a probability distribution overj for eachi, they must be nonnegative and sum to one over
j; therefore we can represent them asq j|i = exp(− fi, j)/∑k6=i exp(− fi,k) where fi, j ∈ R. The fi, j
should be an increasing function of distance (dissimilarity) betweenyi andy j ; we further assume
that fi, j depends only onyi andy j and not on the other pointsyk. It remains to choose the form of
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Figure 2: Demonstration of the tradeoff between false positives and misses. Top left: A three-
dimensional data set sampled from the surface of a sphere; only the front hemisphere
is shown for clarity. The glyph shapes (size, elongation, and angle) show the three-
dimensional coordinates of each point; the colors in the online version showthe same
information. Bottom: Two embeddings of the data set. In the embeddingA, the sphere
has been cut open and folded out. This embedding eliminatesfalse positives, but there
are somemissesbecause points on different sides of the tear end up far away from each
other. In contrast, the embeddingB minimizes the number of misses by simply squashing
the sphere flat; this results in a large number of false positives because points on opposite
sides of the sphere are mapped close to each other.Top right: mean precision-mean recall
curves with input neighborhood sizer = 75, as a function of the output neighborhood size
k, for the two projections. The embeddingA has better precision (yielding higher values
at the left end of the curve) whereas the embeddingB has better recall (yielding higher
values at the right end of the curve).
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fi, j . In general there should not be any reason to favor any particular neighbor point, and hence the
form should not depend onj. It could depend oni, however; we assume it has a simple quadratic
form fi, j = ||yi −y j ||

2/σ2
i where||yi −y j || is the Euclidean distance and the positive multiplier 1/σ2

i
allows the function to grow at an individual rate for eachi. This yields the definition

q j|i =
exp(−

‖yi−y j‖
2

σ2
i

)

∑k6=i exp(− ‖yi−yk‖2

σ2
i

)
. (2)

2.2.2 PROBABILISTIC MODEL OF RELEVANCE

We extend the simple binary neighborhoods of input data samples to probabilistic neighborhoods
as follows. Suppose that if the user was choosing the neighbors of a query point i in the original
data space, she would choose pointj with probability p j|i . The p j|i define aprobabilistic model of
relevancefor the original data, and are equivalent to a neighborhood aroundi: the higher the chance
of choosing this neighbor, the larger its relevance toi.

We define the probabilityp j|i analogously toq j|i , as

p j|i =
exp(−

d(xi ,x j )
2

σ2
i

)

∑k6=i exp(−d(xi ,xk)2

σ2
i

)
, (3)

whered(·, ·) is a suitable difference measure in the original data, andxi refers to the point in the
original data that is represented byyi in the visualization. Some data sets may provide the values of
d(·, ·) directly; otherwise the analyst can choose a difference measure suitablefor the data feature
vectors. Later in this paper we will use both the simple Euclidean distance and amore complicated
distance measure that incorporates additional information about the data.

Given known values ofd(·, ·), the above definition of the neighborhoodp j|i can be motivated by
the same arguments asq j|i . That is, the given form ofp j|i is a good choice if no other information
about the original neighborhoods is available. Other choices are possible too; in particular, if the
data directly includes neighbor probabilities, they can simply be used as thep j|i . Likewise, if more
accurate models of user behavior are available, they can be plugged in place ofq j|i . The forms of
p j|i andq j|i need not be the same.

For each pointi, the scaling parameterσi controls how quickly the probabilitiesp j|i fall off
with distance. These parameters could be fixed by prior knowledge, but without such knowledge it
is reasonable to set theσi by specifying how much flexibility there should be about the choice of
neighbors. That is, we setσi to a value that makes the entropy of thep·|i distribution equal to logk,
wherek is a rough upper limit for the number of relevant neighbors, set by the user. We use the
same relative scaleσi both in the input and output spaces (Equations 2 and 3).

2.2.3 COST FUNCTIONS

The remaining task is to measure how well the retrieval done in the output space, given the visual-
ization, matches the true relevances defined in the input space. Both were above defined in terms of
distributions, and a natural candidate for the measure is theKullback-Leibler divergence, defined as

D(pi ,qi) = ∑
j 6=i

p j|i log
p j|i

q j|i
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wherepi andqi are the neighbor distributions for a particular pointi, in the input space and in the
visualization respectively. For the particular probability distributions defined above the Kullback-
Leibler divergence turns out to be intimately related to precision and recall. Specifically, for any
query i, the Kullback-Leibler divergenceD(pi ,qi) is a generalization of recall, andD(qi , pi) is
a generalization of precision; for simple “binary” neighborhood definitions, the Kullback-Leibler
divergences and the precision-recall measures become equivalent. The proof is in Appendix A.

We call D(qi , pi) smoothed precisionandD(pi ,qi) smoothed recall. To evaluate a complete
visualization rather than a single query, we define aggregate measures in the standard fashion: mean
smoothed precision is defined asEi [D(qi , pi)] and mean smoothed recall asEi [D(pi ,qi)], whereE

denotes expectation and the means are taken over queries (data pointsi).
Mean smoothed precision and recall are analogous to mean precision and recall in that we

cannot in general reach the optimum of both simultaneously. We return to Figure 2 which illustrates
the tradeoff for nonlinear projections of a three-dimensional sphere surface. The subfigureA was
created by maximizing mean smoothed precision; the sphere has been cut open and folded out,
which minimizes the number of false positives but also incurs some misses because some points
located on opposite edges of the point cloud were originally close to each other on the sphere. The
subfigureB was created by maximizing mean smoothed recall; the sphere is squashed flat, which
minimizes the number of misses, as all the points that were close to each other in theoriginal data
are close to each other in the visualization. However, there are then a largenumber of false positives
because opposite sides of the sphere have been mapped on top of each other, so that many points
that appear close to each other in the visualization are actually originally far away from each other.

2.2.4 EASIER-TO-INTERPRETALTERNATIVE GOODNESSMEASURES

Mean smoothed precision and recall are rigorous and well-motivated measures of visualization per-
formance, but they have one practical shortcoming for human analysts: the errors have no upper
bound, and the scale will tend to depend on the data set. The measures are very useful for compar-
ing several visualizations of the same data, and will turn out to be useful asoptimization criteria,
but we would additionally like to have measures where the plain numbers are easily interpretable.
We address this by introducingmean rank-based smoothed precision and recall: simply replace the
distances in the definitions ofp j|i andq j|i with ranks, so that the probability for the nearest neighbor
uses a distance of 1, the probability for the second nearest neighbor a distance of 2, and so on. This
imposes an upper bound on the error because the worst case scenariois that the ranks in the data set
are reversed in the visualization. Dividing the errors by their upper bounds gives us measures that lie
in the interval[0,1] regardless of the data and are thus much easier to interpret. The downsideis that
substituting ranks for distances makes the measures disregard much of the neighborhood structure in
the data, so we suggest using mean rank-based smoothed precision and recall as easier-to-interpret,
but less discriminating complements to, rather than replacements of, mean smoothed precision and
recall.

3. Neighborhood Retrieval Visualizer (NeRV)

In Section 2 we defined similarity visualization as an information retrieval task. The quality of
a visualization can be measured by the two loss functions, mean smoothed precision and recall.
These measures generalize the straightforward precision and recall measures to non-binary neigh-
borhoods. They have the further advantage of being continuous and differentiable functions of the
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output visualization coordinates. It is then easy to use the measures asoptimization criteriafor a
visualization method. We now introduce a visualization algorithm that optimizes visual information
retrieval performance. We call the algorithm theneighborhood retrieval visualizer(NeRV).

As demonstrated in Figure 2, precision and recall cannot in general be minimized simultane-
ously, and the user has to choose which loss function (average smoothedprecision or recall) is more
important, by assigning a cost for misses and a cost for false positives. Once these costs have been
assigned, the visualization task is simply to minimize the total cost. In practice the relative cost of
false positives to misses is given as a parameterλ. The NeRV cost function then becomes

ENeRV = λEi [D(pi ,qi)]+(1−λ)Ei [D(qi , pi)]

∝ λ∑
i

∑
j 6=i

p j|i log
p j|i

q j|i
+(1−λ)∑

i
∑
j 6=i

q j|i log
q j|i

p j|i
(4)

where, for example, settingλ to 0.1 indicates that the user considers an error in precision
(1−0.1)/0.1 = 9 times as expensive as a similar error in recall.

To optimize the cost function (4) with respect to the output coordinatesyi of each data point,
we use a standard conjugate gradient algorithm. The computational complexityof each iteration
is O(dn2), wheren is the number of data points andd the dimension of the projection. (In our
earlier conference paper a coarse approximate algorithm was requiredfor speed; this turned out
to be unnecessary, and theO(dn2) complexity does not require any approximation.) Note that if
a pairwise distance matrix in the input space is not directly provided as data, itcan as usual be
computed from input features; this is a one-time computation done at the start of the algorithm and
takesO(Dn2) time, whereD is the input dimensionality.

In general, NeRV optimizes a user-defined cost which forms a tradeoff between mean smoothed
precision and mean smoothed recall. If we setλ = 1 in Equation (4), we obtain the cost function of
stochastic neighbor embedding (SNE; see Hinton and Roweis, 2002). Hence we get as a side result
a new interpretation of SNE as a method that maximizes mean smoothed recall.

3.0.5 PRACTICAL ADVICE ON OPTIMIZATION

After computing the distance matrix from the input data, we scale the input distances so that the
average distance is equal to 1. We use a random projection onto the unit square as a starting point
for the algorithm. Even this simple choice has turned out to give better results than alternatives; a
more intelligent initialization, such as projecting the data using principal component analysis, can
of course also be used.

To speed up convergence and avoid local minima, we apply a further initialization step: we run
ten rounds of conjugate gradient (two conjugate gradient steps per round), and after each round
decrease the neighborhood scaling parametersσi used in Equations (2) and (3). Initially, we set the
σi to half the diameter of the input data. We decrease them linearly so that the final value makes
the entropy of thep j|i distribution equal to an effective number of neighborsk, which is the choice
recommended in Section 2.2. This initialization step has the same complexityO(dn2) per iteration
as the rest of the algorithm. After this initialization phase we perform twenty standard conjugate
gradient steps.
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4. Using NeRV for Unsupervised Visualization

It is easy to apply NeRV for unsupervised dimensionality reduction. As in any unsupervised anal-
ysis, the analyst first chooses a suitable unsupervised similarity or distance measure for the input
data; for vector-valued input data this can be the standard Euclidean distance (which we will use
here), or it can be some other measure suggested by domain knowledge. Once the analyst has spec-
ified the relative importance of precision and recall by choosing a value for λ, the NeRV algorithm
computes the embedding based on the distances it is given.

In this section we will make extensive experiments comparing the performanceof NeRV with
other dimensionality reduction methods on unsupervised visualization of several data sets, including
both benchmark data sets and real-life bioinformatics data sets. In the following subsections, we
describe the comparison methods and data sets, briefly discuss the experimental methodology, and
present the results.

4.1 Comparison Methods for Unsupervised Visualization

For the task of unsupervised visualization we compare the performance ofNeRV with the follow-
ing unsupervised nonlinear dimensionality reduction methods: principal component analysis (PCA;
Hotelling, 1933), metric multidimensional scaling (MDS; see Borg and Groenen, 1997), locally lin-
ear embedding (LLE; Roweis and Saul, 2000), Laplacian eigenmap (LE; Belkin and Niyogi, 2002a),
Hessian-based locally linear embedding (HLLE; Donoho and Grimes, 2003), isomap (Tenenbaum
et al., 2000), curvilinear component analysis (CCA; Demartines and Hérault, 1997), curvilinear dis-
tance analysis (CDA; Lee et al., 2004), maximum variance unfolding (MVU;Weinberger and Saul,
2006), landmark maximum variance unfolding (LMVU; Weinberger et al., 2005), and our previous
method local MDS (LMDS; Venna and Kaski, 2006).

Principal component analysis(PCA; Hotelling, 1933) finds linear projections that maximally
preserve the variance in the data. More technically, the projection directions can be found by solving
for the eigenvalues and eigenvectors of the covariance matrixCx of the input data points. The
eigenvectors corresponding to the two or three largest eigenvalues arecollected into a matrixA, and
the data pointsxi can then be visualized by projecting them withyi = Ax i , whereyi is the obtained
low-dimensional representation ofxi . PCA is very closely related to linear multidimensional scaling
(linear MDS, also called classical scaling; Torgerson, 1952; Gower, 1966), which tries to find low-
dimensional coordinates preserving squared distances. It can be shown (Gower, 1966) that when
the dimensionality of the sought solutions is the same and the distance measure is Euclidean, the
projection of the original data to the PCA subspace equals the configurationof points found by
linear MDS. This implies that PCA tries to preserve the squared distances between data points, and
that linear MDS finds a solution that is a linear projection of the original data.

Traditionalmultidimensional scaling(MDS; see Borg and Groenen, 1997) exists in several dif-
ferent variants, but they all have a common goal: to find a configuration ofoutput coordinates that
preserves the pairwise distance matrix of the input data. For the comparisonexperiments we chose
metric MDSwhich is the simplest nonlinear MDS method; its cost function (Kruskal, 1964), called
the raw stress, is

E = ∑
i, j

(d(xi ,x j)−d(yi ,y j))
2, (5)
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whered(xi ,x j) is the distance of pointsxi andx j in the input space andd(yi ,y j) is the distance of
their corresponding representations (locations)yi andy j in the output space. This cost function is
minimized with respect to the representationsyi .

Isomap(Tenenbaum et al., 2000) is an interesting variant of MDS, which again finds a config-
uration of output coordinates matching a given distance matrix. The difference is that Isomap does
not compute pairwise input-space distances as simple Euclidean distances but asgeodesic distances
along the manifold of the data (technically, along a graph formed by connecting all k-nearest neigh-
bors). Given these geodesic distances the output coordinates are found by standard linear MDS.
When output coordinates are found for such input distances, the manifold structure in the original
data becomes unfolded; it has been shown (Bernstein et al., 2000) that this algorithm is asymptot-
ically able to recover certain types of manifolds. We used the isomap implementationavailable at
http://isomap.stanford.edu in the experiments.

Curvilinear component analysis(CCA; Demartines and H́erault, 1997) is a variant of MDS that
tries to preserve only distances between points that are near each other inthe visualization. This is
achieved by weighting each term in the MDS cost function (5) by a coefficient that depends on the
corresponding pairwise distance in the visualization. In the implementation we use, the coefficient
is simply a step function that equals 1 if the distance is below a predetermined threshold and 0 if it
is larger.

Curvilinear distance analysis(CDA; Lee et al., 2000, 2004) is an extension of CCA. The idea is
to replace the Euclidean distances in the original space with geodesic distances in the same manner
as in the isomap algorithm. Otherwise the algorithm stays the same.

Local MDS(LMDS; Venna and Kaski, 2006) is our earlier method, an extension of CCA that
focuses on local proximities with a tunable cost function tradeoff. It can be seen as a first step in the
development of the ideas of NeRV.

The locally linear embedding(LLE; Roweis and Saul, 2000) algorithm is based on the assump-
tion that the data manifold is smooth enough and is sampled densely enough, such that each data
point lies close to a locally linear subspace on the manifold. LLE makes a locally linear approx-
imation of the whole data manifold: LLE first estimates a local coordinate system for each data
point, by calculating linear coefficients that reconstruct the data point as well as possible from itsk
nearest neighbors. To unfold the manifold, LLE finds low-dimensional coordinates that preserve the
previously estimated local coordinate systems as well as possible. Technically, LLE first minimizes
the reconstruction errorE(W) = ∑i ‖xi −∑ j Wi, jx j‖

2 with respect to the coefficientsWi, j , under the
constraints thatWi, j = 0 if i and j are not neighbors, and∑ j Wi, j = 1. Given the weights, the low-
dimensional configuration of points is next found by minimizingE(Y) = ∑i ‖yi −∑ j Wi, jy j‖

2 with
respect to the low-dimensional representationyi of each data point.

TheLaplacian eigenmap(LE; see Belkin and Niyogi, 2002a) uses a graph embedding approach.
An undirectedk-nearest-neighbor graph is formed, where each data point is a vertex.Pointsi and j
are connected by an edge with weightWi, j = 1 if j is among thek nearest neighbors ofi, otherwise
the edge weight is set to zero; this simple weighting method has been found to work well in practice
(Belkin and Niyogi, 2002b). To find a low-dimensional embedding of the graph, the algorithm tries
to put points that are connected in the graph as close to each other as possible and does not care what
happens to the other points. Technically, it minimizes1

2 ∑i, j ‖yi − y j‖
2Wi, j = yTLy with respect to

the low-dimensional point locationsyi , whereL = D−W is the graph Laplacian andD is a diagonal
matrix with elements Dii = ∑ j Wi, j . However, this cost function has an undesirable trivial solution:
putting all points in the same position would minimize the cost. This can be avoided by adding suit-
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able constraints. In practice the low-dimensional configuration is found bysolving the generalized
eigenvalue problemLy = λDy (Belkin and Niyogi, 2002a). The smallest eigenvalue corresponds
to the trivial solution, but the eigenvectors corresponding to the next smallest eigenvalues give the
Laplacian eigenmap solution.

The Laplacian eigenmap algorithm reduces to solving a generalized eigenvalue problem because
the cost function that is minimized is a quadratic form involving the Laplacian matrixL . The
Hessian-based locally linear embedding(HLLE; Donoho and Grimes, 2003) algorithm is similar,
but the LaplacianL is replaced by the HessianH.

Themaximum variance unfoldingalgorithm (MVU; Weinberger and Saul, 2006) expresses di-
mensionality reduction as a semidefinite programming problem. One way of unfolding a folded flag
is to pull its four corners apart, but not so hard as to tear the flag. MVU applies this idea to projecting
a manifold: the projection maximizes variance (pulling apart) while preserving distances between
neighbors (no tears). The constraint of local distance preservation can be expressed in terms of the
Gram matrixK of the mapping. Maximizing the variance of the mapping is equivalent to maxi-
mizing the trace ofK under a set of constraints, which, it turns out, can be done using semidefinite
programming.

A notable disadvantage of MVU is the time required to solve a semidefinite program for n×n
matrices when the number of data pointsn is large. Landmark MVU(LMVU; Weinberger et al.,
2005) addresses this issue by significantly reducing the size of the semidefinite programming prob-
lem. Like LLE, LMVU assumes that the data manifold is sufficiently smooth and densely sampled
that it is locally approximately linear. Instead of embedding all the data points directly as MVU
does, LMVU randomly choosesm≪ n inputs as so-called landmarks. Because of the local linear-
ity assumption, the other data points can be approximately reconstructed fromthe landmarks using
a linear transformation. It follows that the Gram matrixK can be approximated using them×m
submatrix of inner products between landmarks. Hence we only need to optimize overm×mmatri-
ces, a much smaller semidefinite program. Other recent approaches for speeding up MVU include
matrix factorization based on a graph Laplacian (Weinberger et al., 2007).

In addition to the above comparison methods, other recent work on dimensionality reduction in-
cludesminimum volume embedding(MVE; Shaw and Jebara, 2007), which is similar to MVU, but
where MVU maximizes the whole trace of the Gram matrix (the sum of all eigenvalues), MVE max-
imizes the sum of the first few eigenvalues and minimizes the sum of the rest, in order to preserve
the largest amount of eigenspectrum energy in the few dimensions that remain after dimensionality
reduction. In practice, a variational upper bound of the resulting criterion is optimized.

Very recently, a number of unsupervised methods have been compared by van der Maaten et al.
(2009) in terms of classification accuracy and our old criteria trustworthiness-continuity.

4.2 Data Sets for Unsupervised Visualization

We used two synthetic benchmark data sets and four real-life data sets for our experiments.
Theplain s-curvedata set is an artificial set sampled from an S-shaped two-dimensional surface

embedded in three-dimensional space. An almost perfect two-dimensionalrepresentation should be
possible for a non-linear dimensionality reduction method, so this data set works as a sanity check.

The noisy s-curvedata set is otherwise identical to the plain s-curve data set, but significant
spherical normally distributed noise has been added to each data point. Theresult is a cloud of
points where the original S-shape is difficult to discern by visual inspection.
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The facesdata set consists of ten different face images of 40 different people, for a total of 400
images. For a given subject, the images vary in terms of lighting and facial expressions. The size of
each image is 64×64 pixels, with 256 grey levels per pixel. The data set is available for download
at http://www.cs.toronto.edu/ ˜ roweis/data.html .

The mouse gene expressiondata set is a collection of gene expression profiles from different
mouse tissues (Su et al., 2002). Expression of over 13,000 mouse geneshad been measured in
45 tissues. We used an extremely simple filtering method, similar to that originally used by Su
et al. (2002), to select the genes for visualization. Of the mouse genes clearly expressed (average
difference in Affymetrix chips, AD> 200) in at least one of the 45 tissues (dimensions), a random
sample of 1600 genes (points) was selected. After this the variance in eachtissue was normalized
to unity.

Thegene expression compendiumdata set is a large collection of human gene expression arrays
(http://dags.stanford.edu/cancer ; Segal et al., 2004). Since the current implementations of
all methods do not tolerate missing data we removed samples with missing values altogether. First
we removed genes that were missing from more than 300 arrays. Then we removed the arrays
for which values were still missing. This resulted in a data set containing 1278points and 1339
dimensions.

Thesea-water temperature time seriesdata set (Liitïainen and Lendasse, 2007) is a time series
of weekly temperature measurements of sea water over several years. Each data point is a time
window of 52 weeks, which is shifted one week forward for the next datapoint. Altogether there
are 823 data points and 52 dimensions.

4.3 Methodology for the Unsupervised Experiments

The performance of NeRV was compared with 11 unsupervised dimensionality reduction methods
described in Section 4.1, namely principal component analysis (PCA), metricmultidimensional
scaling (here simply denoted MDS), locally linear embedding (LLE), Laplacian eigenmap (LE),
Hessian-based locally linear embedding (HLLE), isomap, curvilinear component analysis (CCA),
curvilinear distance analysis (CDA), maximum variance unfolding (MVU), landmark maximum
variance unfolding (LMVU), and local MDS (LMDS). LLE, LE, HLLE, MVU, LMVU and isomap
were computed with code from their developers; MDS, CCA and CDA used our code.

4.3.1 GOODNESSMEASURES

We used four pairs of performance measures to compare the methods. Thefirst pair is mean
smoothed precision-mean smoothed recall, that is, our new measures of visualization quality. The
scale of input neighborhoods was fixed to 20 relevant neighbors (seeSection 2.2).

Although we feel, as explained in Section 2, that smoothed precision and smoothed recall are
more sophisticated measures of visualization performance than precision and recall, we have also
plotted standardmean precision-mean recallcurves. The curves were plotted by fixing the 20
nearest neighbors of a point in the original data as the set of relevant items, and then varying the
number of neighbors retrieved from the visualization between 1 and 100, plotting mean precision
and recall for each number.

Our third pair of measures are the rank-based variants of our new measures,mean rank-based
smoothed precision-mean rank-based smoothed recall. Recall that we introduced the rank-based
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variants as easier-to-interpret, but less discriminating, alternatives to meansmoothed precision and
mean smoothed recall. The scale of input neighborhoods was again fixed to20 relevant neighbors.

Our fourth pair of measures istrustworthiness-continuity(Kaski et al., 2003). The intuitive
motivation behind these measures was the same trade-off between precisionand recall as in this
paper, but the measures were defined in a more ad hoc way. At the time we didnot have the
clear connection to information retrieval which makes NeRV particularly attractive, and we did
not optimize the measures. Trustworthiness and continuity can, however, now be used as partly
independent measures of visualization quality. To compute the trustworthiness and continuity, we
used neighborhoods of each point containing the 20 nearest neighbors.

As a fifth measure, when data classes are available, we useclassification errorgiven the display,
with a standardk-nearest neighbor classifier where we setk = 5.

4.3.2 CHOICE OFPARAMETERS

Whenever we needed to choose a parameter for any method, we used the same criterion, namely the
F-measure computed from the new rank-based measures. That is, we chose the parameter yielding
the largest value of 2(P ·R)/(P+ R) whereP andR are the mean rank-based smoothed precision
and recall.

Many of the methods have a parameterk denoting the number of nearest neighbors for con-
structing a neighborhood graph; for each method and each data set we tested values ofk ranging
from 4 to 20, and chose the value that produced the best F-measure. (For MVU and LMVU we used
a smaller parameter range to save computational time. For MVUk ranged from 4 to 6; for LMVU
k ranged from 3 to 9.) The exceptions are local MDS (LMDS), one of our own earlier methods, and
NeRV, for which we simply setk to 20 without optimizing it.

Methods that may have local optima were run five times with different random initializations
and the best run (again, in terms of the F-measure) was selected.

4.4 Results of Unsupervised Visualization

We will next show visualizations for a few sets, and measure quantitatively the results of several.
We begin by showing an example of a NeRV visualization for the plain S-curvedata set in Figure 3.
Later in this section we will show a NeRV visualization of a synthetic face data set (Figure 8), and in
Section 4.6 of thefacesdata set of real face images (Figure 11). The quantitative results are spread
across four figures (Figures 4–7), each of which contains results for one pair of measures and all six
data sets.

We first show the curves ofmean smoothed precision-mean smoothed recall, that is, the loss
functions associated with our formalization of visualization as information retrieval. The results
are shown in Figure 4. NeRV and local MDS (LMDS) form curves parameterized byλ, which
ranges from 0 to 1.0 for NeRV and from 0 to 0.9 for LMDS. NeRV was clearly the best-performing
method on all six data sets, which is of course to be expected since NeRV directly optimizes a linear
combination of these measures. LMDS has a relatively good mean smoothed precision, but does
not perform as well in terms of mean smoothed recall. Simple metric MDS also stands out as a
consistently reasonably good method.

Because we formulated visualization as an information retrieval task, it is natural to also try
existing measures of information retrieval performance, that is, mean precision and mean recall,
even though they do not take into account grades of relevance as discussed in Section 2.1. Standard
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Original data NeRV visualization

Figure 3: Left: Plain S-curve data set. The glyph shapes (size, elongation, and angle) show the
three-dimensional coordinates of each point; the colors in the online version show the
same information. Right: NeRV visualization (hereλ = 0.8).

mean precision-mean recallcurves are shown in Figure 5; for NeRV and LMDS, we show the curve
for a singleλ value picked by the F-measure as described in Section 4.3. Even with these coarse
measures, NeRV shows excellent performance: NeRV is best on four data sets in terms of the area
under the curve, CDA and CCA are each best on one data set.

Next, we plot our easier-to-interpret but less discriminating alternative measures of visualization
performance. The curves ofmean rank-based smoothed precision-mean rank-based smoothed recall
are shown in Figure 6. These measures lie between 0 and 1, and may hencebe easier to compare
between data sets. With these measures, NeRV again performs best on all data sets; LMDS also
performs well, especially on the seawater temperature data.

Finally, we plot the curves oftrustworthiness-continuity, shown in Figure 7. The results are
fairly similar to the new rank-based measures: once again NeRV performs best on all data sets and
LMDS also performs well, especially on the seawater temperature data.

4.4.1 EXPERIMENT WITH A KNOWN UNDERLYING MANIFOLD

To further test how well the methods are able to recover the neighborhoodstructure inherent in the
data we studied a synthetic face data set where a known underlying manifolddefines the relevant
items (neighbors) of each point. The SculptFaces data contains 698 synthetic images of a face (sized
64×64 pixels each). The pose and direction of lighting have been changed in asystematic way to
create a manifold in the image space (http://web.mit.edu/cocosci/isomap/datasets.html ;
Tenenbaum et al., 2000). We used the raw pixel data as input features.

The pose and lighting parameters used to generate the images are available. These parameters
define the manifold of the faces embedded in the very high-dimensional image space. For any face
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Figure 4: Mean smoothed precision-mean smoothed recallplotted for all six data sets. For clarity,
only a few of the best-performing methods are shown for each data set. Wehave actually
plotted−1·(mean smoothed precision) and−1·(mean smoothed recall) to maintain visual
consistency with the plots for other measures: in each plot, the best performing methods
appear in the top right corner.

image, the relevant other faces are the ones that are neighbors with respect to the pose and lighting
parameters; we defined the ground truth neighborhoods using Euclideandistances in the pose and
lighting space, and we fixed the scale of the ground truth neighborhoods to20 relevant neighbors
(see Section 2.2).
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Figure 5: Mean precision-mean recallcurves plotted for all six data sets. For clarity, only the best
methods (with largest area under curve) are shown for each data set. In each plot, the best
performance is in the top right corner. For NeRV and LMDS, a singleλ value picked with
the F-measure is shown.

We ran all methods for this data as in all experiments in this section, and then calculated four
performance curves (mean smoothed precision-mean smoothed recall, mean precision-mean re-
call, mean rank-based smoothed precision-mean rank-based smoothed recall, andtrustworthiness-
continuity) using the neighborhoods in pose and lighting space as the ground truth. The results are
shown in Figure 8. In spite of the very high dimensionality of the input space and the reduction of
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Figure 6: Mean rank-based smoothed precision-mean rank-based smoothed recallplotted for all six
data sets. For clarity, only a few of the best performing methods are shownfor each data
set. We have actually plotted 1−(mean rank-based smoothed precision) and 1−(mean
rank-based smoothed recall) to maintain visual consistency with the plots for other mea-
sures: in each plot, the best performance is in the top right corner.

the manifold dimension from three to two, NeRV was able to recover the structure well. NeRV is
the best according to both of our proposed measures of visualization performance, mean smoothed
precision and recall; MDS and local MDS also perform well. In terms of the simple mean precision
and mean recall NeRV is the second best with CDA being slightly better. In termsof the rank-based
measures, NeRV is the best in terms of precision; LE and MDS attain the best mean rank-based
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Figure 7: Trustworthiness-continuityplotted for all six data sets. For clarity, only a few of the best
performing methods are shown for each data set. In each plot, the best performance is in
the top right corner.

smoothed recall; and local MDS and CDA also perform well. When performance was measured
with trustworthiness and continuity, NeRV was the best in terms of trustworthiness while MVU and
Isomap attained the highest continuity.

Overall, NeRV was the best in these unsupervised visualization tasks, although it was not the
best in all, and in some tasks it had tough competition.
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Figure 8: Top: Sample projections of the SculptFaces data set (NeRV vs. the best alternative).
Bottom: How well were the ground truth neighbors in pose-lighting space retrievedfrom
the image data, evaluated by four pairs of measures. The measures were computed the
same way as before, as described in Section 4.3, but here taking the known pose and
lighting information as the input data. Only the best performing methods are shown for
clarity.

4.5 Comparison by Unsupervised Classification

For the data sets where a classification of samples is available, we additionally follow a traditional
way to evaluate visualizations: we measure how well samples can be classifiedbased on the visual-
ization.
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Data set Dimensions Classes
Letter 16 26

Phoneme 20 13
Landsat 36 6
TIMIT 12 41

Table 1: The data sets used in the unsupervised classification experiments.

Here all methods are unsupervised, that is, class labels of samples are not used in computing the
visualization. The parameters of methods are again chosen as described inSection 4.3.2. Methods
are evaluated byk-nearest neighbor classification accuracy (withk = 5), that is, each sample in the
visualization is classified by majority vote of itsk nearest neighbors in the visualization, and the
classification is compared to the ground truth label.

We use four benchmark data sets, all of which include class labels, to compare the performances
of the methods. The data sets are summarized in Table 1. For all data sets we used a randomly
chosen subset of 1500 samples in the experiments, to save computation time.

The letter recognitiondata set (denoted Letter) is from the UCI Machine Learning Repository
(Blake and Merz, 1998); it is a 16-dimensional data set with 26 classes, which are 4×4 images of
the 26 capital letters of the alphabet. These letters are based on 20 different fonts which have been
distorted to produce the final images.

Thephonemedata set (denoted Phoneme) is taken from LVQ-PAK (Kohonen et al., 1996) and
consists of phoneme samples represented by a 20-dimensional vector of features plus a class label
indicating which phoneme is actually represented. There are a total of 13 classes.

The landsat satellitedata set (denoted Landsat) is from UCI Machine Learning Repository
(Blake and Merz, 1998). Each data point is a 36-dimensional vector, corresponding to a 3× 3
satellite image measured in four spectral bands; the class label of the point indicates the terrain type
in the image (6 possibilitities, for example red soil).

The TIMIT data set is taken from the DARPA TIMIT speech database (TIMIT). It issimilar
to the phoneme data from LVQ-PAK but the feature vectors are 12-dimensional and there are 41
classes in total.

The resulting classification error rates are shown in Table 2. NeRV is beston two out of four
data sets and second best on a third set (there our old method LocalMDS is best). CDA is best on
one.

4.6 NeRV, Joint Probabilities, andt-Distributions

Very recently, based on stochastic neighbor embedding (SNE), van derMaaten and Hinton (2008)
have proposed a modified method called t-SNE, which has performed well in unsupervised exper-
iments. The t-SNE makes two changes compared to SNE; in this section we describe the changes
and show that the same changes can be made to NeRV, yielding a variant thatwe call t-NeRV. We
then provide a new information retrieval interpretation for t-NeRV and t-SNE.

We start by analyzing the differences between t-SNE and the original stochastic neighbor em-
bedding. The original SNE minimizes the sum of Kullback-Leibler divergences

∑
i

∑
j 6=i

p j|i log
p j|i

q j|i
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Letter Phoneme Landsat TIMIT
Eigenmap 0.914 0.121 0.168 0.674
LLE n/a 0.118 0.212 0.722
Isomap 0.847 0.134 0.156 0.721
MVU 0.763 0.155 0.153 0.699
LMVU 0.819 0.208 0.151 0.787
MDS 0.823 0.189 0.151 0.705
CDA 0.336 0.118 0.141 0.643
CCA 0.422 0.098 0.143 0.633
NeRV 0.532 0.079 0.139 0.626
LocalMDS 0.499 0.118 0.128 0.637

Table 2: Error rates ofk-nearest neighbor classification based on the visualization, for unsupervised
visualization methods. The best results for each data set are in bold; n/a denotes that LLE
did not yield a result for the Letter data. NeRV attains the lowest error rate for two data
sets and second lowest error rate for one data set.

wherep j|i andq j|i are defined by Equations (3) and (2). We showed in Section 2.2 that this cost
function has an information retrieval interpretation: it corresponds to meansmoothed recall of re-
trieving neighbors of query points. The t-SNE method makes two changes which we discuss below.

4.6.1 COST FUNCTION BASED ON JOINT PROBABILITIES

The first change in t-SNE is to the cost function: t-SNE minimizes a “symmetric version” of the
cost function, defined as

∑
i

∑
j 6=i

pi, j log
pi, j

qi, j

where thepi, j andqi, j are now joint probabilities over bothi and j, so that∑i, j pi, j = 1 and similarly
for qi, j . The term “symmetric” comes from the fact that the joint probabilities are defined in a
specific way for whichpi, j = p j,i andqi, j = q j,i ; note that this need not be the case for all definitions
of the joint probabilities.

4.6.2 DEFINITIONS OF THEJOINT PROBABILITIES

The second change in t-SNE is that the joint probabilities are defined in a manner which does not
yield quite the same conditional probabilities as in Equations (3) and (2). The joint probabilities are
defined as

pi, j =
1
2n

(pi| j + p j|i) (6)

wherepi| j andp j|i are computed by Equation (3) andn is the total number of data points in the data
set, and

qi, j =
(1+ ||yi −y j ||

2)−1

∑k6=l (1+ ||yk−yl ||2)−1 . (7)

The former equation is intended to ensure that, in the input space, even outlier points will have some
other points as neighbors. The latter equation means that, in the visualization, the joint probability
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falls off according to a (normalized) t-distribution with one degree of freedom, which is intended
to help with acrowding problem: because the volume of a small-dimensional neighborhood grows
slower than the volume of a high-dimensional one, the neighborhood ends up stretched in the visu-
alization so that moderately distant point pairs are placed too far apart. Thistends to cause clumping
of the data in the center of the visualization. Since the t-distribution has heaviertails than a Gaus-
sian, using such a distribution for theqi, j makes the visualization less affected by the placement of
the moderately distant point pairs, and hence better able to focus on other features of the data.

4.6.3 NEW METHOD: T-NERV

We can easily apply the above-described changes to the cost function in NeRV; we call the resulting
variant t-NeRV. We define the cost function as

Et-NeRV = λ∑
i

∑
j 6=i

pi, j log
pi, j

qi, j
+(1−λ)∑

i
∑
j 6=i

qi, j log
qi, j

pi, j
= λD(p,q)+(1−λ)D(q, p) (8)

wherepandqare the joint distributions overi and j defined by thepi, j and theqi, j , and the individual
joint probabilities are given by Equations (6) and (7).

It can be shown that this changed cost function again has a natural information retrieval interpre-
tation: it corresponds to the tradeoff betweensmoothed precisionandsmoothed recallof a two-step
information retrieval task, where an analyst looks at a visualization and (step 1) picks a query point
and then (step 2) picks a neighbor for the query point. The probability of picking a query pointi
depends on how many other points are close to it (that is, it depends on∑ j qi, j ), and the probability
of picking a neighbor depends as usual on the relative closenesses ofthe neighbors to the query.
Both choices are done based on the visualization, and the choices are compared by smoothed pre-
cision and smoothed recall to the relevant pairs of queries and neighborsthat are defined based on
the input space. The parameterλ again controls the tradeoff between precision and recall.

The connection between theD(p,q) and the recall of the two-step retrieval task can be shown
by a similar proof as in Appendix A, the main difference being that conditionaldistributionsp j|i

andq j|i are replaced by joint distributionspi, j andqi, j , and the sums then go over bothi and j. The
connection betweenD(q, p) and precision can be shown analogously.

As a special case, settingλ = 1 in the above cost function, that is, optimizing only smoothed
recall of the two-step retrieval task, yields the cost function of t-SNE. Wetherefore provide a novel
information retrieval interpretation of t-SNE as a method that maximizes recall ofquery points and
their neighbors.

The main conceptual difference between NeRV and t-NeRV is that in t-NeRVthe probability
of picking a query point in the visualization and in the input space depends on the densities in the
visualization and input space respectively; in NeRV all potential query points are treated equally.
Which treatment of query points should be used depends on the task of the analyst. Additionally,
NeRV and t-NeRV have differences in the technical forms of the probabilities, that is, whether
t-distributions or Gaussians are used etc.

The t-NeRV method can be optimized with respect to visualization coordinatesyi of points, by
conjugate gradient optimization as in NeRV; the computational complexity is also thesame.

4.6.4 COMPARISON

We briefly compare t-NeRV and NeRV on the Faces data set. The setup is the same as in the previous
comparison experiments (Figures 4–7). For t-NeRV we use the effectivenumber of neighborsk= 40
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to compute the joint probabilitiespi, j ; this corresponds to the perplexity value used by the authors
of t-SNE (van der Maaten and Hinton, 2008).

Figure 9 shows the results for the four unsupervised evaluation criteria.According to the mean
smoothed precision and mean smoothed recall measures, t-NeRV does worse in terms of recall.
The rank-based measures indicate a similar result; however, there t-NeRVdoes fairly well in terms
of mean rank-based smoothed precision. The trustworthiness-continuity curves are similar to the
rank-based measures. The curves of mean precision versus mean recall show that t-NeRV does
achieve better precision for small values of recall (i.e., for small retrievedneighborhoods), while
NeRV does slightly better for larger retrieved neighborhoods. These measures correspond to the
information retrieval interpretation of NeRV which is slightly different from that of t-NeRV, as
discussed above. Figure 9E shows mean smoothed precision/recall in the t-NeRV sense, where
t-NeRV naturally performs relatively better.

Lastly, we computedk-nearest neighbor classification error rate (usingk = 5) with respect to
the identity of the persons in the images. NeRV (withλ = 0.3) attained an error rate of 0.394 and
t-NeRV (with λ = 0.8) an error rate of 0.226. Here t-NeRV is better; this may be because it avoids
the problem of crowding samples near the center of the visualization.

Figures 10-12 show example visualizations of the faces data set. First we show a well-performing
comparison method (CDA; Figure 10); it has arranged the faces well in terms of keeping images of
the same person in a single area; however, the areas of each person are diffuse and close to other
persons, hence there is no strong separation between persons on the display. NeRV, here optimized
to maximize precision, makes clearly tighter clusters of each person (Figure 11), which yields better
retrieval of neighbor face images. However, NeRV has here placed several persons close to each
other in the center of the visualization. The t-NeRV visualization, again optimizedto maximize
precision (Figure 12) has lessened this behavior, placing the clusters offaces more evenly.

Overall, t-NeRV is a useful alternative formulation of NeRV, and may be useful for data sets
especially where crowding near the center of the visualization is an issue.

5. Using NeRV for Supervised Visualization

In this section we show how to use NeRV for supervised visualization. The key idea is simple: NeRV
can be computed based on any input-space distancesd(xi ,x j), not only the standard Euclidean
distances. All that is required for supervised visualization is to compute the input-space distances in
a supervised manner. The distances are then plugged into the NeRV algorithm and the visualization
proceeds as usual. Note that doing the visualization modularly in two steps is anadvantage, since it
will be later possible to easily change the algorithm used in either step if desired.

Conveniently, rigorous methods exist for learning a supervised metric from labeled data sam-
ples. Learning of supervised metrics has recently been extensively studied for classification pur-
poses and for some semi-supervised tasks, with both simple linear approaches and complicated
nonlinear ones; see, for instance, works by Xing et al. (2003), Chang and Yeung (2004), Globerson
and Roweis (2006) and Weinberger et al. (2006). Any such metric can inprinciple be used to com-
pute distances for NeRV. Here we use an early one, which is flexible and can be directly plugged
in the NeRV, namely thelearning metric(Kaski et al., 2001; Kaski and Sinkkonen, 2004; Peltonen
et al., 2004) which was originally proposed for data exploration tasks.

We will call NeRV computed with the supervised distances “supervised NeRV” (SNeRV). The
information retrieval interpretation of NeRV carries over to SNeRV. Undercertain parameter set-
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Figure 9: Comparison of NeRV and t-NeRV on the Faces data set accordingto the four goodness
measures described in Section 4.3 (A-D), and for mean smoothed precision/recall corre-
sponding to the information retrieval interpretation of t-NeRV (E; first and second terms
of Eqn. 8).

tings SNeRV can be seen as a new, supervised version of stochastic neighbor embedding, but more
generally it manages a flexible tradeoff between precision and recall of the information retrieval just
like the unsupervised NeRV does.

SNeRV has the useful property that it can directly compute embeddings for unlabeled training
points as well as labeled ones. By contrast, some supervised nonlinear dimensionality reduction
methods (Geng et al., 2005; Liu et al., 2005; Song et al., 2008) only give embeddings for labeled
points; for unlabeled points, the mapping is approximated for instance by interpolation or by training
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Figure 10: Example visualization of the Faces data set with CDA.

a neural network. Such approximation is not needed for SNeRV. (On theother hand, a trained neural
network can embed not only unlabeled training points, but also previously unseen new points; if
such generalization is desired, the same kinds of approximate mappings can be learned for SNeRV.)

In the next subsections we present the details of the distance computation, and then describe
experimental comparisons showing that SNeRV outperforms several existing supervised methods.

5.1 Supervised Distances for NeRV

The input-space distances for SNeRV are computed usinglearning metrics(Kaski et al., 2001;
Kaski and Sinkkonen, 2004; Peltonen et al., 2004). It is a formalism particularly suited for so-
called “supervised unsupervised learning” where the final goal is still tomake discoveries as in
unsupervised learning, but the metric helps to focus the analysis by emphasizing useful features
and, moreover, does that locally, differently for different samples. Learning metrics have previously
been applied to clustering and visualization.

In brief, the learning metric is a Riemannian topology-preserving metric that measures dis-
tances in terms of changes in the class distribution. The class distribution is estimated through
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Figure 11: Example visualization of the Faces data set with NeRV, here maximizing precision
(tradeoff parameterλ = 0).

conditional density estimation from labeled samples. Topology preservation helps in generalizing
to new points, since class information cannot override the input space topology. In this metric, we
can compute input-space distances between any two data points, and hencevisualize the points with
NeRV, whether they have known labels or not.

5.1.1 DEFINITION

The learning metric is a so-called Riemannian metric. Such a metric is defined in a local manner;
between two (infinitesimally) close-by points it has a simple form, and this simple form is extended
through path integrals to global distances.

In the learning metric, the squared distance between two close-by pointsx1 andx2 is given by
the quadratic form

dL(x1,x2)
2 = (x1−x2)

TJ(x1)(x1−x2). (9)
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Figure 12: Example visualization of the Faces data set with t-NeRV, here maximizing precision
(tradeoff parameterλ = 0).

HereJ(x) is the Fisher information matrix which describes the local dependency of the conditional
class distribution on the input features, that is,

J(x) = ∑
c

p(c|x)

(

∂
∂x

logp(c|x)

)(

∂
∂x

logp(c|x)

)T

.

Here thec are the classes and thep(c|x) are the conditional class probabilities at pointx. The
idea is that the local distances grow the most along directions where the conditional class distribu-
tion p(c|x) changes the most. It can be shown that the quadratic form (9) is, for close-by points,
equivalent to the Kullback-Leibler divergenceD(p(c|x1), p(c|x2)).

The general distancedL(x1,x2) between two far-away pointsx1 andx2 is defined in the standard
fashion of Riemannian metrics: the distance is theminimal path integralover local distances, where
the minimum is taken over all possible paths connectingx1 andx2. Notice that in a Riemannian
metric, the straight path may not yield the minimum distance.
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Learning metrics defined in the above manner satisfy the three criteria required of any metric:
the distancesdL are nonnegative, symmetric, and satisfy the triangle inequality. Because thelearning
metric distances are defined as minimal path integrals they preserve the topology of the input space;
roughly speaking, if the distance between two points is small, then there must bea path between
them where distances are small along the entire path.

5.1.2 PRACTICAL COMPUTATION

In order to compute local distances using the Fisher information matricesJ(x), we need an esti-
mate for the conditional probability distributionsp(c|x). We learn the distributions by optimizing
a discriminative mixture of labeled Gaussian densities for the data (Peltonen etal., 2004). The
conditional density estimate is of the form

p̂(c|x) =
∑K

k=1 βckexp(−||x−mk||
2/2σ2)

∑K
k=1exp(−||x−mk||2/2σ2)

(10)

where the number of GaussiansK, the centroidsmk, the class probabilitiesβck and the Gaussian
width σ (standard deviation) are parameters of the estimate; we require that theβck are nonnegative
and that∑c βck = 1 for all k. Themk andβck are optimized by a conjugate gradient algorithm to
maximize the conditional class likelihood, andK andσ are chosen by internal cross-validation (see
Section 5.3).

Given the Fisher matrices, we next need to compute the global distances between all point pairs.
In most cases the minimal path integrals in the global distance definition cannot be computed ana-
lytically, and we use a graph-based approximation. We first form a fully connected graph between
all known data points, where the path between each pair of points is approximated by a straight
line. For these straight paths, the path integral can be computed by piecewise approximation (see
Peltonen et al., 2004, for details; we useT = 10 pieces in all experiments). We could then use graph
search (Floyd’s algorithm) to find the shortest paths in the graph and use the shortest path distances
as the learning metric distances. This graph approximation would takeO(n3) time wheren is the
number of data points; note that this would not be excessive since a similar graph computation is
needed in methods like isomap. However, in our experiments the straight line paths yielded about
equally good results, so we simply use them, which takes onlyO(n2) time. Therefore SNeRV as a
whole took onlyO(n2) time just like NeRV.

5.2 Comparison Methods for Supervised Visualization

For each data set to be visualized, the choice of supervised vs. unsupervised visualization is up to
the analyst; in general, supervised embedding will preserve differences between classes better but at
the expense of within-class details. In the experiments of this section we concentrate on comparing
performances of supervised methods; we will compare SNeRV to three recent supervised nonlinear
embedding methods.

Multiple relational embedding(MRE; Memisevic and Hinton, 2005) was proposed as an ex-
tension of stochastic neighbor embedding (Hinton and Roweis, 2002). MREminimizes a sum of
mismatches, measured by Kullback-Leibler divergence, between neighborhoods in the embedding
and several different input neighborhoods: typically one of the inputneighborhoods is derived from
the input-space coordinates and the others are derived from auxiliary information such as labels.
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MRE is able to use unlabeled data; for unlabeled points, divergences thatinvolve neighborhoods
based on labels are simply left out of the cost function.

Colored maximum variance unfolding(Song et al., 2008) is an extension of the unsupervised
maximum variance unfolding. It maximizes the dependency between the embedding coordinates
and the labels according to the Hilbert-Schmidt independence criterion, which is based on a cross-
covariance operator. This leads to constrained optimization of the output kernel. Because of these
details the method is also called maximum unfolding via Hilbert-Schmidt independence criterion
(MUHSIC); we use this abbreviation.

Supervised isomap(S-Isomap; Geng et al., 2005) is an extension of the unsupervised isomap.
The only difference to unsupervised isomap is a new definition of the input-space distances: roughly
speaking, distances between points in different classes will grow fasterthan distances between
same-class points. The actual embedding is done in the same way as in unsupervised isomap (de-
scribed in Section 4.1). Other supervised extensions of isomap have beenintroduced by Li and Guo
(2006) and Gu and Xu (2007).

Parametric embedding(PE; Iwata et al., 2007) represents the embedded data with a Gaussian
mixture model with all Gaussians having the same covariances in the embedding space, and attempts
to preserve the topology of the original data by minimizing a sum of Kullback-Leibler divergences.

Neighbourhood component analysis(NCA; Goldberger et al., 2005; see also Kaski and Pel-
tonen, 2003, Peltonen and Kaski, 2005) is a linear and non-parametric dimensionality reduction
method which learns a Mahalanobis distance measure such that, in the transformed space,k-nearest
neighbor classification achieves the maximum accuracy.

5.3 Methodology for the Supervised Experiments

We used the four benchmark data sets having class information (Letter, Phoneme, Landsat, and
TIMIT described in Section 4.5) to compare supervised NeRV and the five supervised visualization
methods described in Section 5.2, namely multiple relational embedding (MRE), colored maximum
variance unfolding (MUHSIC), supervised isomap (S-Isomap), parametric embedding (PE), and
neighbourhood component analysis (NCA). We used a standard 10-fold cross-validation setup: in
each fold we reserve one of the subsets for testing and use the rest of the data for training. For each
data set, we use SNeRV and the comparison methods to find 2-dimensional visualizations.

In principle we could evaluate the results as in Section 4.3 for the unsupervised experiments,
that is, by mean smoothed precision and recall; the only difference would beto use the supervised
learning metric for the evaluation. However, unlike SNeRV, the other methodshave not been for-
mulated using the same supervised metrics. To make an unbiased comparison ofthe methods, we
resort to a simple indirect evaluation: we evaluate the performance of the four methods by class pre-
diction accuracy of the resulting visualizations. Although it is an indirect measure, the accuracy is a
reasonable choice for unbiased comparison and has been used in several supervised dimensionality
reduction papers. In more detail, we provide test point locations during training but not their labels;
after the methods have computed their visualization results, we classify the testpoints by running
a k-nearest neighbor classifier (k = 5) on the embedded data, and evaluate the classification error
rates of the methods.

We use a standard internal 10-fold validation strategy to choose all parameters which are not
optimized by their respective algorithms: each training set is subdivided into 10 folds where 9/10 of
data is used for learning and 1/10 for validation; we learn visualizations with the different parameter
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values; the values that yielded the best classification accuracy for the embedded validation points
are then chosen and used to compute the final visualization for the whole training data.

We ran two versions of SNeRV usingλ = 0.1 andλ = 0.3. The scaling parametersσi were set
by fixing the entropy of the input neighborhoods as described in Section 2.2. Here we specified the
rough upper limit for the number of relevant neighbors as 0.5 ·n/K wheren is the number of data
points andK is the number of mixture components used to estimate the metric; this choice roughly
means that for well-separated mixture components, each data point will on average consider half
of the data points from the same mixture component as relevant neighbors. Asimplified validation
sufficed for the numberK and widthσ of Gaussians: we did not need to run the embedding step but
picked the values that gave best conditional class likelihood for validation points in the input space.
For S-Isomap we chose its parameterα and its number of nearest neighbors using the validation sets,
and trained a generalized radial basis function network to project new points, as suggested by Geng
et al. (2005). For MUHSIC, the parameters are the regularization parameter ν, number of nearest
neighbors, and number of eigenvectors in the graph Laplacian, and we used linear interpolation to
project new points as suggested by the MUHSIC authors. For MRE the onlyfree parameter is its
neighborhood smoothness parameterσMRE. For the PE one needs to provide a conditional density
estimate: we used the same one that SNeRV uses (see Equation 10) to obtain a comparison as
unbiased as possible. Neighbourhood component analysis is a non-parametric method, therefore
we did not need to choose any parameters for it.

5.4 Results of Supervised Visualization

Figure 13 shows the average error rate over the 10 folds as well as the standard deviation. The best
two methods are SNeRV and PE, which give good results in all data sets. On two of the data sets
(Letter and TIMIT) SNeRV is clearly the best; on the other two data sets (Phoneme and Landsat)
SNeRV is about as good as the best of the remaining methods (S-Isomap andparametric embedding,
respectively). MRE is clearly worse than the other methods, whereas MUHSIC and NCA results
depend on the data set: on Letter they are the second and third worst methods after MRE, while in
the other data sets they are not far from the best methods.

The value of the tradeoff parameterλ did not affect the performance of SNeRV much; both
λ = 0.1 andλ = 0.3 produced good projections.

To evaluate whether the best method on each data set is statistically significantlybetter than the
next best one, we performed a pairedt-test of the performances across the 10 cross-validation folds
(Table 3). The two best methods compared are always SNeRV and parametric embedding, except
for the Phoneme data set for which the two best methods are SNeRV and S-Isomap. For the Letter
and the TIMIT data sets SNeRV is significantly better than the next best method, while for the other
two data sets the difference is not significant. In summary, all the significantdifferences are in favor
of SNeRV.

Figure 14 presents sample visualizations of the letter recognition data set; projection results are
shown for one of the 10 cross-validation folds, including both training andtest points. Although
there is some overlap, in general SNeRV shows distinct clusters of classes—for example, the letter
“M” is a well separated cluster in the top of the figure.

Parametric embedding also manages to separate some letters, such as “A” and“I”, but there
is a severe overlap of classes in the center of the figure. In S-Isomap wesee that there are a few
very well separated clusters of classes, like the letters “W” and “N”, butthere is a large area with
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Figure 13: Performance of the supervised nonlinear embedding methods ineach benchmark data
set. The results are average classification error rates over 10 cross-validation folds
(smaller is better), and the standard deviations are shown with error bars.

Data set Best method Second best p-value
Letter SNeRV (λ = 0.1) PE 1.8·10−6

Phoneme S-Isomap SNeRV (λ = 0.3) 0.54
Landsat SNeRV (λ = 0.3) PE 0.28
TIMIT SNeRV (λ = 0.1) PE 3.4·10−3

Table 3: Statistical significance of the difference between the two best methods. Thep-values are
from a pairedt-test of the 10-fold cross-validation results; statistically significant winners
have been boldfaced.

overlapping classes near the center of the right edge of the figure. Thisoverlap is worse than in
SNeRV but still roughly comparable; by contrast, MUHSIC, MRE and NCA performed poorly on
this data set, leaving most classes severely overlapped.

6. Conclusions and Discussion

By formulating the task of nonlinear projection for information visualization as an information re-
trieval task, we have derived a rigorously motivated pair of measures for visualization performance,
mean smoothed precisionandmean smoothed recall. We showed that these new measures are exten-
sions of two traditional information retrieval measures: mean smoothed precision can be interpreted
as a more sophisticated extension of mean precision, the proportion of falsepositives in the neigh-
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Figure 14: Visualizations of the letter recognition data set by all supervisedmethods.

borhood retrieved from the visualization. Analogously, mean smoothed recall is an extension of
mean recall, the proportion of misses incurred by the retrieved neighborhood.

We introduced an algorithm calledneighbor retrieval visualizer(NeRV) that optimizes the total
cost, interpretable as a tradeoff between mean smoothed precision and meansmoothed recall. The
tradeoff is governed by a parameterλ set by the user according to the desired cost of a miss relative
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to the desired cost of a false positive. The earlier method stochastic neighbor embedding is obtained
as a special case whenλ = 1, optimizing mean smoothed recall.

We showed that NeRV can be used for both unsupervised and supervised visualization. For
unsupervised visualization, we simply use fixed input distances; for supervised visualization we
learn a supervised distance metric for the input space and plug the resultinginput distances to the
NeRV algorithm. In the latter case the key idea is to use supervision (labeled data) in a way that
does not override the input feature space; we use a topology-preserving class-discriminative metric
called thelearning metricfor the input space.

In unsupervised visualization, NeRV outperformed alternatives for mostof the six data sets we
tried, for four different pairs of measures, and was overall the bestmethod. NeRV also performed
well in a comparison by unsupervised classification. Many of the best manifold extraction meth-
ods perform surprisingly poorly, most likely because they have not been designed to reduce the
dimensionality below the intrinsic dimensionality of the data manifold. In visualization,however,
we generally have no choice but to reduce the dimensionality of the data to two or three, even if
its intrinsic dimensionality is higher. NeRV is designed to find a mapping that is, in a well-defined
sense, optimal for a certain type of visualization regardless of the intrinsic dimensionality of the
data.

In supervised visualization, the supervised version of NeRV performedas well as or better than
the best alternative method Parametric embedding; this shows that the plug-in learning metrics work
well in incorporating supervision.

6.1 Discussion

NeRV models relevance using probability distributions, which makes sense if the total “amount”
of relevance for any query is normalized to a fixed sum. Such normalization isdesirable for any
relevance measure, because for any query (point of interest) the relevance of a retrieved neighbor
point should depend on its proximity relative to the proximities of other points, rather than on its
absolute distance from the query point. (Our previous method, local MDS,can be thought of as an
attempt to approximate NeRV without the normalization.)

The Kullback-Leibler divergences in NeRV are natural choices for measuring the difference
between two probability distributions, but in principle other divergence measures could be used as
well. The notions of neighbor retrieval and a probabilistic relevance model are the crucial parts of
NeRV, not the specific divergence measure.

Our notion of plug-in supervised metrics could in principle be used with other methods too;
other unsupervised embedding algorithms that work based on a distance matrix can also be turned
into supervised versions, by plugging in learning metric distances into the distance matrix. We
performed an initial experiment with Sammon’s mapping (Peltonen et al., 2004);a similar idea
for isomap appeared later (Weng et al., 2005). However, we believe thatNeRV is an especially
attractive choice for the embedding step since it has the information retrievalinterpretation and it
performed well empirically.

An implementation of the NeRV and local MDS algorithms as well as themean smoothed
precision-mean smoothed recallmeasures is available athttp://www.cis.hut.fi/projects/
mi/software/dredviz
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Appendix A. Proof of the Connection between the Probabilistic Cost Functions and
Precision and Recall

In Section 2.2 we introduced Kullback-Leibler divergences as cost functions for visual neighbor
retrieval, based on probability distributionsqi andpi which generalize the relevance model implicit
in precision and recall. We will next show that in the simple case of “binary neighborhoods” the
cost functions reduce to precision and recall. By “binary neighborhoods” we mean that, in both the
input space and the visualization, (i) the point of interest has some number of relevant neighbors
and all the other points are completely irrelevant, and (ii) the points that are relevant are all equally
relevant.

In the probabilistic model the binary neighborhoods can be interpreted as follows. Let i be the
point of interest, and letPi be the set of relevant neighbors for pointi in the input space.Pi can
be the set of all points (other thani itself) falling inside some fixed radius from pointi in the input
space, or it can be the set containing some fixed number of points nearestto i in the input space. In
either case, letr i be the size ofPi .

We define that the relevant neighbors of the point of interesti have an equal non-zero probability
of being chosen, and all the other points have a near-zero probability ofbeing chosen. In other
words, we define

p∗j|i =

{

ai ≡
1−δ
r i

, if point j is in Pi

bi ≡
δ

N−r i−1 , otherwise.

HereN is the total number of data points, and 0< δ ≪ 0.5 gives the irrelevant points a very small
probability.

Similarly, letQi be the set of neighbors for pointi in the visualization. Again,Qi can be the set
of all points (other thani itself) falling inside some fixed radius from pointi in the visualization, or
it can be the set containing some fixed number of points nearest toi in the visualization. In either
case, letki be the size ofQi . Note that the sizes ofQi andPi can be different, that is,ki can be
different fromr i .

We define the probability of choosing a neighbor from the visualization as

q∗j|i =

{

ci ≡
1−δ
ki

, if point j is in Qi

di ≡
δ

N−ki−1 , otherwise.

Consider the Kullback-Leibler divergenceD(p∗i ,q
∗
i ) for any fixedi. We now show that mini-

mizing this divergence is equivalent to maximizing recall where pointi is the query. The divergence

is a sum over elementsp∗j|i log
p∗j|i
q∗j|i

, thus the sum can be divided into four parts depending on which
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valuep∗j|i takes (two possibilities) and which valueq∗j|i takes (two possibilities). We get

D(p∗i ,q
∗
i ) = ∑

j 6=i,p∗j|i=ai ,q∗j|i=ci

(

ai log
ai

ci

)

+ ∑
j 6=i,p∗j|i=ai ,q∗j|i=di

(

ai log
ai

di

)

+ ∑
j 6=i,p∗j|i=bi ,q∗j|i=ci

(

bi log
bi

ci

)

+ ∑
j 6=i,p∗j|i=bi ,q∗j|i=di

(

bi log
bi

di

)

=

(

ai log
ai

ci

)

NTP,i +

(

ai log
ai

di

)

NMISS,i +

(

bi log
bi

ci

)

NFP,i +

(

bi log
bi

di

)

NTN,i

where on the last line the terms inside parentheses are simply constant coefficients. HereNTP,i is
the number of true positives for this query, that is, points for which the probability is high in both
the data and the visualization. The number of misses, that is, the number of points that have a low
probability in the visualization although the probability in the data is high, isNMISS,i . The number
of false positives (high probability in the visualization, low in the data) isNFP,i . Finally the number
of true negatives (low probability in both the visualization and the data) isNTN,i .

It is straightforward to check that ifδ is very small, then the coefficients for the misses and false
positives dominate the divergence. This yields

D(p∗i ,q
∗
i ) ≈ NMISS,i

(

ai log
ai

di

)

+NFP,i

(

bi log
bi

ci

)

= NMISS,i
1−δ

r i

(

log
(N−ki −1)

δ
+ log

(1−δ)

r i

)

+NFP,i
δ

N− r i −1

(

log
δ

N− r i −1
− log

(1−δ)

ki

)

= NMISS,i
1−δ

r i

(

log
(N−ki −1)

r i
+ log

(1−δ)

δ

)

+NFP,i
δ

N− r i −1

(

log
ki

N− r i −1
− log

(1−δ)

δ

)

. (11)

Because the terms log[(1−δ)/δ] dominate the other logarithmic terms, (11) further simplifies to

D(p∗i ,q
∗
i ) ≈

(

NMISS,i
1−δ

r i
−NFP,i

δ
N− r i −1

)

log
(1−δ)

δ

≈ NMISS,i
1−δ

r i
log

(1−δ)

δ
=

NMISS,i

r i
C

whereC is a constant that only depends onδ and not oni. Hence if we minimized this cost function,
we would be maximizing the recall of the query, which is defined as

recall(i) =
NTP,i

r i
= 1−

NMISS,i

r i
.

We can analogously show that for any fixedi, minimizing D(q∗i , p∗i ) is equivalent to maximizing
precision of the corresponding query.

BecauseD(q∗i , p∗i ) andD(p∗i ,q
∗
i ) are equivalent to precision and recall, andpi andqi can be

seen as more sophisticated generalizations ofp∗i andq∗i , we interpretD(qi , pi) andD(pi ,qi) as more
sophisticated generalizations of precision and recall.
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