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Abstract
Information theoretic measures form a fundamental class ofmeasures for comparing clusterings,
and have recently received increasing interest. Nevertheless, a number of questions concerning
their properties and inter-relationships remain unresolved. In this paper, we perform an organized
study of information theoretic measures for clustering comparison, including several existing pop-
ular measures in the literature, as well as some newly proposed ones. We discuss and prove their
important properties, such as the metric property and the normalization property. We then high-
light to the clustering community the importance of correcting information theoretic measures for
chance, especially when the data size is small compared to the number of clusters present therein.
Of the available information theoretic based measures, we advocate the normalized information
distance (NID) as a general measure of choice, for it possesses concurrently several important
properties, such as being both a metric and a normalized measure, admitting an exact analytical
adjusted-for-chance form, and using the nominal[0,1] range better than other normalized variants.

Keywords: clustering comparison, information theory, adjustment for chance, normalized infor-
mation distance

1. Introduction

Clustering comparison measures play an important role in cluster analysis. Most often, such mea-
sures are used for external validation, that is, assessing the goodness of clustering solutions accord-
ing to a “ground truth” clustering. Recent advances in cluster analysis have driven new algorithms,
in which the clustering comparison measures are used actively in searchingfor good clustering so-
lutions. One such example occurs in the context of ensemble (consensus)clustering, whose aim is
to unify a set of clusterings, already obtained by some algorithms, into a singlehigh quality one
(Singh et al., 2009; Strehl and Ghosh, 2002; Charikar et al., 2003). Apossible approach is to choose
the clustering which shares the most information with all the other clusterings, such as in Strehl
and Ghosh (2002). A measure is therefore needed to quantify the amountof information shared
between clusterings, more specifically in this case, between the “centroid” clustering and all the
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other clusterings. Another example is in model selection by stability assessment(Ben-David et al.,
2006; Shamir and Tishby, 2008). A possible realization of this scheme is to measure the average
pairwise distances between all the clusterings obtained under some sort ofperturbations (Vinh and
Epps, 2009), hence requiring a clustering comparison measure.

Numerous measures for comparing clusterings have been proposed. Besides the class ofpair-
counting basedand set-matching basedmeasures,information theoreticmeasures form another
fundamental class. In the clustering literature, such measures have beenemployed because of their
strong mathematical foundation, and ability to detect non-linear similarities. For the particular pur-
pose of clustering comparison, this class of measures has been popularized through the works of
Strehl and Ghosh (2002) and Meilă (2005), and since then has been employed in various subse-
quent research (Fern and Brodley, 2003; He et al., 2008; Asur et al., 2007; Tumer and Agogino,
2008). In this context, the pioneering works of Meilă (2003, 2005, 2007) have shown a number of
desirable theoretical properties of one of these measures—thevariation of information(VI)—such
as its metric property and its alignment with the lattice of partitions. Although having received con-
siderable interest, in our opinion, the application of information theoretic measures for comparing
clustering has been somewhat scattered. Apart from the VI which possesses a fairly comprehen-
sive characterization, less is known about themutual informationand various forms of the so-called
normalized mutual information(Strehl and Ghosh, 2002). The main technical contributions of this
paper can be summarized as being three-fold:

1. We first review and make a coherent categorization of information theoretic similarity and
distance measures for clustering comparison. We then discuss and provetheir two important prop-
erties, namely the normalization and the metric properties. We show that among theprospective
measures, thenormalized information distance(NID) and thenormalized variation of information
(NVI) satisfy both these desirable properties.

2. We draw the attention of the clustering community towards the necessity of correcting infor-
mation theoretic measures for chance in certain situations, derive analyticalforms for the proposed
adjusted-for-chance measures, and investigate their properties. Preliminary results regarding cor-
recting information theoretic measures for chance have previously appeared in Vinh, Epps, and Bai-
ley (2009). In this paper, we further analyze the large sample propertiesof the adjusted measures,
and give a recommendation as to when adjustment is mostly needed.

3. Of the available information theoretic measures, we advocate the normalizedinformation
distance (NID) as a general purpose measure for comparing clusterings, which has the advantage
of being both a metric and a normalized measure, admitting an exact analytical adjusted-for-chance
form, and using better the nominal[0,1] range. For ease of reading, we present the proofs of all
results herein in the Appendix.

2. A Brief Review of Measures for Comparing Clusterings

Let Sbe a set ofN data items, then a (partitional) clusteringU on S is a way of partitioningS into
non-overlap subsets{U1,U2, . . . ,UR}, where∪R

i=1Ui = S andUi ∩U j = /0 for i 6= j. The informa-
tion on the overlap between two clusteringsU = {U1,U2, . . . ,UR} andV = {V1,V2, . . . ,VC} can be
summarized in form of aR×C contingency table M= [ni j ]

i=1...R
j=1...C as illustrated in Table 1, whereni j

denotes the number of objects that are common to clustersUi andVj .
Pair counting based measuresare built upon counting pairs of items on which two clusterings

agree or disagree. Specifically, the
(N

2

)

item pairs inScan be classified into one of the 4 types—N11:
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U\V V1 V2 . . . VC Sums
U1 n11 n12 . . . n1C a1

U2 n21 n22 . . . n2C a2
...

...
...

. . .
...

...
UR nR1 nR2 . . . nRC aR

Sums b1 b2 . . . bC ∑i j ni j = N

Table 1: The Contingency Table,ni j = |Ui ∩Vj |

the number of pairs that are in the same cluster in bothU andV; N00: the number of pairs that are
in different clusters in bothU andV; N01: the number of pairs that are in the same cluster inU but
in different clusters inV; andN10: the number of pairs that are in different clusters inU but in the
same cluster inV—that can be calculated using theni j ’s (Hubert and Arabie, 1985). Intuitively,N11

andN00 can be used as indicators of agreement betweenU andV, while N01 andN10 can be used
as disagreement indicators. A well known index of this class is the Rand index(RI, Rand 1971),
defined straightforwardly as RI(U,V) = (N00+N11)/

(N
2

)

, which lies in the nominal range of [0,1].
In practice however, the RI often lies within the narrower range of [0.5,1]. Also, its baseline value
can be high and does not take on a constant value. For these reasons,the RI has been mostly used
in it adjusted form, known as the adjusted Rand index (ARI, Hubert and Arabie 1985):

ARI(U,V) =
2(N00N11−N01N10)

(N00+N01)(N01+N11)+(N00+N10)(N10+N11)
.

The ARI is bounded above by 1, and equals 0 when the RI equals its expected value (under the gen-
eralized hypergeometric distribution assumption for randomness). Besidesthe ARI, there are many
other, possibly less popular, measures in this class. Albatineh et al. (2006) made a comprehensive
list of 22 different indices of this type, a number which is large enough to make the task of choosing
an appropriate measure difficult and confusing. Their work, and subsequent extension of Warrens
(2008), showed that after correction for chance, some of these measures become equivalent. De-
spite the existence of numerous measures, the ARI remains the most well-known and widely used
(Steinley, 2004). Therefore, in this work, we take it as the representative of this class for comparison
with other measures. Although the ARI has been mainly used in its similarity form, it can be easily
shown that its distance version, that is, 1−ARI, is not a proper metric.

Set matching based measures, as their name suggests, are based on finding matches between
clusters in the two clusterings. A popular measure is the classification error rate which is often
employed in supervised learning. Several other indices are discussed inMeilă (2007), all suffering
from two major problems which have long been known in the clustering comparing literature (Dom,
2001; Steinley, 2004; Meilă, 2007) namely: (i) the number of clusters in the two clusterings may
be different, making this approach problematic, since there are some clusters which are put outside
consideration; and (ii) even when the numbers of clusters are the same, theunmatched part of each
matched cluster pair is still put outside consideration. Due to the problems with thisclass of indices,
we shall not consider them further in this paper.

Information theoretic based measuresare built upon fundamental concepts from information
theory (Cover and Thomas, 1991). Given two clusteringsU andV, their entropies, joint entropy,
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conditional entropies and mutual information (MI) are defined naturally via the marginal and joint
distributions of data items inU andV respectively as:

H(U) = −
R

∑
i=1

ai

N
log

ai

N
,

H(U,V) = −
R

∑
i=1

C

∑
j=1

ni j

N
log

ni j

N
,

H(U|V) = −
R

∑
i=1

C

∑
j=1

ni j

N
log

ni j/N

b j/N
,

I(U,V) =
R

∑
i=1

C

∑
j=1

ni j

N
log

ni j/N

aib j/N2 .

The MI measures the information thatU andV share: it tells us how much knowing one of these
clusterings reduces our uncertainty about the other. From a communicationtheory point of view, the
above-defined quantities can be interpreted as follows. Suppose we need to transmit all the cluster
labels inU on a communication channel, thenH(U) can be interpreted as the average amount of
information, for example, in bits, needed to encode the cluster label of eachdata point according to
U. Now suppose thatV is made available to the receiver, thenH(U|V) denotes the average number
of bits needed to transmit each label inU if V is already known. We are interested in how seeing
how muchH(U|V) is smaller thanH(U), that is, how much the knowledge ofV helps us to reduce
the number of bits needed to encodeU. This can be quantified in terms of the mutual information
H(U)−H(U|V) = I(U,V). The knowledge ofV thus helps us to reduce the number of bits needed
to encode each cluster label inU by an amount ofI(U,V) bits. In the reverse direction we also have
I(U,V) = H(V)−H(V|U). Clearly, the higher the MI, the more useful the information inV helps
us to predict the cluster labels inU and vice-versa.

Before closing this section, we list several generally desirable properties of a clustering com-
parison measure. This list is not meant to be exhaustive, and particular applications might require
other specific properties.

• Metric property: the metric property requires that a distance measure satisfy the properties
of a true metric, namely positive definiteness, symmetry and triangle inequality. As the most
basic benefit, the metric property conforms to our intuition of distance (Meilă, 2007). Further-
more, it is important if one would like to study, either the structure of, or designalgorithms
for the complex space of clusterings, as many nice theoretical results already exist for metric
spaces.

• Normalization: the normalization property requires that the range of a similarity or distance
measure lies within a fixed range, for example, [-1,1] or [0,1]. Normalizationfacilitates
interpretation and comparison across different conditions (Strehl and Ghosh, 2002; Luo et al.,
2009), where unbounded measures might have different ranges. Also, normalization has been
shown to improve the sensitiveness of certain measures, such as the MI, with respect to the
difference in cluster distribution in the two clusterings (Wu et al., 2009). Thefact that all of the
22 different pair counting based measures discussed in Albatineh et al. (2006) are normalized,
further stresses the particular interest of the clustering community in this property.
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• Constant baseline property: for a similarity measure, its expected value between pairs of
independent clusterings, for example, clusterings sampled independentlyat random, should
be a constant. Ideally this baseline value should be zero, indicating no similarity. The Rand
index is an example of a similarity index which does not satisfy this rather intuitiveproperty,
the reason why it has been mainly used in its adjusted form.

3. Information Theoretic Based Measures - Variants and Properties

Name Expression Range Related sources

Mutual Information (MI) I(U,V) [0,min{H(U),H(V)}] Banerjee et al. (2005)
Normalized MI (NMI)

NMI joint
I(U,V)
H(U,V)

[0,1] Yao (2003)

NMImax
I(U,V)

max{H(U),H(V)} [0,1] Kvalseth (1987)

NMIsum
2I(U,V)

H(U)+H(V)
[0,1] Kvalseth (1987)

NMIsqrt
I(U,V)√

H(U)H(V)
[0,1] Strehl and Ghosh (2002)

NMImin
I(U,V)

min{H(U),H(V)} [0,1]
Kvalseth (1987)
Liu et al. (2008)

Adjusted-for-Chance MI (see Section 4)

AMI max
† I(U,V)−E{I(U,V)}

max{H(U),H(V)}−E{I(U,V)} [0,1]∗

AMI sum
† I(U,V)−E{I(U,V)}

1
2 [H(U)+H(V)]−E{I(U,V)} [0,1]∗

AMI sqrt
† I(U,V)−E{I(U,V)}√

H(U)H(V)−E{I(U,V)} [0,1]∗

AMI min
† I(U,V)−E{I(U,V)}

min{H(U),H(V)}−E{I(U,V)} [0,1]∗

∗These measures are normalized in a stochastic sense, being equal to 1 ifthe (unadjusted) measures equal
their value as expected by chance agreement.†Our proposed measures.

Table 2: Information theoretic-based similarity measures

Similarity measures: the mutual information (MI), a non-negative quantity, can be employed as
the most basic similarity measure. Based on the observation that the MI is upper-bounded by the
following quantities:

I(U,V)≤ min{H(U),H(V)} ≤
√

H(U)H(V)≤ 1
2
(H(U)+H(V))≤ max{H(U),H(V)} ≤ H(U,V), (1)

we can derive several normalized versions of the mutual information (NMI) as listed in Table 2.
All the normalized variants are bounded in [0,1], equaling 1 when the two clusterings are identical,
and 0 when they are independent, that is, sharing no information about each other. In the latter case,
the contingency table takes the form of the so-called “independence table”whereni j = |Ui ||Vj |/N
for all i, j. The MI and some of its normalized versions have been used in the clusteringlitera-
ture as similarity measures between objects in general (see, for example, Yao, 2003 and references
therein). For the particular purpose of clustering comparison, Banerjeeet al. (2005) employed the
unnormalized MI. Strehl and Ghosh (2002) on the other hand made use ofthe NMIsqrt normalized
version, which has also been used in several follow-up works in the context of ensemble clustering
(Fern and Brodley, 2003; He et al., 2008; Asur et al., 2007; Tumer andAgogino, 2008).
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Name Expression Range Metric Related sources

Unnormalized distance measures
D joint H(U,V)− I(U,V) [0,logN] X

Yao (2003)
(Variation of Information ) Meilă (2005)

Dmax max{H(U),H(V)}− I(U,V) [0,logN] X

Dsum(≡ 1/2D joint)
1
2 [H(U)+H(V)]− I(U,V) [0,logN] X

Dsqrt
√

H(U)H(V)− I(U,V) [0,logN] ✗

Dmin min{H(U),H(V)}− I(U,V) [0,logN] ✗

Normalized distance measures

d joint (Normalized VI) 1− I(U,V)
H(U,V)

[0,1] X Kraskov et al. (2005)

dmax (Normalized
1− I(U,V)

max{H(U),H(V)} [0,1] X Kraskov et al. (2005)
Information Distance)

dsum 1− 2I(U,V)
H(U)+H(V)

[0,1] ✗

dsqrt 1− I(U,V)√
{H(U),H(V)} [0,1] ✗

dmin 1− I(U,V)
min{H(U),H(V)} [0,1] ✗

Adjusted-for-Chance distance measures (see Section 4)
Admax

† 1−AMI max [0,1]∗ ✗

Adsum
† 1−AMI sum [0,1]∗ ✗

Adsqrt
† 1−AMI sqrt [0,1]∗ ✗

Admin
† 1−AMI min [0,1]∗ ✗

∗These measures are normalized in a stochastic sense, being equal to 0 ifthe (unadjusted) measures equal
their value as expected by chance agreement.†Our proposed measures.D denotes an unnormalized
distance measure,d denotes a normalized distance measure

Table 3: Information theoretic-based distance measures

Distance measures:based on the five upper bounds forI(U,V) given in (1), we can define five
distance measures, namelyD joint ,Dmax,Dsum,Dsqrt andDmin, as detailed in Table 3. However, it can
be seen thatD joint = 2Dsum,1 and these two measures have been known in the clustering literature
as the variation of information—VI (Meilă, 2005). The fact thatD joint (and henceDsum) is a true
metric is a well known result (Meilă, 2005). In addition, we also present the following new results
(see Appendix for proof):

Theorem 1 Dmax is a metric.

Theorem 2 Dmin and Dsqrt are not metrics.

The negative result given in Theorem 2 is indeed helpful in narrowing our search scope for a rea-
sonable distance measure. So far,Dmax andD joint (Dsum) are potential candidates. These distance
measures do not have a fixed upper bound however, and we are therefore seeking some normalized
variants. By dividing each distance measure by its corresponding upperbound we can define five
normalized variants as detailed in Table 3, which are actually the unit-complementsof the corre-
sponding NMI variants, for example,d joint = 1−NMI joint . We now state the following properties
of the normalized distance measures:

Theorem 3 The normalized variation of information, djoint , is a metric

Theorem 4 The normalized information distance, dmax, is a metric

1. 2Dsum(U,V) =H(U)+H(V)−2I(U,V) = [H(U)+H(V)− I(U,V)]− I(U,V) =H(U,V)− I(U,V) =D joint(U,V).
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Theorem 5 The normalized distance measures dmin, dsumand dsqrt, arenot metrics.

The proofs for Theorem 3 and 4 was presented in an unofficially extended version of Kraskov et al.
(2005).2 Unfortunately, their proof for Theorem 4 was erroneous.3 Since these are two interesting
results, we give our shortened proof for Theorem 3 and a correctedproof for Theorem 4 in the
Appendix. The negative results in Theorem 5 are again useful in narrowing our scope looking for a
good candidate. From our discussion so far, we can now identify two promising candidates:d joint

anddmax. Since the variation of information—D joint—is the unnormalized version ofd joint , we shall
named joint the normalized variation of information (NVI).dmaxhas not been named in the literature,
therefore we name it after its well known analogue in Kolmogorov complexity theory (Li et al.,
2004), the normalized information distance (NID). Both the NVI and NID have the remarkable
property of being both a metric and a normalized measure. We note that Meilă (2007) proposed
normalized variants for the VI, such as:V(U,V) = 1

logNVI(U,V) or: VK∗(U,V) = 1
2logK∗ VI(U,V)

when the number of clusters in bothU andV is bounded by the same constantK∗<
√

N. The bounds
of logN and 2logK∗ are not as strict asH(U,V) however,4 thus the useful range of these normalized
VI variants is narrower than that ofd joint . The joint entropyH(U,V) provides a stricter upper
bound, enablingd joint to better exploit the [0,1] range, while still retaining the metric property. It is
noted that since max{H(U),H(V)} is yet a tighter upper bound for MI(U,V) thanH(U,V), dmax is
generally more preferable tod joint since it can even better use the nominal range of[0,1]. A subtle
point regarding normalization by quantities such as max{H(U),H(V)} andH(U,V), as has been
brought to our attention by the Editor, is their potential side effects on the normalization process.
For validation purpose for example, ifU is the ground-truth, andV is the clustering obtained by
some algorithm, then the normalization also depends onV. Thus, while random quantities such as
max{H(U),H(V)} andH(U,V) provide tighter bounds, their effect on the normalization process is
not as clear as looser, fixed bounds such as logN and 2logK∗.

4. Adjustment for Chance

In this section we inspect the proposed information theoretic measures with respect to the third
desirable property, that is, theconstant baseline property. We shall first point out that, just like the
well-known Rand index, the baseline value of information theoretic measuresdoes not take on a
constant value, and thus adjustment for chance will be needed in certain situations. Let us consider
the following two motivating examples:

1) Example 1 - Distance to a “true” clustering:given a ground-truth clusteringU with Ktrue

clusters, we need to assess the goodness of two clusteringsV with C clusters, andV′ with C′ clusters.
If C = C′ then the situation would be quite simple. Since the setting is the same for bothV and
V′, we expect the comparison to be “fair” under any particular measure. However if C 6= C′, the
situation becomes more complicated. We set up an experiment as follows: consider a set ofN
data points, let the number of clustersK vary from 2 toKmax and suppose that the true clustering
hasKtrue = [Kmax/2] clusters. Now for each value ofK, generate 10,000 random clusterings and
calculate the average MI, NMImax, VI, RI and ARI between those clusterings to a fixed, random

2. Available online athttp://arxiv.org/abs/q-bio/0311039v2 .
3. In their case 1,D′(Z,Y) is in fact not equal toH(Z|Y)/H(Y).
4. If N ≤ RC thenH(U,V) ≤ logN, with the equality attained only when cells of the contingency table contain only

either 1 or 0. IfN > RC thenH(U,V)≤ log(RC)≤ log(K∗K∗) = 2logK∗.
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clustering chosen as the “true” clustering. The results for two combinationsof (N,Ktrue) are given
in Fig. 1(a,b). It can be observed that the unadjusted measures such asthe RI, MI and NMI (VI)
monotonically increase (decreases) asK increases. Thus even by selecting totally at random, a 7-
cluster solution would have a greater chance to outperform a 3-cluster solution, although there isn’t
any difference in the clustering generation methodology. A corrected-for-chance measure, such as
the ARI, on the other hand, has a baseline value always close to zero, and appears not to be biased
in favor of any particular value ofK. The same issue is observed with all other variants of the NMI
(data not shown). Thus for this example, an adjusted-for-chance version of the MI is desirable.
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Figure 1: (a,b) Average distance between sets of random clusterings to a“true” clustering (c,d)
Average pairwise distance in a set of random clusterings. Error bars denote standard
deviation.

2) Example 2 - Determining the number of clusters via consensus (ensemble) clustering: in an
era where a huge number of clustering algorithms exist, the consensus clustering idea (Monti et al.,
2003; Strehl and Ghosh, 2002; Yu et al., 2007) has recently received increasing interest. Consensus
clustering is not just another clustering algorithm: it rather provides a framework for unifying the
knowledge obtained from other algorithms. Given a data set, consensus clustering employs one or
several clustering algorithms to generate a set of clustering solutions on either the original data set or
its perturbed versions. From these clustering solutions, consensus clustering aims to choose a robust
and high quality representative clustering. Although the main objective of consensus clustering is
to discover a high quality cluster structure, closer inspection of the set of clusterings obtained can
often give valuable information about the appropriate number of clusters present. More specifically,
we have empirically observed the following: in regard to the set of clusterings obtained, when the
specified number of clusters coincides with the true number of clusters, this set has a tendency to be
less diverse. This is an indication of the robustness of the obtained clusterstructure. To quantify this
diversity we have recently developed a novel index (Vinh and Epps, 2009), namely theconsensus
index(CI), which is built upon a suitable clustering similarity measure. Given a valueof K, suppose
we have generated a set ofB clustering solutionsUK = {U1,U2, . . . ,UB}, each withK clusters. We
define the consensus index ofUK as:

CI(UK) =
∑i< j AM(Ui ,U j)

B(B−1)/2

where the agreement measure AM is a suitable clustering similarity index. Thus,the CI quantifies
the average pairwise agreement inUK . The optimal number of clustersK∗ is chosen as which
that maximizes CI, that is,K∗ = argmaxK=2...Kmax

CI(UK). In this setting, a normalized measure is
preferable for its equalized range at different values ofK. We performed an experiment as follows:
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givenN data points, randomly assign each data point into one of theK clusters with equal probability
and check to ensure that the final clustering contains exactlyK clusters. For eachK, repeat this 200
times to create 200 random clusterings, then calculate the average values ofthe MI, VI, NMImax,
RI and ARI between all 19,900 clustering pairs. Typical experimental results are presented in Fig.
1(c,d). It can be observed that for a given data set, the average MI,NMI and RI (VI) values between
random clusterings tend to increase (decrease) as the number of clusters increases, while the average
value of the ARI is always close to zero. When the ratio ofN/K is large, the average value for NMI
is reasonably close to zero, but grows asN/K becomes smaller. This is clearly an unwanted effect,
since a consensus index built upon the MI, NMI and VI would be biased in favour of a larger number
of clusters. Thus in this situation, an adjusted-for-chance version of theMI is again important.

4.1 The Proposed Adjusted Measures

To correct the measures for randomness it is necessary to specify a model according to which ran-
dom partitions are generated. Such a common model is the “permutation model” (Lancaster, 1969,
p. 214), in which clusterings are generated randomly subject to having a fixed number of clusters
and points in each clusters. Using this model, which was also adopted by Hubert and Arabie (1985)
for the ARI, we have previously shown (Vinh et al., 2009) that the expected mutual information
between two clusteringsU andV is:

E{I(U,V)}=
R

∑
i=1

C

∑
j=1

min(ai ,b j )

∑
ni j=max(ai+b j−N,0)

ni j

N
log(

N.ni j

aib j
)

ai !b j !(N−ai)!(N−b j )!
N!ni j !(ai −ni j )!(b j −ni j )!(N−ai −b j +ni j )!

. (2)

As suggested by Hubert and Arabie (1985), the general form of a similarity index corrected for
chance is given by:

AdjustedIndex=
Index− ExpectedIndex

Max Index−ExpectedIndex
, (3)

which is upper-bounded by 1 and equals 0 when the index equals its expected value. Having calcu-
lated the expectation of the MI, we propose the adjusted form, which we call the adjusted mutual
information(AMI), for the normalized mutual information according to (3). For example,taking
the NMImax we have:

AMI max(U,V) =
NMImax(U,V)−E{NMImax(U,V)}

1−E{NMImax(U,V)} =
I(U,V)−E{I(U,V)}

max{H(U),H(V)}−E{I(U,V)} .

Similarly, other adjustedsimilarity measures are listed in Table 2. It can be seen that the adjusted-
for-chance forms of the MI are all normalized in a stochastic sense. Specifically, the AMI equals
1 when the two clusterings are identical, and 0 when the MI between the two clusterings equals its
expected value. The adjusted forms for thedistancemeasures, listed in Table 2, are again the unit-
complements of the corresponding adjustedsimilarity measures, for example,Admax= 1−AMI max,
and are also normalized in a stochastic sense. Following the naming scheme thatwe have adopted
throughout in this paper, we nameAdmax the adjusted information distance. It is noted that at this
stage, we have not been able to derive an analytical solution for the adjusted form for the normalized
variation of information (d joint) measure. The derivation of the expected value for this measure
appears to be more involved observing thatI(U,V) is present in both the numerator and denominator
(H(U,V) = H(U)+H(V)− I(U,V)). We repeat the experiments described in examples 1 and 2,
this time with the adjusted version of the NMImax. Now it can be seen from Fig. 2 that just like the
ARI, the AMImax baseline values are close to zero. It is noted that in these experiments, we did not
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(d) N=1000 data points
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Figure 2: (a,b) Average distance between sets of random clusterings to a“true” clustering (c,d)
Average pairwise distance in a set of random clusterings. Error bars denote standard
deviation.

require the marginals of the contingency table to be fixed as per the assumptionof the generalized
hypergeometric model of randomness. Nevertheless, the adjusted measures still exhibit the desired
behavior.

4.2 Properties of the Adjusted Measures

While admitting a constant baseline, the proposed adjusted-for-chance measures are, unfortunately,
not proper metrics:

Theorem 6 The adjusted measures Admax,Adsum,Adsqrt and Admin are not metrics.

There is thus a trade-off between the metric property and correction for chance, and the user should
decide which property is of higher priority. Fortunately, during our experiments with the AMI, we
have observed that when the data contain a fairly large number of items as compared to the number
of clusters, for example,N/K ≥ 100, then the expected mutual information is fairly close to zero, as
can be seen in Fig. 1, suggesting scenarios where adjustment for chance is not of utmost necessity.
The following results formalize this observation:

Theorem 7 Some upper bounds for the expected mutual information between two random clus-
terings U and V (on a data set of N data items, with R and C clusters respectively), under the
hypergeometric distribution model of randomness are given by the followings:

E{I(U,V)} ≤
R

∑
i=1

C

∑
j=1

aib j

N2 log

(

N(ai −1)(b j −1)
(N−1)aib j

+
N

aib j

)

≤ log

(

N+RC−R−C
N−1

)

. (4)

These bounds shed light on the large sample property of the adjusted measures. The following result
trivially follows:

Corollary 1 Given R and C fixed,limN→∞ E{I(U,V)} = 0, and thus the adjusted measures tend
toward the normalized measures.

Also, these bounds give useful information on whether adjustment for chance is needed. For
example, on a data set of 100 data items and two clusteringsU andV, each having 10 clusters with
sizes of[10,10,10,10,10,10,10,10,10,10] and[2,4,6,8,10,10,12,14,16,18] respectively, the ex-
pected MI and its upper bounds according to (2) and (4) areE{I(U,V)} = 0.4618< 0.5584<
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0.5978. As the maximum MI value is only log(10) = 2.3, correction for chance is needed since the
baseline is high. However, if the data size increases ten-fold to 1000 items, keeping the same num-
ber of clusters and cluster distribution, the two upper bounds are 0.0764 and 0.0780 respectively,
which can be considered small enough for many applications, therefore adjustment for chance might
be omitted.

4.3 An Example Application

As per our analysis, adjustment for chance for information theoretic measures is mostly needed
when the number of data items is relatively small compared to the number of clusters. One such
prominent example is in microarray data analysis, where biological samples are clustered using gene
expression data. Due to the high cost of preparing and collecting microarray data, each class, for
example, of tumor, might contain only as few as several samples. In this section we demonstrate the
use of the consensus index to estimate the number of clusters in microarray data. Eight synthetic
and real microarray data sets are drawn from Monti et al. (2003), as detailed in Table 4 (see the
original publication for preprocessing issues). A quick check upon the(higher) upper bound of the
expected MI on these data sets suggests that correction for chance will be needed, for example, on
the Leukemia data set, asK(= R= C) grows from 2 to 10, this upper bound grows from 0.03 to
1.16.

Simulated Data #Classes #Samples #GenesReal data #Classes #Samples #Genes
Gaussian3 3 60 600 Leukemia 3 38 999
Gaussian5 5 500 2 Novartis 4 103 1000
Simulated4 4 40 600 Lung cancer 4+ 197 1000
Simulated6 6-7 60 600 Normal tissues 13 90 1277

Table 4: Microarray data sets summary, source: Monti et al. (2003)

In Vinh and Epps (2009) we have shown that the CI, coupled with sub-sampling as the pertur-
bation method, gives useful information on the appropriate number of clusters in microarray data.
Herein, we experimented with random projection as the perturbation scheme.More specifically, the
original data set was projected on a random set of 80% of the genes, and the K-means clustering
algorithm was run with random initialization on the projected data set. For each value ofK, 100
of such clustering solutions were created and the CI’s for 6 measures, namely RI, ARI, MI, VI,
NMImaxand AMImaxwere calculated. Ideally we expect to see a strong global peak at the truenum-
ber of clusterKtrue. From Fig. 3(a) it can be observed that the unadjusted MI has a strong bias with
respect to the number of clusters, increasing monotonically asK increases. Similar behavior was
observed with all other data sets and therefore MI is not an appropriate measure for this purpose.
For ease of presentation, we have excluded the MI from Fig. 3(b-h). The effect of adjustment for
chance can be clearly observed in Fig. 3(c,d,e,h). Agreement by chance inflates the CI score of the
unadjusted measures (RI, NMI, VI) in such cases, and can lead to incorrect estimation. The CI of
the adjusted measures (ARI, AMI) correctly estimates the number of clustersin all synthetic data
sets with high confidence, whereas on real data sets it gives correct estimations on the Leukemia and
Normal tissues data set. The CI suggests only 3 clusters on the Novartis whilethe assumed number
of clusters is 4. The Lung cancer data set is an example where human experts are not yet confident
on the true number of clusters present (4+ clusters), while the CI gives alocal peak at 6 clusters.
These results are concordant with our previous finding (Vinh and Epps, 2009). The fact that the CI
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(b) Gaussian5, N=500 data points

K
true

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of clusters K

S
im

ila
ri
ty

/D
is

ta
n

c
e

 v
a

lu
e

(c) Simulated4, N=40 data points
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(d) Simulated6, N=60 data points
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(e) Leukemia, N=38 data points
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(f) Norvatis multi−tissue, N=103 data points
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(g) Lung cancer, N=197 data points
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(h) Normal Tissues, N=90 data points

K
true

Figure 3: Consensus Index on microarray data sets.

showing global or local peaks at or near the presumably true number of clusters as attributed by the
respective authors calls for further investigation on both the biological side (re-verifying the number
of clusters), and the CI side (the behaviour of the index with respect to thestructure of the data set,
for example, the data set might contain a hierarchy of clusters and thus the CI may exhibit local
peaks corresponding to such structures).

5. Related Work

Meilă (2005) considered clustering comparison measures with respect to theiralignment with the
lattice of partitions. In addition to the metric property, she considered three more properties namely
additivity with respect to refinement, additivity with respect to the joinandconvex additivity, and
showed that the VI satisfies all these properties. Unfortunately, none ofthe normalized or adjusted
variants of the MI is fully aligned with the lattice of partitions in the above sense. Beside enhancing
intuitiveness, these properties could possibly improve the efficiency of algorithms, for example,
search algorithms, in the space of clusterings, though there seems not to beyet an experimental
study to support such claim, calling for interesting further investigation. Nevertheless, we note that
for a particular application, not always every desired property is concurrently needed at once. For
example, when performing search in the space of clusterings, normalization might not be necessary,
and the VI, which aligns better with the lattice of partitions, might be a more appropriate choice.
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Wu et al. (2009) considered clustering comparison measures with respect to their sensitivity with
class distribution. They showed that real life data can possess highly skewed class distributions,
whereas some algorithms, such as K-means, tend to create balanced clusters. A good measure
should therefore be sensitive to the difference in class distribution. To demonstrate this property,
they used the example in Table 5, with a ground-truth clusteringU having class sizes of [30, 2, 6,
10, 2], and two clustering solutions:V having cluster sizes of [10, 10, 10, 10, 10]; andV′ having
cluster sizes of [29, 2, 6, 11, 2]. It is easily seen thatV′ closely reflects the class structure inU,
and thus should be judged closer toU thanV. The authors showed that the unnormalized MI is a
“defective measure”, in that it judges MI(U,V)> MI(U,V′), and suggested using the “normalized
VI” ( dsum). It can be shown that among the normalized and adjusted variants of the MIconsidered
in this paper, only the NMImin,Dmin,dmin andAdmin are defective measures in the above sense.

I U1 U2 U3 U4 U5 II U1 U2 U3 U4 U5

V1 10 0 0 0 0 V ′
1 27 0 0 2 0

V2 10 0 0 0 0 V ′
2 0 2 0 0 0

V3 10 0 0 0 0 V ′
3 0 0 6 0 0

V4 0 0 0 10 0 V ′
4 3 0 0 8 0

V5 0 2 6 0 2 V ′
5 0 0 0 0 2

Table 5: Two clustering results

6. Conclusion

This paper has presented an organized study of information theoretic measures for clustering com-
parison. We have shown that the normalized information distance (NID) andnormalized variation
of information (NVI) satisfy both the normalization and the metric properties. Between the two,
the NID is preferable since the tighter upper bound of the MI used for normalization allows it to
better use the [0,1] range. We highlighted the importance of correcting thesemeasures for chance
agreement, especially when the number of data points is relatively small compared with the number
of clusters, for example, in the case of microarray data analysis. One of the theoretical advantages
of the NID over the popular adjusted Rand index is that it can be used in the non-adjusted form
(whenN/K is large), thus enjoying the property of being a true metric in the space of clusterings.
We therefore advocate the NID as a “general purpose” measure for clustering validation, compar-
ison and algorithm design, for it possesses concurrently several useful and important properties.
Nevertheless, we note that for a particular application scenario, not always every desired property
is needed concurrently, and therefore the user should prioritize the mostimportant property. Our
research systematically organizes and complements the current literature to help readers make more
informed decisions.
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Appendix A. Proofs

Proof (Theorem 1) We only prove the triangle inequality as other parts are trivial.We first show
that

H(X|Y)≤ H(X|Z)+H(Z|Y) (5)

holds true, sinceH(X|Y)≤H(X,Z|Y)=H(X|Z,Y)+H(Z|Y)≤H(X|Z)+H(Z|Y) (the last inequal-
ity holds since conditioning always decreases entropy). We now prove the main theorem. Without
loss of generality, assume thatH(Y)≤ H(X), and thereforeH(X|Y)≥ H(Y|X). The proof uses (5):

• Case 1:H(Z)≤ H(Y)

Dmax(X,Y) = H(X|Y)≤ H(X|Z)+H(Z|Y)≤ H(X|Z)+H(Y|Z) = Dmax(X,Z)+Dmax(Y,Z)

• Case 2:H(Y)< H(Z)≤ H(X)

Dmax(X,Y) = H(X|Y)≤ H(X|Z)+H(Z|Y) = Dmax(X,Z)+Dmax(Y,Z)

• Case 3:H(X)< H(Z)

Dmax(X,Y) = H(X|Y)≤ H(X|Z)+H(Z|Y)≤ H(Z|X)+H(Z|Y) = Dmax(X,Z)+Dmax(Y,Z)

Proof (Theorem 3) We prove the triangle inequality. Without loss of generality, assume thatH(X)≥
H(Y), thereforeH(X|Y)≥ H(Y|X) andNID(X,Y) = H(X|Y)/H(X). The proof uses inequality (5)
and simple algebra manipulations:

• Case 1:H(Z)≤ H(Y)≤ H(X)

NID(X,Y) =
H(X|Y)
H(X)

≤ H(X|Z)+H(Z|Y)
H(X)

≤ H(X|Z)+H(Y|Z)
H(X)

≤ H(X|Z)
H(X)

+
H(Y|Z)
H(Y)

• Case 2:H(Y)≤ H(Z)≤ H(X)

NID(X,Y) =
H(X|Y)
H(X)

≤ H(X|Z)
H(X)

+
H(Z|Y)
H(X)

≤ H(X|Z)
H(X)

+
H(Z|Y)
H(Z)

=NID(X,Z)+NID(Z,Y)

• Case 3:H(Z)> H(X)

NID(X,Y) =
H(X|Y)
H(X)

<
H(X|Z)+H(Z|Y)

H(X)

If the r.h.s≤ 1 then addingH(Z)−H(X) > 0 to both its nominator and denominator will
increase it:

r.h.s≤ H(X|Z)+H(Z|Y)+H(Z)−H(X)

H(X)+H(Z)−H(X)
=

H(Z|X)

H(Z)
+

H(Z|Y)
H(Z)

= NID(X,Z)+NID(Z,Y),
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therefore the triangle inequality holds. Otherwise if ther.h.s> 1 then addingH(Z)−H(X)>
0 to both its nominator and denominator as above will decrease it, but it will still belarger
than 1. Therefore we also have:

NID(X,Y)≤ 1<
H(X|Z)+H(Z|Y)+H(Z)−H(X)

H(X)+H(Z)−H(X)
= NID(X,Z)+NID(Z,Y).

Proof (Theorem 4) Again only the triangle inequality proof is of interest. It is sufficient to prove
the following inequality:

H(X|Y)
H(X,Y)

≤ H(X|Z)
H(X,Z)

+
H(Z|Y)
H(Z,Y)

,

then swapX andY to obtain another analogous inequality and add them together we have the
triangle inequality. The proof uses inequality (5) and simple algebra manipulations:

H(X|Y)
H(X,Y)

=
H(X|Y)

H(Y)+H(X|Y) ≤
H(X|Z)+H(Z|Y)

H(Y)+H(X|Z)+H(Z|Y) =
H(X|Z)+H(Z|Y)
H(X|Z)+H(Y,Z)

= . . .

=
H(X|Z)

H(X|Z)+H(Y,Z)
+

H(Z|Y)
H(X|Z)+H(Y,Z)

≤ H(X|Z)
H(X|Z)+H(Z)

+
H(Z|Y)
H(Y,Z)

=
H(X|Z)
H(X,Z)

+
H(Z|Y)
H(Z,Y)

.

Proof (Theorems 2 and 5) It is sufficient to point out a single counter example where the triangle
inequality is violated. LetX andY be two independentrandom binary variables with probability
P(X = 1) = P(X = 0) = P(Y = 1) = P(Y = 0) = 1/2, thenZ = [X;Y] is also a random variable
with four discrete values. It is straightforward to verify that the triangle inequality is violated for
all the mentioned distance measures, for example,Dmin(X,Y) = 1<Dmin(X,Z)+Dmin(Y,Z) = 0.

Proof (Theorem 6) ForN = 5, a counter example for the triangle inequality is the following three
clusterings:U = {U3U1U1U1U2},V = {V2V2V3V1V2},X = {X2X1X1X1X2}.

Similarly, for N = 5+ d (d ∈ N+), a counter example for the triangle inequality is the fol-
lowing three clusterings:U = {U3U1U1U1U2U6U7 . . .U5+d}, V = {V2V2V3V1V2V6V7 . . .V5+d}, X =
{X2X1X1X1X2X6X7 . . .X5+d}.

Proof (Theorem 7) The following facts from the generalized hypergeometric distribution will be
useful:

E(ni j ) = ∑
ni j

ni jP (M|ni j ,a,b) =
ai ,b j

N
, (6)

E(n2
i j ) = ∑

ni j

n2
i jP (M|ni j ,a,b) =

ai(ai −1)b j(b j −1)
N(N−1)

+
aib j

N
,

whereP{M|ni j ,a,b} =
( N

ni j
)(N−ni j

ai−ni j
)( N−ai

bj−ni j
)

(N
ai
)(N

bj
)

is the probability of encountering a contingency tableM

having fixed marginalsa,b and the(i, j)− th entry beingni j under the generalized hypergeometric
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model of randomness. Note that for the sake of notational simplicity we have dropped the lower
and upper values ofni j which runs from max((ai +b j −N),0) to min(ai ,b j) in the sums. From (6)
we have:

E(ni j ) = ∑
ni j

ni jP (M|ni j ,a,b) =
aib j

N ∑
ni j

ni j N

aib j
P (M|ni j ,a,b) =

aib j

N
,

therefore:∑ni j

ni j N
aib j

P (M|ni j ,a,b) = 1. LetQ (ni j ) =
ni j N
aib j

P (M|ni j ,a,b), then we can think ofQ (ni j )

as a discrete probability distribution onni j . Applying Jensen’s inequality (E( f (x)) ≤ f (E(x)) for
f concave) to the concave logarithm function yields:

∑
ni j

ni j

N
log(

N.ni j

aib j
)P (M|ni j ,a,b) = ∑

ni j

aib j

N2 log(
N.ni j

aib j
)Q (ni j )≤

aib j

N2 log

(

EQ (
N.ni j

aib j
)

)

. (7)

Now, let us calculateEQ (
N.ni j

aib j
):

EQ (
N.ni j

aib j
) = ∑

ni j

N.ni j

aib j
Q (ni j ) = ∑

ni j

N.ni j

aib j

ni j N

aib j
P (M|ni j ,a,b) =

N2

a2
i b2

j
∑
ni j

n2
i jP (M|ni j ,a,b)

=
N2

a2
i b2

j

(

ai(ai −1)b j(b j −1)
N(N−1)

+
aib j

N

)

=
N(ai −1)(b j −1)

(N−1)aib j
+

N
aib j

.

Substituting this expression into (7) yields:

∑
ni j

ni j

N
log(

N.ni j

aib j
)P (M|ni j ,a,b)≤

aib j

N2 log

(

N(ai −1)(b j −1)
(N−1)aib j

+
N

aib j

)

.

Finally:

E{I(U,V)}=
R

∑
i=1

C

∑
j=1

∑
ni j

ni j

N
log(

N.ni j

aib j
)P(M|ni j ,a,b)≤

R

∑
i=1

C

∑
j=1

aib j

N2 log

(

N(ai −1)(b j −1)
(N−1)aib j

+
N

aib j

)

.

(8)
Note that∑i j aib j/N2 = 1, continue applying Jensen’s inequality on (8) yields:

E{I(U,V)} ≤ log

(

R

∑
i=1

C

∑
j=1

aib j

N2 (
N(ai −1)(b j −1)

(N−1)aib j
+

N
aib j

)

)

= log

(

N+RC−R−C
N−1

)
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