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Abstract

A multitask learning framework is developed for discriminative classification and regression where
multiple large-margin linear classifiers are estimated fordifferent prediction problems. These clas-
sifiers operate in a common input space but are coupled as theyrecover an unknown shared rep-
resentation. A maximum entropy discrimination (MED) framework is used to derive the multitask
algorithm which involves only convex optimization problems that are straightforward to implement.
Three multitask scenarios are described. The first multitask method produces multiple support vec-
tor machines that learn a shared sparse feature selection over the input space. The second multitask
method produces multiple support vector machines that learn a shared conic kernel combination.
The third multitask method produces a pooled classifier as well as adaptively specialized individual
classifiers. Furthermore, extensions to regression, graphical model structure estimation and other
sparse methods are discussed. The maximum entropy optimization problems are implemented via
a sequential quadratic programming method which leveragesrecent progress in fast SVM solvers.
Fast monotonic convergence bounds are provided by boundingthe MED sparsifying cost function
with a quadratic function and ensuring only a constant factor runtime increase above standard inde-
pendent SVM solvers. Results are shown on multitask data sets and favor multitask learning over
single-task or tabula rasa methods.

Keywords: meta-learning, support vector machines, feature selection, kernel selection, maximum
entropy, large margin, Bayesian methods, variational bounds, classification, regression, Lasso,
graphical model structure estimation, quadratic programming, convex programming

1. Introduction

In applied domains ranging from biology to vision, inter-related data is collected by researchers
for varying scientific purposes. While there are some concerted effortsto ensure that data sets are
collected and labeled in consistent ways, it is often the case that many heterogeneous data sets over a
given input domain are collected and labeled for different tasks. Most machine learning approaches
take asingle-taskperspective where one large homogeneous repository of uniformly collected iid
(independent and identically distributed) samples is given and labeled consistently. A more realistic,
multitask learningapproach is to combine data from multiple smaller sources and synergistically
leverage heterogeneous labeling or annotation efforts.

Consider a group of biologists that are investigating the gene regulatory pathways of a simple
species such as yeast. Each biologist may measure the expression levels of a different subset of
genes under particular perturbation conditions of interest. In addition, thebiologists may annotate
or label the gene expression data they collect in different ways. Clearly, each data set has dependen-
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cies and redundancies when compared to another data set. Single-task learning from each data set
in isolation (in a tabula rasa inductive manner) provides only a narrow view of the phenomenon at
hand. Meanwhile, multitask learning (or inductive transfer) uses the collection of data sets simul-
taneously to exploit the related nature of the problems. For example, a multitask learning approach
may involve algorithms that discover shared representations that are useful across several data sets
and tasks. For instance, consider a group of doctors each interested inpredicting the presence or
absence of a particular disease from a set of medical tests that can be performed on a patient. Since
medical tests may be invasive and expensive, the doctors may wish to find a small subset of medical
tests (the shared representation) that can be performed on a patient once and for all such that each
disease of interest can be accurately predicted.

This article explores maximum entropy discrimination approaches to multitask problems and is
organized as follows. Section 2 reviews previous work in multitask learning,support vector machine
feature selection and support vector machine kernel selection. Section 3sets up the general multi-
task problem as learning from data that has been sampled from a set of generative models that are
dependent given data observations yet become independent given ashared representation. Section 4
migrates the standard Bayesian treatment of the problem into a large-margin discriminative setting
using maximum entropy. The log-linear model, the main classifier of interest in thisarticle, is expli-
cated in Section 5. Section 6 explicates the case where the shared representation is a binary feature
selection that removes certain input space features in a consistent mannerfor all linear classification
tasks. Section 7 extends the shared representation such that it exploresany conic kernel combination
with multiple linear classifiers. Section 8 extends the framework to adaptive datapooling problems.
Section 9 illustrates the corresponding derivations in a multitask (scalar) regression setting. Sec-
tion 10 briefly describes the sequential quadratic programming method which isto be applied to the
convex programs derived in the various preceding sections. Experimental results are provided in
Section 11. An extension that permits the approach to perform sparse graph structure estimation is
described in Section 12 and Section 13 then concludes with a brief summary. The Appendix pro-
vides the derivation of a bound which converts all the necessary optimization steps into quadratic
programming with a proof of fast convergence for the resulting sequential quadratic programming
procedure. The Appendix also discusses connections to other sparseregression methods.

2. Previous Work

Since this article involves the combination of the three research areas, we review previous work in
multitask learning, support vector machine (SVM) feature selection and SVMkernel selection.

Multitask learning has many names and incarnations including learning-to-learn, meta-learning,
lifelong learning, and inductive transfer (Baxter, 1995; Thrun and Pratt, 1997; Caruana, 1997;
Thrun, 1995). It goes beyond the usual assumptions in most learning methods which focus on learn-
ing a model from a single training data set. Instead, multitask learning couples multiple models and
their individual training sets and tasks. The hope is that the models can benefit from each other
synergistically if their tasks are inter-related (predicting if a face is male or female may help when
predicting if a face belongs to an adult or a child), the distributions of the training sets are related
(transformed versions of each other) or the general domains of the tasks are similar (for instance all
tasks involve images of outdoor scenery). Early implementations of multitask learning primarily in-
vestigated neural network or nearest neighbor learners (Thrun, 1995; Baxter, 1995; Caruana, 1997).
In addition to neural approaches, Bayesian methods have been explored that implement multitask
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learning by assuming dependencies between the various models and tasks (Heskes, 1998, 2004).
For instance, tasks can be clustered via a hierarchical mixture of Gaussians which couples their
parameters. In addition, some theoretical arguments for the benefits of multitasklearning have been
made (Baxter, 2000) showing that the average error ofM tasks can potentially decrease inversely
with M. More recently, improved generalization guarantees foreachindividual task were provided
if the classifiers are related and share a common structure (Ben-David andSchuller, 2003).

Concurrently, kernel methods (Schölkopf and Smola, 2001) and large-margin support vector
machines are highly successful in single-task settings and are good candidates for multitask exten-
sions. While multiclass variants of binary classifiers have been extensivelyexplored (Crammer and
Singer, 2001), multitask classification differs in that it often involves distinctsets of input data for
each task. Furthermore, the concept of shared representation has been less practical to implement
for kernel methods and support vector machines. For example, constraining the representation by
performing SVM feature selection in a single-task setting may require extensions beyond standard
quadratic programming (Jebara and Jaakkola, 2000; Weston et al., 2000). Similarly, constraining
a representation to perform SVM kernel selection is also more involved in a single-task setting
and requires second-order cone programming or semidefinite programming(Cristianini et al., 2001;
Lanckriet et al., 2002).

This article focuses on multitask extensions of both feature selection and kernel selection with
support vector machines. The derivations here will closely follow previous work which migrated
maximum entropy to single-task SVMs (Jaakkola et al., 1999), to sparse SVMs (Jebara and Jaakkola,
2000) and to multitask SVMs (Jebara, 2003, 2004).1 This maximum entropy framework led to one
of the first convex large margin multitask classification approaches (Jebara, 2004). Convexity was
subsequently explored in other multitask frameworks (Argyriou et al., 2008). The present arti-
cle extends the derivations in the maximum entropy discrimination multitask approach, provides
a straightforward iterative quadratic programming implementation and uses tighter bounds for im-
proved runtime efficiency. Other related multitask SVM approaches have also been promising in-
cluding novel kernel construction techniques to couple tasks (Evgeniouet al., 2005). These permit
standard SVM learning algorithms to perform multitask learning while the multitask issues are han-
dled primarily by the kernel itself. Even more recently, online algorithms have been proposed (Dekel
et al., 2006) for multitask learning with margin-based predictors and provideinteresting worst-case
guarantees. Extensions to handle unlabeled data in multitask settings have alsobeen promising
(Ando and Zhang, 2005) and enjoyed theoretical generalization guarantees. An alternative per-
spective to multitask feature and kernel selection can be explored by performing joint covariate or
subspace selection for multiple classification problems (Obozinski et al., 2010). Furthermore, fea-
ture selection and kernel selection can be seen as sparsity inducing methods. While a survey of
sparsity is out of the scope of this article, one of the most popular implementations of sparsity or
selection in regression settings is theℓ1 regularized Lasso method and its variants (Tibshirani, 1996;
Tropp, 2006). Therein, sparsity is usually explored in a single-task setting and is used to remove
unnecessary features in a regression problem (although sparsity is equally relevant in classification
problems Jebara and Jaakkola, 2000). The multitask extension to such sparse estimation techniques
is known as the Group Lasso and allows sparsity to be explored over predefined subsets of variables
(Turlach et al., 2005; Yuan and Lin, 2006). Consistency arguments andconnections between the
Group Lasso and multiple kernel learning were also provided (Bach et al.,2004; Bach, 2008). Spar-

1. This article is the long version of a conference paper (Jebara, 2004).
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sity and its connection to maximum entropy discrimination and so-called Laplace Markov networks
was also recently explored (Zhu et al., 2008). This article provides another contact point between
sparsity, large margins, multitask learning and kernel selection. The next sections formulate the
general probabilistic setup for such multitask problems and convert traditional Bayesian solutions
into a discriminative large-margin setting using the maximum entropy framework (Jaakkola et al.,
1999).

3. Multitask Learning

The general multitask learning setup is as follows. We are given a collection of data setsD =
{D1, . . . ,DM} coveringm= 1. . .M tasks. Each task has its training setDm of t = 1. . .Tm input-
output pairs(xm,t ,ym,t) that are independent and identically distributed (iid) samples from an un-
known probability density functionPm defined jointly over both inputs and outputs. The data for
taskm is thereforeDm = {(xm,1,ym,1), . . . , (xm,Tm,ym,Tm)}. The inputs may be in a Euclidean vector
spacexm,t ∈R

D or, more generally,xm,t ∈ X are objects that could be mapped to a Hilbert space via
a kernel. In a regression setting we assume the outputs are scalarsym,t ∈ R while in a classification
setting we would assume binary2 outputsym,t ∈ {±1}.

There are many ways to tie together multiple inter-related tasks synergistically. In this section
and in Section 4, it will be helpful to take a Bayesian perspective to the multitaskproblem although
this perspective is not strictly necessary in subsequent sections. Froma Bayesian point of view,
several model parameters will be estimated and assumed to be random variables governed by a dis-
tribution and priors. Assume that there are task-specific model parametersΘm associated to each
task or data setDm for m= 1. . .M. The single-task or tabula rasa learning approach assumes that
the models are independent given their respective data sets and, therefore, can be recovered inde-
pendently. Such an assumption may be too simple in practice. The more generalmultitask learning
assumption is that there exist dependencies between the tasks. In other words, the likelihood of the
models given the data does not factorize,

p(Θ1, . . . ,ΘM|D) 6=
M

∏
m=1

p(Θm|Dm).

One specific way of coupling the various parametersΘ1, . . . ,ΘM is to instead assume that there is
another parameters that is shared across tasks. For example,scould be a set of binary switches that
eliminate all but a few features in the input space. The models then become independent only if the
shared parameter3 or representationis observed as follows:

p(Θ1, . . . ,ΘM|s,D) =
M

∏
m=1

p(Θm|s,Dm).

Note that, given data, the models are conditionally independent given the representation yet are
dependent otherwise. This lack of factorization is on theposteriorwhen data is observed, not on

2. In this article, only the binary classification case will be considered, however, the techniques herein extend easily to
multiclass settings whereym,t ∈ {1, . . . ,Y} with Y ∈ Z andY ≥ 3. Alternatively, it is straightforward to use binary
classification methods on multiclass problems by usingY one-versus-all binary classifiers, by usingY(Y− 1)/2
one-versus-one binary classifiers, or by using error-correcting codes (Dietterich and Bakiri, 1995).

3. A more general approach is to assume a hierarchy of shared variables which couples the various learning tasks in
more subtle ways (Heskes, 1998; Dudik et al., 2007). This hierarchical setting is out of the scope of this article but is
of interest for future work.
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the prior. We may still make the assumption thatp(Θ) factorizes a priori. However, observing
data with a latent shared parameters induces dependencies across the multiple tasks. In terms of a
directed acyclic graph where the joint probability density function factorizes as a product of nodes
given their parents, the following dependency structure emerges in the (simplest) case of multitask
learning with two models:Θ1→ D1← s→ D2← Θ2. Therefore, observing the dataD1 andD2

couples the two models unless the shared representations is also observed.
Thus, a natural way of exploring dependencies between tasks is to assume a shared represen-

tation variables is implicated in the learning problem. We then have a total set of parameters
Θ = {Θ1, . . . ,ΘM,s} to jointly estimate from all the data sets. We explore the following scenarios:

• Feature Selection:ConsiderM individual modelsΘm= {θm,bm} which are linear classifiers
whereθm ∈ R

D andbm ∈ R. The shared representations∈ B
D is a binary feature selection

vector that either keeps (s(d) = 1) or eliminates (s(d) = 0) each input vector dimension.

• Kernel Selection: ConsiderM individual modelsΘm = {θm,1, . . . ,θm,D,bm} where each
modelΘm consists ofD linear classifiers inD different Hilbert spaces and one scalarbm∈R.
The shared configurations∈ B

D is a binary feature selection vector that either keeps (when
s(d) = 1) or eliminates (whens(d) = 0) the candidate Hilbert space from the classifiers.

• Adaptive Pooling: ConsiderM+1 different linear classification models whereM tasks have
to choose between using their own specialized classifierθ1, . . . ,θM or a communal classifier
θ by estimatings∈ B

M, a binary selection vector.

• Graphical Model Structure: Consider estimating from sample data a graphical model struc-
ture overD random variables by findingD classifiers that predict each variable from all others.

The following sections detail these multitask learning scenarios and show howwe can learn
discriminative classifiers (that predict outputs accurately and with large margin) from multiple tasks.
To tackle this problem, we will apply the maximum entropy discrimination framework (Jaakkola
et al., 1999) since it produces convex optimization problems where global optima can be reliably
recovered. Furthermore, the framework produces large margin discrimination and thus inherits the
performance benefits of support vector machines.

4. Bayes and Maximum Entropy

The standard Bayesian approach to inference begins with a priorp(Θ) over a model classΘ (which
can be possibly uncountable or continuous). The prior is then refined given the data to obtain a
posteriorp(Θ|D) via Bayes’ rulep(Θ|D) ∝ p(D|Θ)p(Θ). Subsequently, the posterior is used to
make predictions for new observations. The Bayesian prediction of a label for a new query inputx
for taskm is as follows:

ŷ= argmax
y

∫
p(y|x,Θm)p(Θ|D)dΘ. (1)

In the above, a prediction ˆy is obtained from the predictive distributionp(y|x,Θm) by integrating
over all modelsΘ while weighing each predictive distribution by the posteriorp(Θ|D). This poste-
rior, according the Bayes rule, is simply the product of the prior and the likelihood as follows:

p(Θ|D) =
1
Z

p(Θ)
M

∏
m=1

Tm

∏
t=1

p(ym,t |xm,t ,Θm).
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Previous approaches (Heskes, 2004) followed such a Bayesian treatment for multitask learning and
obtained promising results. In this article, however, we will modify the standard Bayesian posterior
to learn a more discriminative solution. Instead of using Bayes’ rule to infer the posterior, we con-
sider a posterior which produces predictions ˆy with large marginas in the support vector machine
(SVM) framework (Cortes and Vapnik, 1995). In other words, we will construct a discriminative
posterior density which yields both accurate classification and large marginswhen used in Equa-
tion 1. Accurate classification on the observed data is obtained by forcing the marginal likelihood
of the correct labelym,t to be larger than that of incorrect labels for each observationt = 1, . . . ,Tm in
all m= 1, . . . ,M data sets:

∫
p(ym,t |xm,t ,Θm)p(Θ|D)dΘ− max

y6=ym,t

∫
p(y|xm,t ,Θm)p(Θ|D)dΘ ≥ 0.

This ensures that the posterior gives good predictions on average since the correct labelym,t has a
higher probability than the wrong label (Crammer and Singer, 2001; Taskar et al., 2004). The above
constraints require that the likelihood of the correct label remain larger than the likelihood of the
incorrect label on average under the posterior overΘ. We consider one additional simplification
for computational considerations. Instead of comparinglikelihoods, we will require that thelog-
likelihood of the correct label is larger than thelog-likelihood of the incorrect label on average
under the posterior overΘ. Furthermore, to achieve large margin, we will force the posterior to
not only make correct predictions but to also produce a score for the correct label that is at least a
constantγ above the value obtained by incorrect labels:

∫
logp(ym,t |xm,t ,Θm)p(Θ|D)dΘ− max

y6=ym,t

∫
logp(y|xm,t ,Θm)p(Θ|D)dΘ ≥ γ.

In many parts of this article, without loss of generality, we will assume thatγ = 1. These correct-
classification constraints are applied to all training datat = 1, . . . ,Tm for all tasksm= 1. . .M. Such
classification or discrimination constraints were first introduced in the so-called maximum entropy
discrimination (MED) framework (Jaakkola et al., 1999) and give rise to posterior distributions that
mimic support vector machines and large-margin learning. The MED framework also conveniently
leads to analytic expressions and closed-form solutions for all the necessary integrals. Instead of
using Bayes rule to obtain the posterior, MED finds a posterior that is as close as possible to the prior
in terms of Kullback-Leibler Divergence. In other words, it minimizes the relative entropy to the
prior KL(p(Θ|D)‖p(Θ)) but still alsosatisfies the above classification constraints. This produces
the following primal optimization problem:

Oprimal

{

minP(Θ|D)KL(p(Θ|D)‖p(Θ))

s.t.
∫

log
(

p(ym,t |xm,t ,Θm)
p(y|xm,t ,Θm)

)

p(Θ|D)dΘ≥ γ ∀y 6= ym,t ,m, t.

The solution is straightforward and gives the following posterior:

p(Θ|D) =
1

Z(λ)
p(Θ)

M

∏
m=1

Tm

∏
t=1

∏
y6=ym,t

(

p(ym,t |xm,t ,Θm)

p(y|xm,t ,Θm)

)λm,t

exp(−γλm,t). (2)

Here,λ is a collection (or a vector) of non-negative Lagrange multipliers{λm,t} for m= 1, . . . ,M
andt = 1, . . . ,Tm that are used to enforce the inequality constraints. The normalizer for the above
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posterior isZ(λ). Maximum entropy solves for the Lagrange multipliers by maximizingJ(λ) =
− logZ(λ). This is simply the dual optimization

Odual

{

maxλ≥0− log
∫

p(Θ)∏M
m=1 ∏Tm

t=1 ∏y6=ym,t

(

p(ym,t |xm,t ,Θm)
p(y|xm,t ,Θm)

)λm,t

exp(−γλm,t)dΘ.

If all λm,t are set to 1, the posterior resembles the standard Bayesian estimate. However, MED
estimates different weightsλm,t for each datum (or classification constraint) in the posterior. This
ensures that the classification constraints are achieved. Instead of treating all points equally, the
MED solution explores weights on each datum to adjust the Bayesian solution such that it obtains
better classification on the training data. The expectedlog-likelihood of the data under the MED
posterior satisfies the classification constraints while staying close to the prior. Furthermore, MED
uses the expectedlog-likelihood of a new query point to make predictions as follows:

ŷ = argmax
y

Ep(Θ|D)[logp(y|x,Θm)] = argmax
y

∫
logp(y|x,Θm)p(Θ|D)dΘ.

This simple reformulation of the standard Bayesian posterior will give rise to large margin learning
as explicated in the next section.

5. From Log-Linear Models to Support Vector Machines

We next make more specific assumptions on the form of the predictive distribution p(y|x,Θm).
Assume that the predictive distribution is log-linear as follows:

p(y|x,Θm) ∝ exp
(y

2
〈x,θm〉+bm)

)

.

This permits us to rewrite the above posteriorp(Θ|D) more specifically as:

p(Θ|D) =
1

Z(λ)
p(Θ)

M

∏
m=1

Tm

∏
t=1

exp(ym,t(〈xm,t ,θm〉+bm))
λm,t exp(−γλm,t).

We integrate the above overΘ= {Θ1, . . . ,ΘM,s} to obtain the partition functionZ(λ). The objective
function we need to maximize is the negative logarithm of the partition function:

J(λ) = − log
∫

p(Θ)exp

(

M

∑
m=1

Tm

∑
t=1

λm,tym,t(〈xm,t ,θm〉+bm)− γλm,t

)

dΘ.

We will nextassumethat the prior over models factorizes as follows:

p(Θ) = p(s)
M

∏
m=1

p(Θm) = p(s)
M

∏
m=1

N (θm|0, I)N (bm|0,σ2).

and assume that the priors over parameters are all white Gaussians with zero mean and identity
covariance (take0 to be the vector of all zeros andI to be the identity matrix). This factorization
assumption on the prior will be kept throughout this article. Although the priorfactorizes, this does
not necessarily mean that the posterior will factorize too. The likelihood termsin Equation 2 may
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couple the models in the posterior. However, in this first example we will not obtain any coupling
per se. This is clear once we evaluate the integrals to obtain the objective function:

J(λ) = −
M

∑
m=1

log
∫

exp(〈θm,
Tm

∑
t=1

λm,tym,txm,t〉)N (θm|0, I)dθm

−
M

∑
m=1

log
∫

exp(bm

Tm

∑
t=1

λm,tym,t)N (bm|0,σ2)dbm+
M

∑
m=1

Tm

∑
t=1

γλm,t .

Simple algebra and completion of squares4 yields the objective functionJ(λ) which is maximized
as follows

max
λ≥0

M

∑
m=1





Tm

∑
t=1

γλm,t −
1
2

Tm

∑
t,τ=1

λm,tλm,τym,tym,τ〈xm,t ,xm,τ〉−
σ2

2

(

Tm

∑
t=1

λm,tym,t

)2


 .

The above dual optimization problem is simply a quadratic program and is straightforward to solve.
If we further assume thatσ2→ ∞, which corresponds to using a non-informative prior on the bias
scalar termsbm, the objective function above gives the constraints∑t λm,tym,t = 0 for all m= 1. . .M.
We then get an objective function that is exactly the sum of the dual objective functions ofM
independent support vector machines (ifγ = 1). Thus, our dual optimization is:

max
λ≥0

M

∑
m=1

(

Tm

∑
t=1

γλm,t −
1
2

Tm

∑
t,τ=1

λm,tλm,τym,tym,τk(xm,t ,xm,τ)

)

s.t.
Tm

∑
t=1

ym,tλm,t = 0 ∀m.

Here, we have also replaced all inner products of two inputsx andx̄ of the form〈x, x̄〉 with Mercer
kernel evaluationsk(x, x̄). This allows us to readily accommodate nonlinear classification. Finally,
the prediction rule for a query inputx given the current setting of theλ values for them’th model
involves integrating over the posterior which produces the following prediction:

ŷ = argmax
y

Ep(Θ|D)[logp(y|x,Θm)] = sign

(

Tm

∑
t=1

λm,tym,tk(x,xm,t)+ b̂m

)

,

where thêbm scalars are given by the Karush Kuhn Tucker (KKT) conditions. Whenever a constraint
or Lagrangian is active, the corresponding Lagrange multiplier must be strictly positiveλm,t > 0 and
we expect the inequalities in the primal problem to hold exactly. Therefore, we can obtain eacĥbm

by solving

ym,t =
Tm

∑
τ=1

λm,τym,τk(xm,t ,xm,τ)+ b̂m

for any datumt which has a corresponding Lagrange multiplier (once the dual program halts) that
satisfiesλm,t > 0.

Clearly, because of additivity, updatingλm,1, . . . ,λm,Tm can be done independently ofλn,1, . . . ,
λn,Tn for any n 6= m. In other words, we have tabula rasa independent learning ofM independent
SVMs on all the tasks. Even the scalar biasesb̂m are obtained independently via the KKT conditions.
Therefore, to obtain multitask learning, we will need some shared representation s to couple the
learning problems and give rise to a non-factorized posterior over models.

4. Recall that
∫

exp(〈θ,w〉)N (θ|0, I)dθ = exp(〈w,w〉/2).
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5.1 Non-Separable Case

For thoroughness, this section details the case where the classification problems are not separable;
in other words, not all inequalities in the maximum entropy formulation can be achieved. In this
case, we introduce non-negative slack variablesξ = {ξm,t} on each constraint with a cost ofC per
unit of slack leading to the following primal optimization:

Oprimal

{

minP(Θ|D),ξ KL(p(Θ|D)‖p(Θ))+C∑M
m=1 ∑Tm

t=1 ∑y6=ym,t
ξm,t,y

s.t.
∫

log
(

p(ym,t |xm,t ,Θm)
p(y|xm,t ,Θm)

)

p(Θ|D)dΘ≥ γ−ξm,t andξm,t,y≥ 0 ∀y 6= ym,t ,m, t.

The above produces the same type of solution as Equation 2 but has a slightlydifferent dual opti-
mization:

Odual

{

maxλ ∑M
m=1

(

∑Tm
t=1 γλm,t −

1
2 ∑Tm

t,τ=1 λm,tλm,τym,tym,τk(xm,t ,xm,τ)
)

s.t. 0≤ λm,t ≤C ∀m, t and ∑Tm
t=1ym,tλm,t = 0 ∀m

which merely bounds the Lagrange multipliers from above byC. Once again, MED mimics support
vector machines (Cortes and Vapnik, 1995) in the non-separable case.

6. Feature Selection

We next explore feature selection and requirex ∈R
D whereD ∈ Z. To couple the tasks, modify the

predictive distribution for the label given the model such that it also depends on asharedvariables
as follows:

p(y|x,Θm,s) ∝ exp

(

y
2

(

D

∑
d=1

s(d)x(d)θm(d)+bm

))

,

wheres is a binaryD-dimensional vector and the argument of a vectors(d) refers to itsd’th entry.
Thus, the shared representation consists of binary switches that delete or censor various entries of
the x vector. If s(d) = 0, then thex(d) entry is effectively set to zero. Meanwhile, ifs(d) = 1,
thex(d) entry remains intact. In other words, the binary vectors performs a feature selection. In
addition, assume the prior forp(s) is a product of Bernoulli distributions for each element ofs,

p(s) =
D

∏
d=1

ρs(d)(1−ρ)1−s(d),

whereρ is the a priori probability of keeping the features on. For example, settingρ = 1 suggests
that all features should be on and no feature selection is to be performed.Alternatively, we can
reparametrize the prior asα = 1−ρ

ρ where increasingα corresponds to sparser feature selection. A
value ofα = 0 indicates no feature selection is being performed (no sparsity). Meanwhile a value of
α→∞ encourages the models to discard almost all features. If we perform feature selection and use
a predictive distribution with shareds, them= 1, . . . ,M tasks will become coupled and the posterior
over models no longer factorizes. The MED solution is then

p(Θ|D) =
1

Z(λ)
p(Θ)

M

∏
m=1

Tm

∏
t=1

exp

(

λm,tym,t

(

D

∑
d=1

s(d)xm,t(d)θm(d)+bm

)

− γλm,t

)

.
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We compute the corresponding partition function by integrating over all modelsΘ1, . . . ,Θm as well
as summing over all binary settings ofs which yields

Z(λ) =
∫

p(Θ)exp

(

M

∑
m=1

Tm

∑
t=1

λm,tym,t

(

D

∑
d=1

s(d)xm,t(d)θm(d)+bm

)

− γλm,t

)

dΘ

= exp

(

∑
m

σ2

2

(

∑
t

λm,tym,t

)2

−∑
t

γλm,t

)

∏
d

(

1−ρ+ρe
1
2 ∑m(∑t λm,tym,txm,t(d))

2
)

.

Takingσ2→ ∞ gives a new objective functionJ(λ) = − log(Z(λ)) which is no longer a quadratic
program yet is still a convex program as follows:







maxλ ∑M
m=1 ∑Tm

t=1 γλm,t −∑D
d=1 log

(

α+e
1
2 ∑M

m=1(∑Tm
t=1 λm,tym,txm,t(d))

2
)

+D log(α+1)

s.t. 0≤ λm,t ≤C ∀m, t and ∑Tm
t=1ym,tλm,t = 0 ∀m.

Note the property thatJ(0) = 0. Clearly, the objective function is no longer additive acrossm=
1. . .M which means that learning is coupled across tasks. This is due to the non-linearity in the
function f (x) = log(α+exp(−x)) which involves a summation overm= 1. . .M. We will refer to
this function as the log-sigmoid function. If we setα= 0, the log-sigmoid becomes linear and we get
back the independent optimization problems in Section 5. Therein, the tasks decouple completely
(i.e., the objective function becomes additive over tasksm= 1. . .M). However, larger settings ofα
encourage some coupling between the SVMs (or large margin log-linear models) as they search for
a joint feature selection.

Note the presence of logarithmic terms which prevent the direct application ofquadratic pro-
gramming toJ(λ). Fortunately, the log-sigmoid functionf (x) = log(α+exp(−x)) is known to be
a convex function (more precisely, our objective involves a negated sumof such functions which is
concave overall). Recently, new computational tools have been proposed for solving convex pro-
grams that involve such terms (Koh et al., 2007). In our implementation, we instead apply a bound
on the log-sigmoid to reformulate the optimization as a sequential quadratic program. Optimization
details are deferred to Section 10 but it will be assumed that a (nearly) optimal λ solution can be
recovered.

Given the recoveredλ setting, the prediction rule is straightforward to derive as follows:

ŷ = argmax
y

Ep(Θ|D)[logp(y|x,Θm,s)] = sign

(

D

∑
d=1

Tm

∑
t=1

λm,tym,t ŝ(d)x(d)xm,t(d)+ b̂m

)

.

The ŝ(d) above are expected values ofs(d) under the posterior and are given by:

ŝ(d) =
1

1+αexp

(

−1
2 ∑M

m=1

(

∑Tm
t=1 λm,tym,txm,t(d)

)2
) .

In fact, ŝ(d) are scalars in[1/(1+α),1] which give a soft feature selection as values close to the
bottom of the range are candidates for removal after thresholding. The values ofŝ(d) multiplica-
tively scale the input domain features and are close to 1/(1+α) for features that are not useful for
prediction in the multiple tasks. Once again, theb̂m scalars are given by the KKT conditions which
require that the value inside the sign() function evaluation above exactly equalsym,t for the query
x = xm,t whenever the corresponding Lagrange multiplier strictly satisfies 0< λm,t <C.

84



MULTITASK SPARSITY VIA MAXIMUM ENTROPY DISCRIMINATION

7. Kernel Selection

Feature selection and sparsity are not the only types of shared representations one may consider.
One crucial design issue of nonlinear SVMs is the choice of a kernel function. Also, kernels permit
SVMs to handle non-vectorial inputs so we relax the assumption that thex inputs are Euclidean
vectors and only require that they are objects from some sample spacexm,t ∈ X for all m= 1, . . . ,M
andt = 1, . . . ,Tm. Typically, in kernel learning (Lanckriet et al., 2002), we are given aset ofd =
1, . . . ,D base Mercer kernelsk1, . . . ,kD where each kernel functionkd : X ×X → R accepts two
inputs and produces a scalar. We wish to learn a conic combination of the kernels or a sparse
selection using the non-negative scalar weightsw1, . . . ,wD as follows

K(x, x̄) =
D

∑
d=1

wdkd(x, x̄).

Some base kernels may get a small weight and are thus not selected and others will be averaged
with varying weightswd to produce a potentially better final kernelK. Each base kernelkd(x, x̄)
can be seen to correspond to a mappingφd which is applied to both inputsx andx̄. The functionφd

maps an inputx ∈ X to some Hilbert space we denoteΦd. The kernel is then the inner-product of
φd(x) andφd(x̄) as follows:

kd(x, x̄) = 〈φd(x),φd(x̄)〉.

Kernel selection is equivalent to selecting some mappings and attenuating others. We thus need
a shared representation vectors which is again binary and againD-dimensional to select which
kernels will be used. However, now, we have a set ofM×D linear modelsθm,d ∈ Φ∗d for each
Hilbert space. Aθm,d vector is available for each taskm= 1, . . . ,M and each mappingd = 1, . . . ,D.
In other words, taskmhas the following modeling resources on its own:Θm= {θm,1, . . . ,θm,D,bm}.
The prior for the modeling resources for them’th task is then chosen to be a product of independent
white Gaussians on theseD vector parameters. This leads to the following general prior for all
model parameters:

p(Θ) =
D

∏
d=1

ρs(d)(1−ρ)1−s(d)
M

∏
m=1

N (θm,d|0, I)N (bm|0,σ2).

Once again, all tasks share and have to agree on the binary selector vector s which inherits the
Bernoulli prior used in the previous section. Therefore, we have the following total set of parameters
Θ = {Θ1, . . . ,ΘM,s}.

The predictive distribution for multitask kernel selection is then given by the following log-
linear model (for them’th task):

p(y|x,Θm,s) ∝ exp

(

y
2

(

D

∑
d=1

s(d)〈θm,d,φd(x)〉+bm

))

.

We once again recover the MED posterior using Equation 2. The normalizerfor the posteriorZ(λ) is
then found by integrating over the parametersΘ. This multitask kernel selection objective function
J(λ) is the following convex program:











maxλ ∑M
m=1 ∑Tm

t=1 γλm,t +D log(α+1)

−∑D
d=1 log

(

α+e
1
2 ∑M

m=1 ∑Tm
t=1 ∑Tm

τ=1 λm,tλm,τym,tym,τkd(xm,t ,xm,τ)
)

s.t. 0≤ λm,t ≤C ∀m, t and ∑Tm
t=1ym,tλm,t = 0 ∀m.
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Similarly, given theλ setting, we obtain the following prediction rule:

ŷ = sign

(

D

∑
d=1

Tm

∑
t=1

λm,tym,t ŝ(d)kd(x,xm,t)+ b̂m

)

whereŝ(d) are scalars that weight each kernel and are usually close to 1/(1+α) for kernels that are
not beneficial for our multiple classification tasks. The weights for each kernel are recovered as:

ŝ(d) =
1

1+αexp
(

−1
2 ∑M

m=1 ∑Tm
t=1 ∑Tm

τ=1 λm,tλm,τym,tym,τkd(xm,t ,xm,τ)
) .

The scalar biaseŝbm are once again recovered from the KKT conditions. From the prediction rule,
it is clear that kernel learning is effectively creating a new kernel fromthe base kernels as follows:

K(x, x̄) =
D

∑
d=1

ŝ(d)kd(x, x̄).

When α = 0, there is no coupling of tasks or sparse selection of kernels. The solution simply
corresponds to settinĝs(d) = 1 and forces the final kernelK to equal a simple sum of all base
kernels ford = 1, . . . ,D. In general, however, a more appropriate final kernel could potentially
be recovered ifα > 0. Given such an aggregate kernelK(x, x̄), we can now write an SVM-like
prediction rule for them’th task:

ŷ = sign

(

Tm

∑
t=1

λm,tym,tK(x,xm,t)+ b̂m

)

.

Another interesting fact is that feature selection is just an instance of kernel selection. If we choose
thed = 1, . . . ,D kernels as follows

kd(x, x̄) = x(d)x̄(d).

we are effectively replacing kernel evaluations in this section with the scalar product of thed’th
dimension of the input that was needed for feature selection. Thus, the kernel selection problem in
this section clearly subsumes the feature selection problem derived in Section 6.

7.1 Independent Kernel Selection

It is possible to break the above multitask framework by allowing each task to select a combination
of kernels independently. This means that we introduce a separatesm vector for each taskm=
1, . . . ,M instead of having a shared representations. The derivation is straightforward and produces
the following convex program:











maxλ ∑M
m=1 ∑Tm

t=1 γλm,t +MD log(α+1)

−∑M
m=1 ∑D

d=1 log
(

α+e
1
2 ∑Tm

t=1 ∑Tm
τ=1 λm,tλm,τym,tym,τkd(xm,t ,xm,τ)

)

s.t. 0≤ λm,t ≤C ∀m, t and ∑Tm
t=1ym,tλm,t = 0 ∀m

which is once again additive inm = 1, . . . ,M indicating that the Lagrange multipliers for each
task are estimated independently in a tabula rasa learning method. As usual, theprediction rule is
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given byŷ= argmaxyEp(Θ|D)[logp(y|x,Θm)] and the following formula emerges for the expected
switches:

ŝm(d) =
1

1+αexp
(

−1
2 ∑Tm

t=1 ∑Tm
τ=1 λm,tλm,τym,tym,τkd(xm,t ,xm,τ)

) .

The prediction function for each task then simply uses its ownŝm(d) weights to combine the base
kernels. This approach resembles the multiple kernel learning method (Lanckriet et al., 2002) since
each task performs its own kernel selection in isolation.

7.2 Metric Learning

It is known that a Mercer kernelk(x, x̄) or affinity can be used to construct a distance metric∆(x, x̄)
that satisfies standard requirements such as the triangle inequality. Consider constructing a base
distance metric∆d(x, x̄) from each base kernelkd(x, x̄) as follows:

∆d(x, x̄) =
√

kd(x,x)−2kd(x, x̄)+kd(x̄, x̄).

Given this multitask kernel selection framework, it is possible to use the aboveformula to perform
multitask metric learning. By applying the algorithm in Section 7, we obtain the kernel weights
ŝ(1), . . . , ŝ(D). This permits us to learn an overall kernel as a conic combination of the set of base
kernels. This solution can then be mapped into a learned distance metric as follows:

∆(x, x̄) =

√

D

∑
d=1

ŝ(d)(∆d(x, x̄))
2.

Thus, metric learning can be performed using the multitask kernel selection setup. Once a new
kernel is learned, it is then possible to reconstruct the corresponding distance metric and apply any
kernel or distance-based learning algorithm. For instance, kernel principal components analysis
(Scḧolkopf et al., 1999) or any distance-based learning algorithm such as kernel nearest neighbors
and kernel clustering can be used with such learned kernels and distance functions.

8. Shared Classifiers and Adaptive Pooling

Another interesting multitask learning approach involves shared classifiersor shared models. For
example, if we have very few training examples for each task, we may consider pooling all tasks
together and learning a single classifier for all. This may help initially yet some tasks with more
training examples than others may want to specialize and form their own independent classifiers
once we are confident these tasks have enough supporting data. Onceagain assume we havem=
1, . . . ,M tasks. These tasks have to choose between using their own specialized classifierθ1, . . . ,θM

or a communal classifierθ. To avoid a trivial solution, only some of the tasks are allowed to become
specialized and use their own linear model. Consider a binary feature selection vectors∈ B

M. For
each taskm, the element of the vectors(m) ∈ B determines if the task will use its own specialized
θm model (whens(m) = 1) or use the communalθ model (whens(m) = 0) for discrimination. This
setup is clarified by the following log-linear predictive distribution for them’th task:

p(y|m,x,Θ,s) ∝ exp
(y

2
(s(m)〈θm,φm(x)〉+ 〈θ,φ(x)〉+bm)

)

.

87



JEBARA

The communal classifier is over a single Hilbert space mappingφ(x) while the specialized classifiers
may operate over their own distinct Hilbert space mappingφm(x). Inner products in these Hilbert
spaces are computed using kernels as usualk(x, x̄) = 〈φ(x),φ(x̄)〉 andkm(x, x̄) = 〈φm(x),φm(x̄)〉.
Another subtlety is that each task still has its own dedicatedbm constant scalar bias. The complete
set of models is thereforeΘ = {θ,θ1, . . . ,θM,b1, . . . ,bM}. We can assume the priors on all models
are white Gaussian distributions. We also continue to use Bernoulli priors for s(m) and zero-mean
Gaussian priors for the biases. The normalizer for the posterior is recovered as:

Z(λ) =
∫

p(Θ)e∑M
m=1 ∑Tm

t=1 λm,tym,t(s(m)〈θm,φm(xm,t)〉+〈θ,φ(xm,t)〉+bm)−γλm,t dΘ

= e∑m
σ2
2 (∑t λm,tym,t)

2
e−∑m∑t γλm,t e

1
2 ∑m∑n ∑t ∑τ λm,tλn,τym,tyn,τk(xm,t ,xn,τ)

× ∑
s(1)

· · · ∑
s(M)

p(s)∏
m

e
1
2s(m)∑t ∑τ λm,tλm,τym,tym,τkm(xm,t ,xm,τ).

The final summations over the binary switch settings above distribute and become straightforward.
We assume thatσ→ ∞ and obtain the following objective functionJ(λ)











maxλ ∑M
m=1 ∑Tm

t=1 γλm,t −
1
2 ∑M

m=1 ∑M
n=1 ∑Tm

t=1 ∑Tn
τ=1 λm,tλn,τym,tyn,τk(xm,t ,xn,τ)

−∑M
m=1 log

(

α+e
1
2 ∑Tm

t=1 ∑Tm
τ=1 λm,tλm,τym,tym,τkm(xm,t ,xm,τ)

)

+M log(α+1)

s.t. 0≤ λm,t ≤C ∀m, t and ∑Tm
t=1ym,tλm,t = 0 ∀m

which clearly shows that the tasks cannot be solved independently (sincethe quadratic term above
sums over bothm andn which couples all pairs of tasks). The solution of the above is once again a
convex program. Given the optimal Lagrange multiplier solution, the predictionrule for an inputx
for them’th task is given by:

ŷ = sign

(

ŝ(m)
Tm

∑
t=1

λm,tym,tkm(x,xm,t)+
M

∑
n=1

Tn

∑
t=1

λn,tyn,tk(x,xn,t)+ b̂m

)

.

We recover the expecteds(m) value which measures our confidence in using a specialized classifier
for them’th task as follows

ŝ(m) =
1

1+αexp
(

−1
2 ∑Tm

t=1 ∑Tm
τ=1 λm,tλm,τym,tym,τkm(xm,t ,xm,τ)

) .

It is interesting to note that ifα is infinity, then all thês(m) values go to zero and the method per-
forms complete pooling. Conversely, ifα= 0, thenŝ(m)= 1 and each classifier mixes its specialized
linear model equally with the communal model. It is natural to use a smaller scale for k(x, x̄) than
km(x, x̄) such that the choiceα = 0 leads to a more specialized setting withM independent classi-
fiers while largerα leads to a more communal setting with a single classifier. For instance, in the
absence of any domain-specific knowledge, a good heuristic is to choosekm(x, x̄) = ωk(x, x̄) with
ω = 10M. Ultimately, the benefits of adaptive pooling will emerge if there is a natural trade-off
between specialization and sharing at different rates for each of theM tasks as embodied by the
non-uniform estimator of̂s above.
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9. Regression

It is easy to convert multitask feature selection, kernel selection and pooling problems to a regression
setup where outputs are scalarsym,t ∈R. While this article will only show experiments with classifi-
cation problems, the multitask regression setting is briefly summarized here for completeness. The
main decision in regression problems is what loss function to impose on output predictions. While
many loss functions may be considered in regression problems, a popular one is the epsilon-tube
loss.

In this type of regression, the goal is to predict the targets within±ε. Recall the close simi-
larity between the dual learning problems for SVM classification and SVM regression (Scḧolkopf
and Smola, 2001). The maximum entropy posterior can also be used to reproduce support vec-
tor machine regression (Jebara and Jaakkola, 2000; Jebara, 2003). Instead of following the MED
derivations in detail, this subsection simply shows the resulting objective function which largely
agrees with the standard quadratic program for (single-task) SVM regression with anε-tube:

max
λ,λ′

T

∑
t=1

yt(λt −λ′t)− ε
T

∑
t=1

(λt +λ′t)−
1
2

T

∑
t=1

T

∑
τ=1

(λt −λ′t)(λτ−λ′τ)k(xt ,xτ)

s.t. 0≤ λt ,λ′t ≤C, and
T

∑
t=1

λt =
T

∑
t=1

λ′t

which is solved over Lagrange multipliersλ= {λt} andλ′ = {λ′t} for all t = 1. . .T. SVM regres-
sion then applies the following prediction rule:

ŷ =
T

∑
t=1

(λt −λ′t)k(x,xt)+ b̂.

It is straightforward to adapt this regression problem to multitask kernel selection (which once
again subsumes feature selection if we selectkd(x, x̄) = x(d)x̄(d)). MED yields the following mul-
titask objective function which is a convex program:











maxλ,λ′ ∑M
m=1 ∑Tm

t=1ym,t(λm,t −λm,t ′)− ε∑M
m=1 ∑Tm

t=1(λm,t +λm,t ′)+D log(α+1)

−∑D
d=1 log

(

α+e
1
2 ∑M

m=1 ∑Tm
t=1 ∑Tm

τ=1(λm,t−λ′m,t)(λm,τ−λ′m,τ)kd(xm,t ,xm,τ)
)

s.t. 0≤ λm,t ,λ′m,t ≤C ∀m, t and ∑Tm
t=1 λm,t −λ′m,t = 0 ∀m.

The above is solved by adjusting the Lagrange multipliersλ = {λt,m} andλ′ = {λ′t,m} for all
t = 1. . .Tm and allm= 1, . . . ,M. The resulting prediction rule for a query datumx for the m’th
regression task is then:

ŷ =
Tm

∑
t=1

(λm,t −λ′m,t)K(x,xm,t)+ b̂m

with the kernelK(x, x̄) = ∑D
d=1 ŝ(d)kd(x, x̄) as a conic combination of base kernels with weights

ŝ(d) =
1

1+αexp(−1
2 ∑M

m=1 ∑Tm
t=1 ∑Tm

τ=1(λm,t −λ′m,t)(λm,τ−λ′m,τ)kd(xm,t ,xm,τ))
.

Finally, the biaseŝbm for each task are obtained by solving for the KKT conditions at active La-
grange constraints. Appendix C discusses other choices for the MED loss function in regression
settings and connections to previous sparse approaches (Ridge, Lasso and Elastic-Net regression).
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10. Sequential Quadratic Programming

In all the optimization problems introduced so far, the optimization appears to be extremely similar
to a quadratic program (QP) except for the presence of a handful oflog-sigmoid functions. In fact, if
the parameterα is set to zero, all the above optimization problems simplify into quadratic programs.
It will be shown that theα > 0 case can also be easily handled by quadratic programming as well.
More precisely, it can be optimized using a sequential quadratic programming(SQP) method. This
is a procedure which iteratively solves a QP for a number of iterations. In fact, if the QP is of
a simple SVM-type form, much faster SVM solvers can be used instead of QP (Joachims, 2006;
Shalev-Shwartz et al., 2007; Bottou and Bousquet, 2008; Shalev-Shwartz and Srebro, 2008). The
next section explicates how all MED optimization problems encountered so farcan be solved via
SQP (or sequential SVM solutions) by bounding the log-sigmoid terms with quadratic functions.

For brevity, we focus on the multitask kernel selection problem which strictly subsumes multi-
task feature selection. Other learning problems in the previous sections canbe implemented with
sequential quadratic programming in a similar manner. Recall the kernel selection optimization:











maxλ J(λ) = ∑M
m=1 ∑Tm

t=1 γλm,t +D log(α+1)

−∑D
d=1 log

(

α+e
1
2 ∑M

m=1 ∑Tm
t=1 ∑Tm

τ=1 λm,tλm,τym,tym,τkd(xm,t ,xm,τ)
)

s.t. 0≤ λm,t ≤C ∀m, t and ∑Tm
t=1ym,tλm,t = 0 ∀m.

This is a convex problem and generic methods exist for solving it including theellipsoid method.
The latter is a polynomial time algorithm requiring O((∑M

m=1Tm)
3) time yet may still be impracti-

cally slow in practice due to large scaling constants (Boyd and Vanderberghe, 2004). Some related
optimization methods involving logistic terms have been explored with the Lasso problem (Tibshi-
rani, 1996). Logistic terms often emerge in algorithms that learn sparse (feature-selected) linear
classifiers by maximizing the logistic likelihood while enforcing anℓ1 regularization on the linear
model parameters. This is the approach followed by theℓ1 regularized sparse logistic regression
technique (Koh et al., 2007). Interestingly, this recent work has developed fast interior-point op-
timization methods which may be eventually applicable to MED problems. Instead, wesolve the
MED problem by exploiting a convenient upper bound on logistic-quadraticfunctions that converts
them into plain quadratic functions. In previous work, a looser version ofthe bound was pro-
posed (Jebara and Jaakkola, 2000). This article refines the bound and provides a tight variational
quadratic upper bound on a logistic functionof a quadratic function. This conversion to quadratic
functions permits us to use standard quadratic programming. In fact, the actual optimizations ulti-
mately decouple into the solution ofM separate support vector machines and prevent cubic growth
in the number of tasks. Bounding is interleaved with the solution of support vector machines to
iteratively maximizeJ(λ). Due to the availability of fast SVM solvers, this optimization approach
is potentially more promising than more generic convex programming tools (Koh etal., 2007).
The necessary bound is derived in detail in Theorem 1 in the Appendix. The theorem states that

log
(

α+exp
(

u⊤u
2

))

is less than or equal to a convex quadratic function inu for all vectorsu and

achieves strict equality whenu = v for some vectorv. We will apply the above bound to each log-
sigmoid term in the sum overd = 1. . .D in J(λ). We slightly abuse notation and interchangeably
useλm to denote the vector of Lagrange multipliers(λm,1, . . . ,λm,Tm)

⊤ for eachm= 1. . .M. Sim-
ilarly, we will takeλ ∈ R

Γ whereΓ = ∑M
m=1Tm to be a concatenation of all Lagrange multipliers.

Consider thed’th log-sigmoid function in the sum∑D
d=1 log(. . .) in J(λ). Denote the Hessian of the
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quadratic term inside thed’th log-sigmoid asHd ∈ R
Γ×Γ which is given element-wise as follows:

Hd([m, t], [n,τ]) = ym,tym,τkd(xm,t ,xm,τ)δm=n.

Here we useδm=n as an indicator function that is 1 ifm= n and is zero otherwise. We also use the
operator[m, t] to compute the index value[m, t] = (t +∑m−1

n=1 Tn) to select the appropriate row and
column entries of the matrixHd. This allows us to write the dual objective function as

{

maxλ J(λ) = D log(α+1)−∑D
d=1 log

(

α+exp
(

1
2λ
⊤Hdλ

))

+ γλ⊤1
s.t. 0≤ λm,t ≤C ∀m, t and ∑Tm

t=1ym,tλm,t = 0 ∀m.

Assume we have a current setting of the Lagrange multipliersλ̃. We apply Theorem 1 in the
Appendix after a simple change of variables,u = H1/2

d λ andv = H1/2
d λ̃ which gives:

log

(

α+exp

(

λ⊤Hdλ

2

))

≤ log

(

α+exp

(

λ̃⊤Hdλ̃

2

))

+
exp( λ̃

⊤Hdλ̃

2 )

α+exp( λ̃
⊤Hdλ̃

2 )
λ̃⊤Hd(λ− λ̃)

+
1
2
(λ− λ̃)⊤

(

GdHdλ̃λ̃
⊤Hd +Hd

)

(λ− λ̃).

Such a bound is applied to each log-sigmoid term inJ(λ) individually for d = 1. . .D. The ratio
terms in the bound are none other than the expected switch variables at the current setting ofλ̃:

ŝ(d) =
exp( λ̃

⊤Hdλ̃

2 )

α+exp( λ̃
⊤Hdλ̃

2 )
=

1

αexp(− λ̃⊤Hdλ̃

2 )+1
.

Similarly, we obtain the following forGd applying5 the bound formula:

Gd =
tanh(1

2 log(αexp(− λ̃
⊤Hdλ̃

2 )))

2log(αexp(− λ̃⊤Hdλ̃

2 )
.

Other convenient variables to define are the vectorsŷm,t ∈ R
D for m= 1, . . . ,M andt = 1, . . . ,Tm.

These are the predicted label of them’th SVM on thet ’th datum using thed’th kernel at the current
setting ofλ̃. They are given element-wise as follows:

ŷm,t(d) =
Tm

∑
τ=1

λ̃m,τym,τkd(xm,t ,xm,τ).

Applying these substitutions and the bound on each log-sigmoid function produces the following
variational lower bound on the objective function:

J(λ) ≥ constant+
M

∑
m=1

Tm

∑
t=1

γλm,t −
M

∑
m=1

Tm

∑
t=1

λm,tym,t

D

∑
d=1

ŝ(d)ŷm,t(d)

+
M

∑
m=1

Tm

∑
t=1

Tm

∑
τ=1

λm,t λ̃m,τym,tym,τ

D

∑
d=1

(Gdŷm,t(d)ŷm,τ(d)+kd(xm,t ,xm,τ)) .

−
1
2

M

∑
m=1

Tm

∑
t=1

Tm

∑
τ=1

λm,tλm,τym,tym,τ

D

∑
d=1

(Gdŷm,t(d)ŷm,τ(d)+kd(xm,t ,xm,τ)) .

5. By continuity, take tanh( 1
2 log(1))/(2log(1)) = 1/4 and also take limz→0+ tanh( 1

2 log(z))/(2log(z)) = 0.
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Interestingly, given the current̃λ and the current̂s(1), . . . , ŝ(D), the bound effectivelydecouples
the learning problem across theM tasks. The objective function becomes quadratic and additive
acrossm= 1. . .M. Therefore, we can solve each problem individually as a single support vector
machine. This provides a simple iterative algorithm for multitask learning which builds on current
SVM solvers. The steps6 are summarized in Algorithm 1.

Algorithm 1 simply performs sequential quadratic programming by interleaving the bound com-
putation with SVM programs. The SVMs are solved separately form= 1, . . . ,M tasks in Step 3b. If
each SVM is solved using standard quadratic programming solvers, each requires O(T3

m). However,
by exploiting more recentapproximateSVM solvers, the inner loop SVM problems can poten-
tially complete in linear time or O(Tm) (Joachims, 2006; Shalev-Shwartz et al., 2007; Bottou and
Bousquet, 2008; Shalev-Shwartz and Srebro, 2008). Admittedly, this is true only subject to certain
reasonable assumptions (for instance, small approximation errors are allowed and explicit linear
feature mappings are used rather then implicit nonlinear kernels). Therefore, under certain assump-
tions, step 3b in Algorithm 1 can potentially complete in O(∑M

m=1Tm) time.7 Finally, it is also
possible to use warm-starting and seed the SVM solver with a previousλ result to obtain further
speedup. For instance, warm starting can be used from a previous iteration in Algorithm 1. Fur-
thermore, we may warm start from a previous final solution of Algorithm 1 thatconverged for a
smaller setting ofC or α. This lets us explore the regularization path efficiently after initializing it
at, for instance, the default setting ofα = 0 andC= 1 and increasing both parameters until error is
minimized on a cross-validation set. Furthermore, we typically setγ= 1 to mimic the support vector
machine case but that parameter may be adjusted as well (either manually or bycross-validation).

Algorithm 1 Multitask SVM Learning
0 Input data setD, C> 0, α≥ 0, 0< ϖ < 1 and kernelskd for d = 1, . . . ,D.
1 Initialize Lagrange multipliers to zeroλ= 0.
2 Storeλ̃= λ.
3 Form= 1, . . . ,M do:

3a Setgd = αexp
(

−1
2 ∑M

m=1 ∑Tm
t=1 ∑Tm

τ=1 λm,tλm,τym,tym,τkd(xm,t ,xm,τ)
)

for all d.

SetGd =
tanh( 1

2 log(gd))

2log(gd)
for all d.

Setŝ(d) = 1
1+gd

for all d.

Setŷm,t(d) = ∑Tm
τ=1 λm,τym,τkd(xm,t ,xm,τ) for all t andd.

3b Update each of theλm vectors with the SVM QP:
maxλm ∑Tm

t=1 λm,t − ∑Tm
t=1 λm,tym,t ∑D

d=1 ŝ(d)ŷm,t(d)
+∑Tm

t=1 ∑Tm
τ=1 λm,t λ̃m,τym,tym,τ ∑D

d=1(Gdŷm,t(d)ŷm,τ(d)+kd(xm,t ,xm,τ))

−1
2 ∑Tm

t=1 ∑Tm
τ=1 λm,tλm,τym,tym,τ ∑D

d=1(Gdŷm,t(d)ŷm,τ(d)+kd(xm,t ,xm,τ))

s.t. 0≤ λm,t ≤C ∀t = 1, . . . ,Tm and ∑Tm
t=1ym,tλm,t = 0.

4 If ‖λ− λ̃‖> ϖ‖λ‖ go to 2.
5 Output: ŝandλ.

Next, we discuss the convergence of the above iterative algorithm. Clearly, since the algorithm
maximizes a variational lower bound on the objective function, it must monotonically increase the
objective. However, it is still possible that the algorithm can get stuck and produce negligible

6. Code available atwww.cs.columbia.edu/ ˜ jebara/code/multisparse/ .
7. Also, under mildiid assumptions, step 3a can be well approximated in O(∑M

m=1Tm) time using deviation bounds.
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Figure 1: Feature selection on the UCI Dermatology data set. Multitask sparsefeature selection and
independent SVM classification are compared. Various data set sizes are shown ranging
from 20 to 200 samples for each of the 6 tasks. The average area underthe ROC curve on
test data is shown for all tasks for 5 folds (along with the standard deviation). The values
of C andα were obtained by cross-validation on held out data.

progress requiring an unbounded number of iterations. We will show thatis not the case and,
indeed, the sequential quadratic programming procedure in Algorithm 1 will only require a finite
number of iterations (of step 3). The number of iterations is bounded by Theorem 2 which is proved
in the Appendix. It guarantees that, for anyα ≥ 0,ε ∈ (0,1), Algorithm 1 finds aλ̃ that satisfies
J(λ̃)≥ (1− ε)J(λ∗) (whereλ∗ is the constrained maximizer ofJ(λ)) in no more than

⌈

log(1/ε)
log
(

min
(

1+ 1
α ,2
))

⌉

iterations. Here, each iteration involves (possibly warm-started) SVM programs and the expression
⌈. . .⌉ denotes the integer ceiling function.

Therefore, a constant number of iterations is needed that depends onlyon α. In summary,
solving multitask feature or kernel selection is only a constant factor more computational effort
than solvingM independent support vector machines. A similar SQP or iterative SVM algorithm
can be derived for the adaptive pooling setup described in Section 8.

11. Experiments

To evaluate the multitask learning framework, we considered UCI data8 as well as the Land Mine
data set9 which was developed and investigated in previous work (Xue et al., 2007). The classi-
fication accuracy of standard support vector machines learned independently is compared to the
accuracy of the multitask kernel selection procedure described in Section 6and Section 7. In all
experiments, we explore multiple values of the regularizerC for the SVM and multiple values of

8. Data available athttp://archive.ics.uci.edu/ml/ .
9. Data available athttp://www.cs.columbia.edu/ ˜ jebara/code/multisparse/LandmineData.mat .
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(a) Feature and RBF kernel selection (b) Feature, polynomial and RBF kernel selection

Figure 2: Feature selection and kernel selection on the Landmine data set. In (a), feature selection
is combined with RBF kernel selection. In (b), feature selection is combined with both
polynomial and RBF kernel selection. Multitask sparse kernel selection and independent
SVM classification are compared. Various data set sizes are shown ranging from 20 to
200 samples for each of the 29 tasks. The average area under the ROC curve on test data
is shown for all tasks for 5 folds (along with the standard deviation). The values ofC and
α were obtained by cross-validation on held out data.

C andα (or, equivalently,ρ) for the multitask learner. The values ofC andα are determined by
cross-validation on held out data and then tested on an unseen test set.

The UCI dermatology data set consists of 6 classes which can be converted into binary classifi-
cation tasks to be predicted from an input space of 34-dimensional features. A total of 366 instances
are available. Both the independent SVMs and the multitask feature selection approach were evalu-
ated by training on various numbers of examples (from 20 to 200) for eachtask, and the remaining
examples (with labels kept unobserved) are split in half for cross-validation and testing. The feature
selection method chooses a sparse subset of the 34 features that are consistently good at predicting
the label for the 6 different tasks (or classes). All evaluations were done using the average area
under the Receiver Operating Characteristic (ROC) curve for the 6 tasks. This score is the MAUC
since it involves the mean ofM tasks’ Area Under the Curve (AUC) scores. Cross-validation was
used to select a value ofC for the independent SVMs and values ofα andC for the multitask fea-
ture selection SVMs. Figure 1 shows the MAUC performance of the independent SVMs versus the
multitask SVMs with averages and standard deviations across 5 folds. There is a clear and statis-
tically significant advantage (under a paired t-test) for multitask learning over independent SVM
classification.

The Landmine data set consists of 29 binary classification tasks involving aninput space of
D = 9 dimensional features. The number of samples for each task varies from445 to 690. Both
independent SVM learning and the multitask kernel selection approach were evaluated by training
on various numbers of examples (20,40, . . . ,200) from each task. The remaining examples were
split in half for cross-validation and for testing. We perform feature selection by building a kernel
for each feature that is simply the product of a single scalar dimension for apair of data points. This
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produces 9 kernels. In addition, 9 radial basis function (RBF) kernelswere computed with different
settings of the bandwidth parameter. The kernel selection method was then used to choose a sparse
subset of theseD= 18 total kernels. All evaluations were done using the average area under the ROC
curve for the 29 tasks. Cross-validation was used to select a value ofC for the independent SVM
approach and to select values forC andα for the multitask kernel selection SVM. Figure 2(a) shows
the performance of the independent SVMs versus the multitask SVMs as an average and standard
deviation of MAUC across 5 folds. Tabula rasa learning obtains lower accuracy in general while
multitask learning improved accuracy at all sizes of the training data set with statistical significance
(a paired t-test produced a p-value below 0.05) on most training set sizes.

Another experiment exploring kernel selection was considered using allthe previous kernels
as well as linear, quadratic, cubic and quartic kernels for a total ofD = 22 kernels. Figure 2(b)
summarizes the results which again demonstrate an advantage for the multitask setup. These results
compare favorably with previous experiments on this data set (Xue et al., 2007).

In all experiments, solving the more elaborate objective function in the MED convex program
required only a constant factor more time than solving each task separately with independent SVMs.
We verified that the number of iterations of the SVMs only increased as a function ofα and required
2 to 40 iterations of Step 3 in Algorithm 1 asα was swept across the range of interest. Since
the SVMs were warm-started at their previous solutions, sweeping acrossa range ofα values in
the multitask sparsity approach (after starting from an initial SVM solution) never required more
than 50 times the run time of the initial SVM solution. Thus, empirically, the multitask sparsity
framework, while sweeping over the full regularization path overα, incurs a constant factor (under
50) increase in the computational effort over independent SVM learning. These runtime results
agree with Theorem 2.

In another experiment with adaptive pooling, the Heart data set from the UCI repository was
used. All features were normalized to within the[0,1] box and a polynomial kernel of degree three
was used throughout. The Heart data set was changed into a multitask data set by dividing the data
into ten different tasks based on the age of the patient. This division was done by splitting the data
along the age variable by forming 10 intervals with equal number of examples ineach interval. For
each task, the examples were divided into train/test/validation sets with equal number of examples
in each. A scaling factor of110 was applied to the communal kernel and a scaling factor of9

10M
was applied to the specialized (task-specific) kernels. Independent learning and full pooling results
were obtained by finding the SVM solutions on each data set in isolation and then by finding an
SVM on the pooled data from all tasks. The parameterC was chosen based on performance on a
validation set. For adaptive pooling,α values were also explored from 0 toe9. TheC value which
resulted in the highest AUC on the validation data was used to pick the AUC for eachα value. The
experiment was repeated 100 times to get the test AUC over different random splits of the data. An
advantage for adaptive pooling was evident whenα = 1e5 and was statistically significant at better
than the 5% p-value threshold (using a paired t-test). Figure 3 shows the average test AUC results
across 100 folds using independent SVMs, pooling and adaptive pooling for various values ofα
(after cross-validation only over the value ofC for all methods). The Figure reveals an advantage
for adaptive pooling compared to full pooling and independent learning.
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Figure 3: Adaptive pooling experiments on the Heart data set. The area under the curve (AUC) for
adaptive pooling, pooling and independent SVMs is shown in (a). In (b), a zoomed in
version of the plot is shown to focus on the setting with highest average AUC. The value
of the regularization parameterC was found using cross-validation for all three methods.

12. Graphical Model Structure Estimation

The multitask sparse discrimination framework is a general tool for large margin classification since
most elements of̂s become vanishingly small (at appropriate settings ofρ or α). This motivates
extending the framework to other sparse inference problems including the estimation of graphical
model structure which has been explored as anℓ1 sparse regression with asymptotic guarantees
(Wainwright et al., 2007). Theℓ1 approach infers a graphical model by learning functions that
reconstruct some dimensions given others under sparsity constraints. Assume that we are givenT
binary vectorsx1, . . . ,xT wherext ∈ B

D are samplediid from an unknown distribution

p(x) ∝ exp

(

D

∑
m=1

η(m)x(m)+
D

∑
m=1

D

∑
n=1

E(m,n)θ(m,n)x(m)x(n)

)

.

This Ising model is specified by an undirected graphG = (V,E) with D verticesV and edgesE,
where, without loss of generality, we may assume thatE ∈ B

D×D is also a binary symmetric ad-
jacency matrix with zero on its diagonal,θ ∈ R

D×D is a symmetric real matrix with zero on its
diagonal andη ∈ R

D is a real vector. The goal of graphical model structure estimation is to recover
an estimatêET of the binary matrixE solely from the observationsx1, . . . ,xT .

In previous work (Wainwright et al., 2007), a method was provided that achieves Pr[ÊT =E]→ 1
asT→ ∞ by solving independent sparse regression problems as follows,

θ̂m = arg min
θ∈RD

ν ∑
d6=m

|θ(d)|+
T

∑
t=1

log(1+e∑d6=mθ(d)xt(d)+θ(m))−xt(m)( ∑
d6=m

θ(d)xt(d)+θ(m))

for m= 1, . . . ,D. These tasks reconstruct each dimension from all other dimensions. In other
words, them’task is given{x(1), . . . ,x(D)}\x(m) and predictsx(m). Theℓ1 sparsity constraint, for
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appropriate settings of the parameterν, makes the problem non trivial since only some inputs can be
used in the reconstruction. To recover a single consistent set of edgesÊT , the nonzero components
of θ̂m estimated for various tasks are combined using either an AND or an OR rule. In the AND
case,Ê(m,n) is set to 1 if botĥθm(n) is nonzero and̂θn(m) is nonzero. In the OR case,Ê(m,n) = 1
if either of the terms is nonzero.

The multitask MED approach can potentially circumvent this ad hoc AND/OR step by forcing
all sparse predictors to agree on a single undirected edge connectivity matrix E from the outset.
The MED approach considersm= 1, . . . ,D tasks where them’th task is givenxt and must predict
ym,t = 2xt(m)−1∈ ±1 as a classification output. We assume the following predictive distribution:

p(y|m,x,θ,b,s) ∝ exp

(

y
2 ∑

d6=m

s(m,d)x(d)θ(m,d)+b(m)

)

.

The MED modelΘ contains a matrixθ ∈ R
D×D with its diagonal forced to zero. In addition, it

contains a binary matrixs∈BD×D (again with its diagonal forced to zero) and finally a scalar vector
b ∈ R

D. The standard Gaussian priors are applied to the model parameters inP(Θ) except for
the s variable which obtains a Bernoulli prior over its binary entries and (for sufficiently largeα)
to encourage its sparsity. In addition, we a priori enforce the symmetrys(m,d) = s(d,m). This
ensures that, if inputx(d) is used for the prediction ofx(m), x(m) can also be used for predicting
x(d). However, symmetry is not enforced on theθ parameters which permits us to learn different
linear relationships once a consistent dependency structure is determined. Thus, consistency of the
edges used by the sparse prediction is enforced up-front in a multitask setting instead of resorting
to a post-processing (i.e., the AND or OR steps) as in the previous approach which independently
learnsD regression functions.

The MED framework computes the partition function by integrating the following:

Z(λ) =
∫

p(Θ)exp

(

D

∑
m=1

T

∑
t=1

λm,tym,t

(

∑
d6=m

s(m,d)xt(d)θ(m,d)+b(m)

)

−λm,t

)

dΘ

= e∑m
σ2
2 (∑t λm,tym,t)

2−∑t λm,t ∑
s

p(s)e
1
2 ∑D

m=1 ∑D
d=m+1 s(m,d)

(

(∑t λm,tym,txt(d))
2+(∑t λd,tyd,txt(m))

2
)

.

Takingσ→ ∞ andJ(λ) =− log(Z(λ)) produces (up to an additive constant) the dual program:







maxλ ∑D
m=1 ∑T

t=1 λm,t −∑D
m=1 ∑D

d=m+1 log

(

α+e
1
2

(

(∑t λm,tym,txt(d))
2+(∑t λd,tyd,txt(m))

2
))

s.t. 0≤ λm,t ≤C ∀m, t and ∑T
t=1ym,tλm,t = 0 ∀m.

The objective function can be written as

max
λ∈Λ

λ⊤1−
D

∑
m=1

D

∑
d=m+1

log
(

α+e
1
2λ
⊤Hm,dλ

)

where theHm,d ∈ R
DT×DT matrices ford > m∈ {1, . . . ,D} are defined element-wise as

Hm,d([n, t], [o,τ]) = ym,tym,τxt(d)xτ(d)δm=n=o+yd,tyd,τxt(m)xτ(m)δd=n=o.
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It is easy to maximize the objective using sequential quadratic programming which gives an estimate
for λ. The prediction rule is then ˆy = argmaxyEp(Θ|D)[logp(y|m,x,Θ,b,s)] which involves the
sparse variables. These switch configurations essentially identify the network structure andare
obtained from expecteds(m,d) values under the posteriorp(Θ|D) as follows:

ŝ(m,d) =
1

1+αexp
(

−1
2

(

(∑t λm,tym,txt(d))
2+(∑t λd,tyd,txt(m))2

)) .

For largeα, many entries of̂s are driven towards small values as MED resembles anℓ1 regularizer.
MED produces sparsity although only in a probabilistic sense since coefficients do not strictly go to
zero but typically shrink to small values. The matrixŝ represents MED’s estimate of the unknown
adjacency matrixE in the original graphical model.

To test the accuracy of the method, the scalar values ofŝare used as scalar classification predic-
tions for the presence or absence of an edge. Given the true graph, these predictions are straightfor-
ward to evaluate using the AUC. Experimental results with synthetic data are obtained by generating
random graphs and obtaining samples from them according to the Ising model above (Wainwright
et al., 2007). In Figure 4, the mean area under the curve (MAUC) is reported for the MED tech-
nique as well as the independentℓ1 regularized regressions with an AND and an OR step. Multiple
settings of the regularization parameters are shown in the plot as the value ofthe regularizationν is
explored in the original method (for both the AND and OR setting) and the values ofC andα are
explored in the proposed method. Since theℓ1 regularization method (Wainwright et al., 2007) is
asymptotically correct, the experiments here focus on the small sample regime. From ten random
graphical models over 5 nodes, 60 samples were drawn using Monte Carlomethods and the average
area under the curve for the various methods was reported. To fairly compare results using an AUC
measure, we did not only use the support found by theℓ1 regularized method but also considered
all possible thresholds on theℓ1 solution. More specifically, the min or the max operators were
first used to symmetrize the absolute value of the regression weights recovered byℓ1 regularization.
These non-negative scalars were then used in the graphical model to allow all operating points on
the receiver operator characteristic to be explored. This can only improve the performance of the
ℓ1 regularization method in terms of AUC (a binary estimate of edges followed by anAND or an
OR step can only obtain lower AUC). Despite this, the proposed method10 performs significantly
better possibly due to the explicit symmetry in the edge estimation. These preliminaryexperiments
motivate large scale future empirical work.

13. Discussion

A multitask learning framework was developed for support vector machinesand large-margin linear
classifiers. Each task-specific classifier is estimated to solve its own problemyet all tasks have to
share a common representations. This common representation included sparse feature selection
and conic kernel combination. This common representation couples tasks to go beyond standard
tabula rasa learning. To compute the coupled linear models, we applied the maximum entropy dis-
crimination framework which produces support vector machines that share a common sparse rep-
resentation. The framework combines classification problems non-trivially ina convex dual-space
optimization. We presented a simple sequential quadratic programming approach for solving the

10. Code available atwww.cs.columbia.edu/ ˜ jebara/code/multisparse/ .
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Figure 4: Graphical model structure estimation from data sampled from Isingmodels. The average
area under the curve is shown for ten random models. The proposed method is evalu-
ated across various values ofC andα and compared toℓ1 regularized logistic regression
method across various values ofν with both AND and OR symmetrization.

dual optimization for both multitask feature selection and multitask kernel selectionproblems. We
interleave bound computations with standard SVM updates (either using quadratic programming or,
preferably, nearly linear-time modern SVM solvers). In addition, the extensions to adaptive pooling,
sparse regression and graphical model reconstruction were illustrated. The MED multitask frame-
work potentially allows flexible exploration of sparsity structure over different groups of variables
and is reminiscent of Group Lasso methods (Yuan and Lin, 2006; Bach, 2008). Experiments on real
world data sets show that MED multitask learning is advantageous over single-task or tabula rasa
learning.

In future work, it would be interesting to investigate theoretical generalization guarantees for
multitask sparse MED. This may involve exploiting PAC-Bayesian model selectionmethods or on-
line mistake bound methods (McAllester, 1999; Langford and Shawe-Taylor, 2002; Long and Wu,
2004) which have already given generalization arguments for the single-task MED approach. Since
generalization guarantees in multitask settings have already been provided for other algorithms
(Ando and Zhang, 2005; Maurer, 2006, 2009), this may be a fruitful line of work. Finally, it may
be useful to explore methods for automatically estimating the hyper-parametersin the MED frame-
work such asα which, as in classical Bayesian approaches, might be handled via optimization or
integration rather than cumbersome cross-validation.
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Appendix A. Bounding the Logistic-Quadratic Function

Theorem 1 For all u ∈ R
D, log

(

α+exp
(

u⊤u
2

))

is bounded above by

log

(

α+exp

(

v⊤v
2

))

+
v⊤(u−v)

1+αexp(− v⊤v
2 )

+
1
2
(u−v)⊤

(

I +Gvv⊤
)

(u−v)

for the scalar termG = 1
2tanh(1

2 log(αexp(−v⊤v/2)))/log(αexp(−v⊤v/2)). The bound holds for
anyα≥ 0,v ∈ R

D and strict equality is achieved whenu = v.

Proof The proof proceeds by first making the bound achieve (tangential) equality at u = v. It
then applies a previously known bound on the logistic function using convexity arguments. The
logistic-quadratic functiong(u) and the general quadratic functionq(u) are defined as

g(u) = log

(

α+exp

(

u⊤u
2

))

,

q(u) = c+b⊤(u−v)+
1
2
(u−v)⊤A(u−v).

The quadratic functionq(u) is parametrized by a scalarc ≥ 0, a vectorb ∈ R
D and a positive

semi-definite matrixA ∈ R
D×D. These parameters must be selected to ensureq(u) ≥ g(u) for all

u ∈ R
D. Furthermore, the theorem requires thatg(v) = q(v). This determines the additive constant

c= log
(

α+exp
(

v⊤v
2

))

. Since equality is achieved atu = v, the gradients must be equal there as

well, in other words∂g(u)
∂u

∣

∣

∣

u=v
= ∂q(u)

∂u

∣

∣

∣

u=v
. This determines thatb = exp

(

v⊤v
2

)

/(α+exp
(

v⊤v
2

)

)v.

Otherwise, the functions cross atu = v which violates the bound. Inserting these values forb and
c into the quadratic form forq(u) reveals thatA must be chosen such that1

2(u− v)⊤A(u− v) is
greater than or equal to

log

(

α+exp(u⊤u/2)
α+exp(v⊤v/2)

)

−
exp(v⊤v/2)

α+exp(v⊤v/2)
v⊤(u−v).

Consider the choice forA suggested by the theorem to prove that it satisfies this requirement

A = I +
tanh(1

2 log(αexp(−v⊤v/2)))

2log(αexp(−v⊤v/2))
vv⊤.

Multiply A appropriately to obtain the desired expression

1
2
(u−v)⊤A(u−v) =

1
2
(u−v)⊤

(

I +
tanh(1

2 log(ϕ))
2log(ϕ)

vv⊤
)

(u−v),

where, for brevity, we define the scalarϕ = αexp(−v⊤v/2). Rewrite the right hand side as

1
2
(u−v)⊤A(u−v) =

1
2
(u−v)⊤

(

I +
tanh(1

2 log(ϕ))
2log(ϕ)

vv⊤
)

(u−v)−
tanh(1

2 logϕ)
2

v⊤(u−v)

+
ϕ−1

2
1

ϕ+1
v⊤(u−v)
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while noting that tanh(1
2 logϕ) = (ϕ−1)/(ϕ+1). The right hand side further simplifies into

1
2
(u−v)⊤A(u−v) =

1
2
(u−v)⊤(u−v)+

tanh(1
2 logϕ)

4logϕ
(χ2− (logϕ)2)+

ϕ−1
2

z

where, for brevity, we have defined the following

z =
1

ϕ+1
v⊤(u−v),

χ = v⊤(u−v)− logϕ = (ϕ+1)z− logϕ.

Recall the following inequality (Jaakkola and Jordan, 2000) which holds for any choice ofξ ∈ R:

log

(

exp

(

−
ξ
2

)

+exp

(

ξ
2

))

+
tanh( ξ

2)

4ξ
(χ2−ξ2) ≥ log

(

exp
(

−
χ
2

)

+exp
(χ

2

))

.

Chooseξ = logϕ (or, equivalently,ξ =− logϕ) and rewrite the bound as

tanh(1
2 logϕ)

4logϕ
(χ2− (logϕ)2) ≥ log

(

exp
(

−
χ
2

)

+exp
(χ

2

))

− log(ϕ
1
2 +ϕ−

1
2 ).

Applying this bound in the formula involving theA matrix and rearranging yields

1
2
(u−v)⊤A(u−v) ≥

‖u−v‖2

2
+ log

(

exp
(

−
χ
2

)

+exp
(χ

2

))

− log(ϕ
1
2 +ϕ−

1
2 )+

ϕ−1
2

z

=
‖u−v‖2

2
+ log(exp(−z+ logϕ)+exp(ϕz))− log(ϕ+1)

=
‖u−v‖2

2
+ log

(

ϕ
ϕ+1

exp(−z)+
1

ϕ+1
exp(ϕz)

)

=
‖u−v‖2

2
+ log

(

ϕ
ϕ+1

exp

(

−
v⊤(u−v)

ϕ+1

)

+
1

ϕ+1
exp

(

ϕv⊤(u−v)
ϕ+1

))

=
‖u−v‖2

2
+ log

(

ϕ+exp(v⊤(u−v))
ϕ+1

)

−
v⊤(u−v)

ϕ+1

=
‖u−v‖2

2
+ log

(

α+exp(−v⊤v/2+v⊤u)
α+exp(v⊤v/2)

)

−
exp(v⊤v/2)

α+exp(v⊤v/2)
v⊤(u−v)

≥
‖u−v‖2

2
+ log

(

αexp(−1
2‖u−v‖2)+exp(−v⊤v/2+v⊤u)

α+exp(v⊤v/2)

)

−
exp(v⊤v/2)

α+exp(v⊤v/2)
v⊤(u−v).

In the last line, we use the fact that 1≥ exp(−1
2‖u− v‖2). Absorbing the1

2‖u−v‖2 term into the
logarithm multiplicatively gives the desired inequality

1
2
(u−v)⊤A(u−v) ≥ log

(

α+exp(u⊤u/2)
α+exp(v⊤v/2)

)

−
exp(v⊤v/2)

α+exp(v⊤v/2)
v⊤(u−v).

101



JEBARA

Appendix B. Convergence of Sequential Quadratic Programming

Theorem 2 Algorithm 1 finds ãλ ∈ Λ achieving J(λ̃)≥ (1− ε)maxλ∈Λ J(λ) where

J(λ) = D log(α+1)−
D

∑
d=1

log

(

α+exp

(

1
2
λ⊤Hdλ

))

+λ⊤1

s. t. λ ∈ Λ =

{

0≤ λm,t ≤C, t = 1, . . . ,Tm, m= 1, . . . ,M
∑Tm

t=1ym,tλm,t = 0, m= 1, . . . ,M

in at most

⌈

log(1/ε)
log(min(1+ 1

α ,2))

⌉

iterations for anyα≥ 0 andε ∈ (0,1).

Proof Sequential quadratic programing is used to approximateλ∗ = argmaxλ∈Λ J(λ). Given a
current settingλi at iterationi, Theorem 1 obtains a variational quadratic bound onJ(λ) as:

Li(λ) = D log(α+1)−
D

∑
d=1

log

(

α+exp

(

1
2
λ⊤i Hdλi

))

−
D

∑
d=1

exp(λi
⊤Hdλi

2 )

α+exp(λi
⊤Hdλi

2 )
λi
⊤Hd(λ−λi)

−
1
2
(λ−λi)

⊤

(

D

∑
d=1

tanh(1
2 log(αexp(−λi

⊤Hdλi
2 )))

2log(αexp(−λi
⊤Hdλi

2 )
Hdλiλi

⊤Hd +Hd

)

(λ−λi)+λ⊤1.

The bound satisfiesLi(λ)≤ J(λ) for all λ and equality is achieved whenλ=λi . Next, we will find
an upper boundJ(λ)≤Ui(λ). We first form a component ofU(λ) calledUd(λ) that upper bounds
the following component of the objective function

Jd(λ) = − log

(

α+exp

(

1
2
λ⊤Hdλ

))

.

Apply Jensen’s inequality for any choice of the scalar variational parameter ζd ∈ [0,1] to get

Jd(λ) ≤ −ζd log

(

α
ζd

)

− (1−ζd) log

(

exp
(

1
2λ
⊤Hdλ

)

(1−ζd)

)

.

Setting the variational parameter asζd = α
(

α+exp
(

1
2λ
⊤
i Hdλi

))−1
produces the boundJd(λ)≤

− log

(

α+exp

(

1
2
λ⊤i Hdλi

))

+
exp
(

1
2λ
⊤
i Hdλi

)

α+exp
(

1
2λ
⊤
i Hdλi

)

1
2
λ⊤i Hdλi−

exp
(

1
2λ
⊤
i Hdλi

)

α+exp
(

1
2λ
⊤
i Hdλi

)

1
2
λ⊤Hdλ.

Repeating the above ford = 1, . . . ,D terms produces the overall variational upper bound

Ui(λ) = D log(α+1)−
D

∑
d=1

log

(

α+exp

(

1
2
λ⊤i Hdλi

))

+
D

∑
d=1

exp
(

1
2λ
⊤
i Hdλi

)

α+exp
(

1
2λ
⊤
i Hdλi

)

1
2
λ⊤i Hdλi

−
D

∑
d=1

exp
(

1
2λ
⊤
i Hdλi

)

α+exp
(

1
2λ
⊤
i Hdλi

)

1
2
λ⊤Hdλ+λ⊤1.

Clearly, J(λ) ≤Ui(λ) and equality is achieved whenλ = λi . Thus, we have an upper quadratic
bound and a lower quadratic bound which sandwich the objective asLi(λ) ≤ J(λ) ≤Ui(λ). Both
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Figure 5: Upper and lower quadratic bounds on the objective function.

bounds are tight atλi , in other words,Li(λi) = J(λi) =Ui(λi). Figure 5 depicts the bounds. The
algorithm initializesλ0 = 0 and updates viaλi+1 = argmaxλ∈Λ Li(λ) for each iterationi. Apply
Lemma 3 which provides a value ofκ = max(α+1,2) such that the following holds

sup
λ∈Λ

Li(λ)−Li(λi) ≥
1
κ

sup
λ∈Λ

(Ui(λ)−Ui(λi)) .

SinceLi(λi) = J(λi) =Ui(λi), J(λi+1)≥ supλ∈Λ Li(λ) and supλ∈ΛUi(λ)≥ J(λ∗), we have

J(λi+1)−J(λi) ≥
1
κ
(J(λ∗)−J(λi)) .

Rearrange the inequality as follows

J(λi+1)−J(λ∗) ≥

(

1−
1
κ

)

(J(λi)−J(λ∗)) .

Iterate the above inequality starting ati = 0 to obtain

J(λi)−J(λ∗) ≥

(

1−
1
κ

)i

(J(λ0)−J(λ∗)) .

Since the initialization used wasJ(λ0) = J(0) = 0, the above simplifies as

J(λi) ≥

(

1−

(

1−
1
κ

)i
)

J(λ∗).

Therefore, a solution that is within a relative multiplicative factor ofε implies that

ε =

(

1−
1
κ

)i

=

(

1−
1

max(α+1,2)

)i

log(1/ε) = i log

(

min

(

1+
1
α
,2

))

.

Therefore, the number of iterationsi required is at most

⌈

log(1/ε)
log(min(1+ 1

α ,2))

⌉

.
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Lemma 3 The functions

Li(λ) = D log(α+1)−
D

∑
d=1

log

(

α+exp

(

1
2
λ⊤i Hdλi

))

−
D

∑
d=1

exp(λi
⊤Hdλi

2 )

α+exp(λi
⊤Hdλi

2 )
λi
⊤Hd(λ−λi)

−
1
2
(λ−λi)

⊤

(

D

∑
d=1

GdHdλiλi
⊤Hd +Hd

)

(λ−λi)+λ⊤1,

Ui(λ) = D log(α+1)−
D

∑
d=1

log

(

α+exp

(

1
2
λ⊤i Hdλi

))

+
D

∑
d=1

exp
(

1
2λ
⊤
i Hdλi

)

α+exp
(

1
2λ
⊤
i Hdλi

)

1
2
λ⊤i Hdλi

−
D

∑
d=1

exp
(

1
2λ
⊤
i Hdλi

)

α+exp
(

1
2λ
⊤
i Hdλi

)

1
2
λ⊤Hdλ+λ⊤1

for Gd =
1
2tanh(1

2 log(αexp(− λ̃
⊤Hdλ̃

2 )))/log(αexp(− λ̃
⊤Hdλ̃

2 ) and Hd � 0 for d = 1, . . . ,D satisfy

sup
λ∈Λ

(Li(λ)−Li(λi)) ≥
1

max(α+1,2)
sup
λ∈Λ

(Ui(λ)−Ui(λi))

where

Λ =

{

0≤ λm,t ≤C, t = 1, . . . ,Tm, m= 1, . . . ,M
∑Tm

t=1ym,tλm,t = 0, m= 1, . . . ,M.

Proof Rewrite the functions as follows

Li(λ)−Li(λi) = −
1
2
(λ−λi)

⊤Φ(λ−λi)− (λ−λi)
⊤µ

Ui(λ)−Ui(λi) = −
1
2
(λ−λi)

⊤Ψ(λ−λi)− (λ−λi)
⊤µ

where

Φ =
D

∑
d=1

(

GdHdλiλi
⊤+ I

)

Hd

Ψ =
D

∑
d=1

exp(1
2λi
⊤Hdλi)

α+exp(1
2λi
⊤Hdλi)

Hd

µ =
D

∑
d=1

exp(λi
⊤Hdλi

2 )

α+exp(λi
⊤Hdλi

2 )
λi
⊤Hd−1.

Since tr(A)I � A for matricesA� 0, the following holds in the Loewner ordering sense

Φ �
D

∑
d=1

(

Gdλi
⊤Hdλi +1

)

Hd.

Rewrite this bound asΦ� ∑d φdHd and rewriteΨ = ∑d ψdHd. Consider the ratio

φd

ψd
=

α+exp(1
2λi
⊤Hdλi)

exp(1
2λi
⊤Hdλi)

(

tanh(1
2 log(αexp(−λi

⊤Hdλi
2 )))

2log(αexp(−λi
⊤Hdλi

2 )
λ⊤i Hdλi +1

)

.
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Defineζd =
1
2λ
⊤
i Hdλi and rewrite the ratio as

φd

ψd
=

α+exp(ζd)

exp(ζd)

(

tanh(1
2 log(αexp(−ζd)))

log(αexp(−ζd)
ζd +1

)

.

It is easy to verify that this ratio is maximized whenζd→∞ if α≤ 1 and whenζd = 0 whenα > 1.
This reveals that the ratio is bounded asφd

ψd
≤ κ whereκ = max(α+1,2). Therefore, we can rewrite

Φ �
D

∑
d=1

φdHd �
D

∑
d=1

κψdHd = κΨ.

Recall the primal maximization problems of interest:PL = supλ∈Λ Li(λ)− Li(λi) and PU =
supλ∈ΛUi(λ)−Ui(λi). The constraintsλ ∈ Λ can be summarized by linear inequalitiesAλ≤ b for
someA andb. Apply the change of variablesz= λ−λi . The constraintA(z+λi) ≤ b simplifies
into Az≤ b̃ whereb̃ = b−Aλi . Sinceλi ∈ Λ is a feasible solution (which is true by construction),
it is easy to show that̃b≥ 0. We obtain the following equivalent primal optimization problems

PL = sup
Az≤b̃
−

1
2

z⊤Φz−z⊤µ, PZ = sup
Az≤b̃
−

κ
2

z⊤Ψz−z⊤µ, PU = sup
Az≤b̃
−

1
2

z⊤Ψz−z⊤µ.

The respective dual problems to the above are

DL = inf
y≥0

1
2

y⊤AΦ−1A⊤y+y⊤AΦ−1µ+y⊤b̃+
1
2
µ⊤Φ−1µ

DZ = inf
y≥0

1
κ

1
2

y⊤AΨ−1A⊤y+
1
κ

y⊤AΨ−1µ+y⊤b̃+
1
κ

1
2
µ⊤Ψ−1µ

DU = inf
y≥0

1
2

y⊤AΨ−1A⊤y+y⊤AΨ−1µ+y⊤b̃+
1
2
µ⊤Ψ−1µ.

Due to strong duality,PL = DL, PZ = DZ andPU = DU . Apply the boundΦ� κΨ as follows

PL = sup
Az≥b̃
−

1
2

z⊤Φz−z⊤µ

≥ sup
Az≥b̃
−

κ
2

z⊤Ψz−z⊤µ = PZ = DZ

= inf
y≥0

1
κ

1
2

y⊤AΨ−1A⊤y+
1
κ

y⊤AΨ−1µ+y⊤b̃+
1
κ

1
2
µ⊤Ψ−1µ

= inf
y≥0

1
κ

1
2

y⊤AΨ−1A⊤y+
1
κ

y⊤AΨ−1µ+
1
κ

y⊤b̃+
κ−1

κ
y⊤b̃+

1
κ

1
2
µ⊤Ψ−1µ

≥ inf
y≥0

1
κ

1
2

y⊤AΨ−1A⊤y+
1
κ

y⊤AΨ−1µ+
1
κ

y⊤b̃+
1
κ

1
2
µ⊤Ψ−1µ =

1
κ

DU =
1
κ

PU .

In the last line, we have dropped the termκ−1
κ y⊤b̃ since it is positive (recall thaty≥ 0 andb̃≥ 0).

Thus,PL ≥
1
κPU which yields the desired inequality

sup
λ∈Λ

Li(λ)−Li(λi) ≥
1

max(α+1,2)
sup
λ∈Λ

Ui(λ)−Ui(λi).
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Appendix C. Relation to Other Sparse Regression Methods

This section considers MED regression with a squared error loss. This will show a connection
between the MED regression framework and standard regression methods such as least squares or
Ridge regression,ℓ1 regularized regression methods such as the Lasso (Tibshirani, 1996) and inter-
mediates such as the Elastic Net (Zou and Hastie, 2005). In particular, the regularizer introduced by
feature selection and kernel selection in the MED framework will be shown toresemble the Elastic
Net and the Lasso and Ridge regression for appropriate choices ofα. In this article, we define the
ℓ1 norm of a vectorw ∈ R

d as‖w‖1 = ∑D
d=1 |w(d)|, and theℓ2 norm as‖w‖22 = ∑D

d=1 |w(d)|2.
Consider theℓ2-regularized least squares problem with input-output pairs{(x1,y1), . . . ,(xT ,yT)}

wherext ∈ R
D andyt ∈ R. The squared error in predictingyt from xt is minimized while also min-

imizing theℓ2 norm of the classifier. Equivalently, this can be posed as the minimization of theℓ2

norm of the classifier subject to a hard constraint on the total squared error obtained on the training
data. We wish to estimate a regression function of the form ˆy= w⊤x+b whose parametersw ∈R

D

andb∈ R are given by the following constrained minimization problem:

min
w,b

1
2
‖w‖2 s.t.

T

∑
t=1

‖w⊤xt +b−yt‖
2≤ ϒ

for someϒ ∈ R
+. The dual problem for the above can be obtained by noting that the solutionmust

be of the formw∗ = ∑T
t=1 λtxt by standard reproducing kernel Hilbert space arguments (Schölkopf

and Smola, 2001). We can rewrite the optimization problem as follows:

min
λ

1
2 ∑

t,τ
λtλτx⊤t xτ s.t.

T

∑
t=1

∥

∥

∥

∥

∥

T

∑
τ=1

λτx⊤t xτ +
1
T

T

∑
u=1

yu−
1
T

T

∑
u=1

T

∑
τ=1

λτx⊤u xτ−yt

∥

∥

∥

∥

∥

2

≤ ϒ (3)

after minimization overb has been performed. Recall that the prediction function can also be written
in terms ofλ1, . . . ,λT as a function of a query datumx as follows:

ŷ =
T

∑
t=1

λtx⊤t x+
1
T

T

∑
t=1

yt −
1
T

T

∑
t=1

T

∑
τ=1

λτx⊤t xτ.

It is possible to now consider the same manipulation that MED with feature selection produces by
integrating over switches with a Bernoulli prior. This yields the following feature selection convex
program that is a simple variant of least squares regression:

{

minλ ∑D
d=1 log(α+exp(1

2 ∑t ∑τ λtλτxt(d)xτ(d)))−D log(α+1)

s.t. ∑T
t=1

∥

∥∑T
τ=1 λτx⊤t xτ +

1
T ∑T

u=1yt −
1
T ∑T

u=1 ∑T
τ=1 λτx⊤u xτ−yt

∥

∥

2
≤ ϒ.

Similarly, the prediction rule is as follows in the feature selection variant:

ŷ =
T

∑
t=1

λt

D

∑
d=1

ŝ(d)xt(d)x(d)+
1
T

T

∑
t=1

yt −
1
T

T

∑
t=1

T

∑
τ=1

λτ

D

∑
d=1

ŝ(d)xt(d)xτ(d) (4)

whereŝ(d) is given by:

ŝ(d) =
1

1+αexp(−1
2 ∑T

t=1 ∑T
τ=1 λtλτxt(d)xτ(d))

.
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If we let α = 0, it is straightforward to see that we recover the standard least squares setup in
Equation 3. However, this dual problem in the MED formulation is clearly inducing a different
regularization on the classifier. We next investigate what primal regularizer corresponds to this
change and write it in terms of the original classification parametersw. This will show a connection
to theℓ1 regularization popularized by the Lasso method.

First, note that the prediction ˆy in Equation 4 can be written in terms of a primal parameterw as
ŷ= w⊤x+b if we define the parameter element-wise as:

w(d) =
∑t λtxt(d)

1+αexp(−1
2 ∑T

t=1 ∑T
τ=1 λtλτxt(d)xτ(d))

.

Instead of anℓ2 norm, the MED program corresponds to minimizing the following regularizer:

ℓMED =
D

∑
d=1

log

(

α
α+1

+
1

α+1
exp(

1
2 ∑

t
∑
τ

λtλτxt(d)xτ(d))

)

.

The above can be written in terms ofw as follows:

ℓMED(w) =
D

∑
d=1

h(wd)

where the functionh() is defined implicitly by the following equation

w(d)2 =
2log(α)+2log(exp(h)−1)

(1−1/(exp(h)−1))2 .

Near the origin, this function behaves like anℓ1 norm and, further away, behaves like anℓ2 norm.
In Figure 6(a) we plot the functionh(w(d)) for various values ofw(d) scaled appropriately so
that h(1) = 1. For smallα, the induced penalty on the regression parameters resembles anℓ2

norm. Asα increases, a behavior resembling anℓ1 norm emerges. In intermediate settings, the
MED regularizer interpolates between these two behaviors in a manner reminiscent of the so-called
Elastic Net (Zou and Hastie, 2005) which uses a conic combination ofℓ1 andℓ2 regularization. In
addition, two-dimensional contour plots are shown comparingℓMED to ℓ1 andℓ2 regularization in
Figure 6(b). WhileℓMED is not identical to the Elastic Net regularization, the similarity warrants
further exploration and may be useful in group Lasso and multitask settings (Turlach et al., 2005).
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