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Abstract

Most learning to rank research has assumed that the utility of different documents is independent,

which results in learned ranking functions that return redundant results. The few approaches that

avoid this have rather unsatisfyingly lacked theoretical foundations, or do not scale. We present

a learning-to-rank formulation that optimizes the fraction of satisfied users, with several scalable

algorithms that explicitly takes document similarity and ranking context into account. Our formu-

lation is a non-trivial common generalization of two multi-armed bandit models from the literature:

ranked bandits (Radlinski et al., 2008) and Lipschitz bandits (Kleinberg et al., 2008b). We present

theoretical justifications for this approach, as well as a near-optimal algorithm. Our evaluation adds

optimizations that improve empirical performance, and shows that our algorithms learn orders of

magnitude more quickly than previous approaches.

Keywords: online learning, clickthrough data, diversity, multi-armed bandits, contextual bandits,

regret, metric spaces

1. Introduction

Identifying the most relevant results to a query is a central problem in web search, hence learning

ranking functions has received a lot of attention (e.g., Joachims, 2002; Burges et al., 2005; Chu

and Ghahramani, 2005; Taylor et al., 2008). One increasingly important goal is to learn from user

interactions with search engines, such as clicks. We address the task of learning a ranking function

that minimizes the likelihood of query abandonment: the event that the user does not click on any of

the search results for a given query. This objective is particularly interesting as query abandonment

∗. Preliminary versions of this paper has been published as a conference paper in ICML 2010 and as a technical report

at arxiv.org/abs/1005.5197 (May 2010). Compared to the conference version, this paper contains full proofs and
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is a major challenge in today’s search engines, and is also sensitive to the diversity and redundancy

among documents presented.

We consider the Multi-Armed Bandit (MAB) setting (e.g., Cesa-Bianchi and Lugosi, 2006),

which captures many online learning problems wherein an algorithm chooses sequentially among a

fixed set of alternatives, traditionally called “arms”. In each round an algorithm chooses an arm and

collects the corresponding reward. Crucially, the algorithm receives limited feedback—only for the

arm it has chosen, which gives rise to the tradeoff between exploration (acquiring new information)

and exploitation (taking advantage of the information available so far).

While most of the literature on MAB corresponds to learning a single best alternative, MAB

algorithms can also be extended to learning a ranking of documents that minimizes query abandon-

ment (Radlinski et al., 2008; Streeter and Golovin, 2008). In this setting, called Ranked Bandits, in

each round an algorithm chooses an ordered list of k documents from some fixed collection of doc-

uments, and receives clicks on some of the chosen documents. Crucially, the click probability for

a given document may depend on the documents shown above: a user scrolls the list top-down and

may leave as soon as she clicked on the first document. The goal is to minimize query abandonment.

Radlinski et al. (2008) and Streeter and Golovin (2008) propose a simple but effective approach:

for each position in the ranking there is a separate instance bandit algorithm which is responsible

for choosing a document for this position. However, the specific algorithms they considered are

impractical at WWW scales.

Prior work on MAB algorithms has considered exploiting structure in the space of arms to

improve convergence rates. One particular approach, articulated by Kleinberg et al. (2008b) is

well suited to our scenario: when the arms form a metric space and the payoff function satisfies a

Lipschitz condition with respect to this metric space. The metric space provides information about

similarity between arms, which allows the algorithm to make inferences about similar arms without

exploring them. Further, they propose a “zooming algorithm” which partitions the metric space into

regions (and treats each region as a “meta-arm”) so that the partition is adaptively refined over time

and becomes finer in regions with higher payoffs.

In web search, a metric space directly models similarity between documents. (It is worth noting

that most offline learning-to-rank approaches also rely on similarity between documents, at least

implicitly.)

Our contributions. This paper initiates the study of bandit learning-to-rank with side informa-

tion on similarity between documents. We adopt the Ranked bandits setup: a user scrolls the results

top-down and may leave after a single click, the goal is to minimize query abandonment. The

similarity information is expressed as a metric space.

In this paper we consider a “perfect world” scenario: there exists an informative distance func-

tion which meaningfully describes similarity between documents in a ranked setting, and an algo-

rithm has access to such function. We focus on two high-level questions: How to represent the

knowledge of document similarity, and how to use it algorithmically in a bandit setting. We believe

that studying such “perfect world” scenario is useful, and perhaps necessary, to inform and guide

the corresponding data-driven work.

We propose a simple bandit model which combines Ranked bandits (Radlinski et al., 2008)

and Lipschitz bandits (Kleinberg et al., 2008b), and admits efficient bandit algorithms that, unlike

those in prior work on bandit learning-to-rank, scale to large document collections. Our model is

based on the new notion of “conditional Lipschitz continuity” which asserts that similar documents

have similar click probabilities even conditional on the event that all documents in a given set
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of documents are skipped (i.e., not clicked on) by the current user. We study this model both

theoretically and empirically.

First, we validate the expressiveness of our model by providing an explicit construction for

a wide family of plausible user distributions which provably fit the model. The analysis of this

construction is perhaps the most technical contribution of this paper. We also use this construction

in simulations.

Second, we put forth a battery of algorithms for our model. Some of these algorithms are

straightforward combinations of ideas from prior work on Ranked bandits and Lipschitz bandits,

and some are new.

A crucial insight in the new algorithms is that for each position i in the ranking there is a context

that we can use, namely the set of documents chosen for the above positions in the same round.

Indeed, since our objective is non-abandonment we only care about position i if all documents

shown above i have been skipped in the present round. So the algorithm responsible for position i

can simply assume that these documents have been skipped.

This interpretation of contexts allows us to cast the position-i problem as a contextual bandit

problem. Moreover, we derive a Lipschitz condition on contexts (with respect to a suitably defined

metric), which allows us to use the contextual Lipschitz MAB machinery from Slivkins (2009). We

also exploit correlations between clicks: if a given document is included in the context—that is, if

this document is skipped by the current user—then similar documents are likely to be skipped, too.

More specifically, we propose two algorithms that use contexts: a “heavy-weight” algorithm which

uses both the metric on contexts and correlated clicks, and a “light-weight” algorithm which uses

correlated clicks but not the metric on contexts.

Third, we provide scalability guarantees for the heavy-weight contextual algorithm, proving that

the convergence rate depends only on the dimensionality of the metric space but not on the number

of documents. However, we argue that our provable guarantees do not fully reflect the power of the

algorithm, and outline some directions for the follow-up theoretical work. In particular, we identify

a stronger benchmark and discuss convergence to this benchmark. We provide an initial result: we

prove, without any guarantees on the convergence rate, that the heavy-weight contextual algorithm

indeed converges to this stonger benchmark. This theoretical discussion is one of the contributions.

Finally, we empirically study the performance of our algorithms. We run a large-scale simula-

tion using the above-mentioned construction with realistic parameters. The main goal is to compare

the convergence rates of the various approaches. In particular, we confirm that metric-aware algo-

rithms significantly outperform the metric-oblivious ones, and that taking the context into account

improves the convergence rate. Somewhat surprisingly, our light-weight contextual algorithm per-

forms better than the heavy-weight one.

A secondary, smaller-scale experiment studies the limit behaviour of the algorithms, that is, the

query abandonment probability that the algorithms converge to. Following the theoretical discus-

sion mentioned above, we design a principled example on which different algorithms exhibit very

different limit behaviour. Interestingly, the heavy-weight contextual algorithm is the only algorithm

that achieves the optimal limit behaviour in this experiment.

Map of the paper. We start with a brief survey of related work (Section 2). We define our

model in Section 3, and validate its expressiveness in Section 4. In-depth discussion of relevant

approaches from prior work is in Section 5. Our new approach, ranked contextual bandits in metric

spaces, is presented in Section 6. Scalability guarantees are discussed in Section 7. We present our

simulations in Section 8.
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To keep the flow of the paper, the lengthy proofs for the theoretical results in Section 4 are

presented in Section A and Section B. Moreover, the background on instance-dependent regret

bounds for UCB1-style algorithms is discussed in Appendix C.

2. Related Work on Multi-Armed Bandits

Multi-armed bandits have been studied for many decades as a simple yet expressive model for under-

standing exploration-exploitation tradeoffs. A thorough discussion of the literature on bandit prob-

lems is beyond the scope of this paper. For background, a reader can refer to a book (Cesa-Bianchi

and Lugosi, 2006) and a recent survey (Bubeck and Cesa-Bianchi, 2012) on regret-minimizing

bandits.1 A somewhat different, Bayesian perspective can be found in surveys (Sundaram, 2005;

Bergemann and Välimäki, 2006).

On a very high level, there is a crucial distinction between regret-minimizing formulations and

Bayesian/MDP formulations (see the surveys mentioned above); this paper follows the former.

Among regret-minimizing formulations, an important distinction is between stochastic rewards (Lai

and Robbins, 1985; Auer et al., 2002a) and adversarial rewards (Auer et al., 2002b).

Below we survey several directions that are directly relevant to this paper.

Ranked bandits. A bandit model in which an algorithm learns a ranking of documents with a

goal to minimize query abandonment has been introduced in Radlinski et al. (2008) under the name

ranked bandits. A crucial feature in this setting is that the click probability for a given document

may depend not only on the document and the position in which it is shown, but also the documents

shown above. In particular, documents shown above can “steal” clicks from the documents shown

below, in the sense that a user scrolls the list top-down and may leave as soon as she clicked on the

first document.

Independently, Streeter and Golovin (2008) considered a more general model where the goal

is to minimize an arbitrary (known) submodular set function, rather than query abandonment. A

further generalization to submodular functions on ordered assignements (rather than on sets) was

considered in (Golovin et al., 2009). The contributions of the three papers essentially coincide for

the special case of ranked bandits.

Uchiya et al. (2010)2 and Kale et al. (2010)2 considered a related bandit model in which an

algorithm selects a ranking of documents in each round, but the click probabilities for a given

document do not depend on which other documents are shown to the same user.

Bandits with structure. Numerous papers enriched the basic MAB setting by assuming some

structure on arms, typically in order to handle settings where the number of arms is very large or

infinite. Most relevant to this paper is the model where arms lie in a metric space and their expected

rewards satisfy the Lipschitz condition with respect to this metric space (see Section 3 for details).

This model, for a general metric space, has been introduced in Kleinberg et al. (2008b) under the

name Lipschitz MAB; the special case of unit interval has been studied in (Agrawal, 1995; Kleinberg,

2004; Auer et al., 2007) under the name continuum-armed bandits. Subsequent work on Lipschtz

MAB includes Bubeck et al. (2011), Kleinberg and Slivkins (2010), Maillard and Munos (2010),

Slivkins (2009) and Slivkins (2011). A closely related model posits that arms corresponds to leaves

1. Regret of an algorithm in T rounds, typically denoted R(T ), is the expected payoff of the benchmark in T rounds

minus that of the algorithm. A standard benchmark is the best arm in hindsight.

2. This is either concurrent or subsequent work with respect to the conference publication of this paper.
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on a tree, but no metric space is revealed to the algorithm (Kocsis and Szepesvari, 2006; Pandey

et al., 2007; Munos and Coquelin, 2007; Slivkins, 2011).

Another commonly assumed structure is linear or convex payoffs (e.g., Awerbuch and Klein-

berg, 2008; Flaxman et al., 2005; Dani et al., 2007; Abernethy et al., 2008; Hazan and Kale, 2009).

Linear/convex payoffs is a much stronger assumption than similarity, essentially because it allows

to make strong inferences about far-away arms. Other structural assumptions have been considered,

for example, Wang et al. (2008) and Bubeck and Munos (2010) and Srinivas et al. (2010)2.

The distinction between the various possible structural assumptions is orthogonal to the dis-

tinction between stochastic and adversarial rewards. With a few exceptions, papers on MAB with

linear/convex payoffs allow adversarial payoffs, whereas papers on MAB with similarity informa-

tion focus on stochastic payoffs

Contextual bandits. Here in each round the algorithm receives a context, chooses an arm, and

the reward depends both on the arm and the context. The term “contextual bandits” was coined

in Langford and Zhang (2007). The setting, with a number of different modifications, has been

introduced independently in several papers; a possibly incomplete list is Woodroofe (1979), Auer

et al. (2002b), Auer (2002), Wang et al. (2005), Langford and Zhang (2007), Hazan and Megiddo

(2007) and Pandey et al. (2007).

There are several models for how contexts are related to rewards: rewards are linear in the

context (e.g., Auer, 2002; Langford and Zhang, 2007) and Chu et al. (2011)2, the context is a

random variable correlated with rewards (Woodroofe, 1979; Wang et al., 2005; Rigollet and Zeevi,

2010); rewards are Lipschitz with respect to a metric space on contexts (Hazan and Megiddo, 2007;

Slivkins, 2009) and Lu et al. (2010)2.

Most work on contextual bandits has been theoretical in nature; experimental work on contextual

MAB includes Pandey et al. (2007) and Li et al. (2010, 2011)2.

3. Problem Formalization: Ranked Bandits in Metric Spaces

Let us introduce the online learning-to-rank problem that we study in this paper.

Ranked bandits. Following Radlinski et al. (2008), we are interested in learning an optimally

diverse ranking of documents for a given query. We model it as a ranked bandit problem as follows.

Let X be a set of documents (“arms”). Each ‘user’ is represented by a binary relevance vector: a

function π : X → {0,1}. A document x ∈ X is called “relevant” to the user if and only if π(x) = 1.

Let FX be the set of all possible relevance vectors. Users come from a distribution P on FX that is

fixed but not revealed to an algorithm.3 This P will henceforth be called the user distribution.

In each round, the following happens: a user arrives, sampled independently from P ; an algo-

rithm outputs a list of k documents; the user scans this list top-down, and clicks on the first relevant

document. The goal is to maximize the expected fraction of satisfied users: users who click on at

least one document. Note that in contrast with prior work on diversifying existing rankings (e.g.,

Carbonell and Goldstein, 1998), the algorithm needs to directly learn a diverse ranking.

Since we count satisfied users rather than the clicks themselves, we can assume w.l.o.g. that

a user leaves once she clicks once. (Alternatively, the algorithm does not record any subsequent

clicks.) A user is satisfied or not satisfied independently of the order in which she scans the results.

However, the assumption of the top-down scan determines the feedback received by the algorithm,

that is, which document gets clicked.

3. This also models users for whom documents are probabilistically relevant (Radlinski et al., 2008).
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We will say that there are k slots to be filled in each round, so that when the algorithm outputs

the list of k documents, the i-th document in this list appears in slot i. Note that the standard model

of MAB with stochastic rewards (e.g., Auer et al., 2002a) is a special case with a single slot (k = 1).

Click probabilities. Recall that P is a distribution over relevance vectors. The pointwise mean

of P is a function µ : X → [0,1] such that µ(x), Eπ∼P [π(x)]. Thus, µ(x) is the click probability for

document x if it appears in the top slot.

Each slot i> 1 is examined by the user only in the event that all documents in the higher slots are

not clicked, so the relevant click probabilities for this slot are conditional on this event. Formally,

fix a subset of documents S ⊂ X and let ZS , {π(·) = 0 on S} be the event that all documents in S

are not relevant to the user. Let (P |ZS) be the distribution of users obtained by conditioning P on

this event, and let µ(· |ZS) be its pointwise mean. Then µ(x |ZS) is the click probability for document

x if S is the set of documents shown above x in the same round.

Metric spaces. Throughout the paper, let (X ,D) be a metric space.That is, X is a set and D is

a symmetric function on X ×X → [0,∞] such that D(x,y) = 0 ⇐⇒ x = y, and D(x,y)+D(y,z)≥
D(x,z) (triangle inequality).

A function ν : X → R is said to be Lipschitz-continuous with respect to (X ,D) if

|ν(x)−ν(y)| ≤ D(x,y) for all x,y ∈ X . (1)

Throughout the paper, we will write L-continuous for brevity.

A user distribution P is called L-continuous with respect to (X ,D) if its pointwise mean µ is

L-continuous with respect to (X ,D).

Document similarity. To allow us to incorporate information about similarity between docu-

ments, we start with the model, called Lipschitz MAB, proposed by Kleinberg et al. (2008b) for

the standard (single-slot) bandits. In this model, an algorithm is given a metric space (X ,D) with

respect to which the pointwise mean µ is L-continuous.4

While this model suffices for learning the document at the top slot (see Kleinberg et al., 2008b

for details), it is not sufficiently informative for lower slots. This is because the relevant click

probabilities µ(· |ZS) are conditional and therefore are not directly constrained by L-continuity. To

enable efficient learning in all k slots, we will assume a stronger property called conditional L-

continuity:

Definition 1 P is called conditionally L-continuous w.r.t. (X ,D) if the conditional pointwise mean

µ(·|ZS) is L-continuous for all S⊂ X.

Now, a document x in slot i > 1 is examined only if event ZS happens, where S is the set of

documents in the higher slots: that is, if all documents in the higher slots are not relevant to the

user. The document x has a conditional click probability µ(x|ZS). The function µ(· |ZS) satisfies the

Lipschitz condition (1), which will allow us to use the machinery from MAB problems on metric

spaces.

Formally, we define the k-slot Lipschitz MAB problem, an instance of which consists of a triple

(X ,D,P ), where (X ,D) is a metric space that is known to an algorithm, and P is a latent user

distribution which is conditionally L-continuous w.r.t. (X ,D).

4. One only needs to assume that similarity between any two documents x,y is summarized by a number δx,y such that

|µ(x)−µ(y)| ≤ δx,y. Then one obtains a metric space by taking the shortest paths closure.
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Note that the k-slot Lipschitz MAB problem subsumes the “metric-free” ranked bandit problem

from Radlinski et al. (2008) (as a special case with a trivial metric space in which all distances are

equal to 1) and the Lipschitz MAB problem from Kleinberg et al. (2008b) (as a special case with a

single slot).

3.1 Metric Space: A Running Example

Web documents are often classified into hierarchies, where closer pairs are more similar.5 For

evaluation, we assume the documents X fall in such a tree, with each document x ∈ X a leaf in the

tree. On this tree, we consider a very natural metric: the distance between any two tree nodes u,v is

exponential in the height (i.e., the hop-count distance to the root) of their least common ancestor:

D(u,v) = c× εheight(LCA(u,v)),

for some constant c and base ε ∈ (0,1). We call this the ε-exponential tree metric (with constant c).

However, our algorithms and analyses extend to arbitrary metric spaces.

3.2 Alternative Notion of Document Similarity

An alternative notion of document similarity focuses on correlated relevance: correlation between

the relevance of two documents to a given user. We express “similarity” by bounding the probability

of the “discorrelation event” {π(x) 6= π(y)}. Specifically, we consider conditional L-correlation,

defined as follows:

Definition 2 Call P L-correlated w.r.t. (X ,D) if

Pr
π∼P

[π(x) 6= π(y)]≤ D(x,y) ∀x,y ∈ X . (2)

Call P conditionally L-correlated w.r.t. (X ,D) if (2) holds conditional on ZS for any S⊂ X, that is,

Pr
π∼(P |ZS)

[π(x) 6= π(y)]≤ D(x,y) ∀x,y ∈ X ,S⊂ X .

It is easy to see that conditional L-correlation implies conditional L-continuity. In fact, we show

that the two notions are essentially equivalent. Namely, we prove that conditional L-continuity

w.r.t. (X ,D) implies conditional L-correlation w.r.t. (X ,2D).

Lemma 3 Consider an instance (X ,D,P ) of the k-slot Lipschitz MAB problem. Then the user

distribution P is conditionally L-correlated w.r.t. (X ,2D).

Proof Fix documents x,y ∈ X and a subset S ⊂ X . For brevity, write “x = 1” to mean “π(x) = 1”,

etc. We claim that

Pr[x = 1∧ y = 0 |ZS]≤ D(x,y). (3)

Indeed, consider the event Z = ZS+{y}. Applying the Bayes theorem to (P |ZS), we obtain that

µ(x|Z) = Pr[x = 1 |{y = 0}∧ZS]

=
Pr[x = 1∧ y = 0 |ZS]

Pr[y = 0 |ZS]
. (4)

5. One example of such hierarchical classification is the Open Directory Project (http://dmoz.org).

405



SLIVKINS, RADLINSKI AND GOLLAPUDI

On the other hand, since µ(y|Z) = 0, by conditional L-continuity it holds that

µ(x|Z) = |µ(x|Z)−µ(y|Z)| ≤ D(x,y), (5)

so claim (3) follows from Equation (4) and Equation (5).

Likewise, Pr[x = 0∧ y = 1 |ZS]≤ D(x,y). Since

{π(x) 6= π(y)}= {x = 1∧ y = 0}∪{x = 0∧ y = 1},

it follows that Pr[π(x) 6= π(y) |ZS]≤ 2D(x,y).

4. Expressiveness of the Model

Our approach relies on the conditional L-continuity (equivalently, conditional L-correlation) of the

user distribution. How “expressive” is this assumption, that is, how rich and “interesting” is the

collection of problem instances that satisfy it? While the unconditional L-continuity assumption

is usually considered reasonable from the expressiveness point of view, even the unconditional L-

correlation (let alone the conditional L-correlation) is a very non-trivial property about correlated

relevance, and thus potentially problematic. A related concern is how to generate a suitable collec-

tion of problem instances for simulation experiments.

We address both concerns by defining a natural (albeit highly stylized) generative model for the

user distribution, which we then use in the experiments in Section 8. We start with a tree metric

space (X ,D) and the desired pointwise mean µ : X → (0, 1
2
] that is L-continuous w.r.t. (X ,D). The

generative model provides a rich family of user distributions that are conditionally L-continuous

w.r.t. (X ,cD), for some small c. This result is a key theoretical contribution of this paper (and by

far the most technical one).

We develop the generative model in Section 4.1. We extend this result to arbitrary metric spaces

in Section 4.2, and to distributions over conditionally L-continuous user distributions in Section 4.3.

To keep the flow of the paper, the detailed analysis is deferred to Section A and Section B.

4.1 Bayesian Tree Network

The generative model is a tree-shaped Bayesian network with 0-1 “relevance values” π(·) on nodes,

where leaves correspond to documents. The tree is essentially a topical taxonomy on documents:

subtopics correspond to subtrees. The relevance value on each sub-topic is obtained from that on

the parent topic via a low-probability mutation.

The mutation probabilities need to be chosen so as to guarantee conditional L-continuity and

the desired pointwise mean µ. It is fairly easy to derive a necessary and sufficient condition for the

pointwise mean, and a necessary condition for conditional L-continuity. The latter condition states

that the mutation probabilities need to be bounded in terms of the distance between the child and

the parent. The hard part is to prove that this condition is sufficient.

Let us describe our Bayesian tree network in detail. The network inputs a tree metric space

(X ,D) and the desired pointwise mean µ, and outputs a relevance vector π : X→{0,1}. Specifically,

we assume that documents are leaves of a finite rooted edge-weighted tree, which we denote τd, with

node set V and leaf set X ⊂V , so that D is a (weighted) shortest-paths metric on V .
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Algorithm 1 User distribution for tree metrics

Input: Tree (root r, node set V ); µ(r) ∈ [0,1]
mutation probabilities q0,q1 : V → [0,1]

Output: relevance vector π : V →{0,1}
function AssignClicks(tree node v)

b← π(v)
for each child u of v do

π(u)←
{

1−b w/prob qb(u)

b otherwise

AssignClicks(u)

Pick π(r) ∈ {0,1} at random with expectation µ(r)
AssignClicks(r)

Recall that µ is L-continuous w.r.t. (X ,D). We assume that µ takes values in the interval [α, 1
2
],

for some constant parameter α > 0. We show that µ can be extended from X to V preserving the

range and L-continuity (see Section A for the proof).

Lemma 4 µ can be extended to V so that µ : V → [α, 1
2
] is L-continuous w.r.t. (V,D).

In what follows, by a slight abuse of notation we will assume that the domain of µ is V , with the

same range [α, 1
2
], and that µ is L-continuous w.r.t. (V,D). Also, we redefine the relevance vectors

to be functions V →{0,1} rather than X →{0,1}.
The Bayesian network itself is very intuitive. We pick π(root)∈ {0,1} at random with a suitable

expectation µ(root), and then proceed top-down so that the child’s bit is obtained from the parent’s

bit via a low-probability mutation. The mutation is parameterized by functions q0,q1 : V → [0,1],
as described in Algorithm 1: for each node u, if the parent’s bit is set to b then the mutation {π(u) =
1− b} happens with probability qb(u). These parameters let us vary the degree of independence

between each child and its parent, resulting in a rich family of user distributions.

To complete the construction, it remains to define the mutation probabilities q0,q1. Let P be the

resulting user distribution. It is easy to see that µ is the pointwise mean of P on V if and only if

µ(u) = (1−µ(v))q0(u)+µ(v)(1−q1(u)) (6)

whenever u is a child of v. (For sufficiency, use induction on the tree.) Further, letting qb = qb(u)
for each bit b ∈ {0,1}, note that

Pr[π(u) 6= π(v)] = µ(v)q1 +(1−µ(v))q0

= µ(v)(q0 +q1)+(1−2µ(v))q0

≥ µ(v)(q0 +q1).

Thus, if P is L-correlated w.r.t. (X ,D) then

q0(u)+q1(u)≤ D(u,v)/µ(v). (7)

We show that (6-7) suffices to guarantee conditional L-continuity.
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For a concrete example, one could define

(q0(u), q1(u)) =







(

0, µ(v)−µ(u)
µ(v)

)

if µ(v)≥ µ(u)
(

µ(u)−µ(v)
1−µ(v) , 0

)

otherwise.
(8)

The q0,q1 defined as above satisfy (6-7) for any µ that is L-continuous on (V,D).

The provable properties of Algorithm 1 are summarized in the theorem below. It is technically

more convenient to state this theorem in terms of L-correlation rather than L-continuity.

Theorem 5 Let D be the shortest-paths metric of an edge-weighted rooted tree with a finite leaf set

X. Let µ : X → [α, 1
2
], α > 0 be L-continuous w.r.t. (X ,D). Suppose q0,q1 : V → [0,1] satisfy (6-7).

Let P be the user distribution constructed by Algorithm 1. Then P has pointwise mean µ and is

conditionally L-correlated w.r.t. (X ,3Dµ) where

Dµ(x,y), D(x,y) min
(

1
α
, 3

µ(x)+µ(y)

)

.

Remark. The theorem can be strengthened by replacing Dµ with the shortest-paths metric induced

by Dµ.

Below we provide a proof sketch. The detailed proof is presented in Section B.

Proof Sketch As we noted above, the statement about the pointwise mean trivially follows from Equa-

tion (6) using induction on the tree. In what follows we focus on conditional L-correlation.

Fix leaves x,y ∈ X and a subset S ⊂ X . Let z be the least common ancestor of x,y. Recall

that in Algorithm 1 the bit π(·) at each node is a random mutation of that of its parent. We focus

on the event E that no mutation happened on the z→ x and z→ y paths. Note that E implies

π(x) = π(y) = π(z). Therefore

Pr[π(x) 6= π(y) |ZS]≤ Pr[Ē |ZS],

where Ē is the negation of E . Intuitively, Ē is a low-probability “failure event”. The rest of the

proof is concerned with showing that Pr[Ē |ZS]≤ 3Dµ(x,y).

First we handle the unconditional case. We claim that

Pr[Ē ]≤ Dµ(x,y). (9)

Note that Equation (9) immediately implies that P is L-correlated w.r.t. (X ,Dµ). This claim is not

very difficult to prove, essentially since the condition in Equation (7) is specifically engineered to

satisfy the unconditional L-correlation property. We provide the proof in detail.

Let w ∈ argminu∈Pxy
µ(u), where Pxy is the x → y path. Let (z = x0,x1, . . . ,xn = x) be the

z→ x path. For each i ≥ 1 by Equation (7) the probability of having a mutation at xi is at most

D(xi,xi−1)/µ(w), so the probability of having a mutation on the z→ x path is at most D(x,z)/µ(w).
Likewise for the z→ y path. So Pr[Ē ]≤ D(x,y)/µ(w)≤ D(x,y)/α.

It remains to prove that

Pr[Ē ]≤ D(x,y) 3
µ(x)+µ(y) . (10)
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Indeed, by L-continuity it holds that

µ(w)≥ µ(x)−D(x,w),

µ(w)≥ µ(y)−D(y,w).

Since D(x,y) = D(x,w)+D(y,w), it follows that

µ(w)≥ µ(x)+µ(y)−D(x,y)
2

. (11)

Now, either the right-hand side of Equation (11) is at least
µ(x)+µ(y)

3
, or the right-hand side of Equa-

tion (10) is at least 1. In both cases Equation (10) holds. This completes the proof of the claim (9).

The conditional case is much more difficult. We handle it by showing that

Pr[Ē |ZS]≤ 3 Pr[Ē ]. (12)

In fact, Equation (12) holds even if Equation (7) is replaced with a much weaker bound:

max(q0(u), q1(u))≤ 1
2

for each u.

The mathematically subtle proof of Equation (12) can be found in Section B. The crux in this

proof is that event ZS is more likely if document z is not relevant to the user:

Pr[ZS |z = 0]≥ Pr[ZS |z = 1].

4.2 Arbitrary Metric Spaces

We can extend Theorem 3.1 to arbitrary metric spaces using prior work on metric embeddings. Fix

an N-point metric space (X ,D) and a function µ : X → [α, 1
2
] that is L-continuous on (X ,D). It

is known (Bartal, 1996; Fakcharoenphol et al., 2004) that there exists a distribution Ptree over tree

metric spaces (X ,T ) such that D(x,y)≤ T (x,y) and

ET ∼Ptree
[T (x,y)]≤ cD(x,y) ∀x,y ∈ X ,

where c = O(logN).6

Our construction (Algorithm 2) is simple: first sample a tree metric space (X ,T ) from Ptree,

then independently generate a user distribution PT for (X ,T ) as per Algorithm 1.

Theorem 6 The user distribution P produced by Algorithm 2 has pointwise mean µ and is condi-

tionally L-correlated w.r.t. (X ,3cDµ), where Dµ is given by

Dµ(x,y) = D(x,y) min
(

1
α
, 3

µ(x)+µ(y)

)

.

6. This is the main result in Fakcharoenphol et al. (2004), which improves on an earlier result in Bartal (1996) with

c = O(log2 N). For point sets in a d-dimensional Euclidean space one could take c = O(d log 1
ε
), where ε is the

minimal distance. In fact, this result extends to a much more general family of metric spaces—those of doubling

dimension d (Gupta et al., 2003). Doubling dimension, the smallest d such that any ball can be covered by 2d balls

of half the radius, has been introduced to the theoretical computer science literature in Gupta et al. (2003), and has

been a well-studied concept since then.
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Algorithm 2 User distribution for arbitrary metric spaces

Input: metric space (X ,D); function µ : X → [α, 1
2
] that is L-continuous on (X ,D).

Output: relevance vector π : X →{0,1}
1. Sample a tree metric space (X ,T ) from Ptree,

2. Run Algorithm 1 for (X ,T ), output the resulting π.

Proof The function µ is L-continuous w.r.t. each tree metric space (X ,T ), so by Theorem 3.1 user

distribution PT has pointwise mean µ and is conditionally L-correlated w.r.t. (X ,3Tµ). It follows

that the aggregate user distribution P has pointwise mean µ, and moreover for any x,y ∈ X and

S⊂ X we have

Pr
π∼P

[π(x) 6= π(y) |ZS]

≤ ET ∼Ptree

[

Pr
π∼PT

[π(x) 6= π(y) |ZS]

]

≤ ET ∼Ptree
[3Tµ(x,y)]

≤ 3cDµ(x,y).

4.3 Distributions over User Distributions

Let us verify that conditional L-continuity is robust, in the sense that any distribution over condition-

ally L-continuous user distributions is itself conditionally L-continuous. This result considerably

extends the family of user distributions for which we have conditional L-continuity guarantees.

Lemma 7 Let P be a distribution over countably many user distributions Pi that are conditionally

L-continuous w.r.t. a metric space (X ,D). Then P is conditionally L-continuous w.r.t. (X ,D).

Proof Let µ and µi be the (conditional) pointwise means of P and Pi, respectively. Formally, let

us treat each Pi as a measure, so that Pi(E) is the probability of event E under Pi. Let P = ∑i qi Pi,

where {qi} are positive coefficients that sum up to 1. Fix documents x,y ∈ X and a subset S ⊂ X .

Then

µ(x|S) = P (x = 1 |ZS) =
P (x = 1∧ZS)

P (ZS)

=
∑i qi Pi(x = 1∧ZS)

P (ZS)

=
∑i qi Pi(ZS) µi(x|ZS)

P (ZS)
.
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It follows that

|µ(x|S)−µ(y|S)|

=
∑i qi Pi(ZS) (µi(x|ZS)−µi(y|ZS))

P (ZS)

≤ ∑i qi Pi(ZS) D(x,y)

P (ZS)

≤ D(x,y).

5. Algorithms from Prior Work

Let us discuss some algorithmic ideas from prior work that can be adapted to our setting. Interest-

ingly, one can combine these algorithms in a modular way, which we make particularly transparent

by putting forward a suitable naming scheme. Throughout this section, we let Bandit be some

algorithm for the MAB problem.

5.1 Ranked Bandits

Given some bandit algorithm Bandit, the “ranked” algorithm RankBandit for the multi-slot MAB

problem is defined as follows (Radlinski et al., 2008). We have k slots (i.e., ranks) for which we wish

to find the best documents to present. In each slot i, a separate instance Ai of Bandit is created.

In each round these instances select the documents to show independently of one another. If a user

clicks on slot i, then this slot receives a reward of 1, and all higher (i.e., skipped) slots j < i receive

a reward of 0. For slots j > i, the state is rolled back as if this round had never happened (as if the

user never considered these documents). If no slot is clicked, then all slots receive a reward of 0.

Let us emphasize that the above approach can be applied to any algorithm Bandit. In Radlinski

et al. (2008), this approach gives rise to algorithms RankUCB1 and RankEXP3, based on MAB algo-

rithms UCB1 and EXP3(Auer et al., 2002a,b). EXP3 is designed for the adversarial setting with no

assumptions on how the clicks are generated, which translates into concrete provable guarantees for

RankEXP3. UCB1 is geared towards the stochastic setting with i.i.d. rewards on each arm, although

the per-slot i.i.d. assumption breaks for slots i > 1 because of the influence of the higher slots. Nev-

ertheless, in small-scale experiments RankUCB1 performs much better than RankEXP3(Radlinski

et al., 2008).

Provable guarantees. Letting T be the number of rounds and OPT be the probability of clicking

on the optimal ranking, algorithm RankBandit achieves

E[#clicks]≥ (1− 1
e
)T ×OPT− k R(T ), (13)

where R(T ) is any upper bound on regret for Bandit in each slot (Radlinski et al., 2008; Streeter

and Golovin, 2008).

In the multi-slot setting, performance of an algorithm up to time T is defined as the time-

averaged expected total number of clicks. We will consider performance as a function of T . Assum-

ing R(T )= o(T ) in Equation (13), performance of RankBandit converges to or exceeds (1− 1
e
)OPT.
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Convergence to (1− 1
e
)OPT is proved to be worst-case optimal. Thus, as long as R(T ) scales well

with time, for the document collection sizes that are typical for the application at hand, Radlinski

et al. (2008) interpret Equation (13) as a proof of an algorithm’s scalability in the multi-slot MAB

setting.

RankBandit is presented in Radlinski et al. (2008) as the online version of the greedy algorithm:

an offline fully informed algorithm that selects documents greedily slot by slot from top to bottom.

The performance of this algorithm is called the greedy optimum,7 which is equal to (1− 1
e
)OPT in

the worst case, but for “benign” problem instances it can be as good as OPT. The greedy optimum is

a more natural benchmark for RankBandit than (1− 1
e
)OPT. However, results w.r.t. this benchmark

are absent in the literature.8

5.2 Lipschitz Bandits

Both UCB1 and EXP3 are impractical when there are too many documents to explore them all. To

alleviate this issue, one can use the similarity information provided by the metric space and the

Lipschitz assumption; this setting is called Lipschitz MAB.

Below we describe two “metric-aware” algorithms from Kleinberg (2004) and Kleinberg et al.

(2008b). Both are well-defined for arbitrary metric spaces, but for simplicity we present them for a

special case in which documents are leaves in a document tree (denoted τd) with an ε-exponential

tree metric. In both algorithms, a subtree is chosen in each round, then a document in this subtree

is sampled at random, choosing uniformly at each branch.

Given some bandit algorithm Bandit, Kleinberg (2004) define algorithm GridBandit for the

Lipschitz MAB setting. This algorithm proceeds in phases: in phase i, the depth-i subtrees are

treated as “arms”, and a fresh copy of Bandit is run on these arms.9 Phase i lasts for kε−2i rounds,

where k is the number of depth-i subtrees. This meta-algorithm, coupled with an adversarial MAB

algorithm such as EXP3, is the only algorithm in the literature that takes advantage of the metric

space in the adversarial setting. Following Radlinski et al. (2008), we expect GridEXP3 to be

overly pessimistic for our problem, trumped by the corresponding stochastic MAB approaches such

as GridUCB1.

The “zooming algorithm” (Kleinberg et al., 2008b, Algorithm 3) is a more efficient version

of GridUCB1: instead of iteratively reducing the grid size in the entire metric space, it adaptively

refines the grid in promising areas. It maintains a set A of active subtrees which collectively partition

the leaf set. In each round the active subtree with the maximal index is chosen. The index of a

subtree is (assuming stochastic rewards) the best available upper confidence bound on the click

probabilities in this subtree. It is defined via the confidence radius10 given (letting T be the time

horizon) by

rad(·),
√

4log(T )/(1+#samples(·)). (14)

The algorithm “zooms in” on a given active subtree u (de-activates u and activates all its chil-

dren) when rad(u) becomes smaller than its width W(u), εdepth(u) = maxx,x′∈u D(x,x′).

7. If due to ties there are multiple “greedy rankings”, define the greedy optimum via the worst of them.

8. Following the conference publication of this paper, Streeter and Golovin claimed that the techniques in Streeter and

Golovin (2008) can be used to extend Equation (13) to the greedy optimum benchmark. If so, then it may be possible

to use the same approach to improve our guarantees.

9. As an empirical optimization, previous events can also be replayed to better initialize later phases.

10. The meaning of rad(·) is that w.h.p. the sample average is within ±rad(·) from the true mean.
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Algorithm 3 “Zooming algorithm” in trees

initialize (document tree τd):

A← /0; activate(root(τd))

activate( u ∈ nodes(τd) ):

A←A ∪{u}; n(u)←0; r(u)←0

Main loop:

u← argmaxu∈A index(u),

where index(u) = r(u)
n(u) + 2 rad(u)

“Play” a random document from subtree(u)
r(u)← r(u)+{reward}; n(u)← n(u)+1

if rad(u)< W(u) then

deactivate u: remove u from A

activate all children of u

Provable guarantees. Regret guarantees for the two algorithms above are independent of the

number of arms (which, in particular, can be infinite). Instead, they depend on the covering prop-

erties of the metric space (X ,D). A crucial notion here is the covering number Nr(X), defined as

the minimal number of balls of radius r sufficient to cover X . It is often useful to summarize the

covering numbers Nr(X), r > 0 with a single number called the covering dimension:

CovDim(X ,D), inf{d ≥ 0 : Nr(X)≤ αr−d ∀r > 0}. (15)

(Here α > 0 is a constant which we will keep implicit in the notation.) In particular, for an arbitrary

point set in R
d under the standard (ℓ2) distance, the covering dimension is d, for some α = O(1).

For an ε-exponential tree metric with maximal branching factor b, the covering dimension is d =
log1/ε(b), with α = 1.

Against an oblivious adversary, GridEXP3 has regret

R(T ) = Õ(αT (d+1)/(d+2)), (16)

where d is the covering dimension of (X ,D).
For the stochastic setting, GridUCB1 and the zooming algorithm enjoy strong instance-dependent

regret guarantees. These guarantees reduce to Equation (16) in the worst case, but are much better

for “nice” problem instances. Informally, regret guarantees improve for problem instances in which

the set of near-optimal arms has smaller covering numbers than the set of all arms. Regret guar-

antees for the zooming algorithm are (typically) much stronger than for GridUCB1. In particular,

one can derive a version of Equation (16) with a different d called the zooming dimension, which

is equal to the covering dimension in the worst case but can be much smaller, even d = 0. These

issues are further discussed in Appendix C.

5.3 Anytime Guarantees and the Doubling Trick

While the zooming algorithm, and also the contextual zooming algorithm from Section 5.5, are

defined for a fixed time horizon, one can obtain the corresponding anytime versions using a simple

doubling trick: in each phase i ∈ N, run a fresh instance of the algorithm for 2i rounds. These
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versions are run indefinitely and enjoy the same asymptotic upper bounds on regret as the original

algorithms (but now these bounds hold for each round).

5.4 Ranked Bandits in Metric Spaces

Using and combining the algorithms in the previous two subsections, we obtain the following battery

of algorithms for k-slot Lipschitz MAB problem:

• metric-oblivious algorithms: RankUCB1 and RankEXP3.

• simple metric-aware algorithms: RankGridUCB1 and RankGridEXP3

(ranked versions of GridUCB1 and GridEXP3, respectively).

• RankZoom: the ranked version of the zooming algorithm.

In theory, RankGridEXP3 scales to large document collections, in the sense that it achieves Equa-

tion (13) with R(T ) that does not degenerate with #documents:

Theorem 8 Consider the k-slot Lipschitz MAB problem on a metric space with covering dimension

d (as defined in Equation (15), with constant α). Then after T rounds RankGridEXP3 achieves

E[#clicks]

T
≥ (1− 1

e
)OPT− Õ

(

αk

T 1/(d+2)

)

.

The theorem follows from the respective regret bounds for GridEXP3 (Equation (16)) and Rank-

Bandit (Equation (13)). We do not have any provable guarantees for other algorithms because

the corresponding regret bounds for the single-slot setting do not directly plug into Equation (13).

However, the strong instance-dependent guarantees for GridUCB1 and especially for the zooming

algorithm (even though they do not directly apply to the ranked bandit setting) suggest that Rank-

GridUCB1 and RankZoom are promising. We shall see that these two algorithms perform much

better than RankGridEXP3 in the experiments.

5.5 Contextual Lipschitz Bandits

We also leverage prior work on contextual bandits. The relevant contextual MAB setting, called

contextual Lipschitz MAB, is as follows. In each round nature reveals a context h, an algorithm

chooses a document x, and the resulting reward is an independent {0,1} sample with expectation

µ(x|h). Further, one is given similarity information: metrics D and Dc on documents and contexts,

respectively, such that for any two documents x,x′ and any two contexts h,h′ we have

|µ(x|h)−µ(x′|h′)| ≤ D(x,x′)+Dc(h,h
′).

Let Xc be the set of contexts, and Xdc = X × Xc be the set of all (document, context) pairs.

Abstractly, one considers the metric space (Xdc,Ddc), henceforth the DC-space, where the metric is

Ddc((x,h), (x
′,h′)) = D(x,x′)+Dc(h,h

′).

We will use the “contextual zooming algorithm” (ContextZoom) from Slivkins (2009). This

algorithm is well-defined for arbitrary Ddc, but for simplicity we will state it for the case when D

and Dc are ε-exponential tree metrics.

Let us assume that documents and contexts are leaves in a document tree τd and context tree τc,

respectively. The algorithm (see Algorithm 4 for pseudocode) maintains a set A of active strategies
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Algorithm 4 ContextZoom in trees

initialize (document tree τd, context tree τc):

A ← /0; activate( root(τd), root(τc) )

activate ( u ∈ nodes(τd), uc ∈ nodes(τc) ):

A ← A ∪{(u,uc)}; n(u,uc)← 0; r(u,uc)← 0

Main loop:

Input a context h ∈ nodes(τc)
(u,uc)← argmax

(u,uc)∈A : h∈uc

index(u,uc),

where index(u,uc) = W(u×uc)+
r(u,uc)
n(u,uc)

+rad(u,uc)

“Play” a random document from subtree(u)
r(u,uc)← r(u,uc)+{reward}; n(u,uc)← n(u,uc)+1

if rad(u,uc)< W(u,uc) then

deactivate (u,uc): remove (u,uc) from A

activate all pairs (child(u), child(uc))

of the form (u,uc), where u is a subtree in τd and uc is a subtree in τc. At any given time the active

strategies partition Xdc. In each round, a context h arrives, and one of the active strategies (u,uc)
with h ∈ uc is chosen: namely the one with the maximal index, and then a document x ∈ u is picked

uniformly at random. The index of (u,uc) is, essentially, the best available upper confidence bound

on expected rewards from choosing a document x ∈ u given a context h ∈ uc. The index is defined

via sample average, confidence radius (14), and “width” W(u× uc). The latter can be any upper

bound on the diameter of the product set u×uc in the DC-space:

W(u,uc)≥ max
x,x′∈u, h,h′∈uc

D(x,x′)+Dc(h,h
′). (17)

The (de)activation rule ensures that the active strategies form a finer partition in the regions of the

DC-space that correspond to higher rewards and more frequently occurring contexts.

Provable guarantees. The provable guarantees for the contextual MAB problem are in terms

of contextual regret, which is regret is with respect to a much stronger benchmark: the best arm in

hindsight for every given context.

Regret guarantees for ContextZoom focus on the DC-space (Xdc,Ddc). A very pessimistic

regret bound is Equation (16) with d = CovDim(Xdc,Ddc). However, as for the zooming algorithm,

much better instance-dependent bounds are possible. See Appendix C for further discussion.

6. New Approach: Ranked Contextual Bandits

We now present a new approach in which the upper slot selections are taken into account as a context

in the contextual MAB setting.

The slot algorithms in the RankBandit setting can make their selections sequentially. Then

without loss of generality each slot algorithm Ai knows the set S of documents in the upper slots.

We propose to treat S as a “context” to Ai. Specifically, Ai will assume that none of the documents in

S is clicked, that is, event ZS happens (else the i-th slot is ignored by the user). For each such round,

the click probabilities for Ai are given by µ(· |ZS), which is an L-continuous function on (X ,D).
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6.1 RankCorrZoom: “Light-weight” Ranked Contextual Algorithm

We first propose a simple modification to RankZoom, called RankCorrZoom, which uses the contexts

as discussed above.

Recall that in the zooming algorithm, the index of an active subtree u is defined so that, assuming

stochastic rewards, it is an upper confidence bound on the click probability of any document x in

this subtree:

w.h.p. index(u)≥max
x∈u

µ(x). (18)

Moreover, it follows from the analysis in (Kleinberg et al., 2008b) that performance of the algorithm

improves if the index is decreased as long as Equation (18) holds.

Now consider RankZoom, and let Ai be the instance of the zooming algorithm in slot i ≥ 2.

While for Ai the rewards are no longer stochastic, our intuition for why RankZoom may be a good

algorithm is still based on Equation (18). In other words, we wish that for each context S ⊂ X we

have

w.h.p. index(u)≥max
x∈u

µ(x|ZS), (19)

and our intuition is that it is desirable to decrease the index as long as Equation (19) holds.

We will derive an upper bound on maxx∈u µ(x|ZS) using correlation between u and S, and we

will cap the index of u at this quantity. Since µ(y|ZS) = 0 for any y ∈ S, we have

µ(x|ZS) = |µ(x|ZS)−µ(y|ZS)| ≤ D(x,y), ∀y ∈ S

µ(x|ZS)≤ D(x,S), miny∈S D(x,y). (20)

In other words, if document x is close to some document in S, the event ZS limits the conditional

probability µ(x|ZS). Therefore we can cap the index of u at maxx∈u D(x,S):

index(u)←min
(

index(u), max
x∈u

D(x,S)
)

.

The version of RankZoom with the above “correlation rule” will be called RankCorrZoom.

To simplify the computation of maxx∈u D(x,S) in an ε-exponential tree metric, we note that it

is equal to D(root(u), S) if u is disjoint with S, and in general it is equal to D(root(v), S), where

v is the largest subtree of u that is disjoint with S.

6.2 Contextual Lipschitz MAB Interpretation

Let us cast each slot algorithm Ai as a contextual algorithm in the contextual Lipschitz MAB setting

(as defined in Section 5.5). We need to specify a metric Dc on contexts S⊂X which can be computed

by the algorithm and satisfies the Lipschitz condition:

|µ(x|ZS)−µ(x|ZS′)| ≤ Dc(S,S
′) for all x ∈ X and S,S′ ⊂ X . (21)

Lemma 9 Consider the k-slot Lipschitz MAB problem. For any S,S′ ⊂ X, define

Dc(S,S
′), 4 inf∑

n
j=1D(x j,x

′
j), (22)

where the infimum is taken over all n ∈ N and over all n-element sequences {x j} and {x′j} that

enumerate, possibly with repetitions, all documents in S and S′. Then Dc satisfies Equation (21).
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Proof For shorthand, let us write

σ(x|S), 1−µ(x|ZS),

σ(x|S,y), σ(x|S∪{y}).

First, we claim that for any y ∈ X and y′ ∈ S

|σ(x|S,y)−σ(x|S,y′)| ≤ 4D(y,y′). (23)

Indeed, noting that σ(x|S,y) = σ(y|S,x) σ(x|S)
σ(y|S) , we can re-write the left-hand side of Equation (23)

as

LHS(23) = σ(x,S)

∣

∣

∣

∣

σ(y|S,x)
σ(y|S) −

σ(y′|S,x)
σ(y′|S)

∣

∣

∣

∣

≤ σ(x,S) D(y,y′)
σ(y|S)+σ(y|S,x)

σ(y|S)σ(y′|S) (24)

= D(y,y′)
σ(x|S)+σ(x|S,y)

σ(y′|S) ≤ 2D(y,y′).

In Equation (24), we have used the L-continuity of σ(·|S) and σ(·|S,x). To achieve the constant of

2, it was crucial that y′ ∈ S, so that σ(y′|S) = 1. This completes the proof of Equation (23).

Fix some n ∈ N and some n-element sequences {xi} and {x′i} that enumerate, possibly with

repetitions, all values in S and S′, respectively. Consider sets

Si = {x′1 , . . . ,x′i}∪{xi+1 , . . . ,xn}, 1≤ i≤ n−1,

and let S0 = S and Sn+1 = S′. To prove the lemma, it suffices to show that

|σ(x|Si)−σ(x|Si+1)| ≤ 4D(xi+1, x′i+1) (25)

for each i ≤ n. To prove Equation (25), fix i and let y = xi+1 and y′ = x′i+1. Note that Si ∪{y′} =
Si+1∪{y}, call this set S∗. Then using Equation (23) (note, y ∈ Si and y′ ∈ S′i) we obtain

|σ(x|Si)−σ(x|S∗)|= |σ(x|Si,y)−σ(x|Si,y
′)|

≤ 2D(y,y′),

|σ(x|Si+1)−σ(x|S∗)|= |σ(x|Si+1,y
′)−σ(x|Si+1,y)|

≤ 2D(y,y′),

which implies Equation (25).

6.3 RankContextZoom: “Full-blown” Ranked Contextual Algorithm

Now we can take any algorithm for the contextual Lipschitz MAB problem (with metric Dc on con-

texts given by Equation (22)), and use it as a slot algorithm. We will use ContextZoom, augmented

by the “correlation rule” similar to the one in Section 6.1. The resulting “ranked” algorithm will be

called RankContextZoom.
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The implementation details are not difficult. Suppose the metric space on documents is the ε-

exponential tree metric, and let τd be the document tree. Consider slot (i+1)-th slot, i≥ 1.11 Then

the contexts are unordered i-tuples of documents. Let us define context tree τc as follows. Depth-ℓ
nodes of τc are unordered i-tuples of depth-ℓ nodes from τd, and leaves are contexts. The root of

τc is (r . . .r), where r = root(τd). For each internal node uc = (u1 . . .ui) of τc, its children are all

unordered tuples (v1 . . .vi) such that each v j is a child of u j in τd. This completes the definition of

τc. Letting u and uc be level-ℓ subtrees of τd and τc, respectively, it follows from the definition of Dc

in Equation (22) that Dc(S,S
′)≤ 4iεℓ for any contexts S,S′ ∈ uc. Thus setting W(u×uc), εℓ(4i+1)

satisfies Equation (17).

We define the “correlation rule” as follows. Let (u,uc) be an active strategy in the execution

of ContextZoom, where u is a subtree of the document tree τd, and uc is a subtree of the context

tree τc. It follows from the analysis in (Slivkins, 2009) that decreasing the index of (u,uc) improves

performance, as long it holds that

index(u,uc)≥ µ(x|ZS), ∀x ∈ u, S ∈ uc.

Recall that µ(x|ZS)≤ D(x,S) by Equation (20), so we can cap index(u,uc) at maxx∈u D(x|S):

index(u,S)←min
(

index(u,S), max
x∈u

D(x|S)
)

.

This completes the description of RankContextZoom.

7. Provable Scalability Guarantees and Discussion

Noting that for each slot i ≥ k the covering dimension of the DC-space is at most k times the

covering dimension of (X ,D), it follows that a (very pessimistic) upper bound on contextual regret

of RankContextZoom is R(T ) = Õ(αT 1−1/(kd+2)). Plugging this into Equation (13), we obtain:

Theorem 10 Consider the k-slot Lipschitz MAB problem on a metric space with covering dimen-

sion d (as defined in Equation (15), with constant α). Then after T rounds algorithm RankContext-

Zoom achieves

E[#clicks]

T
≥ (1− 1

e
)OPT− Õ

(

αk

T 1/(kd+2)

)

.

This is just a basic scalability guarantee which does not degenerate with the number of docu-

ments. (Note that it is worse than the one for RankGridEXP3.) We believe that this guarantee is

very pessimistic, as it builds on a very pessimistic version of the result for ContextZoom. In partic-

ular, we ignore the intuition that for a given slot, contexts S ⊂ X may gradually converge over time

to the greedy optimum, which effectively results in a much smaller set of possible contexts.12 We

believe this effect is very important to the performance RankContextZoom. In particular, it causes

RankContextZoom to perform much better than RankGridEXP3 in simulations.

11. For slot 1, contexts are empty, so ContextZoom reduces to Algorithm 3.

12. It is also wasteful (but perhaps less so) that we use a slot-k bound for each slot i < k.
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7.1 A Better Benchmark

Recall that while the bound in Equation (13) uses (1− 1
e
)OPT as a benchmark, a more natural

benchmark would be the greedy optimum. We provide a preliminary convergence result for Rank-

ContextZoom, without any specific regret bounds.

Such result is more elegantly formulated in terms of a version of RankContextZoom, hence-

forth called anytime-RankContextZoom, which uses the anytime version of ContextZoom (see

Section 5.3).

Theorem 11 Fix an instance of the k-slot MAB problem. The performance of anytime-Rank-

ContextZoom up to any given time t is equal to the greedy optimum minus f (t) such that f (t)→ 0.

Proof Sketch It suffices to prove that with high probability, anytime-RankContextZoom outputs a

greedy ranking in all but fk(t) rounds among the first t rounds, where fk(t)→ 0.

We prove this claim by induction on k, the number of slots. Suppose it holds for some k− 1

slots, and focus on the k-th slot. Consider all rounds in which a greedy ranking is chosen for the

upper slots but not for the k-th slot. In each such round, the k-th slot replica of anytime-Context-

Zoom incurs contextual regret at least δk, for some instance-specific constant δk > 0. Thus, with

high probability there can be at most Rk(t)/δk such rounds, where Rk(t) = o(t) is an upper bound

on contextual regret for slot k. Thus, one can take fk(t) = fk−1(t)+Rk(t)/δk.

Theorem 11 is about the “metric-less” setting from Radlinski et al. (2008). It easily extends

to the “ranked” version of any bandit algorithm whose contextual regret is sublinear with high

probability.

It is an open question whether (and under which assumptions) Theorem 11 can be extended to

the “ranked” versions of non-contextual bandit algorithms such as RankUCB1. One assumption that

appears essential is the uniqueness of the greedy ranking. To see that multiple greedy rankings may

cause problems for ranked non-contextual algorithms, consider a simple example:

• There are two slots and three documents x1,x2,x3 such that µ = ( 1
2
, 1

2
, 1

3
) and the relevance of

each arm is independent of that of the other arms.13

An optimal ranking for this example is a greedy ranking that puts x1 and x2 in the two slots, achieving

aggregate click probability 3
4
. According to our intuition, a “reasonable” ranked non-contextual

algorithm will behave as follows. The slot 1 algorithm will alternate between x1 and x2, each

with frequency→ 1
2
. Since the slot-2 algorithm is oblivious to the slot 1 selection, it will observe

averages that converge over time to ( 1
4
, 1

4
, 1

3
),14 so it will select document x3 with frequency → 1.

Therefore frequency→ 1 the ranked algorithm will alternate between (x,z) or (y,z), each of which

has aggregate click probability 2
3
.

13. Here documents x1,x2,x3 can stand for disjoint subsets of documents with highly correlated payoffs. Documents

within a given subset can lie far from one another in the metric space.

14. Suppose x j, j ∈ {1,2} is chosen in slot 1. Then, letting S = {x j}, µ(x1|ZS) equals 0 if j = 1 and 1
2 otherwise (which

averages to 1
4 ), whereas µ(x3|ZS) =

1
3 .
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RankUCB1 metric-oblivious algorithms: Section 5.1

RankEXP3 ranked versions of UCB1 and EXP3

RankGridUCB1 simple metric-aware algorithms: Section 5.4

RankGridEXP3 ranked versions of GridUCB1 and GridEXP3

RankZoom the ranked version of the zooming algorithm Section 5.4

contextual algorithms:

RankCorrZoom “light-weight”(based on the zooming algorithm) Section 6.1

RankContextZoom “full-blown” (based on ContextZoom). Section 6.3

Table 1: Algorithms for the k-slot Lipschitz MAB problem.

7.2 Desiderata

We believe that the above guarantees do not reflect the full power of our algorithms, and more

generally the full power of conditional L-continuity. The “ideal” performance guarantee for Rank-

Bandit in our setting would use the greedy optimum as a benchmark, and would have a bound on

regret that is free from the inefficiencies outlined in the discussion after Theorem 10. Furthermore,

this guarantee would only rely on some general property of Bandit such as a bound on regret

or contextual regret. We conjecture that such guarantee is possible for RankContextZoom, and,

perhaps under some assumptions, also for RankCorrZoom and RankZoom.

Further, one would like to study the relative benefits of the new “contextual” algorithms (Rank-

ContextZoom and RankCorrZoom) and the prior work such as RankZoom. The discussion Sec-

tion 7.1 suggests that the difference can be particularly pronounced when the pointwise mean has

multiple peaks of similar value. In fact, we confirm this experimentally in Section 8.4.

8. Evaluation

Let us evaluate the performance of the algorithms presented in Section 5 and Section 6. We sum-

marize these algorithms in Table 8.

In all UCB1-based algorithms in Table 8, including all extensions of the zooming algorithm,

one can damp exploration by replacing the 4log(T ) factor in Equation (14) with 1. Such change

effectively makes the algorithm more optimistic; it was found beneficial for RankUCB1 by Radlinski

et al. (2008). We find (see Section 8.3) that this change greatly improves the average performance

in our experiments. So, by a slight abuse of notation, we will assume this change from now on.

8.1 Experimental Setup

Using the generative model from Section 4 (Algorithm 1 with Equation (8)), we created a document

collection with |X | = 215 ≈ 32,000 documents15 in a binary ε-exponential tree metric space with

ε = 0.837 (and constant c = 1, see Section 3.1). The value for ε was chosen so that the most

dissimilar documents in the collection still have a non-trivial similarity, as may be expected for web

documents. Each document’s expected relevance µ(x) was set by first identifying a small number

15. This is a realistic number of documents that may be considered in detail for a typical web search query after pruning

very unlikely documents.
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of “peaks” yi ∈ X , choosing µ(·) for these documents, and then defining the relevance of other

documents as the minimum allowed while obeying L-continuity and a background relevance rate

µ0:

µ(x), max(µ0,
1
2
−mini D(x,yi)). (26)

For internal nodes in the tree, µ is defined bottom-up (from leaves to the root) as the mean value of

all children nodes. As a result, we obtain a set of documents X where each document x ∈ X has an

expected click probability µ(x) that obeys L-continuity.

Our simulation was run over a 5-slot ranked bandit setting, learning the best 5 documents. We

evaluated over 300,000 user visits sampled from P per Algorithm 1. Performance within 50,000

impressions, typical for the number of times relatively frequent queries are seen by commercial

search engines in a month, is essential for any practical applicability of this approach. However,

we also measure performance for a longer time period to obtain a deeper understanding of the

convergence properties of the algorithms.

We consider two models for µ(·) in Equation (26). In the first model, two “peaks” {y1,y2}
are selected at random with µ(·) = 1

2
, and µ0 set to 0.05. The second model is less “rigid” (and

thus more realistic): the relevant documents yi and their expected relevance rates µ(·) are selected

according to a Chinese Restaurant Process (Aldous, 1985) with parameters n=20 and θ=2, and

setting µ0 = 0.01. The Chinese Restaurant Process is inspired by customers coming in to a restaurant

with an infinite number of tables, each with infinite capacity. At time t, a customer arrives and can

choose to sit at a new table with probability θ/(t−1+θ), and otherwise sits at an already occupied

table with probability proportional to the number of customers already sitting at that table. By

considering each table as equivalent to a peak in the distrubtion, this leads to a set of peaks with

expected relevance rates distributed accoring to a power law. Following Radlinski et al. (2008), we

assign users to one of the peaks, then select relevant documents so as to obey the expected relevance

rate µ(x) for each document x.

As baselines we use an algorithm ranking the documents at random, and the (offline) greedy

algorithm discussed in Section 5.1.

8.2 Main Experimental Results

Our experimental results are summarized in Figure 1 and Figure 2.

RankEXP3 and RankUCB1 perform as poorly as picking documents randomly: the three curves

are indistinguishable. This is due to the large number of available documents and slow convergence

rates of these algorithms. Other algorithms that explore all strategies (such as REC Radlinski et al.,

2008) would perform just as poorly. This result is consistent with results reported by Radlinski et al.

(2008) on just 50 documents. On the other hand, algorithms that progressively refine the space of

strategies explored perform much better.

RankCorrZoom achieves the best empirical performance, converging rapidly to near-optimal

rankings. RankZoom is a close second. The theoretically preferred RankContextZoom comes third,

with a significant gap. This appears to be due to the much larger branching factor in the strategies

activated by RankContextZoom slowing down the convergence. (However, as we investigate in

Section 8.4, RankContextZoom may significantly outperform the other algorithms if µ has multiple

peaks with similar values.)
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Figure 1: The learning algorithms on 5-slot problem instances with two relevance peaks.
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Figure 2: The learning algorithms on 5-slot problem instances with random relevance rates µ(·)
selected according to the Chinese Restaurant Process.
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8.3 “Optimistic” vs. “Pessimistic” UCB1-style Algorithms

We find that the “optimistic” UCB1-style algorithms (obtained by replacing the 4log(T ) factor

in Equation (14) with 1) perform dramatically better than their “pessimistic” counterparts. In

Figure 3 and Figure 4 we compare RankUCB1 and RankZoom with their respective “pessimistic”

versions (which are marked with a “- -” after the algorithm name). We saw a similar increase in

performance for other UCB1-style algorithms, too.

8.4 Secondary Experiment

As discussed in Section 7.1, some RankBandit-style algorithms may converge to a suboptimal

ranking if µ has multiple peaks with similar values. To investigate this, we designed a small-scale

experiment presented in Figure 5. We generated a small collection of 128 documents using the

same setup with two “peaks”, and assumed 2 slots. Each peak corresponds to a half of the user

population, with peak value µ = 1
2

and background value µ0 = 0.05.

We see that RankContextZoom converges more slowly than the other zooming variants, but

eventually outperforms them. This confirms our intuition, and suggests that RankContextZoom

may eventually outperform the other algorithms on a larger collection, such as that used for Figures

1 and 2.

9. Further Directions

This paper initiates the study of bandit learning-to-rank with side information on similarity between

documents, focusing on an idealized model of document similarity based on the new notion of

“conditional Lipschitz-continuity”. As discussed in Section 7, we conjecture that provable perfor-

mance guarantees can be improved significantly. On the experimental side, future work will include

evaluating the model on web search data, and designing sufficiently memory- and time-efficient

implementations to allow experiments on real users. An interesting challenge in such an endeavor

would be to come up with effective similarity measures. A natural next step would be to also exploit

the similarity between search queries.

Appendix A. Proof of Lemma 4 (Extending µ from Leaves to Tree Nodes)

Recall that Lemma 4 is needed to define the generative model in Section 4. We will prove a slightly

more general statement:

Lemma 12 Let D be the shortest-paths metric of an edge-weighted rooted tree with node set V and

leaf set X. Let µ : X → [a,b] be an L-continuous function on (X ,D). Then µ can be extended to V so

that µ : V → [a,b] is L-continuous w.r.t. (V,D).

Proof For each x ∈V , let L(x) be the set of all leaves in the subtree rooted at x. For each z ∈ L(y)
the assignment µ(x) should satisfy

µ(z)−D(x,z)≤ µ(x)≤ µ(z)+D(x,z)
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Figure 3: “Optimistic” vs. “pessimistic” UCB1-style algorithms:

The learning algorithms on 5-slot problem instances with two relevance peaks.

 0 

 0.2

 0.4

 0.6

 0.8

1.0

 0 50 100 150 200 250 300

M
e
a
n
 r

e
w

a
rd

 p
e
r 

re
ce

n
t 
tim

e
 s

te
p

Presentation time steps (in thousands)

Figure 4: “Optimistic” vs. “pessimistic” UCB1-style algorithms:

The learning algorithms on 5-slot problem instances with random relevance rates µ(·)
selected according to the Chinese Restaurant Process.
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Figure 5: Zooming-style algorithms in a two-slot setting over a small document collection.

Thus µ(x) should lie in the interval I(x), [µ−(x),µ+(x)], where

µ−(x), supz∈L(x) µ(z)−D(x,z),

µ+(x), infz∈L(x) µ(z)+D(x,z).

This interval is always well-defined, that is, µ−(x)≤ µ+(x). Indeed, if not then for some z,z′ ∈ L(x)

µ(z)−D(x,z)> µ(z′)+D(x,z′)

µ(z)−µ(z′)> D(x,z)+D(x,z′)≥ D(z,z′),

contradiction, claim proved. Note that µ+(x) ≥ a and µ−(x) ≤ b, so the intervals I(x) and [a,b]
overlap.

Using induction on the tree, we will construct values µ(x), x ∈V such that the Lipschitz condi-

tion

|µ(x)−µ(y)| ≤ D(x,y) for all x,y ∈ X

holds whenever x is a parent of y. For the root x0, let µ(x0) be an arbitrary value in the interval

I(x0)∩ [a,b]. For the induction step, suppose for some x we have chosen µ(x) ∈ I(x)∩ [a,b] and y is

a child of x. We need to choose µ(y) ∈ I(y)∩ [a,b] so that |µ(x)−µ(y)| ≤ D(x,y). Note that

µ(x)≥ µ−(x)≥ supz∈L(y) [µ(z)−D(x,y)−D(y,z) ]

= µ−(y)−D(x,y),

µ(x)≤ µ+(x)≤ infz∈L(y) [µ(z)+D(x,y)+D(y,z) ]

= µ+(y)+D(x,y).

It follows that I(y) and [µ(x)−D(x,y), µ(x)+D(x,y)] have a non-empty intersection. Therefore,

both intervals have a non-empty intersection with [a,b]. So we can choose µ(y) as required. This

completes the construction of µ() on V .
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To check that µ is Lipschitz-continuous on V , fix x,y ∈ V , let P be the x→ y path in the tree,

and note that

|µ(x)−µ(y)| ≤ ∑(u,v)∈P |µ(u)−µ(v)|
≤ ∑(u,v)∈P D(u,v) = D(x,y).

Appendix B. Proof of Theorem 5 (Expressiveness of the Model)

Recall that a proof sketch for Theorem 5 was given in Section 4. In this section we complete this

proof sketch by proving Equation (12).

Notation. Let us introduce the notation (some of it is from the proof sketch).

For a tree node u, let Tu be the node set of the subtree rooted at u. For convenience (and by a

slight abuse of notation) we will write u = b, b ∈ {0,1} to mean π(u) = b.

Fix documents x,y ∈ X . We focus on the key event, denoted E , that no mutation happened

on the x → y path. Recall that in Algorithm 1, for each tree node u with parent v we assign

π(u)← Mu(π(v)), where Mu : {0,1} → {0,1} is a random mutation which flips the input bit b

with probability qb(u). If Mu is the identity function, then we say that no mutation happened at

u. We say that no mutation happened on the x→ y path if no mutation happened at each node in

Nxy, the set of all nodes on the x→ y path except z. This event is denoted E ; note that it implies

π(x) = π(y) = π(z). Its complement Ē is, intuitively, a low-probability “failure event”.

Fix a subset of documents S ⊂ X . Recall that ZS denotes the event that all documents in S are

irrelevant, that is, π(x) = 0 for all x ∈ S.

What we need to prove. We need to prove Equation (12), which states that

Pr[Ē |ZS]≤ 3 Pr[Ē ].

It suffices to prove the following lemma:

Lemma 13 Pr[Ē |ZS]≤ Pr[Ē ]× (2/Pr[E ]).

(Indeed, letting p = Pr[Ē ] it holds that Pr[Ē |ZS]≤min
(

1, 2p
1−p

)

≤ 3 p. )

Remark. Lemma 13 inherits assumptions (6-7) on the mutation probabilities. Specifically for this

Lemma, the upper bound (6) on mutation probabilities can be replaced with a much weaker upper

bound:

max(q0(u), q1(u))≤ 1
2

for each tree node u. (27)

Our goal is to prove Lemma 13. In a sequence on claims, we will establish that

Pr[ZS |z = 0]≥ Pr[ZS |z = 1]. (28)

Intuitively, (28) means that the low-probability mutations are more likely to zero out a given subset

of the leaves if the value at some fixed internal node is zero (rather than one).
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B.1 Using Equation (28) to Prove Lemma 13

Let us extend the notion of mutation from a single node to the x→ y path. Recall that Nxy denotes the

set of all nodes on this path except z. Then the individual node mutations {Mu : u∈Nxy} collectively

provide a mutation on Nxy, which we define simply as a function M : Nxy×{0,1}→ {0,1} such that

π(·) = M(·,π(z)). Crucially, M is chosen independently of π(z) (and of all other mutations). Let M

be the set of all possible mutations of Nxy. By a slight abuse of notation, we treat the event E as the

identity mutation.

Claim 14 Fix M ∈M and b ∈ {0,1}. Then

Pr[ZS |M,π(z) = b]≤ Pr[ZS |E ,π(z) = 0].

Proof For each tree node u, let Su = S∩ Tu be the subset of S that lies in the subtree Tu. Then

by (28)

Pr[ZS |M, π(z) = b] = ∏u Pr[ZSu
|π(u) = M(u,b)]

≤∏u Pr[ZSu
|π(u) = 0]

= Pr[ZS |E , π(z) = 0],

where the product is over all tree nodes u ∈ Nxy such that the intersection Su is non-empty.

Proof [Proof of Lemma 13] On one hand, by Claim 14

Pr[ZS∩ Ē ] = ∑b,M Pr[M] Pr[z = b] Pr[ZS |M, z = b]

≤ ∑b,M Pr[M] Pr[z = b] Pr[ZS | E , z = 0]

= Pr[Ē ]×Pr[ZS | E , z = 0],

where the sums are over bits b ∈ {0,1} and all mutations M ∈M \{E}. On the other hand,

Pr[ZS] = ∑b,M Pr[M] Pr[z = b] Pr[ZS |M, z = b]

(where the sum is over b ∈ {0,1} and M ∈M )

≥ Pr[E ] Pr[z = 0] Pr[ZS |E , z = 0].

Since Pr[z = 0]≥ 1
2
, it follows that

Pr[Ē |ZS] = Pr[ZS∩ Ē ]/ Pr[ZS]

≤ 2 Pr[Ē ]/Pr[E ].
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B.2 Proof of Equation (28)

First we prove (28) for the case S ⊂ Tz, then we build on it to prove the (similar, but considerably

more technical) case S∩ Tz = /0. The general case follows since the events ZS∩Tz
and ZS\Tz

are

conditionally independent given π(z).

Claim 15 If S⊂ Tz then (28) holds.

Proof Let us use induction the depth of z. For the base case, the case x = y = z. Then S = {z} is

the only possibility, and the claim is trivial.

For the induction step, consider children ui of z such that the intersection Si , S∩Tui
is non-

empty. Let u1 , . . . ,uk be all such children. For brevity, denote Zi , ZSi
, and

νi(a|b), Pr[ui = a |z = b], a,b ∈ {0,1}.

Note that vi(1,0) = q0(xi) and vi(0,1) = q1(xi).
Then for each b ∈ {0,1} we have

Pr[ZS |z = b] = ∏
k
i=1 Pr[Zi |z = b] (29)

Pr[Zi |z = b] = ∑a∈{0,1} νi(a|b) Pr[Zi |ui = a]. (30)

By (29), to prove the claim it suffices to show that

Pr[Zi |z = 0]≥ Pr[Zi |z = 1]

holds for each i. By the induction hypothesis we have

Pr[Zi |ui = 0]≥ Pr[Zi |ui = 1]. (31)

Combining (31) and (27), and noting that by (30) we have νi(0|0)≥ νi(0|1), it follows that

Pr[Zi |z = 0]−Pr[Zi |z = 1]

= ∑a∈{0,1} Pr[Zi |ui = a] (νi(a|0)−νi(a|1))
≥ Pr[Zi |ui = 1] ∑a∈{0,1} (νi(a|0)−νi(a|1))
= 0

because νi(0|0)+νi(1|0) = νi(0|1)+νi(1|1) = 1.

Corollary 16 Consider tree nodes r,v,w such that r is an ancestor of v which in turn is an ancestor

of w. Then for any c ∈ {0,1}

Pr[u = 0 |w = 0, r = c]≥ Pr[u = 0 |w = 1, r = c].

Proof We claim that for each b ∈ {0,1}

Pr[w = b |u = b]≥ Pr[w = b |u = 1−b]. (32)
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Indeed, truncating the subtree Tw to a single node w and specializing Lemma 15 to a singleton set

S = {w} (with z = u) we obtain (32) for b = 0. The case b = 1 is symmetric.

Now, for brevity we will omit conditioning on {r = c} in the remainder of the proof. (Formally,

we will work on in the probability space obtained by conditioning on this event.) Then for each

b ∈ {0,1}

Pr[u = 0 |w = b]

=
Pr[u = 0∧w = b]

Pr[u = 0∧w = b]∪Pr[u = 1∧w = b]

=
1

1+Φ(b)
,

where

Φ(b),
Pr[u = 1∧w = b]

Pr[u = 0∧w = b]

=
Pr[w = b |u = 1] Pr[u = 1]

Pr[w = b |u = 0] Pr[u = 0]

is decreasing in b by (32).

We will also need a stronger, conditional, version of Lemma 15 whose proof is essentially

identical (and omitted).

Claim 17 Suppose S⊂ Tz and u 6= z is a tree node such that Tu is disjoint with S. Then

Pr[ZS |z = 0, u = 1]≥ Pr[ZS |z = 1, u = 1].

We will use Corollary 16 and Lemma 17 to prove (28) for the case S∩Tz = /0.

Claim 18 If S is disjoint with Tz then (28) holds.

Proof Suppose S is disjoint with Tz, and let r be the root of the tree. We will use induction on the

tree to prove the following: for each c ∈ {0,1},

Pr[ZS |r = c, z = 0]≥ Pr[ZS |r = c, z = 1] (33)

For the induction base, consider a tree of depth 2, consisting of the root r and the leaves. Then z 6∈ S

is a leaf, so ZS is independent of π(z) given π(r), so (33) holds with equality.

For the induction step, fix c∈{0,1}. Let us set up the notation similarly to the proof of Claim 15.

Consider children ui of r such that the intersection Si , S∩Tui
is non-empty. Let u1 , . . . ,uk be all

such children. Assume z ∈ Tui
for some i (else, ZS is independent from π(z) given π(r), so (33)

holds with equality); without loss of generality, assume this happens for i = 1. For brevity, for

a,b ∈ {0,1} denote

fi(a,b), Pr[ZSi
|ui = a, z = b]

νi(a|b), Pr[ui = a |r = c, z = b].
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Note that fi(a,b) and νi(a|b) do not depend on b for i > 1.

Then for each b ∈ {0,1}
Pr[ZS |r = c, z = b]

= ∑
ai∈{0,1}, i≥1

∏
i≥1

fi(ai,b) νi(ai|b)

= Φ×∑a∈{0,1} f1(a,b) ν1(a|b),
where

Φ , ∑
ai∈{0,1}, i≥2

∏
i≥2

fi(ai,b)νi(ai|b)

does not depend on of b. Therefore:

Pr[ZS |r = c, z = 1]−Pr[ZS |r = c, z = 1]

= Φ×∑a∈{0,1}

[ f1(a,0)ν1(a|0)− f1(a,1)ν1(a|1) ] (34)

≥Φ×∑a∈{0,1} f1(a,1) [ ν1(a|0)−ν1(a|1) ] (35)

≥Φ× f1(1,1) ∑a∈{0,1} [ ν1(a|0)−ν1(a|1) ] (36)

= 0. (37)

The above transitions hold for the following reasons:

(34→35)By Induction Hypothesis, f1(a,0)≥ f1(a,1)

(35→36) By Lemma 17 f1(0,1) ≥ f1(1,1), and moreover we have ν1(0|0) ≥ ν1(0|1) by Corol-

lary 16.

(36→37) Since νi(0|0)+νi(1|0) = νi(0|1)+νi(1|1) = 1

This completes the proof of the inductive step.

Appendix C. Instance-Dependent Regret Bounds from Prior Work

In this section we discuss instance-dependent regret bounds from prior work on UCB1-style algo-

rithms for the single-slot setting. The purpose is to put forward a concrete mathematical evidence

which suggests that RankGridUCB1, RankZoom and RankCorrZoom are likely to satisfy strong up-

per bounds on regret in the k-slot setting (perhaps under some additional assumptions), even if such

bounds are beyond the reach of our current techniques. Similarly, we believe that the regret bound

for RankContextZoom that we have been able to prove (Theorem 10) is overly pessimistic. A

secondary purpose is to provide more intuition for when these algorithms are likely to excel.

Our story begins with the comparison between the guarantees for EXP3 and UCB1 in the stan-

dard (single-slot, metric-free) bandit setting, and then progresses to Lipschtz MAB and contextual

Lispchitz MAB.

In what follows, we let µ denote the vector of expected rewards in the stochastic reward setting,

so that µ(x) is the expected reward of arm x. Let ∆(x) , maxµ(·)− µ(x) denote the “badness” of

arm x compared to the optimum.
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C.1 Standard Bandits: UCB1 vs. EXP3

Algorithm EXP3(Auer et al., 2002b) achieves regret R(T ) = Õ(
√

nT ) against an oblivious adversary.

In the stochastic setting, UCB1(Auer et al., 2002a) performs much better, with logarithmic regret for

every fixed µ. More specifically, each arm x ∈ X contributes only O(logT )/∆(x) to regret. Noting

that the total regret from playing arms with ∆(·)≤ δ can be a priori upper-bounded by δT , we bound

regret of UCB1 as:

R(T ) = min
δ>0

(

δT +∑x∈X :∆(x)>δ
O(logT )

∆(x)

)

. (38)

Note that Equation (38) depends on µ. In particular, if ∆(·)≥ δ then R(T ) = O( n
δ

logT ).

However, for any given T there exists a “worst-case” pointwise mean µT such that R(T ) =
Θ̃(
√

nT ) in Equation (38), matching EXP3. The above regret guarantees for EXP3 and UCB1 are

optimal up to constant factors (Auer et al., 2002b; Kleinberg et al., 2008a).

C.2 Bandits in Metric Spaces

Let (X ,D) denote the metric space. Recall that the covering number Nr(X) is the minimal number

of balls of radius r sufficient to cover X , and the covering dimension is defined as

CovDim(X ,D), inf{d ≥ 0 : Nr(X)≤ αr−d ∀r > 0}.

(Here α > 0 is a constant which we will keep implicit in the notation.)

Against an oblivious adversary, GridEXP3 has regret

R(T ) = Õ(αT (d+1)/(d+2)), (39)

where d is the covering dimension of (X ,D).

For the stochastic setting, GridUCB1 and the zooming algorithm have better µ-specific regret

guarantees in terms of the covering numbers. These guarantees are similar to Equation (38) for

UCB1. In fact, it is possible, and instructive, to state the guarantees for all three algorithms in a

common form.

Consider reward scales S = {2i : i ∈ N}, and for each scale r ∈ S define

Xr = {x ∈ X : r < ∆(x)≤ 2r}.

Then regret (38) of UCB1 can be restated as

R(T ) = min
δ>0

(

δT +∑r∈S :r≥δ N(δ,r)
O(logT )

r

)

, (40)

where N(δ,r) = |Xr|. Further, it follows from the analysis in (Kleinberg, 2004; Kleinberg et al.,

2008b) that regret of GridUCB1 is Equation (40) with N(δ,r) = Nδ(Xr). For the zooming algorithm,

the µ-specific bound can be improved to Equation (40) with N(δ,r) = Nr(Xr). These results are

summarized in Table C.2.

For the worst-case µ one could have Nδ(Xr) = Nδ(X), in which case the µ-specific bound for

GridUCB1 essentially reduces to Equation (39).
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algorithm regret is (40) with ...

UCB1 N(δ,r) = |Xr|
GridUCB1 N(δ,r) = Nδ(Xr)

zooming algorithm N(δ,r) = Nr(Xr)
ContextZoom N(δ,r) = Nr(Xdc,r).

Table 2: Regret bounds in terms of covering numbers

For the zooming algorithm, the µ-specific bound above implies an improved version of Equa-

tion (39) with a different, smaller d called the zooming dimension:

ZoomDim(X ,D,µ), inf{d ≥ 0 : Nr(Xr)≤ cr−d ∀r > 0}.
Note that the zooming dimension depends on the triple (X ,D,µ) rather than on the metric space

alone. It can be as high as the covering dimension for the worst-case µ, but can be much smaller

(e.g., d = 0) for “nice” problem instances, see (Kleinberg et al., 2008b) for further discussion. For

a simple example, suppose an ε-exponential tree metric has a “high-reward” branch and a “low-

reward” branch with respective branching factors b≪ b′. Then the zooming dimension is log1/ε(b),
whereas the covering dimension is log1/ε(b

′).

C.3 Contextual Bandits in Metric Spaces

Let µ(x|h) denote the expected reward from arm x given context h. Recall that the algorithm is given

metrics D and Dc on documents and contexts, respectively, such that for any two documents x,x′

and any two contexts h,h′ we have

|µ(x|h)−µ(x′|h′)| ≤ D(x,x′)+Dc(h,h
′).

Let Xc be the set of contexts, and Xdc = X ×Xc be the set of all (document, context) pairs. More

abstractly, one considers the metric space (Xdc,Ddc), henceforth the DC-space, where the metric is

Ddc((x,h), (x
′,h′)) = D(x,x′)+Dc(h,h

′).

We partition Xdc according to reward scales r ∈ S :

∆(x|h), maxµ(·|h)−µ(x|h), x ∈ X ,h ∈ Xc.

Xdc,r , {(x,h) ∈ Xdc : r < ∆(x|h)≤ 2r}.
Then contextual regret of ContextZoom can be bounded by Equation (40) with N(δ,r) = Nr(Xdc,r),
where Nr(·) now refers to the covering numbers in the DC-space (see Table C.2).

Further, one can define the contextual zooming dimension as

ddc(X ,D,µ), inf{d ≥ 0 : Nr(Xr)≤ cr−d ∀r > 0}.
Then one obtains Equation (39) with d = ddc. In the worst case, we could have µ such that

Nr(Xdc,r) = Nr(Xdc), in which case ddc ≤ CovDim(Xdc,Ddc).
The regret bounds for ContextZoom can be improved by taking into account “benign” context

arrivals: effectively, one can prune the regions of Xc that correspond to infrequent context arrivals,

see (Slivkins, 2009) for details. This improvement can be especially significant if CovDim(Xc,Dc)>
CovDim(X ,D).
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Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multi-

armed bandit problem. SIAM J. Comput., 32(1):48–77, 2002b. Preliminary version in 36th IEEE

FOCS, 1995.
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