
Journal of Machine Learning Research 14 (2013) 2519-2548 Submitted 10/12; Revised 5/13; Published 9/13

Learning Bilinear Model for Matching Queries and Documents

Wei Wu WUWEI@MICROSOFT.COM

Microsoft Research Asia

13F, Building 2

No.5 Danling Street

Beijing, 100080, P. R. China

Zhengdong Lu LU.ZHENGDONG@HUAWEI.COM

Hang Li HANGLI.HL@HUAWEI.COM

Huawei Noah’s Ark Lab

Units 525-530, Core Building 2

Hong Kong Science Park

Shatin, Hong Kong

Editor: Charles Elkan

Abstract

The task of matching data from two heterogeneous domains naturally arises in various areas such

as web search, collaborative filtering, and drug design. In web search, existing work has designed

relevance models to match queries and documents by exploiting either user clicks or content of

queries and documents. To the best of our knowledge, however, there has been little work on prin-

cipled approaches to leveraging both clicks and content to learn a matching model for search. In

this paper, we propose a framework for learning to match heterogeneous objects. The framework

learns two linear mappings for two objects respectively, and matches them via the dot product of

their images after mapping. Moreover, when different regularizations are enforced, the framework

renders a rich family of matching models. With orthonormal constraints on mapping functions,

the framework subsumes Partial Least Squares (PLS) as a special case. Alternatively, with a ℓ1+ℓ2

regularization, we obtain a new model called Regularized Mapping to Latent Structures (RMLS).

RMLS enjoys many advantages over PLS, including lower time complexity and easy paralleliza-

tion. To further understand the matching framework, we conduct generalization analysis and apply

the result to both PLS and RMLS. We apply the framework to web search and implement both PLS

and RMLS using a click-through bipartite with metadata representing features of queries and doc-

uments. We test the efficacy and scalability of RMLS and PLS on large scale web search problems.

The results show that both PLS and RMLS can significantly outperform baseline methods, while

RMLS substantially speeds up the learning process.

Keywords: web search, partial least squares, regularized mapping to latent structures, generaliza-

tion analysis

1. Introduction

Many tasks in machine learning and data mining can be formalized as matching between objects

from two spaces. One particular example is web search, where the retrieved documents are ordered

according to their relevance to the given query. The relevance is determined by the matching scores

between the query and the documents. It is therefore crucial to accurately calculate the matching

c©2013 Wei Wu, Zhengdong Lu and Hang Li.

WU, LU AND LI

score for any given query-document pair. Similarly, matching between heterogeneous data sources

can be found in collaborative filtering, image annotation, drug design, etc.

Existing models in web search use information from different sources to match queries and

documents. On one hand, conventional relevance models, including Vector Space Model (VSM)

(Salton and McGill, 1986), BM25 (Robertson et al., 1994), and Language Models for Information

Retrieval (LMIR) (Ponte and Croft, 1998; Zhai and Lafferty, 2004), match queries and documents

based on their content. Specifically, queries and documents are represented as feature vectors in a

Euclidean space, and conventional relevance models match them by the dot products of their feature

vectors (Xu et al., 2010; Wu et al., 2011). On the other hand, a click-through bipartite graph, which

represents users’ implicit judgments on query-document relevance, has proven to be a very valuable

resource for matching queries and documents. Many methods have been proposed (Craswell and

Szummer, 2007; Ma et al., 2008), but they rely only on the structure of the bipartite graph. Existing

models rely on either features or the click-through bipartite graph to match queries and documents.

Therefore, there is need for a principled approach to learning to match with both features and the

click-through bipartite graph. The learnt model must maintain efficacy and scalability (due to the

massive scale of web search problems). Moreover, we also would like to understand the generaliza-

tion ability of matching models.

This paper proposes a general framework for learning to match objects from two spaces. Specif-

ically, the framework learns a linear mapping for each object and map the two objects into a common

latent space. After that, the dot product of the images of the two objects is taken as their matching

score. The matching model is linear in terms of both objects, and therefore, we actually learn a bilin-

ear model for matching two objects. The types of linear mapping can be further specified by a set of

constraints. By limiting the mappings to projections,1 we obtain a natural generalization to Partial

Least Squares (PLS), a classic model in statistics for analyzing the correlation between two vari-

ables. More interestingly, when replacing this constraint with regularization constraints based on ℓ1

and ℓ2 norms, we get a new learning to match model, called Regularized Mapping to Latent Struc-

tures (RMLS). This model allows easy parallelization for learning and fast computation in testing

due to the induced sparsity in the mapping matrices. More specifically, RMLS allows pre-computing

intermediate parameters, making optimization independent of training instances. Moreover, the pre-

computation can be easily distributed across different machines, and therefore can further enhance

the efficiency and scalability of RMLS. To further understand this framework, we give a generaliza-

tion analysis under a hierarchical sampling assumption which is natural in the matching problems

encountered in web search. Our results indicate that to obtain a good generalization ability, it is

necessary to use a large number of instances for each type of object.

With the framework, we learn a matching model for search by leveraging both click-through

and features. Specifically, we implement both PLS and RMLS using a click-through bipartite graph

with metadata on the nodes representing features of queries and documents. We take click numbers

as a response and learn linear mappings to matching queries and documents, each represented by

heterogeneous feature vectors consisting of both key words and click numbers. On a small data set,

RMLS and PLS perform comparably well and both of them significantly outperform other baseline

methods. RMLS is more efficient than PLS and the advantage becomes more significant under

parallelization. RMLS also scales well on large data sets. On a data set with millions of queries and

1. In this paper, by projection, we mean a linear mapping specified by a matrix P, with P⊤P = I.

2520

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

documents, RMLS can leverage high dimensional features and significantly outperform all other

baseline methods.

Our contributions are three-fold: 1) we propose a framework for learning to match heteroge-

neous data, with PLS and the more scalable RMLS as special cases; 2) generalization analysis of

this framework as well as its application to RMLS and PLS; 3) empirical verification of the efficacy

and scalability of RMLS and PLS on real-world large-scale web search data.

2. Related Work

Matching pairs of objects with a similarity function defined as a dot product has been researched

for quite some time. When the pair of objects are from the same space (i.e., they are homogeneous

data), the similarity function becomes positive semi-definite, and the matching problem is essen-

tially finding a good kernel (Cristianini et al., 2001; Lanckriet et al., 2002; Bach et al., 2004; Ong

et al., 2005; Micchelli and Pontil, 2005; Bach, 2008; Varma and Babu, 2009; Cortes, 2009). Among

existing works, distance metric learning (Jolliffe, 2002; Xing et al., 2003; Schultz and Joachims,

2003; JacobGoldberger and GeoffHinton, 2004; Hertz et al., 2004; Hoi et al., 2006; Yang et al.,

2006; Davis et al., 2007; Sugiyama, 2007; Weinberger and Saul, 2009; Ying et al., 2009) is a rep-

resentative approach of learning similarities (or dissimilarities) for homogeneous data. In distance

metric learning, a linear transformation is learnt for mapping objects from the same space into a la-

tent space. In the space, dot product or Euclidean distance is taken as a means to measure similarity

or dissimilarity. Recently, learning a similarity function for object pairs from two different spaces

has also emerged as a hot research topic (Grangier and Bengio, 2008; Abernethy et al., 2009). Our

model belongs to the latter category, but is tailored for web search and tries to solve problems central

to that, for example, scalability.

Our model, when applied to web search, is also obviously related to the effort on learning to

rank (Herbrich et al., 1999; Crammer and Singer, 2001; Joachims, 2002; Agarwal and Niyogi, 2005;

Rudin et al., 2005; Burges et al., 2006; Cao et al., 2006; Xu and Li, 2007; Cao et al., 2007; Liu, 2009;

Li, 2011). However, we focus on learning to match queries and documents, while learning to rank

has been more concerned with optimizing the ranking model. Clearly the matching score learned

with our method can be integrated as a feature for a particular learning to rank model, and therefore

our model is in a sense feature learning for learning to rank.

In web search, existing work for matching queries and documents can be roughly categorized

into two groups: feature based methods and graph based methods. In the former group, Vector

Space Model (VSM) (Salton and McGill, 1986), BM25 (Robertson et al., 1994), and Language

Models for Information Retrieval (LMIR) (Ponte and Croft, 1998; Zhai and Lafferty, 2004) make

use of features, particularly, n-gram features to calculate query-document matching scores. As

pointed out by Xu et al. (2010) as well as Wu et al. (2011), these models perform matching by

using the dot product between a query vector and a document vector as a query-document similarity

function. In the latter group, graph based methods exploit the structure of a click-through bipartite

graph to match query-document pairs. For example, Latent Semantic Indexing (LSI) (Deerwester

et al., 1990) can be employed, which uses SVD to project queries and documents in a click-through

bipartite graph into a latent space, and calculates query-document matching scores through the dot

product of their images in the latent space. Craswell and Szummer (2007) propose adopting a

backward random walk process on a click-through bipartite graph to propagate similarity through

probabilistic transitions. In this paper, we propose a general framework for matching queries and

2521

WU, LU AND LI

documents. The framework can leverage both features and a click-through bipartite graph to learn a

matching model. In doing so, we actually combine feature based methods and graph based methods

in a principled way.

In information retrieval, some recent work also considers leveraging both user clicks and con-

tent of queries and documents. Bai et al. (2009) propose learning a low rank model for ranking

documents, which is like matching queries and documents. On the other hand, there are also stark

differences between our work and theirs. For example, their work requires a pair-wise input super-

vision and learns a ranking model using hinge loss, while our work employs a point-wise input and

learns a matching model using alignment. Gao et al. (2011) propose combining ideas in semantic

representation and statistical machine translation to learn relevance models for web search. Com-

pared with their work, our method is non-probabilistic and can leverage different regularizations,

such as the ℓ1 regularization, to achieve better performance.

The matching problem is also widely studied in collaborative filtering (CF) whose goal can be

viewed as matching users and items (Hofmann, 2004; Srebro et al., 2005; Abernethy et al., 2009;

Chen et al., 2012). The characteristics of the problems CF attempts to solve, for example, the

sampling assumption and the nature of “ratings”, are different from the matching problem in web

search. We have compared our methods with a state-of-the-art CF model which can handle extra

attributes in two domains. The results indicate that our methods are more effective in web search

than the existing CF model.

In existing statistical models, Partial Least Squares (PLS) (Rosipal and Krämer, 2006; Schreier,

2008) and Canonical Correlation Analysis (CCA) (Hardoon et al., 2004) are classic tools for captur-

ing correlations of two variables via common latent structures. In this paper, we provide a general

matching framework, which subsumes PLS and allows rather scalable implementations.

3. A Framework For Matching Objects From Two Spaces

We first give a general framework for learning to match objects from two heterogeneous spaces.

Suppose that there are two spaces X ⊂ Rdx and Y ⊂ Rdy . For any x ∈ X and y ∈ Y , there is a

response r � r(x,y) > 0 in space R , indicating the actual correlation between object x and object

y. For web search, the objects are queries and documents, and the response can be judgment from

human labelers or the click number from user logs.

We first describe the hierarchical sampling process for generating any sample triple (xi,yi j,ri j).

Assumption 1 First xi is sampled according to P(x). Then yi j is sampled according to P(y|xi).
After that, there is a response ri j = r(xi,yi j) associated with pair (xi,yi j).

We argue that this is an appropriate sampling assumption for web search (Chen et al., 2010), since

the selected yi j (in this case, retrieved document) depends heavily on xi (in this case, query). This

dependence is largely rendered by several factors of a search engine, including the indexed pages

and the ranking algorithms. Under Assumption 1, we have a sample set S = {(xi,yi j,ri j)}, with

1 6 i 6 nx, and for any given i, 1 6 j 6 n
y
i . Here {xi}nx

i=1 are i.i.d. sampled and for a given xi, {yi j}n
y
i

j=1

are i.i.d. samples conditioned on xi. Relying on this sampling assumption, we will give the learning

to match framework, and later carry out the generalization analysis.

2522

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

3.1 Model

We intend to find a linear mapping pair (Lx,Ly), so that the corresponding images L⊤x x and L⊤y y

are in the same d-dimensional latent space L (with d≪ min{dx,dy}), and the degree of matching

between x and y can be reduced to the dot product in L :

matchLx,Ly
(x,y) = x⊤LxL⊤y y.

Dot product is a popular form of matching in applications like search. In fact, traditional relevance

models in search such as VSM (Salton and McGill, 1986), BM25 (Robertson et al., 1994), and

LMIR (Ponte and Croft, 1998; Zhai and Lafferty, 2004) are all dot products of a query vector and

a document vector, as pointed out by Xu et al. (2010) as well as Wu et al. (2011). Recently, Bai

et al. (2009) proposed supervised semantic indexing, which also uses dot product as the measure of

query-document similarity. We hope the score defined this way can reflect the actual response. More

specifically, we would like to maximize the following expected alignment between this matching

score and the response

Ex,y{r(x,y) ·matchLx,Ly
(x,y)}= ExEy|x{r(x,y)x⊤LxL⊤y y}, (1)

which is in the same spirit as the technique used by Cristianini et al. (2001) for kernel learning. The

expectation in (1) can be estimated as

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j.

The learning problem hence boils down to

argmax
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j, (2)

s.t. Lx ∈Hx, Ly ∈Hy,

where Hx and Hy are hypothesis spaces for Lx and Ly respectively. Since the final matching model is

linear in terms of both x and y, Framework (2) actually learns a bilinear model for matching objects

from two spaces.

3.2 Special Cases

The matching framework in (2) defines a rather rich family of matching models, with different

choices of Hx and Hy. More specifically, we define Hx = {Lx | L⊤x Lx = Id×d} and Hy = {Ly | L⊤y Ly =
Id×d}. In other words, both Lx and Ly are confined to be matrices with orthonormal columns, then

the program in (2) becomes a natural extension to Partial Least Squares (PLS) (Rosipal and Krämer,

2006; Schreier, 2008). Like the well-known Canonical Correlation Analysis (CCA) (Hardoon et al.,

2004), PLS is also a classic statistical model for capturing the correlation between two variables. In

contrast, in (2) we allow an instance in one domain to be associated with multiple instances in the

other domain, and argument each association with a weight (response). This extension enables us to

model the complex bipartite association relations in matching tasks. To see the connection between

2523

WU, LU AND LI

(1) and traditional PLS, we re-write (2) as

argmax
Lx,Ly

1

nx

nx

∑
i=1

x⊤i LxL⊤y y′i = trace(L⊤y (
1

nx

nx

∑
i=1

y′ix
⊤
i)Lx),

s.t. L⊤x Lx = L⊤y Ly = Id×d,

where y′i = 1/n
y
i ∑

n
y
i

j=1 ri jyi j. The program is exactly the formulation of PLS as formulated by

Schreier (2008) when viewing y′i a variable.2

Interestingly, our framework in (2) also subsumes the Latent Semantic Index (LSI) (Deerwester

et al., 1990) used in information retrieval. Specifically, suppose that X represents document space

and Y represents term space. Response r represents the tf-idf weight of a term y in a document

x. Let x and y be the indicator vectors of a document and a term, that is, there is only non-zero

element one in x and y at the location indexing the corresponding document or term. The objective

function in (2) becomes trace
(

L⊤y (∑
nx

i=1 ∑
n

y
i

j=1 ri jyi jx
⊤
i)Lx

)

after ignoring nx and n
y
i , which is exactly

the objective for the SVD in LSI assuming the same orthonormal Hx and Hy defined for PLS.

The orthonormal constraints in PLS requires SVD of large matrices (Schreier, 2008), rendering

it impractical for web scale applications (e.g., millions of objects with millions of features in basic

settings). In next section we will consider other choices of Hx and Hy for more scalable alternatives.

4. Regularized Mapping to Latent Structures

Heading towards a more scalable matching model, we drop the orthonormal constraints in PLS, and

replace them with ℓ1 norm and ℓ2 norm based constraints on Lx and Ly. More specifically, we define

the following hypothesis spaces

Hx = {Lx| |lxu| 6 λx,‖lxu‖ 6 θx,u = 1, . . . ,dx},
Hy = {Ly| |lyv| 6 λy,‖lyv‖ 6 θy,v = 1, . . . ,dy},

where | · | and ‖ · ‖ are respectively the ℓ1-norm and ℓ2-norm, lxu and lyv are respectively the uth and

vth row of Lx and Ly, {λx,θx,λy,θy} are parameters. Here the ℓ1-norm based constraints will induce

row-wise sparsity in Lx and Ly. The ℓ2-norm on rows, in addition to posing further regularization,

avoids degenerative solutions (see Appendix A for details). The row-wise sparsity in Lx and Ly in

turn yields sparse images in L with sparse x and y. Indeed, for any x = [x(1) . . . x(dx)]⊤, its image

in L is L⊤x x = ∑
dx

u=1 x(u)lxu. When both x and lxu are sparse, L⊤x x is the sum of a few sparse vectors,

and therefore likely to be sparse itself. A similar scenario holds true for y. In web search, it is

usually the case that both x and y are extremely sparse. Sparse mapping matrices and sparse images

in latent structures will mitigate the memory pressure and enhance efficiency in both training and

testing. With Hx and Hy defined above, we have the following program:

argmax
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j, (3)

s.t. |lxu| 6 λx, ‖lxu‖ 6 θx, |lyv| 6 λy, ‖lyv‖ 6 θy, 1 6 u 6 dx, 1 6 v 6 dy.

The matching model defined in (3) is called Regularized Mapping to Latent Structures (RMLS).

2. We can assume that x and y′ are centered.

2524

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

4.1 Optimization

In practice, we instead solve the following penalized variant of (3) for easier optimization

argmin
Lx,Ly

− 1

nx

nx

∑
i=1

n
y
i

∑
j=1

1

n
y
i

ri jx
⊤
i LxL⊤y yi j +β

dx

∑
u=1

|lxu|+ γ
dy

∑
v=1

|lyv|, (4)

s.t. ‖lxu‖ 6 θx,‖lyv‖ 6 θy, 1 6 u 6 dx,1 6 v 6 dy,

where β > 0 and γ > 0 control the trade-off between the objective and the penalty. We employ the

coordinate descent technique to solve problem (4). Since the objective in (4) is not convex, there is

no guarantee for convergence to a global minimum.

Specifically, for a fixed Ly, the objective function of problem (4) can be re-written as

dx

∑
u=1

(

−(
nx

∑
i=1

n
y
i

∑
j=1

1

nxn
y
i

x
(u)
i ri jL

⊤
y yi j)

⊤lxu +β|lxu|
)

.

Representing the d-dimensional ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

x
(u)
i ri jL

⊤
y yi j as ωu = [ω

(1)
u ,ω

(2)
u , . . . ,ω

(d)
u]⊤, the opti-

mal lxu is given by

l
(z)
xu

∗
=Cu ·

(

max(|ω(z)
u |−β,0)sign(ω

(z)
u)
)

, 1 6 z 6 d, (5)

where l
(z)
xu represents the zth element of lxu. sign(·) represents the sign function. Cu is a constant that

makes ‖l∗xu‖= θx if there are nonzero elements in l∗xu, otherwise Cu = 0.

Similarly, for a fixed Lx, the objective function of problem (4) can be re-written as

dy

∑
v=1

(

−(
nx

∑
i=1

n
y
i

∑
j=1

1

nxn
y
i

y
(v)
i j ri jL

⊤
x xi)

⊤lyv + γ|lyv|
)

.

Writing ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

y
(v)
i j ri jL

⊤
x xi as ηv=[η

(1)
v , . . . ,η

(d)
v]⊤, the optimal lyv is given by

l
(z)
yv

∗
=Cv ·

(

max(|η(z)
v |− γ,0)sign(η

(z)
v)
)

, 1 6 z 6 d, (6)

where l
(z)
yv represents the zth element of lyv. Cv is a constant that makes ||l∗yv|| = θy if there are

nonzero elements in l∗yv, otherwise Cv = 0. Note that ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

x
(u)
i ri jL

⊤
y yi j = L⊤y wxu, where

wxu = ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

x(u)ri jyi j does not rely on the update of Lx and Ly and can be pre-calculated to

save time. Similarly we pre-calculate wyv = ∑nx

i=1 ∑
n

y
i

j=1
1

nxn
y
i

y
(v)
i j ri jxi.

The preprocessing is described in Algorithm 1, whose time complexity is O(dxNxñycy+dyNyñxcx),
where Nx stands for the average number of nonzeros in all x samples per dimension, Ny is the av-

erage number of nonzeros in all y samples per dimension, ñx is the average number of related x

samples per y, ñy is the mean of n
y
i , cx is the average number of nonzeros in each x sample, and cy is

the average number of nonzeros in each y sample.

2525

WU, LU AND LI

Algorithm 1 Preprocessing

1: Input: S = {(xi,yi j,ri j)}, 1 6 i 6 nx, and 1 6 j 6 n
y
i .

2: for u = 1 : dx

wxu← 0

for v = 1 : dy

wyv← 0

3: for u = 1 : dx, i = 1 : nx, j = 1 : n
y
i

wxu← wxu +
1

nxn
y
i

x
(u)
i ri jyi j

4: for v = 1 : dy, i = 1 : nx, j = 1 : n
y
i

wyv← wyv +
1

nxn
y
i

y
(v)
i j ri jxi

5: Output: {wxu}dx

u=1, {wyv}dy

v=1.

Algorithm 2 RMLS

1: Input: {wxu}dx

u=1, {wyv}dy

v=1, d, β, γ, θx, θy.

2: Initialization: randomly set Lx and Ly as L0
x and L0

y , t← 0.

3: While not converged and t 6 T

for u = 1 : dx

calculate ωu by Lt
y
⊤

wxu.

calculate lxu
∗ using Equation (5).

update Lt+1
x .

for v = 1 : dy

calculate ηv by Lt+1
x

⊤
wyv.

calculate lyv
∗ using Equation (6).

update Lt+1
y , t← t +1

4: Output: Lt
x and Lt

y.

After preprocessing, we take {wxu}dx

i=1 and {wyv}dy

i=1 as input and iteratively optimize Lx and Ly,

as described in Algorithm 2. Suppose that each wxu has on average Wx nonzeros and each wyv has

on average Wy nonzeros, then the average time complexity of Algorithm 2 is O(dxWxd +dyWyd).

In web search, it is usually the case that queries (x here) and documents (y here) are of high

dimension (e.g., > 106) but extremely sparse. In other words, both cx and cy are small despite large

dx and dy. Moreover, it is quite common that for each x, there are only a few y that have response

with it and vice versa, rendering quite small ñy and ñx. This situation is easy to understand in the

context of web search, since for each query only a small number of documents are retrieved and

viewed, and each document can only be retrieved with a few queries and get viewed. Finally, we

observed that in practice, Nx and Ny are also small. For example, in web search, with the features

extracted from the content of queries and documents, each word only relates to a few queries and

documents. In Algorithm 2, when input vectors are sparse, {wxu}dx

u=1 and {wyv}dy

v=1 are also sparse,

which makes Wx and Wy small. In summary, under sparse input as we often see in web search,

RMLS can be implemented fairly efficiently.

2526

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

4.2 Parallelization

The learning process of RMLS is still quite expensive for web scale data due to high dimensionality

of x and y. Parallelization can greatly improve the speed of learning in RMLS, making it scalable

enough for massive data sets.

The key in parallelizing Algorithm 1 and Algorithm 2 is that the calculation of different param-

eters can be executed concurrently. In Algorithm 1 there is no dependency among the calculation of

different wxu and wyv, therefore, they can be calculated by multiple processors or multiple computers

simultaneously. Similar thing can be said in the update of Lx and Ly in Algorithm 2, since differ-

ent rows are updated independently. We implement a multicore version for both Algorithm 1 and

Algorithm 2. Specifically, suppose that we have K processors. we randomly partition {1,2, . . . ,dx}
and {1,2, . . . ,dy} into K subsets. In Algorithm 1, different processors share S and calculate {wxu}
and {wyv} with indices in their own partition simultaneously. In Algorithm 2, when updating Lx,

different processors share the same input and Ly. Rows of Lx with indices in different partitions are

updated simultaneously. The same parallelization strategy is used when updating Ly.

5. Generalization Analysis

We conduct generalization analysis for matching framework (2) in this section. We first give a

generalization bound for the framework, which relies on the complexity of hypothesis spaces Hx

and Hy. After that, we analyze the complexity of Hx and Hy for both RMLS and PLS, and give their

specific bounds. The proofs of the theorems are given in Appendix B.

We formally define D(S) as the gap between the expected objective and the empirical objective

over all Lx and Ly

D(S) � sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j−Ex,y

(

r(x,y)x⊤LxL⊤y y
)

|,

and bound it. With this bound, given a solution (L̂x, L̂y), we can estimate its performance on unseen

data (i.e., Ex,y

(

r(x,y)x⊤L̂xL̂⊤y y
)

) based on its performance on observed samples. For notational

simplicity, we define fLx,Ly
(x,y) � r(x,y)x⊤LxL⊤y y, and further assume

‖x‖ 6 1, ‖y‖ 6 1, r(x,y) > 0, supx,y r(x,y) 6 R.

To characterize the sparsity of inputs, we suppose that the numbers of nonzeros in x and y are

bounded by mx and my.

Under Assumption 1, we divide D(S) into two parts:

1. supLx,Ly
| 1

nx ∑nx

i=1

(

1
n

y
i

∑
n

y
i

j=1 fLx,Ly
(xi,yi j)−Ey|{xi} fLx,Ly

(xi,y)
)

|, denoted as D1(S),

2. supLx,Ly
| 1

nx
∑nx

i=1Ey|{xi} fLx,Ly
(xi,y)−Ex,y fLx,Ly

(x,y)|, denoted as D2({xi}nx

i=1).

Clearly D(S) 6 D1(S)+D2({xi}nx

i=1), thus we separately bound D1(S) and D2({xi}nx

i=1), and finally

obtain the bound for D(S).

We first bound D1(S). Suppose supx,y,Lx,Ly
‖L⊤x x‖‖L⊤y y‖ 6 B, and supLx,Ly

‖vec(LxL⊤y)‖ 6 C,

where B and C are constants and vec(·) is the vectorization of a matrix. We have

2527

WU, LU AND LI

Theorem 1 Given an arbitrary small positive number δ, with probability at least 1−δ, the follow-

ing inequality holds:

D1(S) 6
2CR√

nxny
+

RB

√

2log 1
δ√

nxny
,

where ny represents the harmonic mean of {ny
i }nx

i=1.

Using similar techniques we have

Theorem 2 Given an arbitrary small positive number δ, with probability at least 1−δ, the follow-

ing inequality holds:

D2({xi}nx

i=1) 6
2CR√

nx
+

RB

√

2log 1
δ√

nx
.

Combining Theorem 1 and Theorem 2, we are able to bound D(S):

Theorem 3 Given an arbitrary small positive number δ, with probability at least 1− 2δ, the fol-

lowing inequality holds:

D(S) 6 (2CR+RB

√

2log
1

δ
)(

1√
nxny

+
1√
nx
). (7)

Equation (7) gives a general generalization bound for framework (2). Since ny = nx

∑nx

i=1 1/n
y
i

, the bound

tells us that to make the gap between the empirical objective and the expected objective small

enough, we not only need large nx, but also need large n
y
i for each xi, which is consistent with our

intuition. The two constants B and C are dependent on the hypothesis spaces Hx and Hy. Below we

will analyze B and C for PLS and RMLS, and give their specific bounds based on (7).

The following two theorems give B and C for PLS and RMLS, and give their specific bounds:

Theorem 4 Suppose that Hx = {Lx | L⊤x Lx = Id×d} and Hy = {Ly | L⊤y Ly = Id×d}, then B = 1 and

C =
√

d. Thus, the generalization bound for PLS is given by

D(S) 6 (2
√

dR+R

√

2log
1

δ
)(

1√
nxny

+
1√
nx
).

Theorem 5 Suppose that Hx = {Lx | |lxu|6 λx, ||lxu||6 θx,16 u6 dx} and Hy = {Ly | |lyv|6 λy, ||lyv||6
θy,1 6 v 6 dy}. If we suppose that the numbers of nonzero elements in x and y are respectively

bounded by mx and my, then B =
√

mxmy min(dλxλy,θxθy) and C =
√

dxdy min(λxλy,θxθy). Thus,

the generalization bound for RMLS is given by

D(S) 6 (
1√
nxny

+
1√
nx
)× (2

√

dxdy min(λxλy,θxθy)R+
√

mxmy min(dλxλy,θxθy)R

√

2log
1

δ
).

2528

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

Figure 1: Click-through bipartite graph with metadata on nodes, representing queries and docu-

ments in feature spaces and their associations.

6. Experiment

We applied both RMLS and PLS to relevance ranking in web search, where matching models are

used to predict relevance. Specifically, we suppose that we have a click-through bipartite with

vertices representing queries and documents. The edges between query vertices and document

vertices are weighted by number of user click. Besides this, we assume that there exists metadata

on the vertices of the graph. The metadata represents features of queries and documents. The

features may stand for the content of queries and documents and the clicks of queries and documents

on the bipartite graph (Baeza-Yates and Tiberi, 2007), as seen below. Queries and documents are

represented as feature vectors in the query space and the document space, respectively. Figure 1

illustrates the relationships.

We implemented the matching framework (2) and its associated RMLS and PLS using the click-

through bipartite with metadata. X and Y are the query space and the document space respectively.

Given a query x and a document y, we treated user click number as the response r. In this case,

we actually leveraged both user clicks and features of queries and documents to perform matching.

We conducted experiments on a small data set and a large data set with millions of queries and

documents.

6.1 Experiment Setup

We collected 1) one week of click-through data and 2) half a year of click-through data from a

commercial web search engine. After filtering out noise, there are 94,022 queries and 111,631

documents in the one week data set, and 6,372,254 queries and 4,599,849 documents in the half

year data set. We extracted features from two sources, namely word and clicks. For the word

feature, we represented queries and documents as tf-idf vectors (Salton and McGill, 1986) in a

word space, where words are extracted from queries, URLs and the titles of documents. There

are 101,904 and 271,561 unique words in one week data and half year data respectively. For

the click feature, we followed (Baeza-Yates and Tiberi, 2007) and took the number of clicks of

documents as a feature of queries, and the number of clicks of queries as a feature of documents.

2529

WU, LU AND LI

Finally, we concatenated the features from the two sources to create long but extremely sparse

feature vectors for both queries and documents. Note that query space and document space have

different dimensions and characteristics, and should be treated as heterogeneous domains. Table 1

gives the statistics on the experiment data. Note that the notations in the table are the same as in

Section 4.

6.1.1 BASELINE METHODS

We employed three different kinds of baseline methods:

• Individual feature based model and graph based model: We employed BM25 (Robert-

son et al., 1994) as a representative of feature based relevance models, and LSI (Deerwester

et al., 1990) and random walk on click-through bipartite graph (Craswell and Szummer, 2007)

(“RW” for short) as representatives of graph based relevance models. Particularly, we imple-

mented two versions of LSI in this paper, one on a document-term matrix, denoted as LSIdt,

the other one on a query-document matrix with each element representing the click number,

denoted as LSIqd.

• Combination of feature based model and graph based model: We used models which lin-

early combine LSIqd and random walk with BM25, denoted as LSIqd+BM25 and RW+BM25,

respectively.

• Other existing models: Besides the heuristic combination models, we also employed the

bilingual topic model (BLTM) proposed by Gao et al. (2011) and supervised semantic index-

ing (SSI) proposed by Bai et al. (2009) as baseline methods. BLTM is the best performing

model in Gao et al. (2011), and it can leverage both the user clicks and the content of queries

and documents. SSI employs a hinge loss function to model pairwise preference between

objects. It learns a large margin perceptron to map queries and documents into a latent space

and measures their similarity in the space. To implement SSI, we additionally collected im-

pression data from the search log. Besides click numbers, the data also contains positions

of documents in ranking lists of search engine. We followed the rules proposed by Joachims

(2002) to generate preference pairs.

• Model proposed for collaborative filtering: Besides the models in information retrieval, we

also employed a state of the art model in collaborative filtering as a baseline method3 (Chen

et al., 2012). The model, named SVDFeature, can leverage the same features as RMLS and

PLS.

We obtained relevance data consisting of judged query-document pairs from the search engine

in a different time period from the click-through data. There are five levels of judgments, including

“Perfect”, “Excellent”, “Good”, “Fair”, and “Bad”. For one week data, we obtained 4,445 judged

queries and each query has on average 11.34 judged documents. For half year data, more judged

data was collected. There are 57,514 judged queries and each query has on average 13.84 judged

documents. We randomly split each judged data set and used half of them for tuning model param-

eters and the other half for model evaluation. In summary, for both data sets, we learned models on

the whole click-through data, tuned model parameters on the validation set of relevance data and

evaluated model performances on the held-out test set.

3. The model won the 1st place in track 1 of KDD-Cup 2012.

2530

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

dx dy cx cy ñy ñx Nx Ny

one week 2.1 ·105 2.0 ·105 4.0 5.9 1.74 1.46 1.7 3.4

half year 4.9 ·106 6.6 ·106 5.5 8.6 2.92 4.04 7.2 5.9

Table 1: Statistics on query and document features

To evaluate the performances of different methods, we employed Normalized Discounted Cu-

mulative Gain (NDCG) (Jarvelin and Kekalainen, 2000) at positions of 1, 3, and 5 as evaluation

measures.

6.2 Parameter Setting

We set the parameters for the methods in the following way. In BM25, the default setting was

used. There are two parameters in random walk: the self-transition probability and the number

of transition steps. Following the conclusion from Craswell and Szummer (2007), we fixed the

self-transition probability as 0.9 and chose the number of transition steps from {1, . . . ,10} on the

validation set. We found that random walk reaches a “stable” state with just a few steps. In our

experiments, after five steps we saw no improvement on the validation data in terms of evaluation

measures. Therefore, we set five as the number of transition steps of random walk.

In LSI, SVDFeature, BLTM, SSI, PLS and RMLS, one important parameter is the dimension-

ality of latent space. We set the parameter in the range of {100,200, . . . ,1000}. We found that

the performance of both PLS and RMLS on the validation data improves with dimensionality. On

the other hand, a large dimensionality means more parameters to store in memory (d× (dx + dy))
and more training time for each iteration. Therefore, we finally chose 1000 as the dimensionality

of latent space for PLS and RMLS. For other baseline methods except SSI, a similar phenomenon

was observed. For SSI, we found that its performance on the validation data is not sensitive to the

dimensionality of latent space.

Besides dimensionality of latent space, parameters for regularization items (e.g., θx, θy, β, and γ

in Equation (4), learning rates in SSI and SVDFeature, and number of iterations may also affect the

final performance and therefore need tuning. Again, we tuned these parameters on the validation

data one by one. Particularly, we found that the performance of RMLS is not sensitive to parameters

for ℓ2 norm (i.e., θx, θy). In addition, we observed that RMLS can quickly reach a good performance

after a few iterations (less than 10 loops), and the early stopping also led to good generalization on

the test data.

In LSIqd+BM25 and RW+BM25, the combination weights are also parameters. We tuned the

combination weights within {0.1,0.2, . . . ,0.9} on the validation data.

6.3 Results on One Week Data

We conducted experiments on a workstation with 24 AMD Opteron 6172 processors and 96 GB

RAM. We first compared the performance of different methods, with results summarized in Table

2. We can see that RMLS performs comparably well with PLS, and both of them significantly out-

perform all other baselines (p < 0.05 from t-test). Among the baseline methods, the performance

of SSI is rather poor. We analyzed the data and found that although pairwise preference can allevi-

ate rank bias, it also misses some important information. For example, we observed that 49.1% of

40,676 pairs that have judgments in our labeled data violate the rules proposed by Joachims (2002).

2531

WU, LU AND LI

NDCG@1 NDCG@3 NDCG@5

RMLS 0.686 0.732 0.729

PLS 0.676 0.728 0.736

SVDFeature 0.663 0.720 0.727

BLTM 0.657 0.702 0.701

SSI 0.538 0.621 0.629

RW 0.655 0.704 0.704

RW+BM25 0.671 0.718 0.716

LSIqd 0.588 0.665 0.676

LSIqd+BM25 0.649 0.705 0.706

LSIdt 0.616 0.675 0.680

BM25 0.637 0.690 0.690

Table 2: Relevance ranking result on one week data

Documents ranked higher in these pairs have more click-through rates4 and better or equally good

judgments than documents ranked lower. Those query document associations will be well repre-

sented in either PLS or RMLS.

We then compared RMLS with PLS on efficiency. In PLS, the linear mappings are learned

through SVD. We implemented an SVD solver using power method (Wegelin, 2000) with C++, and

further optimized the data structure for our task. This SVD implementation can handle large data

sets on which state-of-the-art SVD tools like SVDLIBC5 fail. Since the efficiency of algorithms

is influenced by implementation strategies, for example, different numbers of iterations or termi-

nation criteria, to make a fair comparison, we only report the time cost in the learning of the best

performing models. RMLS significantly improves the efficiency of PLS. On a single processor, it

takes RMLS 1,380 seconds to train the model, while the training of PLS needs 945,382 seconds.

The reason is that PLS requires SVD and has a complexity of at least O(dcdxdy + d2 max(dx,dy)),
where c represents the density of the matrix for SVD. Even with a small c, the high dimensionality

of input space (i.e., large dx and dy) and the quadratic growth with respect to d still make SVD quite

expensive. For RMLS, Wx and Wy are quite small with a sparse input (Wx=24.82 Wy= 27.05), and

hence the time complexity is nearly linear to d ·max(dx,dy). Therefore, RMLS is significantly more

efficient than PLS with high dimensional but sparse inputs.

Finally, we examined the time cost of parallelized RMLS on multiple processors, as summarized

by Figure 2. Clearly the running time decreases with the number of threads. With 20 threads, RMLS

only takes 277 seconds to achieve a comparable performance with PLS.

6.4 Results on Half Year Data

We further tested the performance of RMLS and PLS on a half year data set with millions of queries

and documents. On such large scale, SVD-based methods and random walk become infeasible (e.g.,

taking months to run). SSI is also infeasible because of the huge number of pairs. We therefore

implemented RMLS with full features and PLS with only word features, and compared them with

4. Click-through rate = number of clicks / number of impressions.

5. SVDLIBC can be found at http://tedlab.mit.edu/˜dr/SVDLIBC/.

2532

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ti
m

e
(s

e
co

n
d

s)

thread number

Figure 2: Time cost trend of RMLS under multiple processors.

NDCG@1 NDCG@3 NDCG@5

RMLS 0.742 0.767 0.776

PLS (word) 0.638 0.666 0.677

SVDFeature 0.742 0.746 0.749

BLTM 0.684 0.708 0.717

BM25 0.643 0.663 0.670

Table 3: Relevance ranking result on half year data

BM25, BLTM, and SVDFeature.6 With only word features (dx = dy = 271,561), PLS is slow but

still feasible.

As shown in Table 3, RMLS outperforms all the baselines (p < 0.01 from t-test). We hypoth-

esize that PLS with full features can perform comparably with RMLS, but the high computation

complexity of PLS prevents us from testing it. For RMLS, it takes 20,523 seconds to achieve the

result using 20 threads. For PLS, although it only uses word features, it takes 1,121,440 seconds

to finish learning. In other words, parallelized RMLS can be used to tackle web search problem of

real-world scale.

6.5 Discussion

In this section, we investigate the effect of matching models as features in a state of the art learning

to rank algorithm and performance of matching models across queries with different numbers of

click.

6.5.1 MATCHING MODELS AS FEATURES IN A LEARNING TO RANK ALGORITHM

Results in Table 2 and Table 3 demonstrate the efficacy of RMLS and PLS as individual relevance

models. In modern web search, relevance models usually act as features in a learning to rank system.

Therefore, a natural question is whether RMLS or PLS can enhance the performance of learn to rank

algorithms as an additional feature. To answer this question, we employed RankLib7 and trained a

gradient boosted tree (MART, Friedman, 2001) with the validation data. We conducted experiments

in the following three steps: first, we trained a ranker with all baseline methods as features. We

denoted it as MART-Baseline. Then, we included PLS and RMLS respectively as an additional

6. SVDFeature is actually not based on SVD implementation.

7. RankLib can be found at http://people.cs.umass.edu/˜vdang/ranklib.html.

2533

WU, LU AND LI

NDCG@1 NDCG@3 NDCG@5

MART-Baseline 0.661 0.737 0.779

MART-PLS 0.683 0.751 0.792

MART-RMLS 0.681 0.750 0.789

MART-All 0.689 0.757 0.797

Table 4: Performance of gradient boosted tree (MART) on one week data

NDCG@1 NDCG@3 NDCG@5

MART-Baseline 0.708 0.760 0.791

MART-PLS 0.706 0.760 0.792

MART-RMLS 0.757 0.799 0.827

MART-All 0.756 0.798 0.826

Table 5: Performance of gradient boosted tree (MART) on half year data

feature and denoted the new rankers as MART-PLS and MART-RMLS, respectively. Finally, we

trained a ranker with all models as features and denoted it as MART-All. Table 4 and Table 5

present the evaluation results.

From Table 4, we conclude that 1) RMLS and PLS significantly improve the performance of

MART with baseline methods as features, which demonstrates the efficacy of the proposed frame-

work in relevance ranking; 2) RMLS can be a good alternative to PLS in practice, because MART-

PLS and MART-RMLS are comparable in ranking performance but RMLS is more efficient and

scalable; 3) There is overlap between the effect of RMLS and PLS in learning to rank, because

when including all models as features, the performance of ranker is only slightly improved. Results

in Table 5 further demonstrate the advantage of RMLS in relevance ranking. PLS is not capable

of leveraging all features of large scale data, and therefore fails to improve the performance of

MART. On the other hand, RMLS successfully leverages both word features and click features, and

significantly improves the ranking performance of MART.

6.5.2 EVALUATION ACROSS QUERIES WITH DIFFERENT NUMBERS OF CLICKS

In Framework (2), response r is treated as a weight for each object pair (x,y). The framework, when

applied to web search, weights each query-document pair with the number of clicks between them.

Usually, number of clicks has a large variance among queries, from a few to tens of thousands.

An interesting question is therefore how different matching models perform across queries with

different numbers of click. To answer this question, we divided queries into different bins based on

the total numbers of clicks associated with them over documents. We took four levels: totalclick 6

10, 10 < totalclick 6 100, 100 < totalclick 6 1000, and totalclick > 1000. We separately evaluated

matching models on each level. Table 6 and Table 7 show the evaluation results, where @1, @3,

and @5 mean NDCG@1, NDCG@3, and NDCG@5, respectively.

From Table 6, we can see that RMLS and PLS beat other baseline methods on queries with

moderate and large number of clicks, but lose to RW and RW+BM25 when queries only have rel-

atively few clicks (less than 100). RMLS and PLS use the absolute click number as a weight for

each query-document pair. Therefore, in training, head queries may overwhelm those tail queries.

We try to mitigate this effect by taking some simple transformations (e.g., logarithm) on click num-

2534

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

totalclick 6 10 10 < totalclick 6 100 100 < totalclick 6 1000 totalclick > 1000

queries = 230 #queries = 772 # queries = 757 #queries = 464

@1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5

RMLS 0.754 0.795 0.767 0.749 0.791 0.766 0.679 0.744 0.755 0.557 0.612 0.655

PLS 0.704 0.776 0.764 0.706 0.769 0.748 0.650 0.727 0.754 0.655 0.661 0.695

SVDFeature 0.648 0.732 0.707 0.684 0.742 0.727 0.647 0.723 0.750 0.576 0.632 0.669

BLTM 0.758 0.787 0.755 0.750 0.795 0.766 0.636 0.700 0.726 0.485 0.557 0.603

SSI 0.633 0.730 0.700 0.607 0.696 0.673 0.523 0.616 0.657 0.403 0.491 0.540

RW 0.769 0.793 0.760 0.773 0.809 0.780 0.622 0.709 0.740 0.458 0.527 0.582

RW+BM25 0.773 0.786 0.758 0.770 0.815 0.787 0.654 0.726 0.750 0.485 0.554 0.601

LSIqd 0.631 0.717 0.687 0.634 0.709 0.696 0.584 0.676 0.703 0.496 0.573 0.621

LSIqd+BM25 0.696 0.745 0.719 0.726 0.777 0.759 0.646 0.716 0.736 0.500 0.576 0.619

LSIdt 0.685 0.745 0.730 0.688 0.752 0.727 0.608 0.676 0.705 0.473 0.549 0.596

BM25 0.698 0.746 0.724 0.719 0.772 0.748 0.641 0.701 0.722 0.463 0.544 0.592

Table 6: Evaluation on different query bins on one week data

totalclick 6 10 10 < totalclick 6 100 100 < totalclick 6 1000 totalclick > 1000

queries = 704 # queries = 5260 # queries = 8980 # queries = 13813

@1 @3 @5 @1 @3 @5 @1 @3 @5 @1 @3 @5

RMLS 0.804 0.801 0.792 0.785 0.794 0.796 0.780 0.795 0.797 0.698 0.742 0.760

PLS (word) 0.723 0.720 0.708 0.681 0.697 0.703 0.668 0.691 0.697 0.599 0.642 0.660

SVDFeature 0.728 0.730 0.721 0.738 0.734 0.734 0.766 0.765 0.761 0.728 0.740 0.748

BLTM 0.783 0.775 0.763 0.750 0.757 0.760 0.725 0.745 0.749 0.626 0.669 0.688

BM25 0.747 0.739 0.717 0.710 0.713 0.712 0.690 0.703 0.704 0.582 0.622 0.641

Table 7: Evaluation on different query bins on half year data

bers, but find that simple transformations not only fail to deal with tail query issues but also hurt

the performance of RMLS and PLS on head queries. In contrast, BLTM and SSI perform better on

tail queries than themselves on head queries. The phenomenon reminds us that introducing large

margin into Framework (2) could be a potential approach to solve the problem of RMLS, although

after doing so, scalability may become a more serious issue, which we leave to our future work.

SVDFeature suffers from head query effect more seriously than RMLS and PLS, which may

stem from its directly fitting similarity function with absolute click numbers.

In Table 7, due to the scalability issue, results of some baseline methods are not available. In

spite of this, we can still see that SVDFeature performs consistently with itself on one week data,

and we can also guess that the comparisons of RMLS with RW and RW+BM25 may follow the

same trends as those on one week data.

7. Conclusion

We have proposed a framework for learning to match heterogeneous data via shared latent structures,

and studied its generalization ability under a hierarchical sampling assumption for web search. The

framework subsumes Partial Least Squares (PLS) as a special case, and enables us to devise a more

scalable algorithm called Regularized Mapping to Latent Structures (RMLS) as another special

case. We applied both PLS and RMLS to web search, leveraging a click-through bipartite graph

with metadata representing features of queries and documents to learn relevance models. Results

on a small data set and a large data set with millions of queries and documents show the promising

performance of PLS and RMLS, and particularly demonstrate the advantage of RMLS on scalability.

2535

WU, LU AND LI

Appendix A. Degenerative Solution With ℓ1 Constraints Only

Suppose that all the input vectors have only non-negative elements (which is natural in web search),

we consider the following learning problem:

argmax
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j, (8)

s.t. |lxu| 6 λx, 1 6 u 6 dx,

|lyv| 6 λy, 1 6 v 6 dy.

We assert that the optimization problem (8) has a global optimum, and the global optimum can be

obtained by letting Lx = λxexl⊤ and Ly = λyeyl⊤, where l is a d dimensional vector satisfying |l|= 1

and ‖l‖ = 1, ex is a dx dimensional vector with all elements ones and ey is a dy dimensional vector

with all elements ones. To demonstrate this, first we prove that the objective function (8) can be

upper bounded under ℓ1 constraints:

Proof The objective of problem (8) can be re-written as

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

ri jx
⊤
i LxL⊤y yi j =

nx

∑
i=1

n
y
i

∑
j=1

ri j

nxn
y
i

dx

∑
u=1

dy

∑
v=1

(lxu)
⊤
(

x
(u)
i y

(v)
i j lyv

)

=
dx

∑
u=1

dy

∑
v=1

(lxu)
⊤
(

nx

∑
i=1

n
y
i

∑
j=1

ri j

nxn
y
i

x
(u)
i y

(v)
i j lyv

)

.

If we define auv = ∑nx

i=1 ∑
n

y
i

j=1

ri j

nxn
y
i

x
(u)
i y

(v)
i j , the objective of problem (8) can be re-written as

dx

∑
u=1

dy

∑
v=1

auvl⊤xulyv.

Since the input vectors are non-negative, auv > 0, ∀u,v. Thus, we have

dx

∑
u=1

dy

∑
v=1

auvl⊤xulyv 6

dx

∑
u=1

dy

∑
v=1

auv

(

d

∑
k=1

|l(k)xu ||l(k)yv |
)

6

dx

∑
u=1

dy

∑
v=1

auv

(

max
16k6d

(|l(k)xu |)
d

∑
k=1

|l(k)yv |
)

.

Since |lxu| 6 λx and |lyv| 6 λy, we know that max16k6d(|l(k)xu |) 6 λx, and thus we have

dx

∑
u=1

dy

∑
v=1

auv

(

max
16k6d

(|l(k)xu |)
d

∑
k=1

|l(k)yv |
)

6

dx

∑
u=1

dy

∑
v=1

auvλxλy.

With the existence of the upper bound, we can see that if Lx = λxexl⊤ and Ly = λyeyl⊤, the value of

the objective (8) is

dx

∑
u=1

dy

∑
v=1

auvl⊤xulyv =
dx

∑
u=1

dy

∑
v=1

auvλxλy‖l‖2 =
dx

∑
u=1

dy

∑
v=1

auvλxλy.

2536

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

Thus, the optimization problem (8) reaches its global optimum when Lx = λxexl⊤ and Ly = λyeyl⊤,

which is an undesired degenerative solution.

Appendix B. Proofs of Theorems

We give the proofs of the theorems in Section 5.

B.1 Proof of Theorem 1

Theorem 1 Given an arbitrary small positive number δ, with probability at least 1−δ, the follow-

ing inequality holds:

D1(S) 6
2CR√

nxny
+

RB

√

2log 1
δ√

nxny
,

where ny represents the harmonic mean of {ny
i }nx

i=1.

To prove this theorem, we need two lemmas:

Lemma 1 Given ε > 0, the following inequality holds:

P
(

D1(S)−E{yi j}|{xi}D1(S) > ε|{xi}
)

6 exp

(

−ε2nxny

2R2B2

)

.

Proof Given {xi}nx

i=1, we re-write D1(S) as D1({yi j}|{xi}). Since supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 B and

r 6 R, ∀ u,v, we have

|D1({yi j}|{xi})−D1

(

({yi j}− yuv)
⋃

y′uv|{xi}
)

| 6 2RB

nxn
y
u

.

Given {xi}nx

i=1, {yi j} are independent. By McDiarmid inequality (Bartlett and Mendelson, 2002),

we know

P
(

D1(S)−E{yi j}|{xi}D1(S) > ε|{xi}
)

6 exp






− 2ε2

∑nx

i=1 ∑
n

y
i

j=1
4R2B2

(nxn
y
i)

2







= exp



− ε2

2R2B2 ∑nx

i=1
1

(nx)2
n

y
i





= exp

(

− ε2 (nx)2

2R2B2 ∑nx

i=1
1
n

y
i

)

= exp

(

−ε2nxny

2R2B2

)

.

Lemma 2

E{yi j}|{xi}D1(S) 6
2CR√

nxny
.

2537

WU, LU AND LI

Proof Define r(x,y)x⊤LxL⊤y y as fLx,Ly
(x,y). We have

E{yi j}|{xi}D1(S) = E{yi j}|{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

fLx,Ly
(xi,yi j)−

1

nx

nx

∑
i=1

Ey|{xi} fLx,Ly
(xi,y)|

= E{yi j}|{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

fLx,Ly
(xi,yi j)−

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

E{y′i j}|{xi} fLx,Ly
(xi,y

′
i j)|,

where {y′i j} are i.i.d. random variables with {yi j}.

E{yi j}|{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

f (xi,yi j)−
1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

E{y′i j}|{xi} f (xi,y
′
i j)|

6 E{yi j},{y′i j}|{xi} sup
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

| f (xi,yi j)− f (xi,y
′
i j)|

= E{yi j},{y′i j},{σi j}|{xi} sup
Lx,Ly

1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

σi j

(

f (xi,yi j)− f (xi,y
′
i j)
)

,

where given {xi}nx

i=1, {σi j} are i.i.d. random variables with P(σi j = 1) = P(σi j =−1) = 0.5.

E{yi j,y
′
i j,σi j}|{xi} sup

Lx,Ly

nx

∑
i=1

n
y
i

∑
j=1

σi j

(

f (xi,yi j)− f (xi,y
′
i j)
)

nxn
y
i

6 2E{yi j,σi j}|{xi} sup
Lx,Ly

|
nx

∑
i=1

n
y
i

∑
j=1

σi j f (xi,yi j)

nxn
y
i

|.

Note that

σi j f (xi,yi j) = σi jr(xi,yi j)x
⊤
i LxL⊤y yi j = σi j

〈

vec(LxL⊤y),r(xi,yi j)vec(yi j⊗ xi)
〉

,

where yi j⊗ xi represents the tensor of column vectors yi j and xi, and vec(·) is the vectorization of a

matrix. Thus, we have

sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

σi j f (xi,yi j)|

= sup
Lx,Ly

|〈vec(LxL⊤y),
1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

σi jr(xi,yi j)vec(yi j⊗ xi)〉|

6 sup
Lx,Ly

||vec(LxL⊤y)||

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

1

n
y
i n

y
j

n
y
i

∑
u=1

n
y
j

∑
v=1

σiuσ jvr(xi,yiu)r(x j,y jv)〈xi,x j〉〈yiu,y jv〉.

2538

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

Since we suppose that sup
Lx,Ly

||vec(LxL⊤y)|| 6C, we have

2E{yi j},{σi j}|{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

1

n
y
i

n
y
i

∑
j=1

σi j f (xi,yi j)|

6 2C

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

1

n
y
i n

y
j

n
y
i

∑
u=1

n
y
j

∑
v=1

E{yi j},{σi j}|{xi} (σiuσ jvr(xi,yiu)r(x j,y jv)〈xi,x j〉〈yiu,y jv〉)

= 2C

√

√

√

√

1

(nx)2

nx

∑
i=1

1
(

n
y
i

)2

n
y
i

∑
j=1

E{yi j}|{xi} (r
2(xi,yi j)〈xi,xi〉〈yi j,yi j〉)

6 2C

√

√

√

√

1

(nx)2

nx

∑
i=1

1
(

n
y
i

)2
n

y
i R2

6 2CR
1√
nxny

.

We obtain the conclusion of the lemma.

With Lemma 1 and Lemma 2, we can prove Theorem 1:

Proof By the conclusions of Lemma 1 and Lemma 2, we have

P

(

D1(S)−
2CR√

nxny
> ε

)

= E{xi}P

(

D1(S)−
2CR√

nxny
> ε|{xi}

)

6 E{xi}P
(

D1(S)−E{yi j}|{xi}D1(S) > ε|{xi}
)

6 exp

(

−ε2nxny

2R2B2

)

.

Given a small number δ > 0, by letting exp
(

− ε2nxny

2R2B2

)

= δ, we have

− ε2nxny

2R2B2
= logδ

ε2 =
2R2B2 log 1

δ

nxny

ε =
RB

√

2log 1
δ√

nxny
.

Thus, with probability at least 1−δ,

D1(S) 6
2CR√

nxny
+

RB

√

2log 1
δ√

nxny

holds true.

2539

WU, LU AND LI

B.2 Proof of Theorem 2

Theorem 2 Given an arbitrary small positive number δ, with probability at least 1−δ, the follow-

ing inequality holds:

D2({xi}nx

i=1) 6
2CR√

nx
+

RB

√

2log 1
δ√

nx
.

To prove Theorem 2, we also need two lemmas:

Lemma 3 Given ε > 0, the following inequality holds:

P
(

D2({xi}nx

i=1)−E{xi}D2({xi}nx

i=1) > ε
)

6 exp

(

− ε2nx

2R2B2

)

.

Proof Similar to the proof of Lemma 1, since supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 B and r 6 R, ∀ j, we have

|D2({xi}nx

i=1)−D2

(

({xi}nx

i=1− x j)
⋃

x′j
)

| 6 2RB

nx
.

Since {xi}nx

i=1 are i.i.d. random variables, by McDiarmid inequality (Bartlett and Mendelson, 2002),

we know

P
(

D2({xi}nx

i=1)−E{xi}D2({xi}nx

i=1) > ε
)

6 exp



− 2ε2

∑nx

i=1
4R2B2

(nx)2





= exp

(

− ε2nx

2R2B2

)

.

Lemma 4

E{xi}D2({xi}nx

i=1) 6
2CR√

nx
.

Proof Similar to the proof of Lemma 2,

E{xi}D2({xi}nx

i=1) = E{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y−Ex,yr(x,y)x⊤LxL⊤y y|

= E{xi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y− 1

nx

nx

∑
i=1

E{x′i}Ey|{x′i}r(x
′
i,y)x

′
i
⊤

LxL⊤y y|

6 E{xi},{x′i} sup
Lx,Ly

1

nx

nx

∑
i=1

|Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y−Ey|{x′i}r(x

′
i,y)x

′
i
⊤

LxL⊤y y|

= E{xi},{x′i},{σi} sup
Lx,Ly

1

nx

nx

∑
i=1

σi

(

Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y−Ey|{x′i}r(x

′
i,y)x

′
i
⊤

LxL⊤y y
)

,

2540

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

where {x′i} are i.i.d. random variables with {xi}. {σi} are i.i.d. random variables with P(σi = 1) =
P(σi =−1) = 0.5.

E{xi},{x′i},{σi} sup
Lx,Ly

1

nx

nx

∑
i=1

σi

(

Ey|{xi}r(xi,y)x
⊤
i LxL⊤y y−Ey|{x′i}r(x

′
i,y)x

′
i
⊤

LxL⊤y y
)

6 2E{xi},{σi} sup
Lx,Ly

| 1

nx

nx

∑
i=1

σiEy|{xi}r(xi,y)x
⊤
i LxL⊤y y|

= 2E{xi},{σi} sup
Lx,Ly

|Ey|{xi}〈vec(LxL⊤y),
1

nx

nx

∑
i=1

σir(xi,y)vec(y⊗ xi)〉|

6 2E{xi},{σi}Ey|{xi} sup
Lx,Ly

||vec(LxL⊤y)||

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

σiσ jr(xi,y)r(x j,y)〈xi,x j〉〈y,y〉.

Since supLx,Ly
||vec(LxL⊤y)|| 6C,

2E{xi},{σi}Ey|{xi} sup
Lx,Ly

||vec(LxL⊤y)||

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

σiσ jr(xi,y)r(x j,y)〈xi,x j〉〈y,y〉

6 2C

√

√

√

√

1

(nx)2

nx

∑
i=1

nx

∑
j=1

E{xi},{σi},yσiσ jr(xi,y)r(x j,y)〈xi,x j〉〈y,y〉

6 2C

√

1

(nx)2

nx

∑
i=1

E{xi},yr2(xi,y)〈xi,xi〉〈y,y〉

6
2CR√

nx
.

We obtain the conclusion of the lemma.

With Lemma 3 and Lemma 4, we can prove Theorem 2:

Proof Combining the conclusions of Lemma 3 and Lemma 4, we have

P

(

D2({xi}nx

i=1)−
2CR√

nx
> ε

)

6 P
(

D2({xi}nx

i=1)−E{xi}D2({xi}nx

i=1) > ε
)

6 exp

(

− ε2nx

2R2B2

)

.

2541

WU, LU AND LI

Given a small number δ > 0, by letting exp
(

− ε2nx

2R2B2

)

= δ, we have

− ε2nx

2R2B2
= logδ

ε2 =
2R2B2 log 1

δ

nx

ε =
RB

√

2log 1
δ√

nx
.

Thus, with probability at least 1−δ,

D2({xi}nx

i=1) 6
2CR√

nx
+

RB

√

2log 1
δ√

nx

holds true.

B.3 Proof of Theorem 4

Theorem 4 Suppose that Hx = {Lx | L⊤x Lx = Id×d} and Hy = {Ly | L⊤y Ly = Id×d}, then B = 1 and

C =
√

d. Thus, the generalization bound for PLS is given by

D(S) 6 (2
√

dR+R

√

2log
1

δ
)(

1√
nxny

+
1√
nx
).

Proof First, we analyze B. Remember that B is defined by supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 B. Suppose

that Lx =
[

l1
x , l

2
x , . . . , l

d
x

]

and Ly =
[

l1
y , l

2
y , . . . , l

d
y

]

, where {lk
x}d

k=1 and {lk
y}d

k=1 represent the columns

of Lx and Ly respectively. Note that

||L⊤x x||2 =
d

∑
k=1

(

x⊤lk
x

)2

, ||L⊤y y||2 =
d

∑
k=1

(

y⊤lk
y

)2

.

Since L⊤x Lx = Id×d and L⊤y Ly = Id×d , we have

||L⊤x x||2 6 ||x||2, ||L⊤y y||2 6 ||y||2.
Since ||x|| 6 1 and ||y|| 6 1, we have

sup
x,y,Lx,Ly

||L⊤x x||||L⊤y y|| 6 1.

Thus, we can choose B = 1. Next, we analyze C. C is defined by sup
Lx,Ly

||vec(LxL⊤y)|| 6C. It is easy

to see that

||vec(LxL⊤y)||2 = trace(LyL⊤x LxL⊤y) = trace(Id×d) = d.

Thus,

sup
Lx,Ly

||vec(LxL⊤y)||=
√

d.

We can choose C as
√

d.

2542

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

B.4 Proof of Theorem 5

Theorem 5 Suppose that Hx = {Lx | |lxu| 6 λx, ||lxu|| 6 θx,1 6 u 6 dx} and Hy = {Ly | |lyv| 6
λy, ||lyv||6 θy,16 v 6 dy}. If we suppose that the numbers of nonzero elements in x and y are respec-

tively bounded by mx and my, then B =
√

mxmy min(dλxλy,θxθy) and C =
√

dxdy min(λxλy,θxθy).
Thus, the generalization bound for RMLS is given by

D(S) 6

(

2
√

dxdy min(λxλy,θxθy)R+
√

mxmy min(dλxλy,θxθy)R

√

2log
1

δ

)

(

1√
nxny

+
1√
nx

)

.

Proof Remember that B is defined by supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 B. Since

||L⊤x x||2 = ||
dx

∑
u=1

x(u)lxu||2, ||L⊤y y||2 = ||
dy

∑
v=1

y(v)lyv||2,

where x =
[

x(1),x(2), . . . ,x(dx)
]⊤

and y =
[

y(1),y(2), . . . ,y(dy)
]⊤

. {lxu}dx

u=1 and {lyv}dy

v=1 represent

the rows of Lx and Ly respectively. Suppose that ∀u, lxu =
[

l
(1)
xu , l

(2)
xu , . . . , l

(d)
xu

]⊤
and ∀v, lyv =

[

l
(1)
yv , l

(2)
yv , . . . , l

(d)
yv

]⊤
. Since ||x|| 6 1, ||lxu||2 6 θ2

x , and #{x(u) | x(u) , 0} 6 mx, we have

||L⊤x x||2 = ||
dx

∑
u=1

x(u)lxu||2

=
d

∑
k=1

(

dx

∑
u=1

x(u)1[x(u) , 0]l
(k)
xu

)2

6

d

∑
k=1

(

dx

∑
u=1

(x(u))2

)(

dx

∑
u=1

1[x(u) , 0](l
(k)
xu)2

)

=

(

dx

∑
u=1

(x(u))2

)(

d

∑
k=1

dx

∑
u=1

1[x(u) , 0](l
(k)
xu)2

)

= ||x||2
(

dx

∑
u=1

1[x(u) , 0]||lxu||2
)

6 mxθ2
x .

2543

WU, LU AND LI

Similarly, since ||y|| 6 1, ||lyv||2 6 θ2
y , and #{y(v) | y(v) , 0} 6 my we have ||L⊤y y||2 6 myθ2

y . Thus

supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 √mxmyθxθy. On the other hand, it is easy to see that

||L⊤x x||2 = ||
dx

∑
u=1

x(u)lxu||2

=
d

∑
k=1

(

dx

∑
u=1

x(u)1[x(u) , 0]l
(k)
xu

)2

6

d

∑
k=1

(

dx

∑
u=1

|x(u)1[x(u) , 0]l
(k)
xu |
)2

6

d

∑
k=1

(

max
16u6dx

(|l(k)xu |)
dx

∑
u=1

1[x(u) , 0]|x(u)|
)2

.

Since |lxu| = ∑d
k=1 |l

(k)
xu | 6 λx, ∀ 1 6 u 6 dx, thus max16k6d max16u6dx

(|l(k)xu |) 6 λx. Note that ||x|| 6 1

and #{x(u) | x(u) , 0} 6 mx, then we have

d

∑
k=1

(

max
16u6dx

(|l(k)xu |)
dx

∑
u=1

1[x(u) , 0]|x(u)|
)2

6 λ2
x

d

∑
k=1

(

dx

∑
u=1

1[x(u) , 0]|x(u)|
)2

6 λ2
x

d

∑
k=1

(

dx

∑
u=1

(1[x(u) , 0])2

)(

dx

∑
u=1

(x(u))2

)

6 dλ2
xmx.

Similarly, since ||y||6 1, |lyv|6 λy, ∀ 16 v6 dy, and #{y(v) | y(v) , 0}6my, we have ||L⊤y y||2 6 dλ2
ymy.

Thus, supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 √mxmydλxλy.

Therefore, we know supx,y,Lx,Ly
||L⊤x x||||L⊤y y|| 6 √mxmy min(dλxλy,θxθy), and we can choose B

as
√

mxmy min(dλxλy,θxθy).

Next, we analyze C. C is defined by sup
Lx,Ly

||vec(LxL⊤y)|| 6 C. Since ||lxu|| 6 θx and ||lyv|| 6 θy,

∀ 1 6 u 6 dx and 1 6 v 6 dy, we have

||vec(LxL⊤y)||2 = trace(LyL⊤x LxL⊤y)

=
dx

∑
u=1

dy

∑
v=1

(

d

∑
k=1

l
(k)
xu l

(k)
yv

)2

6

dx

∑
u=1

dy

∑
v=1

(

d

∑
k=1

(

l
(k)
xu

)2

)(

d

∑
k=1

(

l
(k)
yv

)2

)

=
dx

∑
u=1

dy

∑
v=1

||lxu||2||lyv||2

6 dxdyθ2
xθ2

y .

2544

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

On the other hand, since |lxu| 6 λx and |lyv| 6 λy, ∀ 1 6 u 6 dx and 1 6 v 6 dy, we have

||vec(LxL⊤y)||2 = trace(LyL⊤x LxL⊤y)

=
dx

∑
u=1

dy

∑
v=1

(

d

∑
k=1

l
(k)
xu l

(k)
yv

)2

6

dx

∑
u=1

dy

∑
v=1

(

d

∑
k=1

|l(k)xu l
(k)
yv |
)2

6

dx

∑
u=1

dy

∑
v=1

(

max
16k6d

(|l(k)xu |)
d

∑
k=1

|l(k)yv |
)2

6

dx

∑
u=1

dy

∑
v=1

λ2
x

(

d

∑
k=1

|l(k)yv |
)2

6 dxdyλ2
xλ2

y .

Therefore, we have sup
Lx,Ly

||vec(LxL⊤y)|| 6
√

dxdy min(λxλy,θxθy), and we can choose C as

√

dxdy min(λxλy,θxθy).

References

J. Abernethy, F. Bach, T. Evgeniou, and J.P. Vert. A new approach to collaborative filtering: Oper-

ator estimation with spectral regularization. JMLR ’09, 10:803–826, 2009.

S. Agarwal and P. Niyogi. Stability and generalization of bipartite ranking algorithms. In COLT’05,

pages 32–47, 2005.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS’08,

pages 105–112, 2008.

F. Bach, G. Lanckriet, and M. Jordan. Multiple kernel learning, conic duality, and the SMO algo-

rithm. In ICML’04, 2004.

R. Baeza-Yates and A. Tiberi. Extracting semantic relations from query logs. In SIGKDD’07, pages

76–85, 2007.

B. Bai, J. Weston, D. Grangier, R. Collobert, K. Sadamasa, Y. Qi, O. Chapelle, and K. Weinberger.

Supervised semantic indexing. In CIKM’09, pages 187–196, 2009.

P. L. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural

results. JMLR’02, 3:463–482, 2002.

C. Burges, R. Ragno, and Q. Le. Learning to rank with nonsmooth cost functions. In NIPS’06,

pages 395–402. 2006.

2545

WU, LU AND LI

Y. Cao, J. Xu, T.Y. Liu, H. Li, Y. Huang, and H.W. Hon. Adapting ranking svm to document

retrieval. In SIGIR ’06, pages 186–193, 2006.

Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise

approach. In ICML ’07, pages 129–136, 2007.

T.Q. Chen, W.N. Zhang, Q.X. Lu, K.L. Chen, Z. Zhao, and Y. Yu. Svdfeature: A toolkit for feature-

based collaborative filtering. JMLR’12, 13, 2012.

W. Chen, T.Y. Liu, and Z. Ma. Two-layer generalization analysis for ranking using rademacher

average. NIPS’10, 23:370–378, 2010.

C. Cortes. Invited talk: Can learning kernels help performance? In ICML’09, page 161, 2009.

K. Crammer and Y. Singer. Pranking with ranking. In NIPS’01, pages 641–647, 2001.

N. Craswell and M. Szummer. Random walks on the click graph. In SIGIR’07, pages 239–246,

2007.

N. Cristianini, J. Shawe-taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In

NIPS’01, 2001.

J.V. Davis, B. Kulis, P. Jain, S. Sra, and I.S. Dhillon. Information-theoretic metric learning. In

ICML’07, page 216, 2007.

S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing by latent semantic

analysis. JASIS’90, 41:391–407, 1990.

J.H. Friedman. Greedy function approximation: a gradient boosting machine. Ann. Statist, 29(5):

1189–1232, 2001.

J. Gao, K. Toutanova, and W. Yih. Clickthrough-based latent semantic models for web search. In

SIGIR’11, pages 675–684, 2011.

D. Grangier and S. Bengio. A discriminative kernel-based model to rank images from text queries.

IEEE Transactions on PAMI, 30(8):1371–1384, 2008.

D.R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation analysis: An overview with

application to learning methods. Neural Computation, 16(12):2639–2664, 2004.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression.

NIPS’99, pages 115–132, 1999.

T. Hertz, A. Bar-Hillel, and D. Weinshall. Boosting margin based distance functions for clustering.

In ICML’04, page 50, 2004.

T. Hofmann. Latent semantic models for collaborative filtering. ACM Trans. Inf. Syst., 22:89–115,

2004.

S. CH. Hoi, W. Liu, M.R. Lyu, and W.Y. Ma. Learning distance metrics with contextual constraints

for image retrieval. In CVPR’06, volume 2, pages 2072–2078, 2006.

2546

LEARNING BILINEAR MODEL FOR MATCHING QUERIES AND DOCUMENTS

S. JacobGoldberger and R. GeoffHinton. Neighbourhood components analysis. NIPS’04, 2004.

K. Jarvelin and J. Kekalainen. Ir evaluation methods for retrieving highly relevant documents. In

SIGIR’00, pages 41–48, 2000.

T. Joachims. Optimizing search engines using clickthrough data. In KDD ’02, pages 133–142,

2002.

I.T. Jolliffe. Principal Component Analysis. Springer verlag, 2002.

G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel

matrix with semi-definite programming. In ICML’02, pages 323–330, 2002.

H. Li. Learning to rank for information retrieval and natural language processing. Synthesis Lectures

on Human Language Technologies, 4(1):1–113, 2011.

T.Y. Liu. Learning to rank for information retrieval. Foundations and Trends in Information Re-

trieval, 3(3):225–331, 2009.

H. Ma, H.X. Yang, I. King, and M. R. Lyu. Learning latent semantic relations from clickthrough

data for query suggestion. In CIKM’08, pages 709–718, 2008.

C. Micchelli and M. Pontil. Learning the kernel function via regularization. JMLR’05, 6:1099–

1125, 2005.

C.S. Ong, A.J. Smola, and R.C. Williamson. Learning the kernel with hyperkernels. JMLR ’05, 6:

1043–1071, 2005.

J.M. Ponte and W.B. Croft. A language modeling approach to information retrieval. In SIGIR’98,

pages 275–281, 1998.

S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and M. Gatford. Okapi at trec-3. In

TREC, 1994.

R. Rosipal and N. Krämer. Overview and recent advances in partial least squares. Subspace, Latent

Structure and Feature Selection, pages 34–51, 2006.

C. Rudin, C. Cortes, M. Mohri, and R. E. Schapire. Margin-based ranking meets boosting in the

middle. In COLT’05, pages 63–78, 2005.

G. Salton and M. McGill. Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New

York, NY, USA, 1986.

P.J. Schreier. A unifying discussion of correlation analysis for complex random vectors. Signal

Processing, IEEE Transactions on, 56(4):1327–1336, 2008.

M. Schultz and T. Joachims. Learning a distance metric from relative comparisons. NIPS’03, 2003.

N. Srebro, J.D.M. Rennie, and T. Jaakkola. Maximum-margin matrix factorization. NIPS’05, pages

1329–1336, 2005.

2547

WU, LU AND LI

M. Sugiyama. Dimensionality reduction of multimodal labeled data by local fisher discriminant

analysis. JMLR’07, 8:1027–1061, 2007.

M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In ICML’09, page

134, 2009.

J.A. Wegelin. A survey of partial least squares (pls) methods, with emphasis on the two-block case.

Technical Report, No.371, Seattle: Department of Statistics, Univ. of Wash., 2000.

K.Q. Weinberger and L.K. Saul. Distance metric learning for large margin nearest neighbor classi-

fication. JMLR’09, 10:207–244, 2009.

W. Wu, J. Xu, H. Li, and O. Satoshi. Learning a robust relevance model for search using kernel

methods. JMLR’11, 12:1429–1458, 2011.

E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell. Distance metric learning with application to

clustering with side-information. NIPS’03, pages 521–528, 2003.

J. Xu and H. Li. Adarank: a boosting algorithm for information retrieval. In SIGIR’ 07, pages

391–398, 2007.

J. Xu, H. Li, and Z.L. Zhong. Relevance ranking using kernels. In AIRS ’10, 2010.

L. Yang, R. Jin, R. Sukthankar, and Y. Liu. An efficient algorithm for local distance metric learning.

In AAAI’06, page 543, 2006.

Y. Ying, K. Huang, and C. Campbell. Sparse Metric Learning via Smooth Optimization. NIPS’09,

pages 521–528, 2009.

C.X. Zhai and J. Lafferty. A study of smoothing methods for language models applied to information

retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

2548

