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Abstract

We consider the problem of approximating and learning disjunctions (or equivalently,
conjunctions) on symmetric distributions over {0, 1}n. Symmetric distributions are distri-
butions whose PDF is invariant under any permutation of the variables. We prove that
for every symmetric distribution D, there exists a set of nO(log (1/ε)) functions S, such that
for every disjunction c, there is function p, expressible as a linear combination of functions
in S, such that p ε-approximates c in `1 distance on D or Ex∼D[|c(x) − p(x)|] ≤ ε. This
implies an agnostic learning algorithm for disjunctions on symmetric distributions that
runs in time nO(log (1/ε)). The best known previous bound is nO(1/ε4) and follows from
approximation of the more general class of halfspaces (Wimmer, 2010). We also show that
there exists a symmetric distribution D, such that the minimum degree of a polynomial
that 1/3-approximates the disjunction of all n variables in `1 distance on D is Ω(

√
n).

Therefore the learning result above cannot be achieved via `1-regression with a polynomial
basis used in most other agnostic learning algorithms.

Our technique also gives a simple proof that for any product distribution D and every
disjunction c, there exists a polynomial p of degree O(log (1/ε)) such that p ε-approximates
c in `1 distance on D. This was first proved by Blais et al. (2008) via a more involved
argument.

Keywords: agnostic learning, symmetric distribution, polynomial approximation, regres-
sion, disjunction, conjunction, DNF, decision tree

1. Introduction

The goal of an agnostic learning algorithm for a concept class C is to produce, for any
distribution on examples, a hypothesis h whose error on a random example from the dis-
tribution is close to the best possible by a concept from C. This model reflects a common
empirical approach to learning, where few or no assumptions are made on the process that
generates the examples and a limited space of candidate hypothesis functions is searched in
an attempt to find the best approximation to the given data.
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Agnostic learning of disjunctions (or, equivalently, conjunctions) is a fundamental ques-
tion in learning theory and a key step in learning algorithms for other concept classes such
as DNF formulas and decision trees. Algorithms for this problem, such as the Set Covering
Machine (Marchand and Shawe-Taylor, 2002), are also used in practical applications. There
is no known efficient algorithm for the problem, in fact the fastest algorithm that does not
make any distributional assumptions runs in 2Õ(

√
n) time (Kalai et al., 2008). Polynomial-

time learnability is only known when the examples are very close to being consistent with
some disjunction (Awasthi et al., 2010).

While the problem appears to be hard, strong hardness results are known only if the
hypothesis is restricted to be a disjunction or a linear threshold function (Ben-David et al.,
2003; Bshouty and Burroughs, 2006; Feldman et al., 2009, 2012), or for learning using `1-
regression (Klivans and Sherstov, 2010). Weaker, quasi-polynomial lower bounds are known
assuming hardness of learning sparse parities with noise (see Section 5) and, very recently,
hardness of refuting random SAT formulas (Daniely and Shalev-Shwartz, 2014). It is also
well-known that distribution-independent agnostic learning of disjunctions implies PAC
learning of DNF expressions (Kearns et al., 1994). Finally, agnostic learning of disjunctions
is known to be closely related to the problem of differentially-private release of answers to
conjunctive queries (Gupta et al., 2011).

We consider this problem with an additional assumption that example points are dis-
tributed according to a symmetric or a product distribution. Symmetric and product dis-
tributions are two incomparable classes of distributions that generalize the well-studied
uniform distribution. Theoretical study of learning over symmetric distributions was first
done by Wimmer (2010) who gave nO(1/ε4) time agnostic learning algorithm for the class
of halfspaces. Agnostic learning of disjunctions over symmetric distributions on {0, 1}n
also arises naturally in the well-studied problem of privately releasing answers to all short
conjunction queries with low average error (Feldman and Kothari, 2014).

1.1 Our Results

We prove that disjunctions (and conjunctions) are learnable agnostically over any sym-
metric distribution in time nO(log(1/ε)). This matches the well-known upper bound for the
uniform distribution. Our proof is based on `1-approximation of any disjunction by a linear
combination of functions from a fixed set of functions. Such approximation directly gives
an agnostic learning algorithm via `1-regression based approach introduced by Kalai et al.
(2008).

A natural and commonly used set of basis functions is the set of all monomials on {0, 1}n
of some bounded degree. It is easy to see that on product distributions with constant
bias, disjunctions longer than some constant multiple of log(1/ε) are ε-close to the constant
function 1. Therefore, polynomials of degree O(log(1/ε)) suffice for `1 (or `2) approximation
on such distributions. This simple argument does not work for general product distributions.
However it was shown by Blais et al. (2008) that the same degree (up to a constant factor)
still suffices in this case. Their argument is based on the analysis of noise sensitivity under
product distributions and implies additional interesting results.
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Interestingly, it turns out that low-degree polynomials cannot be used to obtain the same
result for all symmetric distributions: we show that there exists a symmetric distribution
for which disjunctions are no longer `1-approximated by low-degree polynomials.

Theorem 1 There exists a symmetric distribution D such that for c = x1 ∨ x2 ∨ · · · ∨ xn,
any polynomial p that satisfies Ex∼D[|c(x)− p(x)|] ≤ 1/3 is of degree Ω(

√
n).

To prove this, we consider the standard linear program to find the coefficients of a degree
r polynomial that minimizes pointwise error with the disjunction c. The key idea is to
observe that an optimal point for the dual can be used to obtain a distribution on which
the `1 error of the best fitting polynomial p for c is same as the value of minimum pointwise
error of any degree r polynomial with respect to c. When c is a symmetric function, one
can further observe that the distribution so obtained is in fact symmetric. Combined with
the degree lower bound for uniform approximation by polynomials by Klivans and Sherstov
(2010), we obtain the result. The details of the proof appear in Section 3.1.

Our approximation for general symmetric distributions is based on a proof that for the
special case of the uniform distribution on Sr (the points from {−1, 1}n with Hamming
weight r), low-degree polynomials still work, namely, for any disjunction c, there is a poly-
nomial p of degree at most O(log (1/ε)) such that the `1 error Ex∼Sr [|c(x) − p(x)|] ≤ ε.

Theorem 2 For r ∈ {0, . . . , n}, let Sr denote the set of points in {0, 1}n that have exactly
r 1’s and let Dr denote the uniform distribution on Sr. For every disjunction c and ε > 0,
there exists a polynomial p of degree at most O(log (1/ε)) such that EDr [|c(x)− p(x)|] ≤ ε.

This result can be easily converted to a basis for approximating disjunctions over arbitrary
symmetric distributions. All we need is to partition the domain {0, 1}n into layers as
∪0≤r≤nSr and use a (different) polynomial for each layer. Formally, the basis now contains
functions of the form IND(r) · χ, where IND is the indicator function of being in layer of
Hamming weight r and χ is a monomial of degree O(log(1/ε)). We note that a related
strategy, of constructing a collection of functions, one for each layer of the cube was used
by Wimmer (2010) to give an nO(1/ε4) time agnostic learning algorithm for the class of
halfspaces on symmetric distributions. However, his proof technique is based on an involved
use of representation theory of the symmetric group and is not related to ours.

Our proof technique also gives a simpler proof for the result of Blais et al. (2008) that
implies approximation of disjunction by low-degree polynomials on all product distributions.

Theorem 3 For any disjunction c and product distribution D on {0, 1}n, there is a poly-
nomial p of degree O(log (1/ε)) such that Ex∼D[|c(x)− p(x)|] ≤ ε.

1.2 Applications

Theorem 2 together with a standard application of `1 regression (Kalai et al., 2008) yields
an agnostic learning algorithm for the class of disjunctions running in time nO(log(1/ε)).

Corollary 4 There is an algorithm that agnostically learns the class of disjunctions on
arbitrary symmetric distributions on {0, 1}n in time nO(log (1/ε)).
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This learning algorithm was extended to the class of all coverage functions, and then applied
to the well-studied problem of privately releasing answers to all short conjunction queries
with low average error (Feldman and Kothari, 2014).

It was shown by Kalai et al. (2009) and Feldman (2010) that agnostic learning of con-
junctions over a distribution D in time T (n, 1/ε) implies learning of DNF formulas with
s terms over D in time poly(n, 1/ε) · T (n, (4s/ε)). Further, under the same conditions
distribution-specific agnostic boosting (Kalai and Kanade, 2009; Feldman, 2010) implies
that there exists an agnostic learning algorithm for decision trees with s leaves running in
time poly(n, 1/ε) · T (n, s/ε). Therefore we obtain quasi-polynomial learning algorithms for
DNF formulas and decision trees over symmetric distributions.

Corollary 5 1. DNF formulas with s terms are PAC learnable with error ε in time
nO(log(s/ε)) over all symmetric distributions;

2. Decision trees with s leaves are agnostically learnable with excess error ε in time
nO(log(s/ε)) over all symmetric distributions.

We also observe that any algorithm that agnostically learns the class of disjunction on
the uniform distribution in time no(log (

1
ε
)) would yield a faster algorithm for the notoriously

hard problem of Learning Sparse Parities with Noise. This is implicit in prior work (Kalai
et al., 2008; Feldman, 2012) and we provide additional details in Section 5.

Dachman-Soled et al. (2015) recently showed that `1 approximation by polynomials
is necessary and sufficient condition for agnostic learning over a product distribution (at
least in the statistical query framework of Kearns (1998)). Our agnostic learning algorithm
(Theorem 4) and lower bound for polynomial approximation (Theorem 1) demonstrate that
this equivalence does not hold for non-product distributions.

2. Preliminaries

We use {0, 1}n to denote the n-dimensional Boolean hypercube. Let [n] denote the set
{1, 2, . . . , n}. For S ⊆ [n], we denote by ORS : {0, 1}n → {0, 1}, the monotone Boolean
disjunction on variables with indices in S, that is, for any x ∈ {0, 1}n, ORS(x) = 0⇔ ∀i ∈
S xi = 0.

One can define norms and errors with respect to any distribution D on {0, 1}n. Thus,
for f : {0, 1}n → R, we write the `1 and `2 norms of f as ‖f‖1 = Ex∼D[|f(x)|] and
‖f‖2 =

√
E[f(x)2] respectively. The `1 and `2 error of f with respect to g are given by

‖f − g‖1 and ‖f − g‖2 respectively.

2.1 Agnostic Learning

The agnostic learning model is formally defined as follows (Haussler, 1992; Kearns et al.,
1994).

Definition 6 Let F be a class of Boolean functions and let D be any fixed distribution on
{0, 1}n. For any distribution P over {0, 1}n×{0, 1}, let opt(P,F) be defined as: opt(P,F) =
inff∈F E(x,y)∼P [|y−f(x)|]. An algorithm A, is said to agnostically learn F on D if for every
excess error ε > 0 and any distribution P on {0, 1}n×{0, 1} such that the marginal of P on
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{0, 1}n is D, given access to random independent examples drawn from P, with probability
at least 2

3 , A outputs a hypothesis h : {0, 1}n → [0, 1], such that E(x,y)∼P [|h(x) − y|] ≤
opt(P,F) + ε.

It is easy to see that given a set of t examples {(xi, yi)}i≤t and a set of m functions
φ1, φ2, . . . , φm finding coefficients α1, . . . , αm which minimize

∑
i≤t

∣∣∣∣∣∣
∑
j≤m

αjφj(x
i)− yi

∣∣∣∣∣∣
can be formulated as a linear program. This LP is referred to as Least-Absolute-Error
(LAE) LP or Least-Absolute-Deviation LP, or `1 linear regression. As observed by Kalai
et al. (2008), `1 linear regression gives a general technique for agnostic learning of Boolean
functions.

Theorem 7 Let C be a class of Boolean functions, D be distribution on {0, 1}n and φ1, φ2, . . . , φm :
{0, 1}n → R be a set of functions that can be evaluated in time polynomial in n. Assume
that there exists ∆ such that for each f ∈ C, there exist reals α1, α2, . . . , αm such that

E
x∼D

∣∣∣∣∣∣
∑
i≤m

αiφi(x)− f(x)

∣∣∣∣∣∣
 ≤ ∆.

Then there is an algorithm that for every ε > 0 and any distribution P on {0, 1}n × {0, 1}
such that the marginal of P on {0, 1}n is D, given access to random independent examples
drawn from P, with probability at least 2/3, outputs a function h such that

E
(x,y)∼P

[|h(x)− y|] ≤ ∆ + ε.

The algorithm uses O(m/ε2) examples, runs in time polynomial in n, m, 1/ε and returns a
linear combination of φi’s.

The output of this LP is not necessarily a Boolean function but can be converted to a
Boolean function with disagreement error of ∆+2ε using “h(x) ≥ θ” function as a hypothesis
for an appropriately chosen θ (Kalai et al., 2008).

3. `1 Approximation on Symmetric Distributions

In this section, we show how to approximate the class of all disjunctions on any symmetric
distribution by a linear combination of a small set of basis functions.

As discussed above, polynomials of degree O(log (1/ε)) can ε-approximate any disjunc-
tion in `1 distance on any product distribution. This is equivalent to using low-degree
monomials as basis functions. We first show that this basis would not suffice for approxi-
mating disjunctions on symmetric distributions. Indeed, we construct a symmetric distri-
bution on {0, 1}n, on which, any polynomial that approximates the monotone disjunction
c = x1 ∨ x2 ∨ · · · ∨ xn within `1 error of 1/3 must be of degree Ω(

√
n).
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3.1 Lower Bound on `1 Approximation by Low-Degree Polynomials

In this section we give the proof of Theorem 1.

Proof [of Thm. 1] Let d : [n] → {0, 1} be the predicate corresponding to the disjunction
x1 ∨ x2 ∨ · · · ∨ xn, that is, d(0) = 0 and d(i) = 1 for each i > 0.

Consider a natural linear program to find a univariate polynomial f of degree at most
d such that ‖d− f‖∞ = max0≤i≤n |d(i)− f(i)| is minimized:

min ε

s.t. ε ≥ |d(m)−
r∑
i=0

αi ·mi| ∀ m ∈ {0, . . . , n}

αi ∈ R ∀ i ∈ {0, . . . , r}.

This program (and its dual) often comes up in proving polynomial degree lower bounds
for various function classes (for example, Sherstov, 2009). If {α0, α1, . . . , αn} is a solution
for the program above that has value ε then f(m) =

∑r
i=0 αim

i is a degree r polynomial
that approximates d within an error of at most ε at every point in {0, . . . , n}. Klivans and
Sherstov (2010) show that there exists an r∗ = Θ(

√
n), such that the optimal value of the

program above for r = r∗ is ε∗ ≥ 1/3. Standard manipulations can be used to produce the
dual of the program:

max

n∑
m=0

βm · d(m)

s.t.
n∑

m=0

βm ·mi = 0 ∀ i ∈ {0, . . . , r}

n∑
m=0

|βm| ≤ 1

βm ∈ R ∀ m ∈ {0, . . . , n}.

Let β∗ = {β∗m}m∈{0,...,n} denote an optimal solution for the dual program with r = r∗.
Then, by strong duality, the value of the dual is also ε∗. Observe that

∑n
m=0 |β∗m| = 1,

since otherwise we can scale up all the β∗m by the same factor and increase the value of the
program while still satisfying the constraints.

Let ρ : {0, . . . , n} → [0, 1] be defined by ρ(m) = |β∗m|. Then ρ can be viewed as
a density function of a distribution on {0, . . . , n} and we use it to define a symmetric
distribution D on {−1, 1}n as follows: D(x) = ρ(w(x))/

(
n

w(x)

)
, where w(x) =

∑n
i=1 xi is

the Hamming weight of point x. We now show that any polynomial p of degree r∗ satisfies

Ex∼D[|c(x)− p(x)|] ≥ 1/3.

We now extract a univariate polynomial fp that approximates d on the distribution with
the density function ρ using p. Let pavg : {−1, 1}n → R be obtained by averaging p over
every layer. That is, pavg(x) = Ez∼Dw(x)

[p(z)], where w(x) denotes the Hamming weight
of x. It is easy to check that since c is symmetric, pavg is at least as close to c as p in `1
distance.

3460



Agnostic Learning of Disjunctions

Further, pavg is a symmetric function computed by a multivariate polynomial of degree
at most r∗ on {0, 1}n. Thus, the function fp(m) that gives the value of pavg on points of
Hamming weight m can be computed by a univariate polynomial of degree r∗. Further,

E
x∼D

[|c(x)− p(x)|] ≥ E
x∼D

[|c(x)− pavg(x)|] = E
m∼ρ

[|d(m)− fp(m)|].

Let us now estimate the error of fp w.r.t d on the distribution ρ. Using the fact that fp
is of degree at most r∗ and thus

∑n
m=0 fp(m) · βm = 0 (enforced by the dual constraints),

we have:

E
m∼ρ

[|d(m)− fp(m)|] ≥ E
m∼ρ

[(d(m)− fp(m)) · sign(β∗m)]

=

n∑
m=0

d(m) · β∗m −
n∑

m=0

fp(m) · β∗m

= ε∗ − 0 = ε∗ ≥ 1/3.

Thus, the degree of any polynomial that approximates c on the distribution D with error
of at most 1/3 is Ω(

√
n).

3.2 Upper Bound

In this section, we describe how to approximate disjunctions on any symmetric distribution
by using a linear combination of functions from a set of small size. Recall that Sr denotes
the set of all points from {0, 1}n with weight r.

As we have seen above, symmetric distributions can behave very differently when com-
pared to (constant bounded) product distributions. However, for the special case of the
uniform distribution on Sr, denoted by Dr, we show that for every disjunction c, there is a
polynomial of degree O(log (1/ε)) that ε-approximates it in `1 distance on Dr. As described
in Section 1.1, one can stitch together polynomial approximations on each Sr to build a set
of basis functions S such that every disjunction is well approximated by some linear com-
bination of functions in S. Thus, our goal is now reduced to constructing approximating
polynomials on Dr.
Proof [of Thm. 2] We first assume that c is monotone and without loss of generality c =
x1∨· · ·∨xk. We will also prove a slightly stronger claim that EDr [|c(x)−p(x)|] ≤ EDr [(c(x)−
p(x))2] ≤ ε in this case. Let d : {0, . . . , k} → {0, 1} be the predicate associated with the

disjunction, that is d(i) = 1 whenever i ≥ 1. Note that c(x) = d
(∑

i∈[k] xi

)
. Therefore

our goal is to find a univariate polynomial f that approximates d and then substitute

pf (x) = f
(∑

i∈[k] xi

)
. This substitution preserves the total degree of the polynomial. We

break our construction into several cases based on the relative magnitudes of r, k and ε.

If k ≤ 2 ln (1/ε), then the univariate polynomial that exactly computes the predicate d
satisfies the requirements. Thus assume that k > 2 ln(1/ε). If r > n − k, then, c always
takes the value 1 on Sr and thus the constant polynomial 1 achieves zero error. If on the
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other hand, if r ≥ (n/k) ln (1/ε), then,

Pr
x∼Dr

[c(x) = 0] =

(
n−k
r

)(
n
r

) =

r−1∏
i=0

(
1− k

n− i

)
≤ (1− k/n)r ≤ e−kr/n ≤ ε.

In this case, the constant polynomial 1 achieves an `22 error of at most Prx∼Dr [c(x) = 0] ·1 ≤
ε. Finally, observe that r ≤ (n/k) ln (1/ε) and k > 2 ln(1/ε) implies r ≤ n/2. Thus, for the
remaining part of the proof, assume that r < min{n− k, (n/k) ln (1/ε), n/2}.

Consider the univariate polynomial f : {0, . . . , k} → R of degree t (for some t to be
chosen later) that computes the predicate d exactly on {0, . . . , t}. This polynomial is given
by

f(w) = 1− 1

t!

t∏
i=1

(w − i) =

{
1−(wt ) for w > t

1 for 0<w≤t
0 for w=0

Let

δj = Pr
x∼Dr

[|{i | xi = 1}| = j] =

(
n−k
r−j
)
·
(
k
j

)(
n
r

) .

The `22 error of pf (x) on c satisfies,

||pf − c||22 = E
x∼Dr

[(c(x)− pf (x))2] =
k∑

j=t+1

δj ·
(
j

t

)2

.

We denote the RHS of this equality by ‖d− f‖22.
We first upper bound δj as follows:

δj =

(
n−k
r−j
)
·
(
k
j

)(
n
r

) =
(n− k)!

(n− k − r + j)!(r − j)!
· k!

(k − j)!j!
· (n− r)!r!

n!

=
1

j!
· r!

(r − j)!
· k!

(k − j)!
· (n− r)!

n!
· (n− k)!

(n− k − r + j)!

≤ 1

j!
· (rk)j · (n− k) · (n− k − 1) · · · (n− k − r + j + 1)

n · (n− 1) · · · (n− r + 1)

≤ 1

j!
· (n ln (1/ε))j · 1

(n− r + j) · (n− r + j − 1) · · · (n− r + 1)
,

where, in the second to last inequality, we used that r < n/k ln (1/ε) to conclude that
rk ≤ (n ln (1/ε)). Now, r < n/2 and thus (n− r + 1) > n/2. Therefore,

δj ≤
2j · (n ln (1/ε))j

nj · j!
=

(2 ln (1/ε))j

j!
,

and thus:

‖d− f‖22 ≤
k∑

j=t+1

(
j

t

)2 (2 ln (1/ε))j

j!
.

Set t = 8e2 ln (1/ε). Using j! > (j/e)j > (t/e)j for every j ≥ t+ 1, we obtain:
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‖d− f‖22 ≤
k∑

j=t+1

22j ·
(

2 ln (1/ε)

8e ln (1/ε)

)j
≤ ε ·

∞∑
j=t+1

1/ej ≤ ε. (1)

To see that EDr [|c(x)− p(x)|] ≤ EDr [(c(x)− p(x))2] we note that in all cases and for all
x, |p(x)− c(x)| is either 0 or ≥ 1. This completes the proof of the monotone case.

We next consider the more general case when c = x1 ∨ x2 ∨ · · · ∨ xk1 ∨ x̄k1+1 ∨ x̄k1+2 ∨
· · ·∨ x̄k1+k2 . Let c1 = x1∨x2∨· · ·∨xk1 and c2 = x̄k1+1∨ x̄k1+2∨· · ·∨ x̄k1+k2 and k = k1+k2.
Observe that c = 1− (1− c1) · (1− c2) = c1 + c2 − c1c2.

Let p1 be a polynomial of degree O(log (1/ε)) such that ‖c1 − p1‖1 ≤ ‖c1 − p1‖22 ≤ ε/3.
Note that if we swap 0 and 1 in {0, 1}n then c2 will be equal to a monotone disjunction
c̄2 = xk1+1∨xk1+2∨· · ·∨xk1+k2 and Dr will become Dn−r. Therefore by the argument for the
monotone case, there exists a polynomial p̄2 of degreeO(log (1/ε)) such that ‖c̄2−p̄2‖1 ≤ ε/3.
By renaming the variables back we will obtain a polynomial p2 of degree O(log (1/ε)) such
that ‖c2 − p2‖1 ≤ ‖c2 − p2‖22 ≤ ε/3. Now let p = p1 + p2 − p1p2. Clearly the degree of p is
O(log (1/ε)). We now show that ‖c− p‖1 ≤ ε:

E
x∼Dr

[|c(x)− p(x)|] = E
x∼Dr

[|(1− c(x))− (1− p(x))|]

= E
x∼Dr

[|(1− c1)(1− c2)− (1− p1)(1− p2)|]

= E
x∼Dr

[|(1− c1)(p2 − c2) + (1− c2)(p1 − c1)− (c1 − p1)(c2 − p2)|]

≤ E
x∼Dr

[|(1− c1)(p2 − c2)|] + E
x∼Dr

[|(1− c2)(p1 − c1)|] + E
x∼Dr

[|(c1 − p1)(c2 − p2)|]

≤ E
x∼Dr

[|p2 − c2|] + E
x∼Dr

[|p1 − c1|] +
√

E
x∼Dr

[(c1 − p1)2] E
x∼Dr

[(c2 − p2)2]

≤ ε/3 + ε/3 + ε/3 = ε.

4. Polynomial Approximation on Product Distributions

In this section, we show that for every product distribution D =
∏
i∈[n]Di, every ε > 0 and

every disjunction (or conjunction) c of length k, there exists a polynomial p : {0, 1}n → R
of degree O(log (1/ε)) such that p ε-approximates c in `1 distance on D.
Proof [of Thm. 3] First, we note that without loss of generality we can assume that the
disjunction c is equal to x1∨x2∨· · ·∨xk for some k ∈ [n]. We can assume monotonicity since
we can convert negated variables to un-negated variables by swapping the roles of 0 and 1 for
that variable. The obtained distribution will remain product after this operation. Further
we can assume that k = n since variables with indices i > k do not affect probabilities of
variables with indices ≤ k or the value of c(x).

We first note that we can assume that Prx∼D[x = 0k] > ε since, otherwise, the constant
polynomial 1 gives the desired approximation. Let µi = Prxi∼Di [xi = 1]. Since c is a
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symmetric function, its value at any x ∈ {0, 1}k depends only on the Hamming weight of
x that we denote by w(x). Thus, we can equivalently work with the univariate predicate
d : {0, 1, . . . , k} → {0, 1}, where d(i) = 1 for i > 0 and d(0) = 0.

As in the proof of Theorem 2, we will approximate d by a univariate polynomial f and
then use the polynomial pf (x) = f(w(x)) to approximate c.

Let f : {0, 1, . . . , k} → R be the univariate polynomial of degree t that matches d on all
points in {0, 1, . . . , t}. Thus,

f(w) = 1− 1

t!
·
t∏
i=1

(w − i) =

{
1−(wt ) for w > t

1 for 0<w≤t
0 for w=0

We have,

E
x∼Dr

[(c(x)− pf (x))2] =
k∑
j=0

Pr
x∼D

[w(x) = j] · |d(j)− f(j)|

and we denote the RHS of this equation by ‖d− f‖1.
Then:

‖d− f‖1 =
k∑

j=t+1

Pr
D

[w(x) = j] · |1− f(j)|

=
k∑

j=t+1

Pr
D

[w(x) = j] ·
(
j

t

)
. (2)

Let us now estimate PrD[w(x) = j].

Pr
D

[w(x) = j] =
∑

S⊆[n], |S|=j

∏
i∈S

µi ·
∏
i/∈S

(1− µi)

≤
∑

S⊆[n], |S|=j

∏
i∈S

µi

Observe that in the expansion of (
∑k

i=1 µi)
j , the term

∏
i∈S µi occurs exactly j! times.

Thus, ∑
S⊆[n], |S|=j

∏
i∈S

µi ≤
(
∑k

i=1 µi)
j

j!
.

Set µavg = 1
k

∑k
i=1 µi. We have:

ε ≤ Pr
x∼D

[x = 0k] =
k∏
i=1

(1− µi) ≤

(
1− 1

k
·
k∑
i=1

µi

)k
= (1− µavg)k.

Thus, µavg = c/k for some c ≤ 2 ln (1/ε) whenever k ≥ k0 where k0 is some universal
constant. In what follows, assume that k ≥ k0. (Otherwise, we can use the polynomial of
degree equal to k that exactly computes the predicate d on all points).
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We are now ready to upper bound the error ‖d− f‖1. From Equation (2), we have:

‖d− f‖1 =

k∑
j=t+1

Pr
D

[w(x) = j] ·
(
j

t

)
≤

k∑
j=t+1

(
∑k

i=1 µi)
j

j!
·
(
j

t

)

≤
k∑

j=t+1

(
j

t

)
· (2 ln(1/ε))j

j!

Setting t = 4e2 ln (1/ε) and using the calculation from Equation (1) in the proof of Thm. 2,
we obtain that the error ‖d− f‖1 ≤ ε.

5. Agnostic Learning of Disjunctions

Combining Thm. 7 with the results of the previous section (and the discussion in Section
1.1), we obtain an agnostic learning algorithm for the class of all disjunctions on product
and symmetric distributions running in time nO(log (1/ε)).

Corollary 8 (Cor. 4, restated) There is an algorithm that agnostically learns the class
of disjunctions on any product or symmetric distribution on {0, 1}n with excess error of at
most ε in time nO(log (1/ε)).

We now remark that any algorithm that agnostically learns the class of disjunctions (or

conjunctions) on n inputs on the uniform distribution on {0, 1}n in time no(log (
1
ε
)) would

yield a faster algorithm for the notoriously hard problem of Learning Sparse Parities with
Noise(SLPN). The reduction is based on the technique implicit in the work of Kalai et al.
(2008) and Feldman (2012).

For S ⊆ [n], we use χS to denote the parity of inputs with indices in S. Let U denote
the uniform distribution on {0, 1}n. We say that random examples of a Boolean function
f have noise of rate η if the label of a random example equals f(x) with probability 1− η
and 1− f(x) with probability η.

Problem 1 (Learning Sparse Parities with Noise) For η ∈ (0, 1/2) and k ≤ n the
problem of learning k-sparse parities with noise η is the problem of finding (with probability
at least 2/3) the set S ⊆ [n],|S| ≤ k, given access to random examples with noise of rate η
of parity function χS.

The fastest known algorithm for learning k-sparse parities with noise η is a recent break-
through result of Valiant (2012) which runs in time O(n0.8kpoly( 1

1−2η )) .
Kalai et al. (2008) and Feldman (2012) prove hardness of agnostic learning of majorities

and conjunctions, respectively, based on correlation of concepts in these classes with parities.
We state below this general relationship between correlation with parities and reduction to
SLPN given by Feldman et al. (2013).

Lemma 9 Let C be a class of Boolean functions on {0, 1}n. Suppose, there exist γ > 0
and k ∈ N such that for every S ⊆ [n], |S| ≤ k, there exists a function, fS ∈ C, such
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that |Ex∼U [fS(x)χS(x)]| ≥ γ(k). If there exists an algorithm A that learns the class C
agnostically with excess error ε in time T (n, 1ε ) then, there exists an algorithm A′ that
learns k-sparse parities with noise η < 1/2 in time poly(n, 1

(1−2η)γ(k)) + 2T (n, 2
(1−2η)γ(k)).

The correlation between a disjunction and a parity is easy to estimate.

Lemma 10 For any S ⊆ [n], |Ex∼U [ORS(x)χS(x)]| = 1
2|S|−1 .

We thus immediately obtain the following corollary.

Theorem 11 Suppose there exists an algorithm that learns the class of Boolean disjunc-
tions over the uniform distribution agnostically with excess error of ε > 0 in time T (n, 1ε ).
Then there exists an algorithm that learns k-sparse parities with noise η < 1

2 in time

poly(n, 2
k−1

1−2η ) + 2T (n, 2
k−1

1−2η ). In particular, if T (n, 1ε ) = no(log (1/ε)), then, there exists an

algorithm to solve k-SLPN in time no(k).

Thus, any algorithm that is asymptotically faster than the one from Cor. 4 yields a faster
algorithm for k-SLPN.
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