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Abstract

To discuss the existence and uniqueness of proper scoring rules one needs to extend the
associated entropy functions as sublinear functions to the conic hull of the prediction set.
In some natural function spaces, such as the Lebesgue Lp-spaces over Rd, the positive cones
have empty interior. Entropy functions defined on such cones have directional derivatives
only, which typically exist on large subspaces and behave similarly to gradients. Certain
entropies may be further extended continuously to open cones in normed spaces containing
signed densities. The extended entropies are Gâteaux differentiable except on a negligible
set and have everywhere continuous subgradients due to the supporting hyperplane theo-
rem. We introduce the necessary framework from analysis and algebra that allows us to
give an affirmative answer to the titular question of the paper. As a result of this, we give
a formal sense in which entropy functions have uniquely associated proper scoring rules.
We illustrate our framework by studying the derivatives and subgradients of the following
three prototypical entropies: Shannon entropy, Hyvärinen entropy, and quadratic entropy.

Keywords: proper scoring rules, entropy, characterisation, existence, uniqueness, quasi-
interior, directional derivative, Gâteaux derivative, subgradient, sublinear, convex analysis

1. Introduction

Proper scoring rules have attracted a lot of interest in recent years in disparate fields such as
statistics, decision theory, machine learning, game theory, finance, meteorology, etc. They
provide practical measures for assessing the accuracy and precision of probabilistic forecasts.
In this paper, we build a general measure-theoretic framework for proper scoring rules that
allows us to consider their existence and uniqueness as subgradients of sublinear functions.

1.1 Definitions

Let (Ω,A, µ) be a measure space and P be a convex set of probability densities on Ω with
respect to the measure µ. A random variable X takes values in Ω with unknown true density
p ∈ P. We refer to P and its elements as a prediction set and predictive densities for X,
respectively. By L(P) we denote the set of all µ-measurable functions f : Ω→ R such that∫

Ω
|f(x)| p(x)dµ(x) <∞

for all p ∈ P. We call the elements of L(P) P-integrable functions.
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A scoring rule S : P → L(P) assigns for each predictive density q ∈ P a P-integrable
function S(q). The value of S(q) at x ∈ Ω is interpreted as a numerical score assigned to
the outcome x. We take scoring rules to be positively orientated, that is, they are viewed as
incentives which a forecaster wishes to maximise. It is customary to term S proper if the
expected value of S at q,

p · S(q) :=

∫
Ω
S(q)(x)p(x)dµ(x),

is maximised in q at the true density q = p, and strictly proper, if the true density is the
only maximiser.

Strictly proper scoring rules could be used as a bonus system under which truth-telling
is the only optimal long-term strategy (Gneiting and Raftery, 2007). For such an S, the
optimal expected reward is the (negative) entropy induced by S,

Φ : P → R, Φ(p) = p · S(p),

(Parry et al., 2012). In what follows, we refer to Φ simply as the entropy function associated
to S, as there is no danger of confusion between negative and positive entropy functions in
the present context. The regret for quoting q instead of the true density p is expressed by
the function

D : P × P → R, D(p, q) = p · S(p)− p · S(q),

which in the statistics literature is also known as the divergence induced by S. In the
present paper, we shall use the notions of entropy and divergence in a more general sense
by replacing strict propriety with propriety.

General overviews of proper scoring rules may be found in Gneiting and Raftery (2007);
Gneiting and Katzfuss (2014) in connection to probabilistic forecasting, and also in Dawid
and Musio (2014), where the emphasis is on statistical inference. Theoretical aspects of
proper scoring rules are studied in Dawid (2007); Grünwald and Dawid (2004); Williamson
(2014). Frongillo and Kash (2014) investigate proper scoring rules in connection with the
elicitation of private information. The remaining references throughout the text provide
links to more specific uses of scoring rules.

1.2 Motivation and Scope of the Paper

In this paper we adopt the theoretical framework of Hendrickson and Buehler (1971). This
approach is characterised by exploiting a beautiful connection with Euler’s homogeneous
function theorem, which presupposes that we extend our quantities of interest as homo-
geneous functions to the conic hull of the prediction set. To that end, we introduce the
prediction cone P+ = {λp |λ > 0, p ∈ P} and extend S and Φ to P+ as homogeneous
functions of degrees zero and one, respectively. Any P-integrable function q∗ satisfying

Φ(p) ≥ p · q∗, ∀p ∈ P+,

with equality for p = q, is called a P-integrable subgradient of Φ at q. The subgradient
is called strict if the above inequality is strict for all p ∈ P+ not positively collinear to
q. Suppose that Φ has a subgradient S(q) ∈ L(P) at each q ∈ P+ and the resulting
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map S : P+ → L(P) is homogeneous of degree zero. We call S a P-integrable subgradient
of Φ on P+. We recall that a (strictly) convex homogeneous function of degree one is a
(strictly) sublinear function. We may now state Hendrickson and Buehler’s classical result
in a slightly more contemporary language.

Theorem 1.1 Let P be a prediction set with respect to the measure space (Ω,A, µ). A
scoring rule S : P+ → L(P) is (strictly) proper if and only if there is a (strictly) sublinear
function Φ : P+ → R such that S is a subgradient of Φ on P+.

Theorem 1.1 provides us with a basic but insufficient theoretical framework to discuss the
titular question of this paper. In support of this claim, in Example B.2 we show the existence
of a sublinear function that has unique but non-P-integrable subgradients at some points
of its domain, while at other points it has multiple P-integrable subgradients. The most
important structure missing in Theorem 1.1 is the notion of interior of a convex domain,
which lies at the intersection of geometry, algebra, and topology, and may have different
incarnations depending on the context (Borwein and Vanderwerff, 2010; Rockafellar, 1972).
For example, studying proper local scoring rules on discrete sample spaces, Dawid et al.
(2012) apply Theorem 1.1 in a context where the prediction cone is the interior of the
positive orthant in Rd. In this case, well-known results from convex analysis give necessary
and sufficient conditions for an affirmative answer to our basic question. The real focus of our
paper is thus the non-Euclidean case in the abstract measure-theoretic setting introduced
above.

In Proposition 2.4 and Example B.3, we show that at boundary points sublinear func-
tions have either no subgradient, or infinitely many. Therefore, it is paramount to try to
define entropy functions on interiors of positive cones. In infinite dimensions, however, this
is not always possible. Indeed, it is well-known that the positive cones in many natural func-
tion spaces (such as the Lebesgue Lp-spaces over Rd) have empty interiors (Borwein and
Lewis, 1992) and are negligible sets in terms of Baire category. This calls for a more subtle
approach to our problem in which we need to refine our notion of interior and boundary.
Inspired by geometric functional analysis, we adapt an algebraic refinement of the notion
of interior of convex sets, whose better known topological analogues are often referred to as
quasi-interior (Fullerton and Braunschweiger, 1963; Borwein and Lewis, 1992). Common
entropies whose domains are positive cones with empty interior but nonempty quasi-interior
are the Shannon entropy, the Hyvärinen entropy, and in principle, the entropies associated
with the proper local scoring rules of arbitrary orders. These entropies are formally not
differentiable functions but possess directional derivatives on large subspaces, which display
similar properties to standard gradients.

Other entropies, such as those that are associated with the families of power scoring
rules and pseudospherical scoring rules may be extended continuously to open cones in
normed spaces that contain signed densities. Geometrically, this setting is similar to the
Euclidean setting. One applies the supporting hyperplane theorem and other standard
results in analysis relating subgradients and Gâteaux derivatives. The latter entropies are
Gâteaux differentiable (either everywhere or outside a negligible set), which we illustrate in
the context of the quadratic scoring rule.

The original part of the paper is concerned with the analysis of the notion of P-integrable
subgradient introduced by Hendrickson and Buehler (1971) and the associated most ba-
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sic general framework for proper scoring rules. To address the question of existence and
uniqueness of proper scoring rules, we equip this framework with a notion of algebraic
quasi-interior. As an illustration, we show that the Hyvärinen scoring rule is the unique
0-homogeneous P-integrable subgradient of its entropy function on the (non-empty) quasi-
interior of a suitable positive cone.

The paper is organised as follows. In Section 2, we introduce the notation and present
all the background facts. Section 3 contains our main results which formulate necessary and
sufficient conditions for existence and uniqueness of subgradients of entropy functions. In
Section 4, we illustrate the theory with applications to three prototypical entropy functions,
namely, the Shannon, Hyvärinen, and quadratic entropy. These examples formalise the
meaning with respect to which we may consider each entropy to have a uniquely associated
proper scoring rule. We complete the main part of the paper in Section 5 with some
closing remarks. The proofs of all formal assertions made in the text are given in Appendix
A. In Appendix B, we present additional facts that illustrate various points made in the
Introduction or later in the text.

2. Notation and Preliminaries

Let E, E1, E2 be sets of µ-measurable functions on Ω. For α ∈ R, we use the notation

αE1 = {αf | f ∈ E1}
E1 + E2 = {f + g | f ∈ E1, g ∈ E2}.

The (blunt) cone of E is the set E+ = {λf |λ > 0, f ∈ E}, while the pointed cone of E is
the set E+ ∪ {0}. The convex hull of E,

coE =

{
k∑
i=1

αifi

∣∣∣∣∣k ≥ 1, fi ∈ E, αi ≥ 0,

k∑
i=1

αi = 1

}
,

is the set of all convex combinations of elements of E. The conic hull of E,

coneE =

{
k∑
i=1

αifi

∣∣∣∣∣k ≥ 1, fi ∈ E, αi ≥ 0

}
,

is the set of all conic combinations of elements of E. By

spanE =

{
k∑
i=1

αifi

∣∣∣∣∣k ≥ 1, fi ∈ E, αi ∈ R

}
we denote the set of all linear combinations of elements of E, and we refer to it as the linear
span of E.

A set E is called convex if coE = E, a cone if E = E+ or E = E+ ∪ {0}, a convex
cone if E = coneE or E = coneE \ {0}, and a linear space if E = spanE. If E is convex,
E+ = coneE \ {0} is a convex cone.

The epigraph of Φ : E → R is the set in spanE × R given by

epi Φ = {(f, y) | f ∈ E, y ∈ R, y ≥ Φ(f)}.
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The graph of Φ is the set {(f,Φ(f)) | f ∈ E}.
A function Φ : E → R is called convex if its epigraph is a convex set. The definition

implies that E is convex. Therefore, Φ is convex if, for any f, g ∈ E and λ ∈ (0, 1), Φ
satisfies

Φ((1− λ)f + λg) ≤ (1− λ)Φ(f) + λΦ(g).

If the inequality is strict for f 6= g, then Φ is called strictly convex.

A function Φ : E+ → R is said to be (positively) homogeneous of degree k, for k ∈ R, or
(positively) k-homogeneous, if for every f ∈ E+ and every λ > 0, it holds Φ(λf) = λkΦ(f).
A function Φ : E → R is said to be subadditive if Φ satisfies

Φ(f + g) ≤ Φ(f) + Φ(g)

for all f, g ∈ E, and strictly subadditive, if the above inequality is strict for f 6= g. We need
to modify slightly the latter definition in the case when Φ : E+ → R is 1-homogeneous.
Then we say that Φ is strictly subadditive if the above inequality is strict whenever f, g ∈ E+

are not positively collinear. Functions that are 1-homogeneous and (strictly) subadditive
are called (strictly) sublinear. It is easy to see that Φ : E+ → R is (strictly) sublinear if
and only if Φ is (strictly) convex on E and 1-homogeneous on E+.

Let P be a prediction set with respect to (Ω,A, µ) and let E ⊂ spanP. By E⊥ we
denote the annihilator of E in L(P), that is, all f ∈ L(P) such that

p · f = 0

for all p ∈ E. Clearly, E⊥ is a linear subspace of L(P). In the case when E⊥ = {0}, we say
that E has a trivial annihilator.

By a direction in a vector space we understand the equivalence class of all positively
collinear vectors to a given nonzero vector. Note that any 0-homogeneous function is a
function of directions. For q ∈ P+, we define the set of directions from q to the points in
P+ as

D(q) = {p ∈ spanP | ∃εp > 0, ∀t ∈ [0, εp], q + tp ∈ P+}
= {p ∈ spanP | ∃εp > 0, q + εpp ∈ P+}.

We have the latter identity due to the convexity of P+.

A point q ∈ P+ is an algebraically interior point of P+ if D(q) = spanP. The collection
of all algebraically interior points of P+ is called the algebraic interior of P+. In the case
of a topological vector space, the topological interior of a set is always contained in the
algebraic interior of the set. Moreover, when the topological interior is not empty, the two
notions coincide. If q is not algebraically interior for P+, that is, D(q) 6= spanP, we say
that q is a boundary point for P+. If P+ has empty algebraic interior, then the prediction
cone consists entirely of boundary points. This case occurs frequently in the context of
continuous sample spaces, see e.g. Proposition B.1.

Lemma 2.1 For each q ∈ P+, we have the representation

D(q) = cone(P+ − q).
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For a point q ∈ P+, we define O(q) = D(q) ∩−D(q). This is the subset of directions in
D(q) whose inverse is also in D(q). The set may be identified with these directions in spanP
along which there is an open line segment that contains q and is contained in P+. Clearly,
q is algebraically interior for P+ if and only if O(q) = D(q) = spanP. By construction,
O(q) is a linear subspace of spanP. The sets of directions D(q) and O(q) are instrumental
for defining various notions of directional derivatives.

The most basic directional derivative is the following one.

Definition 2.2 For a function Φ : P+ → R, the right directional derivative of Φ at q ∈ P+

along p ∈ D(q) is defined as

Φ′+(p, q) = lim
t→0+

Φ(q + tp)− Φ(q)

t
(1)

if the limit exists.

We gather below the main properties of Φ′+(p, q).

Proposition 2.3 Let Φ : P+ → R be a sublinear function and q ∈ P+. We have

(a) for each p ∈ D(q),

Φ′+(p, q) = inf
t>0

Φ(q + tp)− Φ(q)

t
∈ R ∪ {−∞},

and the infimum is finite for p ∈ O(q);

(b) Φ′+(·, q) : D(q)→ R ∪ {−∞} is sublinear;

(c) for each λ > 0, Φ′+(p, λq) = Φ′+(p, q);

(d) for each p ∈ P+,

Φ(p) ≥ Φ′+(p, q),

with equality for p = q;

(e) for each p ∈ O(q), −Φ′+(−p, q) ≤ Φ′+(p, q);

(f) the set

O′(q) = {p ∈ O(q) | − Φ′+(−p, q) = Φ′+(p, q)}

is a linear subspace of O(q) and the restriction Φ′+(·, q)
∣∣
O′(q)

is linear.

We next consider the other two types of directional derivatives. First, if we take the
limit (1) with the restriction t ≤ 0 instead t ≥ 0, we obtain the left directional derivative
of Φ, denoted Φ′−(·, q). It is easy to see that Φ′−(·, q) can be defined on O(q) and we have
Φ′−(p, q) = −Φ′+(−p, q), for each p ∈ O(q). Thus part (e) above can be rewritten as

Φ′−(p, q) ≤ Φ′+(p, q)
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for all p ∈ O(q). On the subspace O′(q) introduced above in part (f), we have that

Φ′−(·, q) = Φ′+(·, q)

is in fact the two-sided directional derivative of Φ at q, denoted Φ′(·, q). The latter can be
defined as the limit (1) without any restriction on t. In the most important case in practice,
we have that O(q) = O′(q). If in addition O(q) 6= spanP, then Φ has no standard functional
derivative. For an illustration of this fact in the context of Shannon and Hyvärinen entropies,
see Section 4.

By LinP we denote the space of all real-valued linear functionals on spanP, i.e., the
algebraic dual of spanP. By “·” we denote the bilinear pairing on spanP × LinP, so if
q ∈ spanP and q∗ ∈ LinP, q · q∗ is the value of q∗ at q.

Let Φ : P+ → R be 1-homogeneous. We say that q∗ ∈ LinP is a subgradient of Φ at q if

Φ(p) ≥ p · q∗

for all p ∈ P+, with equality for p = q. The collection of all subgradients of Φ at q is called
the subdifferential of Φ at q and is denoted by ∂Φ(q). A subgradient q∗ is strict if and only
if the inequality Φ(p) > p · q∗ holds for all p ∈ P+ not positively collinear with q.

If h ∈ LinP, the hyperplane H in spanP × R given by

z = p · h, ∀p ∈ spanP,

supports Φ at q if the epigraph of Φ lies above H, and H contains the point (q,Φ(q)).
Clearly, H supports Φ at q if and only if h ∈ ∂Φ(q).

The following proposition describes the intimate connection between one-sided and two-
sided directional derivatives and the subdifferential of a sublinear function.

Proposition 2.4 For a point q ∈ P+, we have

(a) q∗ ∈ ∂Φ(q) if and only if
p · q∗ ≤ Φ′+(p, q)

for all p ∈ P+, with equality for p = q;

(b) if D(q) = spanP and Φ′(·, q) exists on spanP, then ∂Φ(q) = {Φ′(·, q)};

(c) if D(q) = spanP and Φ′(·, q) does not exist on spanP, then ∂Φ(q) has multiple elements;

(d) if D(q) 6= spanP and Φ′+(p, q) is finite for all p ∈ P+, then ∂Φ(q) has multiple elements;

(e) if D(q) 6= spanP and there is p ∈ P+ such that Φ′+(p, q) = −∞, then ∂Φ(q) = ∅.

Part (a) above is the standard characterisation of the subdifferential of a sublinear func-
tion. Parts (b) and (c) give additional information in the case of algebraically interior
points. Parts (d) and (e) do the same for boundary points. Notice that the latter imply the
statement from the Introduction that at boundary points either the existence or uniqueness
of subgradient fails. (See also Example B.3.) In the next section, we show that unique-
ness might be sometimes recovered at certain boundary points if we confine ourselves to a
regularity class such as L(P).

We next give a formal definition of a scoring rule and elaborate some of its implications.
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Definition 2.5 Let P be a prediction set with respect to the measure space (Ω,A, µ). Any
0-homogeneous map S : P+ → L(P) is called a scoring rule.

If X is a random variable on Ω with unknown true density p ∈ P, then for each predictive
density q ∈ P+, S(q)(X) is a random function of X. The condition S(q) ∈ L(P) guarantees
that the expectation of S is always finite. The uncertainty function associated to S is the
function Φ : P+ → R, Φ(p) = p · S(p). Clearly, Φ is 1-homogeneous. When S is proper, it
is customary to call Φ an entropy function.

Suppose now that S : P+ → L(P) is a proper scoring rule with entropy Φ. The
condition that the expected score of S is maximised in q at the true density q = p means
that S satisfies the inequality

Φ(p) ≥ p · S(q),

for each p, q ∈ P+, with equality for q = p. If S is strictly proper, then p is the only
maximiser up to a scaling factor. In this case, the inequality above is strict for any q that
is not positively collinear to p. So, the assumption of propriety is equivalent to S being a
subgradient of Φ on P+. Moreover, strict propriety corresponds to strict subgradients on
P+. The existence of a subgradient on P+ implies that Φ is sublinear, see Lemma A.1.
We conclude that (strictly) proper scoring rules are P-integrable subgradients of (strictly)
sublinear functions. Therefore, it is reasonable in the context of scoring rules to restrict the
notion of subgradient to the class L(P) ⊂ Lin(P). In the next section, and in particular
in Theorem 3.1 and Theorem 3.2, we discuss the existence and uniqueness of P-integrable
subgradients.

In some special cases, we may add to our notion of subgradient a topological structure.
Let P+ be a prediction cone such that spanP may be identified with a normed space
(N, ‖·‖), and let the continuous dual of N , denoted N∗, be a subset of L(P). Suppose that
P+ ⊂ C, where C is an open convex cone in N , and Φ may be extended to C as a continuous
sublinear function.

We recall that Φ is Gâteaux differentiable at q ∈ C if there is q∗ ∈ N∗ such that for
every p ∈ N , the limit

p · q∗ = lim
t→0

Φ(q + tp)− Φ(q)

t

exists. The functional q∗ is called the Gâteaux derivative of Φ at q and is also denoted
by ∇Φ(q). Notice that by definition the Gâteaux derivative is applicable only to interior
points. See Theorems 3.3 and 3.4 for an answer to our two main questions.

If Φ is Gâteaux differentiable at q, taking p = q in the above limit, we recover Euler’s
homogeneous function theorem

q · ∇Φ(q) = Φ(q).

More generally, if Φ is sublinear and has a subgradient S on P+, then we have that q ·S(q) =
Φ(q), for every q ∈ P+, (Hendrickson and Buehler, 1971). The proof also follows from
Proposition 2.4 (a) and Proposition 2.3 (d). This beautiful generalisation of Euler’s theorem
is only visible after extending S and Φ to denormalised densities as homogeneous functions.

Suppose now that a scoring rule S : P → L(P) is given. Then, setting

S(q) = S

(
q

q · 1

)
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for any q ∈ P+, extends S as a 0-homogeneous function to the prediction cone. Here

q · 1 =

∫
Ω
q(x)dµ(x)

is the normalising constant of q. Similarly, let an entropy function Φ : P → R be given.
Setting

Φ(q) = (q · 1)Φ

(
q

q · 1

)
for any q ∈ P+, extends Φ as a 1-homogeneous function to the prediction cone. See Section
4 for an illustration. Working directly with denormalised predictive densities could also be
advantageous in numerical computation (Hyvärinen, 2005, 2007; Dawid and Musio, 2012,
2014).

3. Main Results

Our first result gives a necessary and sufficient condition for existence of a P-integrable
subgradient at a point. The result can be easily generalised to subgradients on P+.

Theorem 3.1 Let Φ : P+ → R be a sublinear function. Then Φ has a P-integrable subgra-
dient at a point q ∈ P+ if and only if there is q∗ ∈ L(P) such that

p · q∗ ≤ Φ′+(p, q)

for all p ∈ P+, with equality for p = q.

In the light of Theorem 1.1 and the above result, we call any sublinear function Φ an
entropy if Φ has a P-integrable subgradient at each point of its domain. In most cases of
practical interest, one may choose the prediction cone appropriately so that Φ′+(·, q) = q∗

for some q∗ ∈ L(P). This means that Φ′+(·, q) is a P-integrable subgradient of Φ at q
and that Φ′+(·, q) = Φ′(·, q) is also a two-sided directional derivative on the subspace O(q)
of spanP. In our next result, we show that if O(q) is a sufficiently large subspace, then
Φ′+(·, q) is the unique P-integrable subgradient of Φ at q.

Theorem 3.2 Let P be a prediction set and Φ : P+ → R be a sublinear function. Suppose
that at a point q ∈ P+ the subspace O(q) of spanP has a trivial annihilator in L(P). If
there is a q∗ ∈ L(P) such that

p · q∗ = Φ′+(p, q) (2)

for all p ∈ P+, then q∗ is the unique P-integrable subgradient of Φ at q.

In the above result, the condition that O(q) has a trivial annihilator in L(P) can be
interpreted to say that the set of directions at which q ∈ P+ is boundary to the cone P+ is
negligible. The latter condition represents an algebraic analogue to the property of q being
a quasi-interior point of P+, which is better known in its topological forms presented in
Fullerton and Braunschweiger (1963); Borwein and Lewis (1992). The collection of all quasi-
interior points of P+ is the quasi-interior of P+. As an illustration, in the next section we
define Shannon and Hyvärinen entropies on positive cones with nonempty quasi-interiors.
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Presently, however, we do not investigate the proposed variant of quasi-interior in full. This
analysis is not necessary for the application of Theorem 3.2 and may be a subject of future
work. Notice also that uniqueness of subgradient is understood and valid only within the
class L(P).

We now consider the case of topological subgradients. Our main assumption is the
following: {

P+ ⊂ C, where C is an open convex cone in a normed space N

Φ : C → R is a continuous sublinear function.
(3)

Theorem 3.3 If (3) holds, then Φ admits a subgradient S : C → N∗.

The result is generally known as the supporting hyperplane theorem. For proof see e.g.
Niculescu and Persson (2006); Borwein and Vanderwerff (2010); Zalinescu (2002); Rudin
(1973). Any subgradient S : C → N∗ of Φ may be identified with a proper scoring rule on
P+ by restricting S to P+.

Theorem 3.4 Assume (3). Then, Φ is Gâteaux differentiable on C if and only if Φ admits
a unique subgradient S : C → N∗. In this case S = ∇Φ is the Gâteaux derivative of Φ.

This is a standard result in convex analysis. See e.g. Borwein and Vanderwerff (2010);
Zalinescu (2002). See Example B.2 for an illustration of the case where the assumption
N∗ ⊂ L(P) is not satisfied.

4. Applications

In this section, we apply our main results to three important entropies: Shannon entropy,
Hyvärinen entropy, and quadratic entropy. For each entropy, we investigate an appropriate
domain with nonempty quasi-interior for which we show the existence of a unique subgra-
dient.

4.1 Shannon Entropy

The Shannon entropy function for densities on Rd is given by

Φ(p) =

∫
Rd

p(x) ln
p(x)

p · 1
dx (4)

where p(x) ≥ 0 is assumed to be sufficiently regular. More facts about Shannon entropy
may be found e.g. in Dawid (2007); Parry et al. (2012); Dawid et al. (2012).

We first show that Shannon entropy may only be defined for nonnegative functions in
a natural way. The kernel of Φ is the function φ(t) = t ln t for t > 0 and φ(0) = 0. Clearly,
φ(t) is strictly convex on t ≥ 0 since, for t > 0, φ′′(t) = 1/t > 0, and φ is continuous at the
endpoint t = 0. Notice that φ(t) has a vertical tangent at t = 0 since φ′(t) = ln t + 1. We
conclude that φ(t) cannot be extended as a convex function to t < 0. This furnishes our
claim.

The positive cone of L1(Rd) comprises of all nonnegative functions in L1(Rd) and is
denoted by L1

+(Rd). In Proposition B.1 we give a direct proof that L1
+(Rd) is a nowhere
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dense subset of L1(Rd). Since the domain of Shannon entropy is a subset of L1
+(Rd), it too

is a nowhere dense set.
We now proceed to find a suitable prediction set. For a ≥ d+ 1, we set

P+ =
{
p ∈ C(R)

∣∣∣ p(x) > 0 ,∃C1, C2 > 0 :
C1

(1 + |x|)a
≤ p(x) ≤ C2

(1 + |x|)d+1

}
.

Notice that L(P) ⊂ L1
loc(Rd). Indeed, for any f ∈ L(P) consider

pt(x) =

1 0 < |x| < t(
1+t

1+|x|

)d+1
t ≤ |x| .

Since pt ∈ P+, the P-integrability of f implies that∫
|x|≤t
|f(x)| dx <∞

for all t > 0.
Let us next see that for any q ∈ P+, O(q) has a trivial annihilator in L(P). Clearly,

O(q) contains all p ∈ spanP that have faster or equal decay at infinity compared to q.
Suppose that f ∈ O(q)⊥. Choosing an appropriate approximation of the identity, {pn},
pn ∈ O(q), we get that f ∗ pn(x)→ f(x) for every x in the Lebesgue set of f . Hence f = 0
a.e. on Rd. We conclude that O(q)⊥ = {0}.

After this preparation, we may now define Φ rigorously as the map from P+ to R given
by (4). Strict convexity of Φ follows from the strict convexity of t ln t, for t ≥ 0, while its
1-homogeneity is trivial. Therefore, Φ is strictly sublinear on P+. Let us compute the right
directional derivative of Φ.

For q ∈ P+ and p ∈ D(q), we set qt = q + tp. We have

lim
t→0+

Φ(q + tp)− Φ(q)

t
=

d

dt

∣∣∣∣∣
t=0

(
qt · ln

qt
qt · 1

)
= p · ln q

q · 1
+ q ·

(
p

q
− p · 1
q · 1

)
= p · ln q

q · 1
.

Therefore,

Φ′+(p, q) =

∫
Rd

p(x) ln
q(x)

q · 1
dx.

Clearly, the function

S(q)(x) = ln
q(x)

q · 1
is in L(P). Indeed, the claim follows from the fact that S(q) is continuous in x and grows
logarithmically as |x| → ∞. In view of Theorem 3.2, S is the unique P-integrable subgra-
dient of Φ on P+ since Φ′+(p, q) = p · S(q) for every p, q ∈ P+. The map is known as the
logarithmic scoring rule.
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The uniqueness of the logarithmic scoring rule as a subgradient of Shannon entropy is
in no way an absolute fact. Using the Hahn-Banach theorem as illustrated in Example B.3
and the fact that L1

+(Rd) consists entirely of boundary points, one may construct other
subgradients of Φ that lie outside L(P). Moreover, if q lies on the quasi-boundary of P+

(i.e. the points where the condition O(q)⊥ = {0} is violated), then uniqueness will fail even
within L(P).

4.2 Hyvärinen Entropy

Hyvärinen entropy for densities on Rd is defined as

Φ(p) =

∫
Rd

|∇p(x)|2

p(x)
dx. (5)

Here ∇ is the gradient on Rd. Hyvärinen and related entropies are considered e.g. in Parry
et al. (2012); Ehm and Gneiting (2012); Forbes and Lauritzen (2014); Dawid and Musio
(2012); Hyvärinen (2005, 2007); Sánchez-Moreno et al. (2012).

We first show that there is no natural way to extend Hyvärinen entropy to signed
densities. For simplicity, we confine ourselves to the case d = 1. Suppose that p changes
sign at some x0 ∈ R that has multiplicity one. The assumption is generic and it means
that x0 is not an inflection point of p. It follows that the above integral is divergent at x0.
Indeed, the claim is a direct consequence of the asymptotic expansion of the term

|p′(x)|2

p(x)
=

1

x− x0
+O(x− x0)

near x0. On the other hand, if p has a zero of higher multiplicity at x0, one may check
that the above asymptotics will be bounded and the integral will be convergent in a neigh-
bourhood of x0. Nevertheless, the example shows that Φ cannot be generally defined for
densities that change sign.

We proceed to define a suitable domain for Φ. Suppose that P+ consists of all positive,
twice continuously differentiable functions p(x) on Rd that satisfy the bounds:

(a) there are C1 > 0 and k > 0 such that∣∣∣∣∇p(x)

p(x)

∣∣∣∣+

∣∣∣∣∆p(x)

p(x)

∣∣∣∣ ≤ C1(1 + |x|)k;

(b) there is C2 > 0 such that

|p(x)| ≤ C2

(1 + |x|)d+1+k2
,

where ∆ = ∂2/∂x2
1 + · · · + ∂2/∂x2

d is the Laplacian on Rd. In view of the above, we have
the following limit

lim
R→∞

1

R

∫
|y|=R

(
y∇q(y)

q(y)

)
p(y)dy = 0 (6)
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for any p, q ∈ P+. Note that here

y∇q(y) = y1
∂q(y)

∂y1
+ · · ·+ yd∂q(y)

∂yd

denotes the scalar product of y and ∇q(y) and the integral in (6) is a surface integral over
the sphere centred at the origin of radius R. The class P is broad, e.g. it contains the
Gaussians, and all positive continuous densities that have bounded first and second-order
derivatives and decay at infinity sufficiently fast. Just like in Section 4.1, we have that
L(P) ⊂ L1

loc(Rd) and that for any q ∈ P+ the annihilator of O(q) in L(P) is trivial. In the
light of Proposition B.1, P+ is nowhere dense in L1(Rd) as P+ ⊂ L1

+(Rd).
We now formally define Hyvärinen entropy as the map from P+ to R given in (5).

Convexity of Φ follows from the convexity of the function

φ(t, t1, . . . , dd) =
t21 + · · ·+ t2d

t
, for t > 0, (t1, . . . , td) ∈ Rd,

while its 1-homogeneity is trivial. Hence, Φ is sublinear. Let us compute its right directional
derivative.

For q ∈ P+ and p ∈ D(q), we set qt = q + tp. We have

lim
t→0+

Φ(q + tp)− Φ(q)

t
=

∫
Rd

d

dt

∣∣∣∣∣
t=0

(
|∇qt(x)|2

qt(x)

)
dx

=

∫
Rd

(
2
∇q(x)

q(x)

∇p(x)

p(x)
− |∇q(x)|2

q2(x)

)
p(x)dx.

By integration by parts we get

∫
|x|≤R

(
2∇q(x)∇p(x)

q(x)
− |∇q(x)|2

q2(x)
p(x)

)
dx

=

∫
|x|≤R

(
−2∆q(x)

q(x)
+
|∇q(x)|2

q2(x)

)
p(x)dx+

2

R

∫
|y|=R

(
y∇q(y)

q(y)

)
p(y)dy.

Letting R→∞ and using (6), we obtain

Φ′+(p, q) =

∫
Rd

(
−2∆q(x)

q(x)
+
|∇q(x)|2

q2(x)

)
p(x)dx.

The assumptions on P+ guarantee that

S(q)(x) = −2∆q(x)

q(x)
+
|∇q(x)|2

q2(x)

is P-integrable for every q ∈ P+. In view of Theorem 3.2, S(q) is the unique P-integrable
subgradient of Φ on P+. The map is known as the Hÿvarinen scoring rule (Parry et al.,
2012).
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In fact, S(q) is a strict subgradient of Φ on P+. This can be shown if we notice that
the divergence induced by S has the representation

p · S(p)− p · S(q) =

∫
Rd

∣∣∣∣∇p(x)

p(x)
− ∇q(x)

q(x)

∣∣∣∣2 p(x)dx.

The latter identity can be proved by integration by parts. The divergence is zero if and
only if

∇(ln p(x)− ln q(x)) = 0.

This is equivalent to p = Cq for some constant C > 0, i.e., p and q being positively collinear.
This concludes the proof of the claim.

4.3 Quadratic Entropy

Here we consider the quadratic entropy

Φ(q) =
1

q · 1

∫
Ω
q2(x)dx, (7)

where (Ω,A, µ) is a Lebesgue measure space with Ω ⊂ Rd. In what follows, we show that
its Gâteaux derivative is the quadratic scoring rule, also known as Brier score (Brier, 1950).
The quadratic entropy is a member of the important family of power entropy functions. The
corresponding power scoring rules have been studied in connection to robust estimation e.g.
in Basu et al. (1998); Kanamori and Fujisawa (2015, 2014).

We proceed to choose a suitable domain for Φ. In contrast to the previous two entropies
we now introduce a topology. To that end, we begin with a description of some normed
spaces. Let w : Ω→ [0,∞) be a measurable function which we call a weight. By Lp(Ω, w),
for p ≥ 1, we denote the Lebesgue space of functions on Ω whose p-th power is absolutely
integrable with respect to the weight w(x). By ‖·‖p,w we denote the corresponding weighted
Lp-norm. When w is identically equal to one we get the usual Lebesgue space and norm.
In this case we drop w from our notation. We now set

w(x) = (1 + |x|)d+1.

Notice that L2(Ω, w) embeds continuously in L1(Ω). Indeed, for f ∈ L1(Ω), we have∫
Ω
|f(x)| dx =

∫
Ω
w−1/2(x) |f(x)|w1/2(x)dx

≤
(∫

Ω
w−1(x)dx

) 1
2
(∫

Ω
|f(x)|2w(x)dx

) 1
2

≤ C ‖f‖2,w ,

where C > 0 is a constant. Clearly, L2(Ω, w) also embeds continuously in L2(Ω) and hence
the same conclusion holds for L2(Ω, w) for all intermediate spaces Lp(Ω) with 1 ≤ p ≤ 2.
Hence, we have the inequality

‖f‖p ≤ C ‖f‖2,w
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for some fixed C > 0 and all p ∈ [1, 2].

We have that f ∈ L2(Ω, w) if and only if fw1/2 ∈ L2(Ω). Clearly, the weight is needed
only when Ω is unbounded as otherwise the weighted and the ordinary Lp-norms are equiv-
alent. The continuous dual space of L2(Ω, w) may be identified with the space L2(Ω, w−1).
Therefore, g ∈ L2(Ω, w−1) if and only if gw−1/2 ∈ L2(Ω). Hence, the dual space L2(Ω, w−1)
contains the constants and also the elements of L2(Ω, w).

We now specify a prediction set P ⊂ L2
+(Ω, w) with the following property: there are

constants k1 > 0 and k2 > 0 such that

k1 ≤ ‖q‖2,w ≤ k2

for all q ∈ P. Choose 0 < ε < min(1, k1). For p ∈ L2(Ω), let Bρ(p) denote the open ball
about p of radius ρ > 0. Choose δ > 0 so small that for every p ∈ Bδ(0) we have ‖p‖1 ≤ ε
and ‖p‖2,w ≤ ε. Let q ∈ P and consider r ∈ Bδ(q). It is easy to show that

k1 − ε ≤ ‖r‖2,w ≤ k2 + ε

for all r ∈ Bδ(q). Similarly, we also have

1− ε ≤ r · 1 ≤ 1 + ε

for all r ∈ Bδ(q). Here we have used the fact that r = p+ q, where q · 1 = 1 and ‖p‖1 ≤ ε.
We now set

C0 = P +Bδ(0) = ∪q∈PBδ(q).

It follows that C0 is convex as both P and Bδ(0) are convex. Finally, let C = C+
0 be the

cone of C0. Clearly, C is an open convex cone in L2(Ω, w).

We may now formally define Φ as the map from C to R given by (7). We have that Φ is
strictly convex on C0 as the kernel function φ(t) = t2 is strictly convex for t ∈ R. Therefore,
Φ is strictly sublinear on C. It is not hard to see that Φ is also continuous on C. Theorem
3.3 implies that Φ has a subgradient on C. The following computation shows that Φ is
Gâteaux differentiable. Indeed, for q ∈ C and p ∈ L2(Ω, w), we have

lim
t→0

Φ(q + tp)− Φ(q)

t
=

∫
Ω

d

dt

∣∣∣∣∣
t=0

(q(x) + tp(x))2

(q + tp) · 1
dx

= 2

∫
Ω

q(x)p(x)

q · 1
dx−

∫
Ω

q2(x)

(q · 1)2
dx

∫
Ω
p(x)dx.

We obtain that

∇Φ(q) =
2q

q · 1
− q · q

(q · 1)2

is the Gâteaux derivative of Φ as clearly ∇Φ(q) ∈ L2(Ω, w−1). In view of Theorem 3.4,
S = ∇Φ|P+ defines a strictly proper scoring rule on P+. We have that ∇Φ is the unique
subgradient of quadratic entropy on the cone C, but as discussed before, by using the Hahn-
Banach theorem one may show that uniqueness fails on P+ when Ω is unbounded. The rule
S is known as the quadratic scoring rule.
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5. Conclusion

We were originally motivated to understand the implications of the fact that Shannon and
Hyvärinen entropies are only finite on domains with empty interiors. As no notion of
functional derivative is applicable to these entropies, the question whether the logarithmic
and Hyvärinen scoring rules are the unique subgradients of their respective entropy functions
is not obvious. In contrast, the quadratic entropy may be continuously extended to signed
densities, which allows us to interpret the quadratic scoring rule as the Gâteaux derivative
of its entropy. We realised that in order to answer the titular question of the paper, one
must introduce additional structures to the basic measure-theoretic framework known in
the literature of scoring rules (Hendrickson and Buehler, 1971). The most important new
aspect is the notion of interior and its refinement (known as quasi-interior) in the context
of domains with empty interior. Another crucially important idea is to use directional
derivatives to describe the subdifferentials of entropy functions. Finally, our approach
marks a shift in emphasis from proper scoring rules to a greater focus on entropy functions.
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Appendix A. Proofs

Lemma A.1 Let P be a prediction set and Φ : P+ → R be a 1-homogeneous function. If
Φ has a (strict) subgradient on P+, then Φ is a (strictly) sublinear function.

Proof Let S : P+ → LinP be a (strict) subgradient of Φ. Then S (strictly) satisfies

Φ(p) ≥ p · S((1− λ)p+ λq)

Φ(q) ≥ q · S((1− λ)p+ λq)

for every p, q ∈ P+ (p and q not positively collinear), and every 0 < λ < 1. Multiplying the
first inequality by 1− λ, the second one by λ, and then adding them up, we obtain that Φ
(strictly) satisfies

Φ(1− λ)p+ λq) ≤ (1− λ)Φ(p) + λΦ(q).

Proof [of Lemma 2.1] We first show that cone(P+ − q) ⊂ D(q). It is easy to see that
D(q) is closed under taking conic combinations. The claim follows from the fact that
(P+− q) ⊂ D(q). We now show that D(q) ⊂ cone(P+− q). If p ∈ D(q), then there is εp > 0
and r ∈ P+ such that q + εpp = r. Then p = (r − q)ε−1

p and hence p ∈ cone(P+ − q).
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Proof [of Proposition 2.3] (a) For p ∈ D(q) arbitrary, consider the line in spanP with
parametric equation

γ(t) = q + t(p− q), t ∈ R,

passing through q and p. Clearly, γ(0) = q and γ(1) = p. Moreover, there is some ε > 0
such that the interval [0, ε] is mapped entirely in P+ under γ (if p ∈ P+, then ε ≥ 1). Then
the function

φ(t) = Φ(q + t(p− q)), t ∈ [0, ε],

is convex and its slope function

sφ(t1, t2) =
φ(t2)− φ(t1)

t2 − t1
, t1, t2 ∈ [0, ε],

is nondecreasing (Rockafellar, 1972; Niculescu and Persson, 2006). We have that

Φ′+(p, q) = lim
t2→0+

φ(t2)− φ(0)

t2
= inf

t2>0

φ(t2)− φ(0)

t2
.

If p ∈ O(q), then there is some δ > 0 such that the interval [−δ, δ] is mapped entirely in
P+ under γ. Let −δ ≤ t1 < 0 < t2 ≤ δ. To prove that Φ′+(p, q) is finite, we consider

φ(0)− φ(t1)

−t1
≤ φ(t2)− φ(0)

t2
,

and take the infimum in t2.

(b) Homogeneity of Φ′+(·, q) follows from:

Φ+(λp, q) = lim
τ→0+

Φ(q + τλp)− Φ(q)

τ
≤ λ lim

τ→0+

Φ(q + λτp)− Φ(q)

λτ

= λΦ+(p, q).

Let p1, p2 ∈ D(q). Subadditivity of Φ′+(·, q) follows from:

Φ′+(p1 + p2, q) = lim
τ→0+

Φ(q + τ(p1 + p2))− Φ(q)

τ

≤ lim
τ→0+

Φ(q/2 + τp1)− Φ(q)/2

τ
+ lim
τ→0+

Φ(q/2 + τp2)− Φ(q)/2

τ

= lim
τ→0+

Φ(q + 2τp1)− Φ(q)

2τ
+ lim
τ→0+

Φ(q + 2τp2)− Φ(q)

2τ

= Φ′+(p1, q) + Φ′+(p2, q).

(c) The claim follows from

Φ′+(p, λq) = lim
τ→0+

Φ(λq + τp)− Φ(λq)

τ
= lim

τ→0+

Φ(q + τp/λ)− Φ(q)

τ/λ

= Φ′+(p, q).
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(d) We have

Φ(p) ≥ Φ(q + p)− Φ(q) ≥ Φ(q + τp)− Φ(q)

τ
≥ Φ′+(p, q),

where 0 < τ < 1. The first inequality follows from sublinearity of Φ, while the second and
third follow from the fact that the slope function of Φ is nondecreasing. It remains to show
that Φ(q) = Φ′+(q, q). This follows immediately from

Φ(q) = lim
τ→0+

(1 + τ)Φ(q)− Φ(q)

τ
= lim

τ→0+

Φ(q + τq)− Φ(q)

τ

= Φ′+(q, q).

(e) The claim is a direct consequence of

0 = Φ′+(0, q) = Φ′+(p− p, q) ≤ Φ′+(p, q) + Φ′+(−p, q).

(f) To show that O′(q) is a linear subspace of O(q) it is enough to show that it is closed
under scalar multiplication and vector addition. Let λ ∈ R and p ∈ O′(q). Then, for λ ≥ 0,
Φ′+(λp, q) = λΦ′+(p, q). Analogously, for λ < 0 we have

Φ′+(λp, q) = Φ′+(−λ(−p), q) = −λΦ′+(−p, q) = λ(−Φ′+(−p, q)) = λΦ′+(p, q).

Therefore, Φ′+(λp, q) = λΦ′+(p, q) for any λ ∈ R and p ∈ O′(q). Then multiplying by λ both
sides of the identity

−Φ′+(−p, q) = Φ′+(p, q)

and using the previous identity, we get that λp ∈ O′(q). Hence, O′(q) is closed under scalar
multiplication.

Suppose now that p, r ∈ O′(q). We have

Φ′+(p+ r, q) ≤ Φ′+(p, q) + Φ′+(r, q) = −(Φ′+(−p, q) + Φ′+(−r, q))
≤ −Φ′+(−p− r, q) ≤ Φ′+(p+ r, q),

where the last inequality follows from (e). Clearly, we must have equalities throughout. In
particular,

−Φ′+(−p− r, q) = Φ′+(p+ r, q)

and

Φ′+(p+ r, q) = Φ′+(p, q) + Φ′+(r, q).

Hence p+r ∈ O′(q). We conclude that O′(q) is a linear subspace and Φ′+(·, q)
∣∣
O′(q)

is linear.

Proof [of Proposition 2.4] (a) The sufficient part of the claim follows from Proposition 2.3
(d). Let us now show the necessary part. To that end, let q∗ ∈ LinP be a subgradient of
Φ at q, and let p ∈ P+ be arbitrary. Setting qt = q + (1 − t)p, we have Φ(qt) ≥ qt · q∗ for
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all t ∈ [0, 1]. Subtracting Φ(q) from both sides of the inequality and dividing by (1− t), for
t ∈ (0, 1), we get

Φ(q + (1− t)p)− Φ(q)

1− t
≥ p · q∗.

Letting t ↑ 1, we get
Φ′+(p, q) ≥ p · q∗

as desired.
(b) The claim follows by restricting Φ to 1-dimensional affine spaces through q. On

these spaces Φ is convex and differentiable and therefore has a unique subgradient. Since
these subspaces cover the whole of spanP, it follows that the directional derivative Φ′(·, q)
is the unique subgradient of Φ there.

(c) In view of Proposition 2.3 (a), Φ′+(p, q) is finite for each p ∈ O(q) = spanP. The
hypothesis implies that there is at least one 1-dimensional linear subspace of spanP on
which Φ′+(·, q) is not linear. There are infinitely many ways we can choose a linear function
on that space that is dominated by Φ′+(·, q). The claim now follows from the Hahn-Banach
theorem stated below as Theorem B.4.

(d) Since O(q) 6= spanP, it follows that P+ \ O(q) is nonempty. Take any p in that set
and consider the 1-dimensional linear space generated by the span of p. Since Φ′+(·, q) is
defined only on its positive half-space, there are infinitely many linear functions that are
dominated by Φ′+(·, q) on the whole space. The proof now follows from Theorem B.4.

(e) There is no element of LinP that satisfies the condition in part (a) of this proposi-
tion. Therefore, ∂Φ(q) = ∅.

Proof [of Theorem 3.1] Suppose that q∗ ∈ L(P) satisfies p · q∗ ≤ Φ′+(p, q) for all p ∈ P+,
with equality for p = q. In view of Proposition 2.3 (d), we have that p · q∗ ≤ Φ(p) for all
p ∈ P+, and q · q∗ = Φ(q). Hence, q∗ is a P-integrable subgradient of Φ at q.

The converse claim, that is, if q∗ is a P-integrable subgradient of Φ at q, then p · q∗ ≤
Φ′+(p, q) for all p ∈ P+, with equality for p = q, follows from Proposition 2.4 (a).

Proof [of Theorem 3.2] The hypothesis implies that Φ′+(·, q) is linear on O(q) ⊂ P+. By
restricting Φ to 1-dimensional subspaces of O(q) it follows immediately that any subgradi-
ent of Φ must agree with q∗ on O(q). The assumption that O(q)⊥ = {0} implies that Φ
may have at most one P-integrable subgradient at q. Then the claim follows from the fact
that q∗ is a subgradient of Φ at q.

Appendix B. Some Additional Facts

The positive cones in many standard function spaces are nowhere dense sets. Let us show
this for the Lebesgue space L1(Rd). The positive cone of L1(Rd) consists of all Lebesgue
integrable functions f ≥ 0 a.e. on Rd and is denoted by L1

+(Rd). We recall that a set in a
topological vector space is nowhere dense if its closure has empty interior.

Proposition B.1 The positive cone of L1(Rd) is nowhere dense.
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Proof We show that for every f ≥ 0 a.e., there is g ≥ 0 a.e. such that, for every α > 0,
f − αg 6∈ L1

+(Ω). This means that no open ball about f is contained in L1
+(Rd). Since

L1
+(Rd) is closed, then this would imply that L1

+(Rd) is nowhere dense.

To prove our claim, we use the fact that there is no absolutely convergent series with a
slowest rate of decay at infinity. We begin by partitioning Rd into dyadic regions

ωk = {2k ≤ |x| < 2k+1}

for k ∈ Z. For f ∈ L1(Rd), we set

ak =

∫
ωk

f(x)dx.

We have that the series
∞∑
k=0

ak =

∫
Rd

f(x)dx

is absolutely convergent. If rk =
∑

i≥k ai is the tail of the series for each k, then the series∑
k≥0 ak/

√
rk is also convergent (Rudin, 1976). Notice that the ratio of the common term

of the second to the first series tends to infinity as k → ∞. Therefore, the second series
has a strictly slower rate of convergence. There exists a function g ∈ L1

+(Rd) such that the
integrals of g on ωk are bk = ak/

√
rk and

∞∑
k=0

bk =

∫
Rd

g(x)dx.

Clearly, for any α > 0, the difference f − αg changes sign for some ωk, and hence f − αg 6∈
L1

+(Rd).

The next example illustrates the notion of topological subgradient in the case when the
assumption N∗ ⊂ L(P) is not satisfied.

Example B.2 Consider a Lebesgue measure space (Ω,A, µ) with Ω a compact subset of
Rd. We set P+ to be the positive cone of C(Ω), that is, the set of all nonnegative continuous
functions on Ω. The continuous dual of C(Ω) is the space of all real-valued Radon measures
on Ω. The fact that P+ contains constants implies that L(P) ⊆ L1(Ω). Actually, L(P) =
L1(Ω) and hence the P-integrable functions are the Radon measures that have a Lebesgue
density. Since L1(Ω) ( (C(Ω))∗, we see that in this case the notion of a P-integrable
subgradient is more restrictive than that of a topological subgradient.

We proceed to examine the implications of the latter observation on a concrete sublinear
function. Let Φ : C(Ω)→ R be the supremum function, that is,

Φ(p) = sup
x∈Ω

p(x).

It is easy to check that Φ is non-strictly sublinear and continuous. The supporting hyper-
plane theorem guarantees the existence of a topological subgradient of Φ at each point in its
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domain that is a real Radon measure. Let us see whether the subgradient is regular enough
to be a proper scoring rule.

We first demonstrate that there are points q ∈ P+ at which Φ has no subgradient in
L(P). To that end, let M(q) denote the set of modes of q, that is, the subset of Ω where q
reaches its maximum. Notice that M(q) is always compact. It can be shown that

Φ′+(p, q) = sup
x∈M(q)

p(x),

the proof of which is left to the reader. When M(q) = {x0} is a singleton, Φ′+(·, q) =
δ(x − x0) is Dirac’s delta function. Clearly, in this case Φ is Gâteaux differentiable with
derivative δ(x − x0). We claim that Φ has no P-integrable subgradient for any density q
with µ(M(q)) = 0.

Suppose conversely that q∗ ∈ L(P), q∗ 6= 0, is a subgradient of Φ at q. Then

Φ′+(p, q) ≥ p · q∗

for all p ∈ P+. We shall show that this inequality implies q∗(x) ≤ 0 a.e. on Ω, which leads
to a contradiction with Φ(q) = q · q∗ > 0.

To show the latter claim, notice that Ω\M(q) is open, and hence for any y ∈ Ω\M(q),
there is εy > 0 such that the ball about y of radius εy lies in the complement of M(q) with
respect to Ω. Let {pk} be a sequence of densities approximating δ(x−y) entirely supported
on this ball. Since Φ′+(pk, q) = 0, we get that pk · q∗ ≤ 0. If y is a Lebesgue point of q∗,
then we have the limit

lim
k→∞

pk · q∗ = δ(· − y) · q∗ = q∗(y).

Since almost every point of q∗ is a Lebesgue point, we get that q∗(x) ≤ 0 a.e. on Ω. This
completes the proof of the claim.

In the case µ(M(q)) > 0, we may find a P-integrable subgradient of Φ at q. Consider
the function

q∗(x) =

{
1

µ(M(q)) x ∈M(q)

0 x ∈ Ω \M(q).

Clearly, q · q∗ = supx∈Ω q(x) and p · q∗ ≤ supx∈Ω p(x) for all p ∈ P+. This furnishes our
claim.

In our final example, we illustrate the fact that at boundary points a sublinear function
has either no subgradient, or infinitely many.

Example B.3 Take Φ(x, y) = x + y on R2
+ = {(x, y) |x ≥ 0, y ≥ 0}. The graph of Φ is

a part of a plane, so it is easy to see that Φ has infinitely many supporting planes at the
boundaries of R2

+. Consider now

Φ(x, y) = x ln
x

x+ y
+ y ln

y

x+ y

on R2
+, which is Shannon entropy for binary variables. A computation shows that

∇Φ(x, y) = ln
x

x+ y
+ ln

y

x+ y
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and hence ∇Φ(x, y) → −∞ when (x, y) tends to the boundary of R2
+. This means that

Φ has vertical tangent planes through the coordinate axes, which implies that Φ has no
subgradient on the boundary of its domain.

The situation is the same when P+ is a subset of an infinite dimensional vector space.
For example, one may use the Hahn-Banach theorem presented below to show the existence
of multiple supporting hyperplanes at boundary points q for which Φ′+(p, q) is finite for all
p ∈ P+. If, instead, there is p ∈ P+ for which Φ′+(p, q) = −∞, then Φ has no subgradient
at q.

We now state a slight generalisation of the classical Hahn-Banach theorem. Let E be a
real vector space and K ⊂ E be a convex cone.

Theorem B.4 (Hahn-Banach theorem) Let φ : K → R be a sublinear function and
l0 : E0 → R be a linear functional on a linear subspace E0 ⊆ E which is dominated by φ on
E0 ∩K, i.e.

l0(q) ≤ φ(q), ∀q ∈ E0 ∩K.

Then there exists a linear extension l : E → R of l0 to the whole space E such that

l(q) = l0(q), ∀q ∈ E0,

l(q) ≤ φ(q), ∀q ∈ E ∩K.

In the classical formulation of the theorem, we have K = E. The proof of the version
with K ⊂ E is the same. In fact, if anything, the condition K ⊂ E is easier to satisfy than
K = E when extending l0.
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