
Journal of Machine Learning Research 17 (2016) 1-51 Submitted 8/15; Revised 11/16; Published 12/16

Approximate Newton Methods for Policy Search in Markov
Decision Processes

Thomas Furmston T.Furmston@cs.ucl.ac.uk
Department of Computer Science
University College London
London, WC1E 6BT

Guy Lever G.Lever@cs.ucl.ac.uk
Department of Computer Science
University College London
London, WC1E 6BT

David Barber D.Barber@cs.ucl.ac.uk

Department of Computer Science

University College London

London, WC1E 6BT

Editor: Joelle Pineau

Abstract

Approximate Newton methods are standard optimization tools which aim to maintain
the benefits of Newton’s method, such as a fast rate of convergence, while alleviating
its drawbacks, such as computationally expensive calculation or estimation of the inverse
Hessian. In this work we investigate approximate Newton methods for policy optimization
in Markov decision processes (MDPs). We first analyse the structure of the Hessian of the
total expected reward, which is a standard objective function for MDPs. We show that,
like the gradient, the Hessian exhibits useful structure in the context of MDPs and we use
this analysis to motivate two Gauss-Newton methods for MDPs. Like the Gauss-Newton
method for non-linear least squares, these methods drop certain terms in the Hessian.
The approximate Hessians possess desirable properties, such as negative definiteness, and
we demonstrate several important performance guarantees including guaranteed ascent
directions, invariance to affine transformation of the parameter space and convergence
guarantees. We finally provide a unifying perspective of key policy search algorithms,
demonstrating that our second Gauss-Newton algorithm is closely related to both the EM-
algorithm and natural gradient ascent applied to MDPs, but performs significantly better
in practice on a range of challenging domains.

Keywords: Markov decision processes, reinforcement learning, Newton method, function
approximation

1. Introduction

Markov decision processes (MDPs) are the standard model for optimal control in a fully
observable environment (Bertsekas, 2010). Strong empirical results have been obtained in
numerous challenging real-world optimal control problems using the MDP framework. This
includes problems of non-linear control (Stengel, 1993; Li and Todorov, 2004; Todorov and

c©2016 Thomas Furmston, Guy Lever, and David Barber.

Furmston, Lever and Barber

Tassa, 2009; Deisenroth and Rasmussen, 2011; Rawlik et al., 2012; Spall and Cristion, 1998;
Levine and Koltun, 2013b; Schulman et al., 2015; Heess et al., 2015; Lillicrap et al., 2016),
robotic applications (Kober and Peters, 2011; Kohl and Stone, 2004; Vlassis et al., 2009),
biological movement systems (Li, 2006), traffic management (Richter et al., 2007; Srinivasan
et al., 2006), helicopter flight control (Abbeel et al., 2007), elevator scheduling (Crites and
Barto, 1995) and numerous games, including chess (Veness et al., 2009), go (Silver et al.,
2016; Gelly and Silver, 2008), backgammon (Tesauro, 1994) and Atari 2600 video games
(Mnih et al., 2015; Schulman et al., 2015).

It is well known that the global optimum of a MDP with finite state and action sets
can be obtained through methods based on dynamic programming, such as value iteration
(Bellman, 1957) and policy iteration (Howard, 1960). However, these techniques are known
to suffer from the curse of dimensionality, which makes them infeasible for many real-world
problems of interest. As a result, most research in the reinforcement learning and control
theory literature has focused on obtaining approximate or locally optimal solutions. There
exists a broad spectrum of such techniques, including approximate dynamic programming
methods (Bertsekas, 2010; Mnih et al., 2015), tree search methods (Russell and Norvig,
2009; Kocsis and Szepesvári, 2006; Browne et al., 2012; Silver et al., 2016), local trajectory-
optimization techniques, such as differential dynamic programming (Jacobson and Mayne,
1970) and iLQG (Li and Todorov, 2006), and policy search methods (Williams, 1992; Baxter
and Bartlett, 2001; Sutton et al., 2000; Marbach and Tsitsiklis, 2001; Kakade, 2002; Kober
and Peters, 2011; Levine and Koltun, 2013b; Silver et al., 2014; Schulman et al., 2015; Heess
et al., 2015; Lillicrap et al., 2016).

The focus of this paper is on policy search methods, which are a family of algorithms
that have proven extremely popular in recent years, and which have numerous desirable
properties that make them attractive in practice. Policy search algorithms are typically
specialized applications of techniques from numerical optimization (Nocedal and Wright,
2006; Dempster et al., 1977). As such, the controller is given a differentiable parame-
terisation and an objective function is defined in terms of this parameterisation. Local
information about the objective function, such as the gradient, is then used to update the
parameters of the controller in an incremental manner until the algorithm converges to a
local optimum of the objective function. There are several benefits to such an approach:
the smooth updates of the control parameters endow these algorithms with very general
convergence guarantees; as performance is improved at each iteration (or at least on average
in stochastic policy search methods) these algorithms have good anytime performance prop-
erties; it is not necessary to approximate the value function, which is typically a difficult
function to approximate—instead it is only necessary to approximate a low-dimensional
projection of the value function, an observation which has led to the emergence of so called
actor-critic methods (Konda and Tsitsiklis, 2003, 1999; Bhatnagar et al., 2008, 2009); policy
search methods are easily extendable to models for optimal control in a partially observable
environment, such as the Finite State Controllers (Meuleau et al., 1999; Toussaint et al.,
2006).

In (stochastic) gradient ascent (Williams, 1992; Baxter and Bartlett, 2001; Sutton et al.,
2000) the control parameters are updated by moving in the direction of the gradient of an
objective function. While gradient ascent has enjoyed some success, it suffers from serious
issues that can hinder its performance: specifically, it is not scale invariant (Nocedal and

2

Approximate Newton Methods for Policy Search in Markov Decision Processes

Wright, 2006) and the search direction is often poorly-scaled, i.e., the variation of the
objective function differs dramatically along the different components of the gradient. Poor
scaling of the gradient leads to a poor rate of convergence (Nocedal and Wright, 2006).
It also makes the construction of a good step size sequence a difficult problem, which is
an important issue in stochastic methods.1 Poor scaling is a well known problem with
gradient ascent and alternative numerical optimization techniques have been considered in
the policy search literature. Two approaches that have proven to be particularly popular are
expectation maximization (Dempster et al., 1977) and natural gradient ascent (Amari, 1997,
1998; Amari et al., 1992), which have both been successfully applied to various challenging
MDPs (see the works of Dayan and Hinton (1997); Kober and Peters (2009); Toussaint
et al. (2011); Levine and Koltun (2013a) and Kakade (2002); Bagnell and Schneider (2003)
respectively).

An avenue of research that has received less attention is the application of Newton’s
method to Markov decision processes. Although such an extension of the GPOMDP algo-
rithm is provided in the work of Baxter and Bartlett (2001), they give no empirical results in
either that article or the accompanying paper of empirical comparisons (Baxter et al., 2001).
There has since been only a limited amount of research into using the second order informa-
tion contained in the Hessian during the parameter update. To the best of our knowledge
only two attempts have been made: in the work of Schraudolph et al. (2006) an on-line
estimate of a Hessian-vector product is used to adapt the step size sequence in an on-line
manner; in the work of Ngo et al. (2011), Bayesian policy gradient methods (Ghavamzadeh
and Engel, 2007) are extended to Newton’s method. There are several reasons for this lack
of interest. Firstly, in many problems the construction and inversion of the Hessian is too
computationally expensive to be feasible. Additionally, the objective function of a MDP is
typically not concave, and so the Hessian is not guaranteed to be negative-definite. As a
result, the search direction of Newton’s method may not be an ascent direction, and hence a
parameter update could actually lower the objective. Additionally, the variance of sample-
based estimators of the Hessian will be larger than that of estimators of the gradient. This
is an important point because the variance of gradient estimates can be a problematic issue
and various methods, such as baselines (Weaver and Tao, 2001; Greensmith et al., 2004),
exist to reduce the variance.

Many of these problems are not particular to Markov decision processes, but are general
longstanding issues that plague Newton’s method. Various methods have been developed
in the optimization literature to alleviate these issues, while also maintaining desirable
properties of Newton’s method. For instance, quasi-Newton methods were designed to
efficiently mimic Newton’s method using only evaluations of the gradient obtained during
previous iterations of the algorithm. These methods have low computational costs, a super-
linear rate of convergence and have proven to be extremely effective in practice. See the work
of Nocedal and Wright (2006) for an introduction to quasi-Newton methods. Alternatively,
the well-known Gauss-Newton method is a popular approach that aims to efficiently mimic
Newton’s method. The Gauss-Newton method is particular to non-linear least squares
objective functions, for which the Hessian has a particular structure. Due to this structure
there exist certain terms in the Hessian that can be used as a useful proxy for the Hessian

1. This is because line search techniques lose much of their desirability in stochastic numerical optimization
algorithms, due to variance in the evaluations.

3

Furmston, Lever and Barber

itself, with the resulting algorithm having various desirable properties. For instance, the
preconditioning matrix used in the Gauss-Newton method is guaranteed to be positive-
semidefinite, so that the non-linear least squares objective is guaranteed not to increase for
a sufficiently small step size.

While a straightforward application of quasi-Newton methods will not typically be pos-
sible for MDPs,2 in this paper we consider whether an analogue to the Gauss-Newton
method exists, so that the benefits of such methods can be applied to MDPs. The specific
contributions are as follows:

• In Section 3, we present an analysis of the Hessian of the total expected reward, which
is a standard objective function for MDPs. Our starting point is a derivation of the
Hessian for the total expected reward (Theorem 3) and we analyse the behavior of
individual terms of the Hessian to provide insight into constructing efficient approx-
imate Newton methods for policy optimization. In particular, we provide conditions
under which certain terms become negligible near local optima.

• Motivated by this analysis, in Section 4 we provide two Gauss-Newton type methods
for policy optimization in MDPs. These methods retain certain terms of our Hes-
sian decomposition in the preconditioner in a gradient-based policy search algorithm.
The first method discards terms which are difficult to approximate and which, for
appropriately selected classes of controller, will become negligible near local optima.
The second method further discards an additional term which is not guaranteed to
be negative semi-definite. We provide an analysis of our Gauss-Newton methods and
give several important performance guarantees for the second Gauss-Newton method:
We demonstrate that the preconditioning matrix is negative-semidefinite when the
controller is log-concave in the control parameters (detailing some widely used con-
trollers for which this condition holds) guaranteeing that the search direction is an
ascent direction; We show that the method is invariant to affine transformations of the
parameter space and thus does not suffer the significant drawback of gradient ascent.
We provide a convergence analysis, demonstrating linear convergence to local optima,
in terms of the step size of the update.

Our methods apply to finite and continuous state and action sets. For simplicity of
exposition we have presented results for the finite case to avoid measurability consid-
erations. Some of our experiments have continuous state and action sets. Similarly
our method is suitable for unknown transition dynamics, but can also be trivially used
in a model-based approach with a known or estimated dynamics model.

• In Section 5 we present a unifying perspective for several policy search methods. In
particular we relate the search direction of our second Gauss-Newton algorithm to
that of expectation maximization (which provides new insights into the latter algo-
rithm when used for policy search), and we also discuss its relationship to the natural
gradient algorithm.

2. In quasi-Newton methods, to ensure an increase in the objective function, it is necessary to satisfy
the secant condition (Nocedal and Wright, 2006). This condition is satisfied when the objective is
concave/convex or the strong Wolfe conditions are met during a line search. For this reason, stochas-
tic applications of quasi-Newton methods has been restricted to convex/concave objective functions
(Schraudolph et al., 2007).

4

Approximate Newton Methods for Policy Search in Markov Decision Processes

• In Section 6 we present experiments demonstrating state-of-the-art performance on
challenging domains including Tetris and robotic arm applications.

2. Preliminaries and Background

In Section 2.1 we introduce Markov decision processes, along with some standard terminol-
ogy relating to these models that will be required throughout the paper. In Section 2.2 we
introduce policy search methods and provide an overview of the literature.

2.1 Markov Decision Processes

In a Markov decision process an agent, or controller, sequentially interacts with an environ-
ment by selecting actions (based on the the current state of the environment) after which
the system transitions to a new state (often in a stochastic manner) and the agent receives
a scalar reward (dependent upon the selected action and the state of the environment).
The optimality of an agent’s behavior is measured in terms of the total (discounted) reward
the agent can expect to receive, so that optimal control is obtained when this quantity is
maximized.

Formally a MDP is described by the tuple (S,A, D, P,R), in which S and A are sets,
known respectively as the state and action space, D is the initial state distribution, which
is a distribution over the state space, P encodes the transition dynamics using a set of con-
ditional distributions over the state space, {P (·|s, a)}(s,a)∈S×A, and R : S × A → [0, Rmax]
is the (possibly stochastic3) reward function, which is assumed to be bounded and non-
negative.4 We use the notation st and at to denote the random variable of the state and
action of the tth time step, t ∈ N, respectively. The state at the initial time step is deter-
mined by the initial state distribution, s1 ∼ D(·). At any given time step, t ∈ N, and given
the state of the environment, the agent selects an action, at ∼ π(·|st), according to the policy
π. The next state is determined according to the transition dynamics, st+1 ∼ P (·|at, st).
At each time step the agent receives a scalar reward, which is determined by the reward
function.

In this paper we consider the total expected reward, which is a standard objective
function in the reinforcement learning literature (Bertsekas, 2010). We shall consider the
infinite horizon discounted reward framework. In this framework there is a discount factor,
γ ∈ [0, 1), and the objective function takes the form,

U(π) :=
∞∑
t=1

Est,at∼pt
[
γt−1R(st, at);π

]
. (1)

3. For notational convenience we shall consider a deterministic reward function in this paper. The extension
to the case of a stochastic reward function can be done by considering the expectation over the reward
function where appropriate.

4. Given either an episodic finite horizon or a discounted infinite horizon MDP in which the reward function
is bounded but not necessarily non-negative, one can construct an auxiliary MDP that has a bounded
non-negative reward function and has the same optimal policies as the original MDP. This can be
achieved, for example, by setting the reward function of the auxiliary MDP as Rauxiliary(s, a) = R(s, a)−
min(s,a)∈S×AR(s, a), which only requires knowledge of the lower bound of the reward function in the
original MDP. The same is not true, however, of absorbing state MDPs with a discount factor of 1.

5

Furmston, Lever and Barber

We use the semi-colon to identify parameters of the distribution, rather than conditioning
variables. The distribution of st and at, which we denote by pt, is given by the marginal at
time t of the joint distribution over (s1:t, a1:t), with s1:t = (s1, s2, ..., st), a1:t = (a1, a2, ..., at),
which is given by,

p(s1:t, a1:t;π) := π(at|st)
{ t−1∏
τ=1

P (sτ+1|sτ , aτ)× π(aτ |sτ)

}
D(s1). (2)

We use the notation ξt := (s1, a1, s2, a2,, st, at) to denote trajectories through the
state-action space of length, t ∈ N. We use ξ to denote trajectories that are of infinite
length, and use Ξ to denote the space of all such trajectories. Given a trajectory, ξ ∈ Ξ,
we use the notation R̄(ξ) to denote the total discounted reward of the trajectory, so that
R̄(ξ) =

∑∞
t=1 γ

t−1R(st, at). Similarly, we use the notation p(ξ;π) to denote the probability
of generating the trajectory ξ under the policy π.

We now introduce several functions that are of central importance. The state value
function w.r.t. policy π is defined as the total expected future reward given the current
state,

Vπ(s) :=

∞∑
t=1

Est,at∼pt
[
γt−1R(st, at)

∣∣s1 =s;π

]
.

It can be seen that, U(π) = Es∼D[Vπ(s)]. The state value function can also be written as the

solution of the following fixed-point equation, Vπ(s) = Ea∼π(·|s)

[
R(s, a)+γEs′∼P (·|s,a)

[
Vπ(s′)

]]
,

which is known as the Bellman equation (Bertsekas, 2010). The state-action value function
w.r.t. policy π is given by,

Qπ(s, a) := R(s, a) + γEs′∼P (·|s,a)

[
Vπ(s′)

]
, (3)

and gives the value of performing an action, in a given state, and then following the policy.
Note that, Vπ(s) =

∑
a∈A π(a|s)Qπ(s, a). Finally, the advantage function, Aπ(s, a) :=

Qπ(s, a) − Vπ(s), gives the relative advantage of an action in relation to the other actions
available in that state. It can be seen that,

∑
a∈A π(a|s)Aπ(s, a) = 0, for each s ∈ S.

2.2 Policy Search Methods

In policy search methods the policy is given some differentiable parametric form, denoted
π(a|s;w), with policy parameters, w ∈ W ⊂ Rn, n ∈ N. (We also use the notation,
πw(a|s) ≡ π(a|s;w), where appropriate.) Local information, such as the gradient of the
objective function, is then used to update the policy in an incremental manner until the
algorithm converges to a local optimum of the objective function. We overload notation
and write the objective function directly in terms of the parameter vector, i.e.,

U(w) := U(πw), ∀w ∈ W, (4)

while the trajectory distribution is written in the form p(a1:t, s1:t;w) = p(a1:t, s1:t;πw).
Similarly, V (s;w), Q(s, a;w) and A(s, a;w) denote respectively the state value function,

6

Approximate Newton Methods for Policy Search in Markov Decision Processes

state-action value function and the advantage function in terms of the parameter vector w.
We introduce the function,

pγ(s, a;w) :=

∞∑
t=1

γt−1pt(st = s, at = a;w). (5)

Note that
∑

(s,a)∈S×A pγ(s, a;w) = (1 − γ)−1. Additionally, the objective function can be
written in the form U(w) =

∑
(s,a)∈S×A pγ(s, a;w)R(s, a).

We shall consider two forms of policy search algorithm in this paper: gradient-based
optimization methods and methods based on iteratively optimizing a lower-bound on the
objective function. In gradient-based methods the update of the policy parameters takes
the form,

wnew = w + αM(w)
∂

∂w
U(w), (6)

where α ∈ R+ is a step size parameter and M(w) is some preconditioning matrix that
possibly depends on w ∈ W. If U is smooth,M(w) is positive-definite and α is sufficiently
small then such an update will increase the total expected reward. If the preconditioning
matrix is always positive-definite, the step size sequence is appropriately selected and U is
Lipschitz, which is the case when ‖ ∂

∂w log π(a|s;w)‖2 is uniformly bounded by M ∈ R for
all w ∈ W and (a, s) ∈ A×S, then iteratively updating the policy parameters according to
(6) will result in the policy parameters converging to a local optimum of U . This generic
gradient-based policy search algorithm is given in Algorithm 1. Gradient-based methods
vary in the form of the preconditioning matrix used in the parameter update. The choice
of the preconditioning matrix determines various aspects of the resulting algorithm, such
as the computational complexity, the rate at which the algorithm converges to a local opti-
mum and invariance properties of the parameter update. Typically the gradient, ∂

∂wU(w),
and the preconditioner, M(w), will not be known exactly and must be approximated by
collecting data from the system. In the context of reinforcement learning, the expectation
maximization (EM) algorithm searches for the optimal policy by iteratively optimizing a
lower bound on the objective function. While EM does not have an update of the form given
in (6) we shall see in Section 5.2 that the algorithm is closely related to such an update.
We now review specific policy search methods.

2.2.1 Gradient Ascent

Gradient ascent corresponds to the choiceM(w) = In, where In denotes the n×n identity
matrix, so that the parameter update takes the form:

Policy search update using gradient ascent

wnew = w + α
∂

∂w
U(w). (7)

The gradient, ∂
∂wU(w), can be written in a relatively simple form using the following

theorem:

7

Furmston, Lever and Barber

Algorithm 1: Generic gradient-based policy search algorithm

Input: Initial vector of policy parameters, w0 ∈ W, and a step size sequence,
(αk)

∞
k=0, with αk ∈ R+ for k ∈ N.

Set iteration counter, k ← 0.
repeat

Either calculate or estimate the gradient of the objective, ∂
∂wU(w)|w=wk , and the

preconditioner, M(wk), at the current point in the parameter space.

Update policy parameters, wk+1 = wk + αkM(wk)
∂
∂wU(w)|w=wk .

Update iteration counter, k ← k + 1.

until Convergence of the policy parameters;

return wk

Theorem 1 (Policy Gradient Theorem (Sutton et al., 2000)). Suppose we are given a
Markov decision process with objective (1) and Markovian trajectory distribution (2). For
any given parameter vector, w ∈ W, the gradient of (4) takes the form,

∂

∂w
U(w) =

∑
s∈S

∑
a∈A

pγ(s, a;w)Q(s, a;w)
∂

∂w
log π(a|s;w). (8)

Proof. This is a well-known result that can be found in Sutton et al. (2000). A derivation
of (8) is provided in Section A.1 in the Appendix.

It is not possible to calculate the gradient exactly for many real-world MDPs of interest.
For instance, in discrete domains the size of the state-action space may be too large for enu-
meration over these sets to be feasible. Alternatively, in continuous domains the presence of
non-linearities in the transition dynamics makes the calculation of the occupancy marginals
an intractable problem. Additionally, it can be the case that P and R are unknown in
practice. In such cases it can be preferable to directly estimate the gradient using samples
obtained from the environment, rather than building a model of the MDP. Various tech-
niques have been proposed in the literature to estimate the gradient, including the method
of finite-differences (Kiefer and Wolfowitz, 1952; Kohl and Stone, 2004; Tedrake and Zhang,
2005), simultaneous perturbation methods (Spall, 1992; Spall and Cristion, 1998; Srinivasan
et al., 2006) and likelihood-ratio methods (Glynn, 1986, 1990; Williams, 1992; Baxter and
Bartlett, 2001; Konda and Tsitsiklis, 2003, 1999; Sutton et al., 2000; Bhatnagar et al., 2009;
Kober and Peters, 2011). Likelihood-ratio methods, which originated in the statistics lit-
erature and were later applied to MDPs, are now the prominent method for estimating
the gradient. There are numerous such methods in the literature, including Monte-Carlo
methods (Williams, 1992; Baxter and Bartlett, 2001) and actor-critic methods (Konda and
Tsitsiklis, 2003, 1999; Sutton et al., 2000; Bhatnagar et al., 2009; Kober and Peters, 2011).

Gradient ascent is known to perform poorly on objective functions that are poorly-scaled,
that is, if changes to some parameters produce much larger variations to the function than
changes in other parameters. In this case gradient ascent zig-zags along the ridges of the

8

Approximate Newton Methods for Policy Search in Markov Decision Processes

objective in the parameter space (see e.g., the work of Nocedal and Wright, 2006). It can be
difficult to gauge an appropriate scale for the steps sizes in poorly-scaled problems and the
robustness of optimization algorithms to poor scaling is of significant practical importance.

2.2.2 Natural Gradient Ascent

Natural gradient ascent techniques originated in the neural network and blind source sep-
aration literature (Amari, 1997, 1998; Amari et al., 1996, 1992), and were introduced into
the policy search literature in the work of Kakade (2002). To address the issue of poor
scaling, natural gradient methods take the perspective that the parameter space should be
viewed with a manifold structure in which the distance between two points on the manifold
captures the discrepancy between the distribution over trajectories parameterized by the
two corresponding parameter vectors. In natural gradient ascent M(w) = G−1(w) in (6),
with G(w) a suitable metric tensor for the manifold, so that the parameter update takes
the form:

Policy search update using natural gradient ascent

wnew = w + αG−1(w)
∂

∂w
U(w). (9)

In the case of Markov decision processes a standard choice forG(w) is the Fisher information
matrix of the policy distribution, averaged over the state distribution, which takes the form,

G(w) =
∑
s∈S

∑
a∈A

pγ(s, a;w)
∂

∂w
log π(a|s;w)

∂>

∂w
log π(a|s;w). (10)

It was shown in the work of Bagnell and Schneider (2003) that (10) corresponds to the Fisher
information matrix of the distribution over trajectories in the state-action space, given π.
The use of the Fisher information matrix can be viewed as imposing a local norm on the
parameter space which is derived from a second order approximation to the KL-divergence
between induced trajectory distributions (Coolen et al., 2005). For brevity we refer to this
choice of G(w) as the natural gradient algorithm. When the policy distribution satisfies
the Fisher regularity conditions (see Lehmann and Casella, 1998, Lemma 5.3) there is an
alternate, equivalent, form of the Fisher information matrix given by,

G(w) = −
∑
s∈S

∑
a∈A

pγ(s, a;w)
∂2

∂w2
log π(a|s;w). (11)

Equation (11) can be derived by differentiating the identity,
∑

a∈A π(a|s;w) ∂
∂wi

log π(a|s;w) =∑
a∈A

∂
∂wi

π(a|s;w) = 0, with respect to wj , and taking expectation over s ∈ S. Other met-
ric tensors have also been considered in the policy search literature, such as in the work of
Morimura et al. (2008).

There are several desirable properties of the natural gradient approach: the Fisher in-
formation matrix is always positive-semidefinite, regardless of the policy parameterisation;

9

Furmston, Lever and Barber

the search direction is invariant to the parameterisation of the policy, (Bagnell and Schnei-
der, 2003; Peters and Schaal, 2008). Additionally, the natural gradient update direction
can be obtained by regressing the state-action value function, or the advantage function,
using a compatible function approximator (Sutton et al., 2000), and minimizing a square
loss weighted by the (discounted) trajectory distribution (Kakade, 2002). Furthermore,
natural gradient ascent has been shown to perform well in some difficult MDP environ-
ments, including Tetris (Kakade, 2002) and several challenging robotics problems (Peters
and Schaal, 2008). However, theoretically, the rate of convergence of natural gradient ascent
is the same as gradient ascent, i.e., linear, although, it has been noted to be substantially
faster in practice.

2.2.3 Expectation Maximization

An alternative optimization procedure that has been the focus of much research in the
planning and reinforcement learning communities is the EM-algorithm (Dayan and Hinton,
1997; Toussaint et al., 2006, 2011; Kober and Peters, 2009, 2011; Hoffman et al., 2009;
Furmston and Barber, 2009, 2010; Levine and Koltun, 2013a). The EM-algorithm is a
powerful optimization technique popular in the statistics and machine learning community
(see e.g., the works of Dempster et al., 1977; Little and Rubin, 2002; Neal and Hinton,
1999) that has been successfully applied to a large number of problems. See the work of
Barber (2012) for a general overview of some of the applications of the algorithm in the
machine learning literature. Among the strengths of the algorithm are its guarantee of
increasing the objective function at each iteration, its often simple update equations, and
its generalization to highly intractable models through variational Bayes approximations
(Saul et al., 1996).

Given the advantages of the EM-algorithm it is natural to extend the algorithm to the
MDP framework. Several derivations of the EM-algorithm for MDPs exist (Kober and
Peters, 2011; Toussaint et al., 2011). For reference, we state the lower-bound upon which
the algorithm is based in the following theorem. The proof is based on an application of
Jensen’s inequality and can be found in the work of Kober and Peters (2011).

Theorem 2. Suppose we are given a Markov decision process with objective (1) and Marko-
vian trajectory distribution (2). Given any distribution, q, over the space of trajectories, Ξ,
then the following bound holds,

logU(w) ≥ H(q(ξ)) + Eξ∼q(·)
[

log
(
p(ξ;w)R̄(ξ)

)]
, ∀w ∈ W. (12)

The distribution, q, in Theorem 2 is often referred to as the variational distribution. An
EM-algorithm is obtained through coordinate-wise optimization of (12) with respect to the
variational distribution (the E-step) and the policy parameters (the M-step). In the E-step
the lower-bound is optimized when q(ξ) ∝ p(ξ;w′)R̄(ξ), in which w′ are the current policy
parameters. In the M-step the lower-bound is optimized with respect to w, which, given
q(ξ) ∝ p(ξ;w′)R̄(ξ) and the Markovian structure of log p(ξ;w), is equivalent to optimizing
the function,

Q(w,w′) =
∑

(s,a)∈S×A

pγ(s, a;w′)Q(s, a;w′) log π(a|s;w), (13)

10

Approximate Newton Methods for Policy Search in Markov Decision Processes

with respect to the first parameter, w. The E-step and M-step are iterated in this manner
until the policy parameters converge to a local optimum of the objective function.

Alternative bound optimisation techniques exist in the policy search literature. For
instance, the trust region policy optimisation algorithm (Schulman et al., 2015) is based
on a generalisation of a lower-bound of the total expected reward given in the work of
Kakade and Langford (2002). While the lower-bound is intractable in large-scale MDPs,
the introduction of several heuristics enables the authors to obtain strong empirical results
in both non-linear control problems and Atari games.

3. The Hessian of the Total Expected Discounted Return

In this section we provide an analysis of the Hessian of the total expected reward of a
MDP. This analysis will then be used in Section 4 to propose Gauss-Newton type methods
for MDPs. In Section 3.1 we provide a novel representation of the Hessian of the total
expected reward, in Section 3.2 we detail the definiteness properties of certain terms in the
Hessian and in Section 3.3 we analyse the behaviour of individual terms of the Hessian in
the vicinity of a local optimum.

3.1 The Policy Hessian Theorem

There is a standard expansion of the Hessian of the total expected reward in the policy search
literature (Baxter and Bartlett, 2001; Kakade, 2001, 2002) that, as with the gradient, takes
a relatively simple form. This is summarized in the following result.

Theorem 3 (Policy Hessian Theorem). Suppose we are given a Markov decision process
with objective (1) and Markovian trajectory distribution (2). For any given parameter vec-
tor, w ∈ W, the Hessian of (4) takes the form,

H(w) = H1(w) +H2(w) +H12(w) +H>12(w), (14)

in which the matrices H1(w), H2(w) and H12(w) can be written in the form,

H1(w) :=
∑
s∈S

∑
a∈A

pγ(s, a;w)Q(s, a;w)
∂

∂w
log π(a|s;w)

∂>

∂w
log π(a|s;w), (15)

H2(w) :=
∑
s∈S

∑
a∈A

pγ(s, a;w)Q(s, a;w)
∂2

∂w2
log π(a|s;w), (16)

H12(w) :=
∑
s∈S

∑
a∈A

pγ(s, a;w)
∂

∂w
log π(a|s;w)

∂>

∂w
Q(s, a;w). (17)

Proof. A derivation for a sample-based estimator of the Hessian can be found in Baxter
and Bartlett (2001). For ease of reference a derivation of (14) is provided in Section A.1 in
the Appendix.

We remark that H1(w) and H2(w) are relatively simple to estimate, in the same manner
as estimating the policy gradient. The term H12(w) is more difficult to estimate since it

11

Furmston, Lever and Barber

contains terms involving the gradient, ∂>

∂wQ(s, a;w), resulting in a double sum over state-
actions.

Below we will present a novel form for the Hessian of the total expected reward, with
attention given to the term H1(w) +H2(w) in (14), which will require the following notion
of a parameterisation with constant curvature.

Definition 1. A policy parameterisation is said to have constant curvature with respect to
the action space, if for each (s, a) ∈ S × A the Hessian of the log-policy, ∂2

∂w2 log π(a|s;w),
does not depend upon the action, i.e.,

∂2

∂w2
log π(a|s;w) =

∂2

∂w2
log π(a′|s;w), ∀a, a′ ∈ A.

A common class of policy which satisfies the property of Definition 1 is, π(a|s;w) ∝
exp(w>φ(a, s)), in which φ(a, s) is a vector of features that depends on the state-action
pair, (a, s) ∈ A× S. Under this parameterisation,

∂2

∂w2
log π(a|s;w) = −Cova′∼π(·|s;w)

(
φ(a′, s),φ(a′, s)

)
,

which does not depend on, a ∈ A. In the case when the action space is continuous, then the
policy parameterisation π(a|s;w; Σ) ∝ exp

(
− 1

2(a−w>φ(s))>Σ−1(a−w>φ(s))
)
, in which

φ : S → Rn is a given feature map, satisfies the properties of Definition 1 with respect to
the mean parameters, w ∈ W.

We now present a novel decomposition of the Hessian for Markov decision processes.

Theorem 4. Suppose we are given a Markov decision process with objective (1) and Marko-
vian trajectory distribution (2). For any given parameter vector, w ∈ W, the Hessian of
(4) takes the form,

H(w) = A1(w) +A2(w) +H12(w) +H>12(w), (18)

with,

A1(w) :=
∑

(s,a)∈S×A

pγ(s, a;w)A(s, a;w)
∂

∂w
log π(a|s;w)

∂>

∂w
log π(a|s;w),

A2(w) :=
∑

(s,a)∈S×A

pγ(s, a;w)A(s, a;w)
∂2

∂w2
log π(a|s;w).

When the policy parameterization has constant curvature with respect to the action space,
then the Hessian takes the form,

H(w) = A1(w) +H12(w) +H>12(w). (19)

Proof. See Section A.2 in the Appendix.

We now present an analysis of the terms of the policy Hessian, simplifying the expansion
and demonstrating conditions under which certain terms disappear. The analysis will be
used to motivate our Gauss-Newton methods in Section 4.

12

Approximate Newton Methods for Policy Search in Markov Decision Processes

3.2 Analysis of the Policy Hessian

An interesting comparison can be made between the expansions (14) and (18, 19) in terms
of the definiteness properties of the component matrices. As the state-action value function
is non-negative over the entire state-action space, it can be seen that H1(w) is positive-
semidefinite for all w ∈ W. Similarly, it can be shown that under certain common policy
parameterisations H2(w) is negative-semidefinite over the entire parameter space. This is
summarized in the following theorem.

Theorem 5. The matrix H2(w) is negative-semidefinite for all w ∈ W if: 1) the policy
is log-concave with respect to the policy parameters; or 2) the policy parameterisation has
constant curvature with respect to the action space.

Proof. See Section A.3 in the Appendix.

It can be seen, therefore, that when the policy parameterisation satisfies the properties of
Theorem 5 the expansion (14) gives H(w) in terms of a positive-semidefinite term, H1(w), a
negative-semidefinite term, H2(w), and a remainder term, H12(w)+H>12(w). In Section 3.3
we shall show that this remainder term becomes negligible around a local optimum when
given a sufficiently rich policy parameterisation, in a sense that we introduce in Definition 2.
In contrast to the state-action value function, the advantage function takes both positive
and negative values over the state-action space. As a result, the matrices A1(w) and A2(w)
in (18, 19) can be indefinite over parts of the parameter space.

3.3 Analysis in Vicinity of a Local Optimum

In this section we consider the term H12(w) +H>12(w), which is both difficult to estimate
and not guaranteed to be negative definite. In particular, we shall consider the conditions
under which this term becomes either negligible or vanishes completely at a local optimum.
We start by noting that,

H12(w) =
∑

(s,a)∈S×A

pγ(s, a;w)
∂

∂w
log π(a|s;w)

∂>

∂w

(
R(s, a) + γ

∑
s′

p(s′|a, s)V (s′;w)

)
,

= γ
∑

(s,a)∈S×A

pγ(s, a;w)
∂

∂w
log π(a|s;w)

∑
s′

p(s′|a, s) ∂
>

∂w
V (s′;w). (20)

Our approach is to obtain a bound of, ∂
∂wi

V (s;w)
∣∣
w=w∗

, for all s′ ∈ S and i ∈ {1, ..., n},
when, w∗ ∈ W, is a local optimum of (4). Given such a bound it is then possible to obtain
a bound on the term, H12(w) +H>12(w), at a local optimum. In the limit the bound gives
conditions under which, ∂

∂wV (s′;w) = 0, for all s′ ∈ S, at a local optimum, thus giving
sufficient conditions under which the term, H12(w) +H>12(w), vanishes at a local optium.
We start by introducing the notion of a ε-value-consistent policy class, with ε ∈ R, ε ≥ 0.

Definition 2. Given ε ∈ R, with ε ≥ 0, then a policy parameterisation is said to be ε-value-
consistent w.r.t. a Markov decision process if whenever ∂

∂wi
V (ŝ;w) 6= 0 for some ŝ ∈ S,

w ∈ W and i ∈ {1, ..., n}, then ∀s ∈ S it holds that either,

sign

(
∂

∂wi
V (s;w)

)
= sign

(
∂

∂wi
V (ŝ;w)

)
, (21)

13

Furmston, Lever and Barber

or ∣∣∣∣ ∂∂wiV (s;w)

∣∣∣∣ ≤ ε. (22)

Furthermore, for any state, s ∈ S, for which, ∂
∂wi

V (s;w) = 0, it also holds that ∂
∂wi

π(a|s;w) =
0, ∀a ∈ A. A policy parameterization is said to be value-consistent if it is 0-value-consistent.

This property of a policy class captures the notion that when maximally improving the
value of one state, then the amount that the value of another state can decrease is bounded.
When a policy class is value-consistent, then changing a parameter to maximally improve
the value in one state, does not worsen the value in another state. i.e., when a policy class
is value-consistent, there is no trade-off between improving the value in different states.

Example. To illustrate the concept of a value-consistent policy parameterisation we now
consider two simple maze navigation MDPs, one with a value-consistent policy parame-
terisation, and one with a policy parameterisation that is not value-consistent. The two
MDPs are displayed in Figure 1. Walls of the maze are solid lines, while the dotted lines
indicate state boundaries and are passable. The agent starts, with equal probability, in one
of the states marked with an ‘S’. The agent receives a positive reward for reaching the goal
state, which is marked with a ‘G’, and is then reset to one of the start states. All other
state-action pairs return a reward of zero. The discount factor in both MDPs is 0.95. There
are four possible actions (up, down, left, right) in each state, and the optimal policy is to
move, with probability one, in the direction indicated by the arrow. We define the mapping,
o : S → {0, 1}4, which indicates the presence of a wall on each of the four state bound-
aries. We use the notation, O := {o(s)|s ∈ S}. We consider the policy parameterisation,
π(a|s;w) ∝ exp(w>φ(a, s)), in which, φ : A × S → R3|O|, is a feature map. We consider
the feature map,

φ(a, s) =

{
0 if a = up,

ei(a)+3j(s) otherwise ,

in which, i : A\{up} → {1, 2, 3}, is an index function over the actions, A\{up}, and
j : S → {0, 1, ..., |O| − 1}, is an index function over the aliased states, i.e., j(s) = j(s′) iff
o(s) = o(s′). We use the notation, ei ∈ R3|O|, i ∈ {1, ..., 3|O|}, to denote the ith standard
basis vector. Perceptual aliasing (Whitehead, 1992) occurs in both MDPs under this policy
parameterisation, with states 2, 3 & 4 aliased in the hallway problem, and states 4, 5 & 6
aliased in McCallum’s grid. In the hallway problem all of the aliased states have the same
optimal action, and the value of these states all increase/decrease in unison. Hence, it can
be seen that the policy parameterisation is value-consistent for the hallway problem. In
McCallum’s grid, however, the optimal action for states 4 & 6 is to move upwards, while
in state 5 it is to move downwards. In this example increasing the probability of moving
downwards in state 5 will also increase the probability of moving downwards in states 4 &
6. There is a point, therefore, at which increasing the probability of moving downwards in
state 5 will decrease the value of states 4 & 6. Thus this policy parameterisation is not
value-consistent for McCallum’s grid. Numerical inspection of the parameter space indicates
that this policy parameterisation is ε-value-consistent, with ε ≈ 0.2.

We now show that tabular policies—i.e., policies such that, for each state s ∈ S, the
conditional distribution π(a|s;ws) is parametrized by a separate parameter vector ws ∈ Rns
for some ns ∈ N—are value-consistent, regardless of the given Markov decision process.

14

Approximate Newton Methods for Policy Search in Markov Decision Processes

S G

1 2 3 4 5

S G S

1 2 3

4 5 6

7 8 9

(a) Hallway Problem (b) McCallum Grid

Figure 1: (a) The hallway problem. Under the feature map, φ, states 2, 3 and 4 map to
the the same feature, and the optimal policy is identical on these states. (b)
McCallum’s grid. Under the feature map, φ, states 4, 5 and 6 map to the same
feature, but now the optimal policy differs among these states.

Theorem 6. Suppose that a given Markov decision process has a tabular policy parameter-
isation, then the policy parameterisation is value-consistent.

Proof. See Section A.4 in the Appendix.

We now show that given an ε-value-consistent policy parameterisation and a local opti-
mum, w∗ ∈ W, the terms, ∂

∂wi
V (s;w)

∣∣
w=w∗

, are bounded in magnitude by ε, for all s′ ∈ S
and i ∈ {1, ..., n}.

Theorem 7. Suppose that w∗ ∈ W is a local optimum of the differentiable objective func-
tion, U(w) = Es∼p1(·)

[
V (s;w)

]
. Suppose that the Markov chain induced by w∗ is ergodic.

Suppose that the policy parameterisation is ε-value-consistent, ε ∈ R, ε ≥ 0, w.r.t. the given
Markov decision process. Then∣∣∣∣ ∂∂wi V (s;w)

∣∣
w=w∗

∣∣∣∣ ≤ ε, ∀s ∈ S. (23)

Proof. See Appendix A.5

If a policy parameterisation is ε-value-consistent and the parameterisation satisfies the
bound, | ∂∂w log π(a|s;w)| ≤ M , M ∈ R, for all (s, a) ∈ S × A and w ∈ W, then it
follows from Theorem 7 that the terms of the matrix, H12(w∗) + H>12(w∗), are bounded
by 2εγM/(1 − γ). A further corollary of Theorem 7 is that when a policy class is value-
consistent the term, H12(w) +H>12(w), vanishes near local optima. Furthermore, when we
have the additional condition that the gradient of the state value function is continuous in
w (at w = w∗) then H12(w) +H>12(w)→ 0 as w → w∗. This condition will be satisfied if,
for example, the policy is continuously differentiable w.r.t. the policy parameters.

Example (continued). Returning to the MDPs given in Figure 1, we now empirically ob-
serve the behaviour of the term H12(w)+H>12(w) as the policy approaches a local optimum
of the objective function. Figure 2 gives the magnitude of H12(w)+H>12(w), in terms of the
spectral norm, in relation to the distance from the local optimum. In correspondence with

15

Furmston, Lever and Barber

0 1 2 3 4 5 6 7 8 9
‖w −w

∗‖2

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
L

o
g
a
r
it

h
m

o
f

M
a
tr

ix
2
-N

o
r
m

H12 +HT

12

A1

(a) Hallway Problem

0 2 4 6 8 10
‖w −w

∗‖2

-4

-3

-2

-1

0

1

2

L
o
g
a
r
it

h
m

o
f

M
a
tr

ix
2
-N

o
r
m

H12 +HT

12

A1

(b) McCallum’s Grid

Figure 2: Graphical illustration of the logarithm of the spectral norm of H12(w) +H>12(w)
andA1(w) in terms of ‖w−w∗‖2 for the hallway problem (a) and McCallum’s grid
(b). For the given policy parameterisation, H(w) = A1(w) +H12(w) +H>12(w),
so the plot displays the two components of the Hessian as the policy converges
to a local optimum. As expected, in the hallway problem, H12(w) +H>12(w)→ 0
as w → w∗. Conversely, in McCallum’s grid, H12(w) +H>12(w) 6→ 0 as w → w∗,
but the term, H12(w) +H>12(w), is still dominated by, A1(w), in the vicinty of
a local optima. In this example the magnitude of A1(w) is roughly five times
greater than that of H12(w) +H>12(w) when ‖w −w∗‖2 ≈ 0.0045.

the theory, H12(w) +H>12(w)→ 0 as w → w∗ in the hallway problem, while this is not the
case in McCallum’s grid. This simple example illustrates the fact that if the feature repre-
sentation is well chosen, in the sense that it is value-consistent, the term H12(w) +H>12(w)
vanishes in the vicinity of a local optimum.

4. Gauss-Newton Methods for Markov Decision Processes

In this section we propose several Gauss-Newton type methods for MDPs, motivated by
the analysis of Section 3. The algorithms are outlined in Section 4.1, and key performance
analysis is provided in Section 4.2.

4.1 The Gauss-Newton Methods

The first Gauss-Newton method we propose drops the Hessian terms which are difficult
to estimate, but are expected to be negligible in the vicinity of local optima. Specifically,
it was shown in Section 3.3 that if the policy parameterisation is value-consistent with
a given MDP, then H12(w) + H>12(w) → 0 as w converges towards a local optimum of
the objective function. In such cases A1(w) + A2(w), as defined in Theorem 4, will be a
good approximation to the Hessian in the vicinity of a local optimum. For this reason, the

16

Approximate Newton Methods for Policy Search in Markov Decision Processes

first Gauss-Newton method that we propose for MDPs is to precondition the gradient with
M(w) = −(A1(w) +A2(w))−1 in (6), so that the update is of the form:

Policy search update using the first Gauss-Newton method

wnew = w − α(A1(w) +A2(w))−1 ∂

∂w
U(w). (24)

When the policy parameterisation has constant curvature with respect to the action space
A2(w) = 0 it is sufficient to calculate just A−1

1 (w).
The second Gauss-Newton method we propose removes further terms from the Hessian

which are not guaranteed to be negative-semidefinite. As was seen in Section 3.1, when
the policy parameterisation satisfies the properties of Theorem 5 then H2(w) is negative-
semidefinite over the entire parameter space.5 Recall that in (6) it is necessary thatM(w)
is positive-definite (in Newton’s method this corresponds to requiring the Hessian to be
negative-definite) to ensure an increase of the objective function. That H2(w) is negative-
semidefinite over the entire parameter space is therefore a highly desirable property of
a preconditioning matrix, and for this reason the second Gauss-Newton method that we
propose for MDPs is to precondition the gradient with M(w) = −H−1

2 (w) in (6), so that
the update is of the form:

Policy search update using the second Gauss-Newton method

wnew = w − αH−1
2 (w)

∂

∂w
U(w). (25)

We shall see that the second Gauss-Newton method has important performance guaran-
tees including: a guaranteed ascent direction; linear convergence to a local optimum under
a step size which does not depend upon unknown quantities; invariance to affine transfor-
mations of the parameter space; and efficient estimation procedures for the preconditioning
matrix. We will also show in Section 5 that the second Gauss-Newton method is closely
related to both the EM and natural gradient algorithms.

We shall also consider a diagonal form of the approximation for both forms of Gauss-
Newton methods. Denoting the diagonal matrix formed from the diagonal elements of
A1(w)+A2(w) and H2(w) by DA1+A2(w) and DH2(w), respectively, then we shall consider
the methods that use M(w) = −D−1

A1+A2
(w) and M(w) = −D−1

H2
(w) in (6). We call

these methods the diagonal first and second Gauss-Newton methods, respectively. This

5. That the preconditioning matrix is negative-semidefinite and not negative-definite is a standard prob-
lem with many optimisation techniques that require the inversion of a preconditioning matrix. This
includes natural gradient ascent when the Fisher information matrix is used to precondition the gradient
(Thomas, 2014). Various approaches can be taken with regard to this problem: Add a ridge term to the
preconditioning matrix; Minimize ||H2(w)p+ ∂

∂w
U(w)||2 with respect to p by gradient descent, and use

p as the search direction; Precondition the gradient with the pseudoinverse −H+
2 (w).

17

Furmston, Lever and Barber

diagonalization amounts to performing the approximate Newton methods on each parameter
independently, but simultaneously.

4.1.1 Estimation of the Preconditioners and the Gauss-Newton Update
Direction

It is possible to extend typical techniques used to estimate the policy gradient to estimate
the preconditioner for the Gauss-Newton method, by including either the Hessian of the log-
policy, the outer product of the derivative of the log-policy, or the respective diagonal terms.
As an example, in Section B.1 of the Appendix we detail the extension of the recurrent state
formulation of gradient evaluation in the average reward framework (Williams, 1992) to the
second Gauss-Newton method. We use this extension in the Tetris experiment that we
consider in Section 6. Given ns sampled state-action pairs, the complexity of this extension
scales as O(nsn

2) for the second Gauss-Newton method, while it scales as O(nsn) for the
diagonal version of the algorithm. We provide more details of situations in which the
inversion of the preconditioning matrices can be performed more efficiently in Section B.2
of the Appendix.

4.2 Performance Guarantees and Analysis

4.2.1 Ascent Directions

In general the objective (4) is not concave, which means that the Hessian will not be
negative-definite over the entire parameter space. In such cases Newton’s method can
actually lower the objective and this is an undesirable aspect of Newton’s method. We now
consider ascent directions for the Gauss-Newton methods, and in particular demonstrate
that the proposed second Gauss-Newton method guarantees an ascent direction in typical
settings.

Ascent directions for the first Gauss-Newton method: As mentioned previously, the
matrix A1(w) +A2(w) will typically be indefinite, and so a straightforward application of
the first Gauss-Newton method will not necessarily result in an increase in the objective
function. There are, however, standard correction techniques that one could consider to
ensure that an increase in the objective function is obtained, such as adding a ridge term to
the preconditioning matrix. A survey of such correction techniques can be found in Boyd
and Vandenberghe (2004).

Ascent directions for the second Gauss-Newton method: It was seen in Theorem 5 that
H2(w) will be negative-semidefinite over the entire parameter space if either the policy is
log-concave with respect to the policy parameters, or the policy has constant curvature with
respect to the action space. It follows that in such cases an increase of the objective function
will be obtained when using the second Gauss-Newton method with a sufficiently small step-
size. Additionally, the diagonal terms of a negative-semidefinite matrix are non-positive,
so that DH2(w) is negative-semidefinite whenever H2(w) is negative-semidefinite, and thus
similar performance guarantees exist for the diagonal version of the second Gauss-Newton
algorithm.

To motivate this result we now briefly consider some widely used policies that are either
log-concave or blockwise log-concave. Firstly, consider the linear softmax policy param-
eterisation, π(a|s;w) ∝ expwTφ(a, s), in which φ(a, s) ∈ Rn is a feature vector. This

18

Approximate Newton Methods for Policy Search in Markov Decision Processes

policy is widely used in discrete systems and is log-concave in w, which can be seen from
the fact that log π(a|s;w) is the sum of a linear term and a negative log-sum-exp term,
both of which are concave (Boyd and Vandenberghe, 2004). In systems with a continuous
state-action space a common choice of controller is π(a|s;K,Σ) = N (a|Kφ(s),Σ), in which
φ(s) ∈ Rn is a feature vector. This controller is not jointly log-concave in K and Σ, but
it is blockwise log-concave in K and Σ−1. In terms of K the log-policy is quadratic and
the coefficient matrix of the quadratic term is negative-semidefinite. In terms of Σ−1 the
log-policy consists of a linear term and a log-determinant term, both of which are concave.

4.2.2 Affine Invariance

An undesirable aspect of gradient ascent is that its performance is dependent on the choice
of basis used to represent the parameter space. An important and desirable property of
Newton’s method is that it is invariant to non-singular affine transformations of the param-
eter space (Boyd and Vandenberghe, 2004). The proposed approximate Newton methods
have various invariance properties, and these properties are summarized in the following
theorem.

Theorem 8. The first and second Gauss-Newton methods are invariant to (non-singular)
affine transformations of the parameter space. The diagonal versions of these algorithms
are invariant to (non-singular) rescalings of the parameter space.

Proof. See Section A.6 in the Appendix.

4.2.3 Convergence Analysis

We now provide a local convergence analysis of the Gauss-Newton framework. We shall
focus on the full Gauss-Newton methods, with the analysis of the diagonal Gauss-Newton
method following similarly. Additionally, we shall focus on the case in which a constant
step size is considered throughout, which is denoted by α ∈ R+. We say that an algorithm

converges linearly to a limit L at a rate r ∈ (0, 1) if limk→∞
|U(wk+1)−L|
|U(wk)−L| = r. If r = 0

then the algorithm converges super-linearly. We denote the parameter update function of
the first and second Gauss-Newton methods by G1 and G2, respectively, so that G1(w) =
w − α(A1(w) +A2(w))−1 ∂

∂wU(w) and G2(w) = w − αH−1
2 (w) ∂

∂wU(w). Given a matrix,
A ∈ L(Rn) we denote the spectral radius of A by ρ(A) = maxi |λi|, where {λi}ni=1 are the
eigenvalues of A. Throughout this section we shall use ∇G(w∗) to denote ∂

∂wG(w)|w=w∗ .

Theorem 9 (Convergence analysis for the first Gauss-Newton method). Suppose that w∗ ∈
W is such that ∂

∂wU(w)|w=w∗ = 0 and A1(w∗) +A2(w∗) is invertible, then G1 is Fréchet
differentiable at w∗ and ∇G1(w∗) takes the form,

∇G1(w∗) = I − α(A1(w∗) +A2(w∗))−1H(w∗). (26)

If H(w∗) and A1(w∗) +A2(w∗) are negative-definite, and the step size is in the range,

α ∈
(
0, 2/ρ

(
(A1(w∗) +A2(w∗))−1H(w∗)

))
(27)

then w∗ is a point of attraction of the first Gauss-Newton method, the convergence is at
least linear and the rate is given by ρ(∇G1(w∗)) < 1. When the policy parameterisation is

19

Furmston, Lever and Barber

value-consistent with respect to the given Markov decision process, then (26) simplifies to,

∇G1(w∗) = (1− α)I, (28)

and whenever α ∈ (0, 2) then w∗ is a point of attraction of the first Gauss-Newton method,
and the convergence to w∗ is linear if α 6= 1 with a rate given by ρ(∇G1(w∗)) < 1, and
convergence is super-linear when α = 1.

Proof. See Section A.7 in the Appendix.

Theorem 10 (Convergence analysis for the second Gauss-Newton method). Suppose that
w∗ ∈ W is such that ∂

∂wU(w)|w=w∗ = 0 and H2(w∗) is invertible, then G2 is Fréchet
differentiable at w∗ and ∇G2(w∗) takes the form,

∇G2(w∗) = I − αH−1
2 (w∗)H(w∗). (29)

If H(w∗) is negative-definite and the step size is in the range,

α ∈ (0, 2/ρ(H−1
2 (w∗)H(w∗))) (30)

then w∗ is a point of attraction of the second Gauss-Newton method, convergence to w∗ is
at least linear and the rate is given by ρ(∇G2(w∗)) < 1. Furthermore, α ∈ (0, 2) implies
condition (30). When the policy parameterisation is value-consistent with respect to the
given Markov decision process, then (29) simplifies to,

∇G2(w∗) = I − αH−1
2 (w∗)A1(w∗). (31)

Proof. See Section A.7 in the Appendix.

The conditions of Theorem 10 look analogous to those of Theorem 9, but they differ
in important ways: in Theorem 10 it is not necessary to assume that the preconditioning
matrix is negative-definite and the sets in (27) will not be known in practice, whereas the
condition α ∈ (0, 2) in Theorem 10 is more practical, i.e., for the second Gauss-Newton
method convergence is guaranteed for a constant step size which is easily selected and does
not depend upon unknown quantities.

It will be seen in Section 5.2 that the second Gauss-Newton method has a close rela-
tionship to the EM-algorithm. For this reason we postpone additional discussion about the
rate of convergence of the second Gauss-Newton method until then.

5. Relation to Existing Policy Search Methods

In this section we consider the relationship between the second Gauss-Newton method and
existing policy search methods; In Section 5.1 we examine its relation to natural gradient
ascent and in Section 5.2 to the EM-algorithm.

20

Approximate Newton Methods for Policy Search in Markov Decision Processes

5.1 Natural Gradient Ascent and the Second Gauss-Newton Method

Comparing the form of the Fisher information matrix given in (11) with H2 (16) it can
be seen that there is a close relationship between natural gradient ascent and the second
Gauss-Newton method: in H2 there is an additional weighting of the integrand from the
state-action value function. Hence, H2 incorporates information about the reward structure
of the objective function that is not present in the Fisher information matrix.

We now consider how this additional weighting affects the search direction for natural
gradient ascent and the Gauss-Newton approach. Given a norm on the parameter space,
|| · ||, the steepest ascent direction at w ∈ W with respect to that norm is given by,

p̂ = argsup{p:||p||=1} lim
α→0

U(w + αp)− U(w)

α
.

Natural gradient ascent is obtained by considering the (local) norm || · ||G(w) given by

||w − w′||2G(w) := (w − w′)>G(w)(w − w′), with G(w) as in (10). The natural gradient
method allows less movement in the directions that have high norm which, as can be seen
from the form of (10), are those directions that induce large changes to the policy over
the parts of the state-action space that are likely to be visited under the current policy
parameters. More movement is allowed in directions that either induce a small change
in the policy, or induce large changes to the policy, but only in parts of the state-action
space that are unlikely to be visited under the current policy parameters. In a similar
manner the second Gauss-Newton method can be obtained by considering the (local) norm
|| · ||H2(w), given by ||w−w′||2H2(w) := −(w−w′)>H2(w)(w−w′) so that each term in (11)

is additionally weighted by the state-action value function, Q(s, a;w). Thus, the directions
which have high norm are those in which the policy is rapidly changing in state-action pairs
that are not only likely to be visited under the current policy, but also have high value.
Thus the second Gauss-Newton method updates the parameters more conservatively if the
behaviour in high value states is affected. Conversely, directions which induce a change
only in state-action pairs of low value have low norm, and larger increments can be made
in those directions.

5.2 Expectation Maximization and the Second Gauss-Newton Method

It has previously been noted (Kober and Peters, 2011) that the parameter update of gradient
ascent and the EM-algorithm can be related through the function Q defined in (13). In
particular, the gradient (8) evaluated at wk can be written in terms of Q as follows,

∂

∂w
U(w)|w=wk =

∂

∂w
Q(w,wk)|w=wk ,

while the parameter update of the EM-algorithm is given bywk+1 = argmaxw∈W Q(w,wk).
In other words, gradient ascent moves in the direction that most rapidly increases Q with
respect to the first variable, while the EM-algorithm maximizes Q with respect to the first
variable. While this relationship is true, it is also quite a negative result. It states that
in situations in which it is not possible to explicitly maximize Q with respect to its first
variable, then the alternative, in terms of the EM-algorithm, is a generalized EM-algorithm,
which is equivalent to gradient ascent. Given that the EM-algorithm is typically used to

21

Furmston, Lever and Barber

overcome the negative aspects of gradient ascent, this is an undesirable alternative. It is
possible to find the optimum of (13) numerically, but this is also undesirable as it results
in a double-loop algorithm that could be computationally expensive. Finally, this result
provides no insight into the behaviour of the EM-algorithm, in terms of the direction of its
parameter update, when the maximization over w in (13) can be performed explicitly.

We now demonstrate that the step-direction of the EM-algorithm has an underlying
relationship with the second of our proposed Gauss-Newton methods. In particular, we
show that under suitable regularity conditions the direction of the EM-update, wk+1−wk,
is the same, up to first order, as the direction of the second Gauss-Newton method.

Theorem 11. Suppose we are given a Markov decision process with objective (1) and
Markovian trajectory distribution (2). Consider the parameter update (M-step) of expecta-
tion maximization at the kth iteration of the algorithm, i.e., wk+1 = argmaxw∈W Q(w,wk).
Provided that Q(w,wk) is twice continuously differentiable in the first parameter we have
that,

wk+1 −wk = −H−1
2 (wk)

∂

∂w
U(w)|w=wk +O(‖wk+1 −wk‖2). (32)

Additionally, in the case where the log-policy is quadratic the relation to the approximate
Newton method is exact, i.e., the second term on the r.h.s. of (32) is zero.

Proof. See Section A.8 in the Appendix.

Given a sequence of parameter vectors, (wk)
∞
k=1, generated through an application of

the EM-algorithm, then limk→∞ ‖wk+1−wk‖ = 0. This means that the rate of convergence
of the EM-algorithm will be the same as that of the second Gauss-Newton method when
considering a constant step size of one. We formalize this intuition and provide the con-
vergence properties of the EM-algorithm when applied to Markov decision processes in the
following theorem. This is, to our knowledge, the first formal derivation of the convergence
properties for this application of the EM-algorithm.

Theorem 12. Suppose that the sequence, (wk)k∈N, is generated by an application of the
EM-algorithm, where the sequence converges to w∗. Denote the update operation of the EM-
algorithm by GEM, so that wk+1 = GEM(wk). Using ∇GEM(w∗) to denote ∂

∂wGEM(w)|w=w∗,
then,

∇GEM(w∗) = I −H−1
2 (w∗)H(w∗).

When the policy parameterisation is value-consistent with respect to the given Markov de-
cision process this simplifies to ∇GEM(w∗) = I − H−1

2 (w∗)A1(w∗). When the Hessian,
H(w∗), is negative-definite then ρ(∇GEM(w∗)) < 1 and w∗ is a local point of attraction for
the EM-algorithm.

Proof. See Section A.9 in the Appendix.

6. Experiments

In this section we provide an empirical evaluation of the Gauss-Newton methods on a variety
of domains. We summarize the experimental results here. For reproducibility, more details
can be found in Appendix C.

22

Approximate Newton Methods for Policy Search in Markov Decision Processes

0 200 400 600 800
0.6

0.7

0.8

0.9

1

Training Iterations

N
o

rm
a

lis
e

d
 T

o
ta

l
E

x
p

e
c
te

d
 R

e
w

a
rd

(a) Non-Linear Navigation Task : Results

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Training Time

N
o

rm
a

lis
e

d
 T

o
ta

l
E

x
p

e
c
te

d
 R

e
w

a
rd

(b) 3-Link Manipulator Experiment : Results

Figure 3: (a) Results from the non-linear navigation task, with the results for gradient as-
cent (black), expectation maximization (blue), natural gradient ascent (green)
and the second Gauss-Newton method (red). (b) Normalized total expected re-
ward plotted against training time (in seconds) for the 3-link rigid manipulator.
The plot shows the results expectation maximization (blue), the second Gauss-
Newton method (red) and natural gradient ascent (green).

6.1 Non-Linear Navigation Experiment

The first domain that we consider is the synthetic two-dimensional non-linear MDP con-
sidered in the work of Vlassis et al. (2009). In this experiment we consider gradient ascent,
natural gradient ascent, expectation maximisation and the second Gauss-Newton method.
Details of the domain and the experiment settings are given in Section C.1. The experiment
was repeated 100 times and the results of the experiment are given in Figure 3a, which gives
the mean and standard error of the results. The step size sequences of gradient ascent, nat-
ural gradient ascent and the Gauss-Newton method were all tuned for performance and the
results shown were obtained from the best step size sequence for each algorithm.

6.2 N-link Rigid Manipulator Experiment

The N -link rigid robot arm manipulator is a standard continuous model, consisting of an
end effector connected to an N -linked rigid body (Khalil, 2001). A typical continuous
control problem for such systems is to apply appropriate torque forces to the joints of the
manipulator so as to move the end effector into a desired position. More details on the
settings of the domain used in this experiment can be found in Section C.2. We consider a
policy of the form,

π(a|s;w) = N (a|Ks+m, σ2I), (33)

with w = (K,m, σ) and s ∈ Rns , a ∈ Rna , for some ns, na ∈ N. We consider a 3-link rigid
manipulator, which results in a parameter space with 22 dimensions.

23

Furmston, Lever and Barber

In this experiment we compare gradient ascent, natural gradient ascent, expectation
maximization and the second Gauss-Newton method. The step size sequences of gradient
ascent, natural gradient ascent and the Gauss-Newton method were all tuned for perfor-
mance. Details of the experiment settings and the procedure used to tune the step size
sequences are described in Section C.2. We repeated the experiment 100 times, each time
with a different random initialisation of the system. The final results, obtained using the
best step size sequence for each algorithm, are given in Figure 3b. We omit the result of
gradient ascent as we were unable to obtain any meaningful results for this domain with this
algorithm. In this experiment the maximal value of the objective function varied dramati-
cally depending on the random initialization of the system. To account for this variation the
results from each run of the experiment are normalized by the maximal value achieved be-
tween the algorithms in that run. This means that the results displayed are the percentages
of reward received in comparison to the best results among the algorithms considered in the
experiment. The second Gauss-Newton method significantly outperforms all of the compar-
ison algorithms. In the experiment the Gauss-Newton method only took around 50 seconds
to obtain the same performance as 300 seconds of training with expectation maximization.
Furthermore expectation maximization was only able to obtain 40% of the performance of
the Gauss-Newton method, while natural gradient ascent was only able to obtain around
15% of the performance. The step direction of expectation maximization is very similar to
the search direction of the second Gauss-Newton method in this problem. In fact, given
that the log-policy is quadratic in the mean parameters, they are the same for the mean
parameters. The difference in performance between the Gauss-Newton method and expec-
tation maximization is largely explained by the tuning of the step size in the Gauss-Newton
method, compared to the constant step size of 1.0 in expectation maximization.

6.3 Tetris Experiment

In this experiment we consider the Tetris domain, which is a popular computer game de-
signed by Alexey Pajitnov in 1985. Firstly, we compare the performance of the full and
diagonal second Gauss-Newton methods to other policy search methods. We model the
policy using a linear softmax paramaterisation. We used the same set of features as used
in the works of Bertsekas and Ioffe (1996) & Kakade (2002). Under this paramaterisation
it is not possible to obtain the explicit maximum over w in (13), so a straightforward ap-
plication of the EM-algorithm is not possible in this problem. We therefore compare the
diagonal and full versions of the second Gauss-Newton method with steepest and natural
gradient ascent. Due to computational costs we consider a 10×10 board in this experiment,
which results in a state space with roughly 7× 2100 states (Bertsekas and Ioffe, 1996). We
ran 100 repetitions of the experiment, each consisting of 100 training iterations, and the
mean and standard error of the results are given in Figure 4a. It can be seen that the full
Gauss-Newton method outperforms all of the other methods, while the performance of the
diagonal Gauss-Newton method is comparable to natural gradient ascent.

We also ran several training runs of the full approximate Newton method on the full-sized
20×10 board and were able to obtain a score in the region of 14, 000 completed lines, which
was obtained after roughly 40 training iterations. An approximate dynamic programming
based method has previously been applied to the Tetris domain in the work of Bertsekas and

24

Approximate Newton Methods for Policy Search in Markov Decision Processes

0 20 40 60 80 100
0

100

200

300

400

Training Iterations

C
o
m

p
le

te
d
 L

in
e
s

(a) Tetris Results

0 20 40 60 80 100
−100

−80

−60

−40

−20

0

Training Iteration

T
o

ta
l
E

x
p

e
c
te

d
 R

e
w

a
rd

(b) Robot Arm Results

Figure 4: (a) Results from the Tetris experiment, with results for gradient ascent (black),
natural gradient ascent (green), the diagonal Gauss-Newton method (blue) and
the Gauss-Newton method (red). (b) Results from the robot arm experiment,
with results for the second Gauss-Newton method (red) and the EM-algorithm
(blue).

Ioffe (1996). The same set of features were used and a score of roughly 4, 500 completed lines
was obtained after around 6 training iterations, after which the solution then deteriorated.
More recently a modified policy iteration approach (Gabillon et al., 2013) was able to obtain
significantly better performance in the game of Tetris, completing approximately 51 million
lines in a 20× 10 board. However, these results were obtained through an entirely different
set of features, and analysis of the results in the work of (Gabillon et al., 2013) indicates
that this difference in features makes a substantial difference in performance. On a 10× 10
board using the same features as in the work of Bertsekas and Ioffe (1996) the approach
was able to complete approximately 500 lines on average.

6.4 Robot Arm Experiment

In the final experiment we consider a robotic arm application. We use the Simulation
Lab (Schaal, 2006) environment, which provides a physically realistic engine of a Barrett
WAMTM robot arm. We consider the ball-in-a-cup domain (Kober and Peters, 2009), which
is a challenging motor skill problem that is based on the traditional children’s game. In this
domain a small cup is attached to the end effector of the robot arm. A ball is attached to
the cup through a piece of string. At the beginning of the task the robot arm is stationary
and the ball is hanging below the cup in a stationary position. The aim of the task is for
the robot arm to learn an appropriate set of joint movements to first swing the ball above
the cup and then to catch the ball in the cup when the ball is in its downward trajectory.
More details of the domain and the experiment settings are provided in Section C.4.

In this experiment we compare gradient ascent, natural gradient ascent, expectation
maximization, the first Gauss-Newton method and the second Gauss-Newton method. We

25

Furmston, Lever and Barber

repeated the experiment 50 times and the results are given in Figure 4b. We were unable to
successfully learn to catch the ball in the cup using either gradient ascent, natural gradient
ascent or the first Gauss-Newton method. For this reason the results for these algorithms
are omitted. It can be seen that the second Gauss-Newton method significantly outperforms
the EM-algorithm in this domain. Out of the 50 runs of the experiment, the second Gauss-
Newton method was successfully able to learn to catch the ball in the cup 45 times. The
EM-algorithm successfully learnt the task 36 times. We note that in this experiment the
policy took the form, π(a;w) = N

(
a|µ,

(
LL∗

)−1)
, with, w = (µ, L). (More details of the

policy parameterisation can be found in Section C.4.) A fixed step size of 1.0 was used in
the second Gauss-Newton method, which means that, as the log-policy is quadratic in µ,
the update of µ in the second Gauss-Newton method and the EM-algorithm were the same.
The difference in performance can therefore be attributed to the difference in the updates
of L between the two algorithms.

7. Conclusions

Approximate Newton methods, such as quasi-Newton methods and the Gauss-Newton
method, are standard optimization techniques. These methods aim to maintain the benefits
of Newton’s method, while alleviating its shortcomings. In this paper we have considered
approximate Newton methods in the context of policy optimization in MDPs. The first
contribution of this paper was to provide a novel analysis of the Hessian of the total ex-
pected reward, which is a standard objective function for policy optimization. This included
providing a novel form for the Hessian, as well as detailing the positive/negative semidefi-
niteness properties of certain terms in the Hessian. Furthermore, we have shown that when
the policy parameterisation is sufficiently rich, in the sense that it is ε-value-consistent with
an appropriately small value of ε, then the remaining terms in the Hessian become negligible
in the vicinity of a local optimum. Motivated by this analysis we introduced two Gauss-
Newton Methods for MDPs. Like the Gauss-Newton method for non-linear least squares,
these methods involve approximating the Hessian by ignoring certain terms in the Hessian.
The approximate Hessians possess desirable properties, such as negative-semidefiniteness,
and we demonstrated several important performance guarantees including guaranteed as-
cent directions, invariance to affine transformation of the parameter space, and convergence
guarantees. We also demonstrated our second Gauss-Newton algorithm is closely related
to both the EM-algorithm and natural gradient ascent applied to MDPs, providing novel
insights into both of these algorithms. We have compared the proposed Gauss-Newton
methods with other techniques in the policy search literature over a range of challenging
domains, including Tetris and a robotic arm application. We found that the second Gauss-
Newton method performed significantly better than other methods in all of the domains
that we considered.

We have provided a convergence analysis of the two proposed Gauss-Newton methods
for the setting in which the gradient and the preconditioning matrices can be calculated
exactly. An interesting piece of future work is to extend this analysis to the stochastic
setting, in which these quantities are estimated from samples of the MDP, either through a
Monte-Carlo approach or in a stochastic approximation framework.

26

Approximate Newton Methods for Policy Search in Markov Decision Processes

Acknowledgments

We would like to thank Peter Dayan, David Silver, Nicolas Heess for helpful discussions on
this work and Gerhard Neumann and Christian Daniel for their assistance in the robot arm
experiment. We also thank the anonymous reviewers for their suggested improvements.
This work was supported by the European Community Seventh Framework Programme
(FP7/2007-2013) under grant agreement 270327 (CompLACS), and by the EPSRC under
grant agreement EP/M006093/1 (C-PLACID).

27

Furmston, Lever and Barber

Appendix A. Proofs

A.1 Proofs of Theorems 1 and 3

We begin with an auxiliary Lemma.

Lemma 1. Suppose we are given a Markov decision process with objective (1) and Marko-
vian trajectory distribution (2). For any given parameter vector, w ∈ W, the following
identities hold,

∂

∂w
V (s;w) =

∞∑
t=1

∑
st∈S

∑
at∈A

γt−1p(st, at|s1 = s;w)Q(st, at;w)
∂

∂w
log π(at|st;w) (34)

∂

∂w
Q(s, a;w) =

∞∑
t=2

∑
st∈S

∑
at∈A

γt−1p(st, at|s1 = s, a1 = a;w)Q(st, at;w)
∂

∂w
log π(at|st;w).

(35)

Proof. We start by writing the state value function in the form

V (s;w) =
∞∑
t=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t|s1 = s;w)R(st, at), (36)

so that,

∂

∂w
V (s;w) =

∞∑
t=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t|s1 = s;w)
∂

∂w
log p(s1:t, a1:t|s1 = s;w)R(st, at).

Using the fact that

∂

∂w
log p(s1:t, a1:t|s1 = s;w) =

t∑
τ=1

∂

∂w
log π(aτ |sτ ;w), (37)

we have that,

∂

∂w
V (s;w) =

∞∑
t=1

∑
st,at

t∑
τ=1

∑
sτ ,aτ

γt−1p(sτ , aτ , st, at|s1 = s;w)
∂

∂w
log π(aτ |sτ ;w)R(st, at)

=

∞∑
τ=1

∑
sτ ,aτ

γτ−1p(sτ , aτ |s1 = s;w)
∂

∂w
log π(aτ |sτ ;w)

∞∑
t=τ

∑
st,at

γt−τp(st, at|sτ , aτ ;w)R(st, at)

=
∞∑
τ=1

∑
sτ ,aτ

γτ−1p(sτ , aτ |s1 = s;w)
∂

∂w
log π(aτ |sτ ;w)Q(sτ , aτ ;w). (38)

28

Approximate Newton Methods for Policy Search in Markov Decision Processes

where in the second line we swapped the order of summation and the third line follows from
the definition (3). Identity (35) now follows by applying (3):

∂

∂w
Q(s, a;w) = γ

∑
s′

P (s′|s, a)
∂

∂w
V (s′;w)

= γ
∑
s′

P (s′|s, a)
∞∑
t=2

∑
st∈S

∑
at∈A

γt−2p(st, at|s2 = s′;w)
∂

∂w
log π(at|st;w)Q(st, at;w)

=

∞∑
t=2

∑
st∈S

∑
at∈A

γt−1p(st, at|s1 = s, a1 = a;w)Q(st, at;w)
∂

∂w
log π(at|st;w).

Theorem 1. Proof. Theorem 1 follows immediately from Lemma 1 by taking the expec-
tation over s1 w.r.t. the start state distribution p1 and using the definition (5) of the
discounted trajectory distribution.

Theorem 3. Proof. Starting from U(w) =
∑∞

t=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)R(st, at),
the Hessian of (4) takes the form

∂2

∂w2
U(w) =

∞∑
t=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)
∂2

∂w2
log p(s1:t, a1:t;w)R(st, at)

+

∞∑
t=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)
∂

∂w
log p(s1:t, a1:t;w)

∂>

∂w
log p(s1:t, a1:t;w)R(st, at). (39)

Using the fact that ∂2

∂w2 log p(s1:t, a1:t|s1 = s;w) =
∑t

τ=1
∂2

∂w2 log π(aτ |sτ ;w) we will show
that the first term in (39) is equal to H2(w) as defined in (16):

∞∑
t=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)
∂2

∂w2
log p(s1:t, a1:t;w)R(st, at)

=

∞∑
t=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)

t∑
τ=1

∂2

∂w2
log π(aτ |sτ ;w)R(st, at)

=

∞∑
τ=1

γτ−1
∑
sτ ,aτ

p(sτ , aτ ;w)
∂2

∂w2
log π(aτ |sτ ;w)

∞∑
t=τ

γt−τ
∑
st,at

p(st, at|sτ , aτ ;w)R(st, at)

=

∞∑
τ=1

γτ−1
∑
sτ ,aτ

p(sτ , aτ ;w)
∂2

∂w2
log π(aτ |sτ ;w)Q(sτ , aτ ;w).

= H2(w)

where in the third line we swapped the order of summation.

29

Furmston, Lever and Barber

Using (37) we can write the second term in (39) as,

∞∑
t=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)
∂

∂w
log p(s1:t, a1:t;w)

∂>

∂w
log p(s1:t, a1:t;w)R(st, at)

=

∞∑
t=1

t∑
τ=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)
∂

∂w
log π(aτ |sτ ;w)

∂>

∂w
log π(aτ |sτ ;w)R(st, at)

+

∞∑
t=1

t∑
τ1,τ2=1

τ1 6=τ2

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)
∂

∂w
log π(aτ1 |sτ1 ;w)

∂>

∂w
log π(aτ2 |sτ2 ;w)R(st, at).

(40)

By swapping the order of summation and following analogous calculations to those above,
it can be shown that the first term in (40) is equal to H1(w) as defined in (15). It remains
to show that the second term in (40) is given by H12(w) +H>12(w), with H12(w) as given
in (17). Splitting the second term in (40) into two terms,

∞∑
t=1

t∑
τ1,τ2=1

τ1 6=τ2

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)
∂

∂w
log π(aτ1 |sτ1 ;w)

∂>

∂w
log π(aτ2 |sτ2 ;w)R(st, at)

=
∞∑
t=1

t∑
τ2=1

τ2−1∑
τ1=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)
∂

∂w
log π(aτ1 |sτ1 ;w)

∂>

∂w
log π(aτ2 |sτ2 ;w)R(st, at)

+

∞∑
t=1

t∑
τ1=1

τ1−1∑
τ2=1

∑
s1:t

∑
a1:t

γt−1p(s1:t, a1:t;w)
∂

∂w
log π(aτ1 |sτ1 ;w)

∂>

∂w
log π(aτ2 |sτ2 ;w)R(st, at),

(41)

we will show that the first term is equal to H12(w). Given this, it immediately follows that
the second term is equal to H>12(w). Using the Markov property of the transition dynamics
and the policy it follows that the first term in (41) is given by,

∞∑
t=1

t∑
τ2=1

τ2−1∑
τ1=1

∑
sτ1 ,aτ1

γτ1−1p(sτ1 , aτ1 ;w)
∂

∂w
log π(aτ1 |sτ1 ;w)

×
∑

sτ2 ,aτ2

γτ2−τ1p(sτ2 , aτ2 |sτ1 , aτ1 ;w)
∂>

∂w
log π(aτ2 |sτ2 ;w)

∑
st,at

γt−τ2p(st, at|sτ2 , aτ2 ;w)R(st, at).

30

Approximate Newton Methods for Policy Search in Markov Decision Processes

Rearranging the summation over t, τ1 and τ2 this can be rewritten in the form,

∞∑
τ1=1

∑
sτ1 ,aτ1

γτ1−1p(sτ1 , aτ1 ;w)
∂

∂w
log π(aτ1 |sτ1 ;w)

×
{ ∞∑
τ2=τ1+1

∑
sτ2 ,aτ2

γτ2−τ1p(sτ2 , aτ2 |sτ1 , aτ1 ;w)
∂>

∂w
log π(aτ2 |sτ2 ;w)

∞∑
t=τ2

∑
st,at

γt−τ2p(st, at|sτ2 , aτ2 ;w)R(st, at)

}

=

∞∑
τ1=1

∑
sτ1 ,aτ1

γτ1−1p(sτ1 , aτ1 ;w)
∂

∂w
log π(aτ1 |sτ1 ;w)

×
∞∑

τ2=τ1+1

∑
sτ2 ,aτ2

γτ2−τ1p(sτ2 , aτ2 |sτ1 , aτ1 ;w)
∂>

∂w
log π(aτ2 |sτ2 ;w)Q(sτ2 , aτ2 ;w)

=

∞∑
τ1=1

∑
sτ1 ,aτ1

γτ1−1p(sτ1 , aτ1 ;w)
∂

∂w
log π(aτ1 |sτ1 ;w)

∂>

∂w
Q(sτ1 , aτ1 ;w)

= H12(w)

Where the penultimate line follows from (35). This completes the proof.

A.2 Proof of Theorem 4

Recalling that the state-action value function takes the form, Q(s, a;w) = V (s;w) +
A(s, a;w), the matrices H1(w) and H2(w) can be written in the following forms,

H1(w) = A1(w) + V1(w), H2(w) = A2(w) + V2(w), (42)

where,

A1(w) =
∑

(s,a)∈S×A

pγ(s, a;w)A(s, a;w)
∂

∂w
log π(a|s;w)

∂>

∂w
log π(a|s;w)

A2(w) =
∑

(s,a)∈S×A

pγ(s, a;w)A(s, a;w)
∂2

∂w2
log π(a|s;w)

V1(w) =
∑

(s,a)∈S×A

pγ(s, a;w)V (s, a;w)
∂

∂w
log π(a|s;w)

∂>

∂w
log π(a|s;w)

V2(w) =
∑

(s,a)∈S×A

pγ(s, a;w)V (s, a;w)
∂2

∂w2
log π(a|s;w).

We begin with the following auxiliary lemmas.

Lemma 2. Suppose we are given a Markov decision process with objective (1) and Marko-
vian trajectory distribution (2). Provided that the policy satisfies the Fisher regularity con-
ditions, then for any given parameter vector, w ∈ W, the matrices V1(w) and V2(w) satisfy
the following relation V1(w) = −V2(w).

31

Furmston, Lever and Barber

Proof. As the policy satisfies the Fisher regularity conditions, then for any state, s ∈ S, the
following relation holds∑

a∈A
π(a|s;w)

∂

∂w
log π(a|s;w)

∂>

∂w
log π(a|s;w) = −

∑
a∈A

π(a|s;w)
∂2

∂w2
log π(a|s;w).

This means that V1(w) can be written in the form

V1(w) =
∑
s∈S

pγ(s;w)V (s;w)
∑
a∈A

π(a|s;w)
∂

∂w
log π(a|s;w)

∂>

∂w
log π(a|s;w),

= −
∑
s∈S

pγ(s;w)V (s;w)
∑
a∈A

π(a|s;w)
∂2

∂w2
log π(a|s;w) = −V2(w),

which completes the proof.

Lemma 3. Suppose we are given a Markov decision process with objective (1) and Marko-
vian trajectory distribution (2). If the policy parameterisation has constant curvature with
respect to the action space, then A2(w) = 0.

Proof. When a policy parameterisation has constant curvature with respect to the action
space, then we use, Hπ(s,w), to denote ∂2

∂w2 log π(a|s;w), for each a ∈ A. Recalling Defi-
nition 2, the matrix A2(w) takes the form,

A2(w) =
∑

(s,a)∈S×A

pγ(s, a;w)A(s, a;w)
∂2

∂w2
log π(a|s;w),

=
∑
s∈S

pγ(s;w)Hπ(s,w)
∑
a∈A

π(a|s;w)A(s, a;w).

The relation A2(w) = 0 follows because
∑

a∈A π(a|s;w)A(s, a;w) = 0, for all s ∈ S.

Lemmas 2 & 3, along with the relation (42), directly imply the result of Theorem 4.

A.3 Proof of Theorem 5 and Definiteness Results

Theorem 5. Proof. The first result follows from the fact that when the policy is log-
concave with respect to the policy parameters, then H2(w) is a non-negative mixture of
negative-definite matrices, which again is negative-definite (Boyd and Vandenberghe, 2004).

The second result follows because when the policy parameterisation has constant cur-
vature with respect to the action space, then by Lemma 3 in Section A.2 A2(w) = 0, so
that H2(w) = A2(w) + V2(w) = V2(w) = −V1(w), with

V1(w) =
∑

(s,a)∈S×A

pγ(s, a;w)V (s, a;w)
∂

∂w
log π(a|s;w)

∂>

∂w
log π(a|s;w)

V2(w) =
∑

(s,a)∈S×A

pγ(s, a;w)V (s, a;w)
∂2

∂w2
log π(a|s;w).

The result now follows because −V1(w) is negative-semidefinite for all w ∈ W.

32

Approximate Newton Methods for Policy Search in Markov Decision Processes

Lemma 4. For any w ∈ W the matrix H11(w) = H1(w) +H12(w) +H>12(w) is positive-
semidefinite.

Proof. This follows immediately from the form of H1(w) +H12(w) +H>12(w) given by (40)
in Theorem 3, which is positive-semidefinite since the reward function is assumed to be
non-negative.

A.4 Proof of Theorem 6

We first prove an auxiliary lemma about the gradient of the state value function in the case
of a tabular policy. As we are considering a tabular policy we have a separate parameter
vector ws for each state s ∈ S. We denote the parameter vector of the entire policy by
w, in which this is given by the concatenation of the parameter vectors of the different
states. The dimension of w is given by n =

∑
s∈S ns. In order to show that tabular policies

are value-consistent we start by relating the gradient of V (ŝ;w) to the gradient of V (s̄;w),
where the gradient is taken with respect to the policy parameters of state s̄, while the policy
parameters of the remaining states are held fixed.

Lemma 5. Suppose we are given a Markov decision process with a tabular policy such that
V (s;w) is differentiable for each s ∈ S. Given s̄, ŝ ∈ S, such that s̄ 6= ŝ, then we have that

∂

∂ws̄
V (ŝ;w) = phit(ŝ→ s̄)

∂

∂ws̄
V (s̄;w), (43)

where the notation ∂
∂ws̄

V (ŝ;w) is used to denote the gradient of the state value function
w.r.t. the policy parameter of state s̄, with the policy parameters of all other states considered
fixed. The term phit(ŝ→ s̄) in (43) is given by

phit(ŝ→ s̄) =

∞∑
t=2

γt−1p(st = s̄|s1 = ŝ, sτ 6= s̄, τ = 1, ..., t− 1;w).

Furthermore, when Markov chain induced by the policy parameters is ergodic then phit > 0.

Proof. Given the equality V (s;w) =
∑

a∈A π(a|s;w)Q(s, a;w), we have that

∂

∂ws̄
V (ŝ;w) =

∑
a∈A

(
∂

∂ws̄
π(a|ŝ;w)Q(ŝ, a;w) + π(a|ŝ;w)

∂

∂ws̄
Q(ŝ, a;w)

)
.

As the policy is tabular and ŝ 6= s̄ we have that ∂
∂ws̄

π(a|ŝ;w) = 0, so that this simplifies to

∂

∂ws̄
V (ŝ;w) =

∑
a∈A

π(a|ŝ;w)
∂

∂ws̄
Q(ŝ, a;w).

Using the fact that Q(s, a;w) = R(s, a) + γ
∑

s′∈S p(s
′|s, a)V (s′;w), we have

∂

∂ws̄
V (ŝ;w) = γ

∑
s′∈S

p(s′|ŝ;w)
∂

∂ws̄
V (s′;w)

= γp(s̄|ŝ;w)
∂

∂ws̄
V (s̄;w) + γ

∑
s′∈S
s′ 6=s̄

p(s′|ŝ;w)
∂

∂ws̄
V (s′;w). (44)

33

Furmston, Lever and Barber

Applying equation (44) recursively gives

∂

∂ws̄
V (ŝ;w) =

∞∑
t=2

γt−1p(st = s̄|s1 = ŝ, sτ 6= s̄, τ = 1, ..., t− 1;w)
∂

∂ws̄
V (s̄;w)

= phit(ŝ→ s̄)
∂

∂ws̄
V (s̄;w), (45)

which completes the proof. The probability, p(st = s̄|s1 = ŝ, sτ 6= s̄, τ = 1, ..., t − 1;w), is
equivalent to the probability that the first hitting time (of hitting state s̄ when starting in
state ŝ) is equal to t. The strict inequality, phit(ŝ → s̄) > 0, follows from the ergodicity of
the Markov chain induced by w.

We are now ready to prove Theorem 6.

Theorem 6. Proof. Suppose that there exists i ∈ {1, ..., n}, w ∈ W and ŝ ∈ S such that
∂
∂wi

V (ŝ;w) 6= 0, for some ŝ ∈ S. As the policy parameterisation is tabular, then the ith

component of w corresponds to a policy parameter for a particular state, s̄ ∈ S. From
Lemma 5 it follows that

∂

∂wi
V (s;w) = phit(s→ s̄)

∂

∂wi
V (s̄;w),

for all s ∈ S. It follows that for states, s ∈ S, for which phit(s→ s̄) > 0 that we have

sign

(
∂

∂wi
V (s;w)

)
= sign

(
∂

∂wi
V (ŝ;w)

)
,

while in states for which phit(s→ s̄) = 0 we have sign
(
∂
∂wi

V (s;w)
)

= 0.

It remains to show that for states in which phit(s→ s̄) = 0 that sign
(
∂
∂wi

π(a|s;w)
)

= 0,
∀a ∈ A. This property follows immediately from the fact that the policy parameterisation
is tabular and phit(s̄→ s̄) 6= 0.

A.5 Proof of Theorem 7

Lemma 6. Given a Markov decision process and a policy parameterisation that is ε-value-
consistent, if there exists i ∈ {1, ..., n} and ŝ ∈ S such that,∣∣∣∣ ∂∂wiV (ŝ;w)

∣∣
w=w∗

∣∣∣∣ > ε, (46)

then for each s ∈ S,

sign

(
∂

∂wi
V (s;w)

)
= sign

(
∂

∂wi
V (ŝ;w)

)
.

Proof. In order to obtain a contradiction suppose that there exists s ∈ S such that,

sign

(
∂

∂wi
V (s;w)

)
6= sign

(
∂

∂wi
V (ŝ;w)

)
. (47)

34

Approximate Newton Methods for Policy Search in Markov Decision Processes

By definition 2 it follows that for all s′ ∈ S,

sign

(
∂

∂wi
V (s′;w)

)
= sign

(
∂

∂wi
V (s;w)

)
, (48)

or ∣∣∣∣ ∂∂wiV (s′;w)

∣∣∣∣ ≤ ε. (49)

From (47) it follows that, ∣∣∣∣ ∂∂wiV (ŝ;w)

∣∣∣∣ ≤ ε. (50)

This is a contradiction of (46), which completes the proof.

Theorem 7. Proof. In order to obtain a contradiction suppose that there exists i ∈ {1, ..., n}
and ŝ ∈ S such that, ∣∣∣∣ ∂∂wiV (ŝ;w)

∣∣
w=w∗

∣∣∣∣ > ε. (51)

We suppose that ∂
∂wi

V (ŝ;w)|w=w∗ > ε (an identical argument can be used for the case
∂
∂wi

V (ŝ;w)|w=w∗ < −ε). As the policy parameterisation is ε-value-consistent it follows
from lemma 6 that, for each s ∈ S,

∂

∂wi
V (s;w)|w=w∗ ≥ 0. (52)

In order to obtain a contradiction we will show that there is no s ∈ S for which (52)
holds with equality. Given this property a contradiction is obtained because it follows that

∂

∂wi
U(w)|w=w∗ = Ep1(s)

[
∂

∂wi
V (s;w)|w=w∗

]
> 0,

contradicting the fact that w∗ is a local optimum of the objective function. Introducing the
notation

S= =
{
s ∈ S

∣∣ ∂

∂wi
V (s;w)|w=w∗ = 0

}
,

S> = {s ∈ S | ∂

∂wi
V (s;w)|w=w∗ > 0},

we wish to show that S= = ∅. In particular, for a contradiction, suppose that S= 6= ∅. This
means, given the ergodicity of the Markov chain induced by w∗ and the fact that S> 6= ∅,
that there exists s ∈ S= and s′ ∈ S> such that p(s′|s;w∗) =

∑
a∈A p(s

′|s, a)π(a|s;w∗) > 0.

We now consider the form of ∂
∂wV (s;w)|w=w∗ . In particular, we have

∂

∂w
V (s;w) =

∑
a∈A

∂

∂w
π(a|s;w)

(
R(a, s) + γ

∑
snext∈S

p(snext|s, a)V (snext;w)

)
+ γ

∑
a∈A

π(a|s;w)
∑

snext∈S
p(snext|s, a)

∂

∂w
V (snext;w).

35

Furmston, Lever and Barber

As s ∈ S=, we have by value consistency that ∂
∂wi

π(a|s;w)|w=w∗ = 0. This means that

∂

∂wi
V (s;w)|w=w∗ = γ

∑
a∈A

π(a|s;w)
∑

snext∈S
p(snext|s, a)

∂

∂wi
V (snext;w)|w=w∗ > 0.

The inequality follows from the fact that p(s′|s;w∗) > 0, for some s′ ∈ S>. This is a
contradiction of the fact that s= ∈ S=, so it follows that S= = ∅ and for all s ∈ S we have
∂
∂wi

V (s;w)|w=w∗ > 0, which completes the proof.

A.6 Proof of Theorem 8

Theorem 8. Proof. A optimisation method is said to affine invariant if, given any objective
function (for which the optimisation technique is applicable), f :W → R, and non-singular
affine mapping, T ∈ Rn×n, the update of the objective f̃(w) = f(Tw) is related to the
update of the original objective through the same affine mapping, i.e., v+ ∆vstep = T

(
w+

∆wstep

)
, in which v = Tw and ∆vstep and ∆wstep denote the respective steps in the

parameter space.
We shall consider the second Gauss-Newton method, with the result for the diagonal

approximate Newton method following similarly. Given a non-singular affine transforma-
tion, T ∈ Rn×n, define the objective, Û(w) = U(Tw) = U(v), with v = Tw, and denote
the approximate Hessian of Û(w) by Ĥ2(w). Given w ∈ W, then it is sufficient to show
that,

Twnew = T

(
w − αĤ−1

2 (w)
∂

∂w
Û(w)

)
= v − αH−1

2 (v)
∂

∂v
U(v) = vnew, ∀α ∈ R+.

Following calculations analogous to those in Section A.1 it can be shown that,

∂

∂w
Û(w) =

∑
s,a

pγ(s, a;Tw)Q(s, a;Tw)
∂

∂w
log p(a|s;Tw),

Ĥ2(w) =
∑
s,a

pγ(s, a;Tw)Q(s, a;Tw)
∂2

∂w2
log p(a|s;Tw).

Using the relations

∂

∂w
log π(a|s;Tw) = T>

∂

∂v
log π(a|s;v),

∂2

∂w2
log π(a|s;Tw) = T>

∂2

∂v2
log π(a|s;v)T,

it follows that

∂

∂w
Û(w) = T>

∂

∂v
U(v),

Ĥ2(w) = T>H2(v)T.

From this we have, for any α ∈ R+, that

Twnew = T

(
w − αĤ−1

2 (w)
∂

∂w
Û(w)

)
= v − αH−1

2 (v)
∂

∂v
U(v) = vnew, ∀α ∈ R+.

which completes the proof.

36

Approximate Newton Methods for Policy Search in Markov Decision Processes

A.7 Proofs of Theorems 9 and 10

We begin by stating a well-known tool for analysis of convergence of iterative optimization
methods. Given an iterative optimization method, defined through a mapping G :W → Rn,
where W ⊆ Rn, the local convergence at a point w∗ ∈ W is determined by the spectral
radius of the Jacobian of G at w∗, ∇G(w∗). This is formalized through the well-known
Ostrowski’s Theorem, a formal proof of which can be found in the work of Ortega and
Rheinboldt (1970).

Lemma 7 (Ostrowski’s Theorem). Suppose that we have a mapping G : W → Rn, where
W ⊂ Rn, such that w∗ ∈ int(W) is a fixed-point of G and, furthermore, G is Fréchet
differentiable at w∗. If the spectral radius of ∇G(w∗) satisfies ρ(∇G(w∗)) < 1, then w∗ is
a point of attraction of G. Furthermore, if ρ(∇G(w∗)) > 0, then the convergence towards
w∗ is linear and the rate is given by ρ(∇G(w∗)).

We now prove Theorems 9 and 10.

Theorem 9 (Convergence analysis for the first Gauss-Newton method). Proof. A formal proof
that G1 is Fréchet differentiable can be found in Section 10.2.1 of Ortega and Rheinboldt
(1970). We now demonstrate the form of ∇G1(w∗). For simplicity we shall assume that
(A1(w∗) +A2(w∗))−1 is differentiable. This is not a necessary condition, and a proof that
does not make this assumption can be found in Section 10.2.1 of Ortega and Rheinboldt
(1970). We have that,

G1(w) = w − α(A1(w) +A2(w))−1 ∂
>

∂w
U(w),

so that ∇G1(w) is given by

∇G1(w) = I − α ∂

∂w
(A1(w) +A2(w))−1 ∂

>

∂w
U(w)− α(A1(w) +A2(w))−1 ∂2

∂w2
U(w).

The fact that ∂
∂wU(w)|w=w∗ = 0 means that

∇G1(w∗) = I − α(A1(w∗) +A2(w∗))−1H(w∗).

As H(w∗) and A1(w∗) + A2(w∗) are negative-definite, it follows that the eigenvalues of
(A1(w∗) +A2(w∗))−1H(w∗) are positive. Hence,

ρ(∇G1(w∗)) = max
{
|1− αλmin|, |1− αλmax|

}
, (53)

with λmin and λmax respectively denoting the minimal and maximal eigenvalues of (A1(w∗)+
A2(w∗))−1H(w∗). Hence, ρ(∇G1(w∗)) < 1 provided that α ∈ (0, 2λ−1

max), or, written in
terms of the spectral radius, α ∈ (0, 2/ρ((A1(w∗) +A2(w∗))−1H(w∗))).

When the policy parameterisation is value-consistent with respect to the given MDP,
then from Theorem 7 H12(w∗) +H>12(w∗) = 0, so that H(w∗) = A1(w∗) +A2(w∗). It then
follows that ∇G1(w∗) = (1−α)I. Convergence for this case follows in the same manner.

37

Furmston, Lever and Barber

Theorem 10 (Convergence analysis for the second Gauss-Newton method). Proof. The for-
mulas (29) and (31) follow as in the proof of Theorem 9. Using the same approach as in The-
orem 9, it can be shown that ρ(∇G2(w∗)) < 1 provided that, α ∈ (0, 2/ρ(H2(w∗)−1H(w∗))).

As H(w∗) and H2(w∗) are negative-definite the eigenvalues of H2(w∗)−1H(w∗) are
positive. Furthermore, as H(w∗) = H11(w∗) + H2(w∗), and, by Lemma 4, H11(w∗) is
positive-semidefinite, it follows that the eigenvalues of H2(w∗)−1H(w∗) all lie in the range
(0, 1]. This means that α ∈ (0, 2) is sufficient to ensure that ρ(∇G2(w∗)) < 1.

A.8 Proof of Theorem 11

Theorem 11. Proof. We use the notation ∇10Q(wj ,wk) to denote the derivative with
respect to the first variable of Q, evaluated at (wj ,wk), and similarly ∇20Q(wj ,wk) for the
second derivative and ∇01Q(wj ,wk) for the derivative with respect to the second variable
etc. The idea of the proof is simple and consists of performing a Taylor expansion of
∇10Q(w,wk). AsQ is assumed to be twice continuously differentiable in the first component
this Taylor expansion is possible and gives

∇10Q(wk+1,wk) = ∇10Q(wk,wk) +∇20Q(wk,wk)(wk+1−wk) +O(‖wk+1−wk‖2). (54)

As wk+1 = argmaxw∈W Q(w,wk) it follows that ∇10Q(wk+1,wk) = 0. This means that,
upon ignoring higher order terms in wk+1−wk, the Taylor expansion (54) can be rewritten
into the form

wk+1 −wk = −∇20Q(wk,wk)
−1∇10Q(wk,wk). (55)

The proof is completed by observing that

∇10Q(wk,wk) =
∂

∂w
U(w)|w=wk , ∇20Q(wk,wk) = H2(wk).

The second statement follows because in the case where the log-policy is quadratic the
higher order terms in the Taylor expansion vanish.

A.9 Proof of Theorem 12

Theorem 12. Proof. In the EM-algorithm the update of the policy parameters takes the
form

GEM(wk) = argmaxw∈W Q(w,wk),

where the function Q(w,w′) is given by

Q(w,w′) =
∑

(s,a)∈S×A

pγ(s, a;w′)Q(s, a;w′)

[
log π(a|s;w)

]
.

Note thatQ is a two parameter function, where the first parameter occurs inside the bracket,
while the second parameter occurs outside the bracket. Also note that Q(w,w′) satisfies

38

Approximate Newton Methods for Policy Search in Markov Decision Processes

the following identities

∇10Q(w,w′) =
∑

(s,a)∈S×A

pγ(s, a;w′)Q(s, a;w′)

[
∂

∂w
log π(a|s;w)

]
,

∇20Q(w,w′) =
∑

(s,a)∈S×A

pγ(s, a;w′)Q(s, a;w′)

[
∂2

∂w2
log π(a|s;w)

]
,

∇11Q(w,w′) =
∑

(s,a)∈S×A

∂

∂w

(
pγ(s, a;w′)Q(s, a;w′)

)
∂>

∂w
log π(a|ss;w).

Here we have used the notation ∇ij to denote the ith derivative with respect to the first
parameter and the jth derivative with respect to the second parameter. Note that when we
set w = w′ in the first two of these terms we have ∇10Q(w,w) = ∂

∂wU(w), ∇20Q(w,w) =
H2(w). A key identity that we need for the proof is that ∇11Q(w,w) = H1(w)+H12(w)+
H>12(w). This follows from the observation that ∂

∂wU(w) = ∇10Q(w,w), so that

∂2

∂w2
U(w) =

∂

∂w

(
∇10Q(w,w)

)
= ∇20Q(w,w) +∇11Q(w,w),

so that

H1(w) +H12(w) +H>12(w) = H(w)−H2(w) = ∇20Q(w,w) +∇11Q(w,w)−∇20Q(w,w),

= ∇11Q(w,w),

as claimed.
Now, to calculate the matrix ∇GEM(w∗) we perform a Taylor series expansion of

∇10Q(w,w′) in both parameters around the point (w∗,w∗), and evaluated at (wk+1,wk),
which gives

∇10Q(wk+1,wk) = ∇10Q(w∗,w∗) +∇20Q(w∗,w∗)
(
wk+1 −w∗

)
+∇11Q(w∗,w∗)

(
wk −w∗

)
+ . . .

As w∗ is a local optimum of U(w) we have that ∇10Q(w∗,w∗) = 0. Furthermore, as
the sequence {wk}k∈N was generated by the EM-algorithm, we have, for each k ∈ N,
that wk+1 = argmaxw∈W Q(w,wk), which implies that ∇10Q(wk+1,wk) = 0. Finally, as
∇20Q(w∗,w∗) = H2(w∗) and ∇11Q(w∗,w∗) = H1(w∗) we have

0 = H2(w∗)(wk+1 −w∗) +
(
H1(w∗) +H12(w∗) +H>12(w∗)

)
(wk −w∗) + . . .

Using the fact that wk+1 = GEM(wk) and w∗ = GEM(w∗), taking the limit k →∞ gives

0 = H2(w∗)∇GEM(w∗) +H1(w∗) +H12(w∗) +H>12(w∗),

so that

∇GEM(w∗) = −H−1
2 (w∗)

(
H1(w∗) +H12(w∗) +H>12(w∗)

)
= I −H−1

2 (w∗)H(w∗).

In the case where the policy parameterisation value-consistent with respect to the given
MDP then we have H12(w∗) +H12(w∗)> = 0, so that ∇GEM(w∗) = I −H−1

2 (w∗)A1(w∗).
The rest of the proof follows from the result in Theorem 10 when considering α = 1.

39

Furmston, Lever and Barber

Appendix B. Further Details for Estimation of Preconditioners and the
Gauss-Newton Update Direction

B.1 Recurrent State Search Direction Evaluation for Second Gauss-Newton
Method

In the work of Williams (1992) a sampling algorithm was provided for estimating the gra-
dient of an infinite horizon MDP with average rewards. This algorithm makes use of a
recurrent state, which we denote by s∗. In Algorithm 2 we detail a straightforward ex-
tension of this algorithm to the estimation the approximate Hessian, H2(w), in this MDP
framework. The analogous algorithm for the estimation of the diagonal matrix, D2(w),
follows similarly. In Algorithm 2 we make use of an eligibility trace for both the gradient
and the approximate Hessian, which we denote by Φ1 and Φ2 respectively. The estimates
(up to a positive scalar) of the gradient and the approximate Hessian are denoted by ∆1

and ∆2 respectively.

B.2 Inversion of Preconditioning Matrices

A computational bottleneck of Newton’s method is the inversion of the Hessian matrix,
which scales with O(n3). In a standard application of Newton’s method this inversion is
performed during each iteration, and in large parameter systems this becomes prohibitively
costly. We now consider the inversion of the preconditioning matrix in proposed Gauss-
Newton methods.

Firstly, in the diagonal forms of the Gauss-Newton methods the preconditioning matrix
is diagonal, so that the inversion of this matrix is trivial and scales linearly in the number of
parameters. In general the preconditioning matrix of the full Gauss-Newton methods will
have no form of sparsity, and so no computational savings will be possible when inverting
the preconditioning matrix. There is, however, a source of sparsity that allows for the
efficient inversion of H2 in certain cases of interest. In particular, any product structure
(with respect to the control parameters) in the model of the agent’s behaviour will lead to
sparsity in H2. For example, in partially observable Markov decision processes in which the
behaviour of the agent is modeled through a finite state controller (Meuleau et al., 1999)
there are three functions that are to be optimized, the initial belief distribution, the belief
transition dynamics and the policy. In this case the dynamics of the system are given by,

p(s′, o′, b′, a′|s, o, b, a;v,w) = p(s′|s, a)p(o′|s′)p(b′|b, o′;v)π(a′|b′, o′;w),

in which o ∈ O is an observation from a finite observation space, O, and b ∈ B is the
belief state from a finite belief space, B. The initial belief is given by the initial belief
distribution, p(b|o;u). The parameters to be optimized in this system are u, v and w. It
can be seen that in this system H2(u,v,w) is block-diagonal (across the parameters u, v
and w) and the matrix inversion can be performed more efficiently by inverting each of the
block matrices individually. By contrast, the Hessian H(u,v,w) does not exhibit any such
sparsity properties.

40

Approximate Newton Methods for Policy Search in Markov Decision Processes

Algorithm 2: Recurrent state sampling algorithm to estimate the search direction
of the second Gauss-Newton method. The algorithm is applicable to Markov decision
processes with an infinite planning horizon and average rewards.

Input: Policy parameter, w ∈ W,
Number of restarts, N ∈ N.

Sample a state from the initial state distribution:

s1 ∼ p1(·).

for i = 1,, N do

Given the current state, sample an action from the policy:

at ∼ π(·|st;w).

if st 6= s∗, then
update the eligibility traces:

Φ1 ← Φ1 +
∂

∂w
log π(at|st;w) Φ2 ← Φ2 +

∂2

∂w2
log π(at|st;w)

else
reset the eligibility traces:

Φ1 = 0, Φ2 = 0.

end

Update the estimates of the ∂
∂wU(w) and H2(w):

∆1 ←∆1 +R(at, st)Φ
1, ∆2 ←∆2 +R(at, st)Φ

2.

Sample state from the transition dynamics:

st+1 ∼ p(·|at, st).

Update time-step, t← t+ 1.
end
return ∆1 and ∆2, which, up to a positive multiplicative constant, are estimates of
∂
∂wU(w) and H2(w).

Appendix C. Experiments

C.1 Non-Linear Navigation Experiment

The state-space of the problem is two-dimensional, s = (s1, s2), in which s1 is the agent’s
position and s2 is the agent’s velocity. The control is one-dimensional and the dynamics of

41

Furmston, Lever and Barber

the system is given as follows,

s1
t+1 = s1

t +
1

1 + e−ut
− 0.5 + κ,

s2
t+1 = s2

t − 0.1s1
t+1 + κ,

with κ a zero-mean Gaussian random variable with standard deviation σκ = 0.02. The
agent starts in the state s = (0, 1), with the addition of Gaussian noise with standard
deviation 0.001, and the objective is for the agent to reach the target state, starget = (0, 0).
We use the same policy as in Vlassis et al. (2009), which is given by at = (w+ εt)

>st, with
control parameters, w, and εt ∼ N (εt; 0, σ

2
ε I). The objective function is non-trivial for

w ∈ [0, 60] × [−8, 0]. In the experiment the initial control parameters were sampled from
the region w0 ∈ [0, 60]× [−8, 0]. In all algorithms 50 trajectories were sampled during each
training iteration and used to estimate the search direction. We consider a finite planning
horizon, H = 80.

C.2 N-link Rigid Manipulator Experiment

The state of the system is given by q, q̇, q̈ ∈ RN , where q, q̇ and q̈ denote the angles,
velocities and accelerations of the joints respectively, while the control variables are the
torques applied to the joints τ ∈ RN . The nonlinear state equations of the system are given
by (Spong et al., 2005),

M(q)q̈ + C(q̇, q)q̇ + g(q) = τ , (56)

where M(q) is the inertia matrix, C(q̇, q) denotes the Coriolis and centripetal forces and
g(q) is the gravitational force. While this system is highly nonlinear it is possible to define
an appropriate control function τ̂ (q, q̇) that results in linear dynamics in a different state-
action space. This technique is known as feedback linearisation (Khalil, 2001), and in the
case of an N -link rigid manipulator recasts the torque action space into the acceleration
action space. This means that the state of the system is now given by q and q̇, while
the control is a = q̈. Ordinarily in such problems the reward would be a function of the
generalized co-ordinates of the end effector, which results in a non-trivial reward function
in terms of q, q̇ and q̈. This can be accounted for by modelling the reward function as
a mixture of Gaussians (Hoffman et al., 2009), but for simplicity we consider the simpler
problem where the reward is a function of q, q̇ and q̈ directly.

We consider the finite horizon undiscounted problem in this section, so that the gradient
of the objective function takes the form

∂

∂w
U(w) =

∫ ∫
dsda

∂

∂w
log π(a|s;w)

H∑
t=1

pt(s, a;w)Q(s, a, t;w),

with the preconditioning matrices of natural gradient ascent and the Gauss-Newton methods
taking analogous forms. It can be shown that for the policy parameterisation given in
(33) the derivative of log π(a|s;w) is quadratic in (s, a), for all (s, a) ∈ S × A. This
means that to calculate the search directions of gradient ascent, natural gradient ascent,
expectation maximization and the Gauss-Newton methods it is sufficient to calculate the

42

Approximate Newton Methods for Policy Search in Markov Decision Processes

first two moments of pt(s, a;w)Q(s, a, t;w) w.r.t. (s, a), for each t ∈ {1, ...,H}. These
calculations can be done using the methods presented in the work of Furmston (2012).

For all algorithms that required the specification of a step size we ran the experiment
over a collection of step size sequences and use the optimal step size sequence in the final
experiment. In both steepest gradient ascent and natural gradient ascent we considered
the following fixed step sizes: 0.001, 0.01, 0.1, 1, 10, 20, 30, 100 and 250. We were unable
to obtain any reasonable results with steepest gradient ascent with any of these fixed step
sizes, for which reason the results are omitted. In natural gradient ascent we found 30 to
be the best step size of those considered. In the Gauss-Newton method we considered the
following fixed step sizes: 10, 20, 30, 100 and 250 and found that the fixed step size of 30
gave consistently good results without overstepping in the parameter space. The smaller
step sizes obtained better results than expectation maximization, but less than the fixed
step size of 30. The larger step sizes often found superior results, but would sometimes
overstep in the parameter space. For these reasons we used the fixed step size of 30 in the
final experiment.

C.3 Tetris Experiment

In Tetris there exists a board, which is typically a 20 × 10 grid, which is empty at the
beginning of a game. During each stage of the game a four block piece, called a tetrzoid,
appears at the top of the board and begins to fall down the board. While the tetrzoid is
moving the player is allowed to rotate the tetrzoid and to move it left or right. The tetrzoid
stops moving once it reaches either the bottom of the board or a previously positioned
tetrzoid. In this manner the board begins to fill up with tetrzoid pieces. There are seven
different variations of tetrzoid, as shown in Figure 5a. When a horizontal line of the board
is completely filled with (pieces of) tetrzoids the line is removed from the board and the
player receives a score of one. The game terminates when the player is not able to fully
place a tetrzoid on the board due to insufficient space remaining on the board. An example
configuration of the board during a game of Tetris is given in Figure 5b. More details on
the game of Tetris can be found in the work of Fahey (2003). As in other applications of
Tetris in the reinforcement learning literature (Kakade, 2002; Bertsekas and Ioffe, 1996) we
consider a simplified version of the game in which the current tetrzoid remains above the
board until the player decides upon a desired rotation and column position for the tetrzoid.

We use the same procedure to evaluate the search direction for all the algorithms in
the experiment. Irrespective of the policy, a game of Tetris is guaranteed to terminate
after a finite number of turns (Bertsekas and Ioffe, 1996). We therefore model each game
as an absorbing state MDP. The reward at each time step is equal to the number of lines
deleted. We use a recurrent state approach (Williams, 1992) to estimate the gradient, using
the empty board as a recurrent state. (Since a new game starts with an empty board
this state is recurrent.6) We use analogous versions of this recurrent state approach for
natural gradient ascent, the diagonal Gauss-Newton method and the full Gauss-Newton

6. This is actually an approximation because it does not take into account that the state is given by the
configuration of the board and the current piece, so this particular ‘recurrent state’ ignores the current
piece. Empirically we found that this approximation gave better results, presumably due to reduced
variance in the estimands, and there is no reason to believe that it is unfairly biasing the comparison
between the various parametric policy search methods.

43

Furmston, Lever and Barber

(a) Tetris : Tetrzoids (b) Tetris : Game Board

Figure 5: A graphical illustration of the game of tetris with (a) the collection of possible
pieces, or tetrozoids, of which there are seven (b) a possible configuration of the
board, which in this example is of height 20 and width 10.

method. As in the work of Kakade (2002), we use the sample trajectories obtained during
the gradient evaluation to estimate the Fisher information matrix. During each training
iteration an approximation of the search direction is obtained by sampling 1000 games, using
the current policy to sample the games. It is computationally very expensive to perform
experiments on the Tetris domain. When performing the experiment we found that it would
be prohibitively expensive to perform an extensive sweep over different step size sequences
for all of the different algorithms. For this reason we decided to implement a simple line
search in this domain. Given the current approximate search direction we use the following
basic line search method to obtain a step size: For every step size in a given finite set of
step sizes sample a set number of games and then return the step size with the maximal
score over these games. In practice, in order to reduce the susceptibility to random noise,
we used the same simulator seed for each possible step size in the set. In this line search
procedure we sampled 1000 games for each of the possible step sizes. We use the same set
of step sizes {

0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0
}
.

in all of the different training algorithms in the experiment. To reduce the amount of noise
in the results we use the same set of simulator seeds in the search direction evaluation
for each of the algorithms considered in the experiment. In particular, we generate a
nexperiments×niterations matrix of simulator seeds, with nexperiments the number of repetitions
of the experiment and niterations the number of training iterations in each experiment. We
use this one matrix of simulator seeds in all of the different training algorithms, with the
element in the jth column and ith row corresponding to the simulator seed of the jth training
iteration of the ith experiment. In a similar manner, the set of simulator seeds we use for
the line search procedure is the same for all of the different training algorithms. Finally, to

44

Approximate Newton Methods for Policy Search in Markov Decision Processes

make the line search consistent among all of the different training algorithms we normalize
the search direction and use the resulting unit vector in the line search procedure.

C.4 Robot Arm Experiment

The domain in the robot arm experiment is episodic, with each episode 20 seconds in
length. The state of the domain is given by the angles and velocities of the seven joints
in the robot arm, along with the Cartesian coordinates of the ball. The action is given by
the joint accelerations of the robot arm. We denote the position of the cup and the ball by
(xc, yc, zc) ∈ R3 and (xb, yb, zb) ∈ R3 respectively. The reward function is given by,

r(xc, yc, xb, yb, t) =

{
−20

(
(xc − xb)2 + (yc − yb)2

)
if t = tc,

0 if t 6= tc,

in which tc is the moment the ball crosses the z-plane (level with the cup) in a downward
direction. If no such tc exists then the reward of the episode is given by −100.

We use the motor primitive framework (Ijspeert et al., 2002, 2003; Schaal et al., 2007;
Kober and Peters, 2011) in this domain, applying a separate motor primitive to each dimen-
sion of the action space. Each motor primitive consists of a parametrized curve that models
the desired action sequence (for the respective dimension of the action space) through the
course of the episode. Given this collection of motor primitives the control engine within
the simulator tries to follow the desired action sequence as closely as possible while also
satisfying the constraints on the system, such as the physical constraints on the torques that
can safely be applied without damaging the robot arm. As in the work of Kober and Peters
(2011) we use dynamic motor primitives, using 10 shape parameters for each of the indi-
vidual motor primitives. The robot arm has 7 joints, so that there are 70 motor primitive
parameters in total. We optimize the parameters of the motor primitives by considering
the MDP induced by this motor primitive framework. The action space corresponds to the
space of possible motor primitives, so that A = R70. There is no state space in this MDP
and the planning horizon is 1, so that this MDP is effectively a bandit problem. The reward
of an action is equal to the total reward of the episode induced by the motor primitive. We
consider a policy of the form,

π(a;w) = N
(
a|µ,

(
LL∗

)−1)
,

with w = (µ, L), µ the mean of the Gaussian and LL∗ the Cholesky decomposition of the
precision matrix. We consider a diagonal precision matrix, which results in a total of 140
policy parameters.

In this experiment we compare gradient ascent, natural gradient ascent, expectation
maximization, the first Gauss-Newton method and the second Gauss-Newton method. As
the planning horizon is of length 1 it follows that H12(w) = 0, ∀w ∈ W, so that the first
Gauss-Newton method coincides with Newton’s method for this MDP. The policy is block-
wise log-concave in µ and L, but not jointly log-concave in µ and L. As a result we construct
block diagonal forms of the preconditioning matrices for the first and second Gauss-Newton
methods, with a separate block for µ and L. Additionally, since the planning horizon is of
length 1 it is possible to calculate the Fisher information exactly in this domain. For gradient
ascent and natural gradient ascent we considered several different step size sequences. Each

45

Furmston, Lever and Barber

sequence considered had a constant step size throughout, and the sequences differed in the
size of this step size. We considered step sizes of length 1, 0.1, 0.01 and 0.001. For both
Gauss-Newton methods we considered a fixed step size of one throughout training (i.e., no
tuning of the step size sequence was performed for either the first or the second Gauss-
Newton methods). As in the work of Kober and Peters (2009) the initial value of µ is
set so that the trajectory of the robot arm mimics that of a given human demonstration.
The diagonal elements of the precision matrix are initialized to 0.01. During each training
iteration we sampled 15 actions from the policy and used the episodes generated from these
samples to estimate the search direction. To deal with this low number of samples we used
the samples from the last 10 training iterations when calculating the search direction, taking
the ‘effective’ sample size up to 150. Finally, we used the reward/fitness shaping approach
of Wierstra et al. (2014) in all the algorithms considered, using the same shaping function
as in Wierstra et al. (2014). In each run of the experiment we performed 100 updates of
the policy parameters.

References

P. Abbeel, A. Coates, M. Quigley, and A. Ng. An application of reinforcement learning to
aerobatic helicopter flight. NIPS, 19:1–8, 2007.

S. Amari. Neural learning in structured parameter spaces - natural Riemannian gradient.
NIPS, 9:127–133, 1997.

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10:251–276,
1998.

S. Amari, K. Kurata, and H. Nagaoka. Information geometry of Boltzmann machines. IEEE
Transactions on Neural Networks, 3(2):260–271, 1992.

S. Amari, A. Cichocki, and H. Yang. A new learning algorithm for blind signal separation.
NIPS, 8:757–763, 1996.

J. Bagnell and J. Schneider. Covariant policy search. IJCAI, 18:1019–1024, 2003.

D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press, 2012.

J. Baxter and P. Bartlett. Infinite horizon policy gradient estimation. Journal of Artificial
Intelligence Research, 15:319–350, 2001.

J. Baxter, P. Bartlett, and L. Weaver. Experiments with infinite horizon policy gradient
estimation. Journal of Artificial Intelligence Research, 15:351–381, 2001.

R. Bellman. Dynamic Programming. Princeton University Press, 1957.

D. P. Bertsekas. Approximate policy iteration: a survey and some new methods. Research
report, Massachusetts Institute of Technology, 2010.

D. P. Bertsekas and S. Ioffe. Temporal differences-based policy iteration and applications
in neuro-dynamic programming. Research Report LIDS-P-2349, Massachusetts Institute
of Technology, 1996.

46

Approximate Newton Methods for Policy Search in Markov Decision Processes

S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and M. Lee. Incremental natural actor-critic
algorithms. NIPS, 20:105–112, 2008.

S. Bhatnagar, R. Sutton, M. Ghavamzadeh, and L. Mark. Natural actor-critic algorithms.
Automatica, 45:2471–2482, 2009.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlfshagen, S. Tavener,
D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search methods.
IEEE Transactions on Computational Intelligence and AI in Games, 4:1–43, 2012.

A. Coolen, R. Kuehn, and P. Sollich. Theory of Neural Information Processing Systems.
OUP Oxford, 2005.

R. Crites and A. Barto. Improving elevator performance using reinforcement learning.
NIPS, 8:1017–1023, 1995.

P. Dayan and G. E. Hinton. Using expectation-maximization for reinforcement learning.
Neural Computation, 9:271–278, 1997.

M. P. Deisenroth and C. E. Rasmussen. PILCO: A model-based and data-efficient approach
to policy search. ICML, 28, 2011.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society. Series B (Methodological),
39(1):1–38, 1977.

C. Fahey. Tetris AI, computers play Tetris http://colinfahey.com/tetris/tetris_en.

html, 2003.

T. Furmston. Applications of Probabilistic Inference to Planning & Reinforcement Learning.
PhD thesis, University College London, 2012.

T. Furmston and D. Barber. Solving deterministic policy (PO)MPDs using expectation-
maximisation and antifreeze. ECML, 1:50–65, 2009. Workshop on Learning and data
Mining for Robotics.

T. Furmston and D. Barber. Variational methods for reinforcement learning. AISTATS, 9:
241–248, 2010.

V. Gabillon, M. Ghavamzadeh, and B. Scherrer. Approximate dynamic programming finally
performs well in the game of Tetris. NIPS, 26, 2013.

S. Gelly and D. Silver. Achieving master level play in 9 x 9 computer Go. AAAI, 23:
1537–1540, 2008.

M. Ghavamzadeh and Y. Engel. Bayesian policy gradient algorithms. NIPS, 19:457–464,
2007.

47

Furmston, Lever and Barber

P. W. Glynn. Stochastic approximation for Monte-Carlo optimisation. Proceedings of the
1986 ACM Winter Simulation Conference, 18:356–365, 1986.

P. W. Glynn. Likelihood ratio gradient estimation for stochastic systems. Communications
of the ACM, 33:97–84, 1990.

E. Greensmith, P. Bartlett, and J. Baxter. Variance reduction techniques for gradient based
estimates in reinforcement learning. Journal of Machine Learning Research, 5:1471–1530,
2004.

N. Heess, G. Wayne, D. Silver, T. Lillicrap, T. Erez, and Y. Tassa. Learning continuous
control policies by stochastic value gradients. NIPS, 27:2926–2934, 2015.

M. Hoffman, N. de Freitas, A. Doucet, and J. Peters. An expectation maximization algo-
rithm for continuous Markov decision processes with arbitrary rewards. AISTATS, 12(5):
232–239, 2009.

R. A. Howard. Dynamic Programming and Markov Processes. M.I.T. Press, 1960.

A. Ijspeert, J. Nakanishi, and S. Schaal. Motor imitation with nonlinear dynamical systems
in humanoid robots. IEEE International Conference on Robotic and Automation, pages
1398–1403, 2002.

A. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor landscapes for learning motor
primitives. NIPS, 15:1547–1554, 2003.

D. Jacobson and D. Mayne. Differential Dynamic Programming. Elsevier, 1970.

S. Kakade. Optimizing average reward using discounted rewards. COLT, 14:605–615, 2001.

S. Kakade. A natural policy gradient. NIPS, 14, 2002.

S. Kakade and J. Langford. Approximately optimal approximate reinforcement learning.
ICML, 2:267–274, 2002.

H. Khalil. Nonlinear Systems. Prentice Hall, 2001.

J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function.
Annals of Mathematical Statistics, 23:462–466, 1952.

J. Kober and J. Peters. Policy search for motor primitives in robotics. NIPS, 21:849–856,
2009.

J. Kober and J. Peters. Policy search for motor primitives in robotics. Machine Learning,
84(1-2):171–203, 2011.

L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. ECML, 17:282–293,
2006.

N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal locomo-
tion. IEEE International Conference on Robotics and Automation, 2004.

48

Approximate Newton Methods for Policy Search in Markov Decision Processes

V. Konda and J. Tsitsiklis. Actor-critic algorithms. NIPS, 11:1008–1014, 1999.

V. R. Konda and J. N. Tsitsiklis. On actor-critic algorithms. SIAM J. Control Optim., 42
(4):1143–1166, 2003.

E. L. Lehmann and G. Casella. Theory of Point Estimation. Springer, 1998.

S. Levine and V. Koltun. Variational policy search via trajectory optimization. NIPS, 27:
207–215, 2013a.

S. Levine and V. Koltun. Guided policy search. ICML, 30, 2013b.

W. Li. Optimal Control for Biological Movement Systems. PhD thesis, University of San
Diego, 2006.

W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear biological
movement systems. International Conference on Informatics in Control, Automation and
Robotics, 1, 2004.

W. Li and E. Todorov. Iterative optimal control and estimation design for nonlinear stochas-
tic systems. IEEE Conference on Decision and Control, 45, 2006.

T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. ICLR, 4, 2016.

R. Little and D. Rubin. Statistical Analysis with Missing Data. Wiley-Blackwell, 2002.

P. Marbach and J. Tsitsiklis. Simulation-based optimisation of Markov reward processes.
IEEE Transactions on Automatic Control, 46(2):191–209, 2001.

N. Meuleau, L. Peshkin, K Kim, and L. Kaelbling. Learning finite-state controllers for
partially observable environments. UAI, 15:427–436, 1999.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nature, 518(7540):529–533, February
2015.

T. Morimura, E. Uchibe, J. Yoshimoto, and K. Doya. A new natural policy gradient by
stationary distribution metric. ECML, 19:82–97, 2008.

R. Neal and G. Hinton. A view of the EM algorithm that justifies incremental, sparse and
other variants. Learning in Graphical Models, pages 355–368, 1999.

A Ngo, Y. Hwanjo, and C. TaeChoong. Hessian matrix distribution for Bayesian policy
gradient reinforcment learning. Information Sciences, 181:1671–1685, 2011.

J. Nocedal and S. Wright. Numerical Optimisation. Springer, 2006.

J. M. Ortega and W. C. Rheinboldt. Iterative Solution of Nonlinear Equations in Several
Variables. Academic Press, first edition, 1970.

49

Furmston, Lever and Barber

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

K. Rawlik, M. Toussaint, and S. Vijayakumar. On stochastic optimal control and reinforce-
ment learning by approximate inference. International Conference on Robotics Science
and Systems, 2012.

S. Richter, D. Aberdeen, and J. Yu. Natural actor-critic for road traffic optimisation. NIPS,
19:1169–1176, 2007.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2009.

L. Saul, T. Jaakkola, and M. Jordan. Mean field theory for sigmoid belief networks. Journal
of Artificial Intelligence Research, 4:61–76, 1996.

S. Schaal. The SL simulation and real-time control software package. Technical report,
University of Southern California, 2006.

S. Schaal, P. Mohajerian, and A. Ijspeert. Dynamics systems vs. optimal control - a unifying
view. Progress in Brain Research, 165(1):425–445, 2007.

N. Schraudolph, J. Yu, and D. Aberdeen. Fast online policy gradient learning with SMD
gain vector adaptation. NIPS, 18:1185–1192, 2006.

N. Schraudolph, J. Yu, and S. Gunter. A stochastic quasi-Newton method for online convex
optimization. AISTATS, 11:433–440, 2007.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimiza-
tion. ICML, 32:1889–1897, 2015.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. ICML, 31:387–395, 2014.

D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. Mastering the game of go with deep neural networks and tree search. Nature,
529:484–503, 2016.

J. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE Transactions on Automatic Control, 37:332–341, 1992.

J. Spall and J. Cristion. Model-free control of nonlinear stochastic systems with discrete-
time measurements. IEEE Transactions on Automatic Control, 43:1198–1210, 1998.

M. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modelling and Control. John Wiley
& Sons, 2005.

D. Srinivasan, M. C. Choy, and R. L. Cheu. Neural networks for real-time traffic signal
control. IEEE Transactions on Intelligent Transportation Systems, 7:261–272, 2006.

R. Stengel. Optimal Control and Estimation. Dover, 1993.

50

Approximate Newton Methods for Policy Search in Markov Decision Processes

R. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. NIPS, 13, 2000.

R. Tedrake and T. Zhang. Learning to walk in 20 minutes. Proceedings of the Fourteenth
Yale Workshop on Adaptive and Learning Systems, 2005.

G. Tesauro. TD-Gammon, a self-teaching backgammon program achieves master-level play.
Neural Computation, 6:215–219, 1994.

P. S. Thomas. Genga: A generalization of natural gradient ascent with positive and negative
convergence results. ICML, 20:1575–1583, 2014.

E. Todorov and Y. Tassa. Iterative local dynamic programming. IEEE Symposium on
Adaptive Dynamic Programming and Reinforcement Learning, pages 90–95, 2009.

M. Toussaint, S. Harmeling, and A. Storkey. Probabilistic inference for solving (PO)MDPs.
Research Report EDI-INF-RR-0934, University of Edinburgh, School of Informatics,
2006.

M. Toussaint, A. Storkey, and S. Harmeling. Bayesian Time Series Models, chapter
Expectation-maximization methods for solving (PO)MDPs and optimal control prob-
lems. Cambridge University Press, 2011.

J. Veness, D. Silver, A. Blair, and W. Uther. Bootstrapping from game tree search. NIPS,
19:1937–1945, 2009.

N. Vlassis, M. Toussaint, G. Kontes, and S. Piperidis. Learning model-free robot control
by a Monte-Carlo EM algorithm. Autonomous Robots, 27(2):123–130, 2009.

L. Weaver and N. Tao. The optimal reward baseline for gradient based reinforcement
learning. UAI, 17(29), 2001.

S. Whitehead. Reinforcement Learning for Adaptive Control of Perception and Action. PhD
thesis, University of Rochester, 1992.

D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber. Natural
evolution strategies. Journal of Machine Learning Research, 15:949–980, 2014.

R. Williams. Simple statistical gradient following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256, 1992.

51

