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1. Tuning the proposal distributions parameters

We study the effect of the leap-and-shift proposal on the acceptance ratio for ρ, and the
tuning of its parameter L in relation to MCMC convergence. Also the role of parameter σα
in the log-normal proposal for α, is briefly explored. We use simulated data.

Data were generated from the Mallows model with footrule distance, αtrue = 2 and
ρtrue = (1, . . . , n). Two scenarios were used, with n = 20 and n = 50, because the choice of
L would likely depend on the number of items. For generating the data, we run our MCMC
sampler (see Appendix C) for 105 burn-in iterations, and collected one sample every 100
iterations after that. We collected samples from N = 500 assessors. The data analyses were
carried out by using the same distance as in the data generation (footrule), and the MCMC
was run for 106 iterations after 105 iterations of burn-in, with a 1 to 100 thinning for α.
10 different chains were started from random points of the parameter space, and posterior
inference was based on merging the results from these chains, as the MCMC converged
to the same limit. The same analyses were also done for the Kendall distance, on data
generated by using the PerMallows R package (Irurozki et al., 2016). Equivalent results
(not shown) as for the footrule were obtained.

In MCMC, we needed to control for (i) mixing, aiming at an acceptance rate of ap-
proximately 1/3 for each parameter (Gelman et al., 1996; Roberts et al., 1997), and (ii)
autocorrelation, monitoring the Integrated Autocorrelation Time (IAT) τ (Green and Han,
1992). Since ρ is multivariate, we monitored the IAT for each component of ρ.

As expected, the acceptance rate ηρ of proposals for ρ decreases with increasing L, and
ηρ depends also on the value of n (Figure 1, top panels). Based on the results shown in
Figure 1 (bottom panels), we propose as a rule of thumb that L should be set equal to n/5.
This choice seems reasonable also from the perspective of ηρ (Figure 1, upper panels). The
acceptance rate ηα of proposals for α decreases with increasing σα (Table 1). Aiming at a
value of ηα close to 1/3 sets us also close to the minimal value of τα. In the case of n = 20
values close to 0.2 appear to be good choices for σα, while for n = 50 values near 0.1 might
be slightly preferred.

2. Asymptotic behavior of Zn(α) for n→∞, Mukherjee (2016)

In this Section we summarize the proposal in Mukherjee (2016) for computing the limit of
Zn(α) for n→∞, which we have previously denoted by Zlim(α). We need some additional
notation. Consider the Mallows model (1), with ρ = 1n. If we choose f(x, y) = −|x−y| then∑n

i=1 f(i/n,Ri/n) = − 1
n

∑n
i=1 |i−Ri|, which is the exponential in a Mallows footrule model

term, before multiplying with α. Choosing f(x, y) = −(x−y)2 leads to a Mallows Spearman
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Figure 1: Results of the simulations described in Section 1. Top panels: acceptance proba-
bility ηρ of ρ along MCMC iterations; bottom panels: marginal IAT τρ of ρ. Left
and right panels show the results when n = 20 and 50, respectively.

model. Here we denote by Zn(f, α) the partition function to make the dependence on the
chosen distance f explicit, and its limit for n→∞ is Zlim(f, α). Finally, M(n, f, α) is the
Mallows model of the form above.

The main result in Mukherjee (2016) gives the limit of Zn(f, α) as n→∞. It is stated
as follows:

2



n = 20 n = 50

σα ηα τα ηα τα
0.01 0.93 4.32 0.88 3.83
0.02 0.86 3.6 0.76 3.4
0.05 0.67 2.67 0.51 2.64
0.1 0.47 2.65 0.3 2.41
0.2 0.27 2.24 0.16 2.2
0.5 0.11 2.53 0.07 2.74

Table 1: Results of the simulations described in Section 1. Acceptance probability ηα and
IAT τα of α along MCMC iterations, for two simulations with n = 20 and 50. In
each row, the value of σα (standard deviation of the log-normal proposal for α)
used in the MCMC.

Theorem 1 (Mukherjee, 2016, Theorem 1.5). For any continuous function f consider the
probability model M(n, f, α), and let α ∈ R be fixed. Then

lim
n→∞

Zn(f, α)− Zn(0)

n
= Zlim(f, α) := sup

µ∈Q
{αµ[f ]−D(µ||u)},

where u is the uniform distribution on the unit square, µ[f ] :=
∫
fdµ is the expectation of f

with respect to the measure µ, D(·||·) is the Kullback-Leibler divergence, Q is the space of all
probability distributions on the unit square with uniform marginals, and Zn(0) = Zn(f, 0) =
log(n!).

As optimization over the infinite dimensional space Q can be hard, a second result provided
in Mukherjee (2016) gives an iterative algorithm which can be used to compute a numerical
approximation of Zlim(f, α).

Theorem 2 IPFP - Iterative Proportional Fitting Procedure (Mukherjee, 2016, Theorem
1.9). Define a sequence of k× k matrices by setting B0(r, s) := eαf(r/k,s/k) for 1 ≤ r, s ≤ k,
and

B2m+1(r, s) :=
B2m(r, s)

k
∑m

l=1B2m(r, l)
, B2m+2(r, s) :=

B2m+1(r, s)

k
∑m

l=1B2m+1(l, s)
.

Then, there exists a matrix Ak,α ∈ Qk such that limm→∞Bm = Ak,α. This implies

Zlim(f, α) = lim
k→∞

lim
m→∞

α
k∑

i,j=1

f(i/k, j/k)Bm(i, j)− 2 log k −
k∑

i,j=1

Bm(i, j) logBm(i, j)

 .

Due to the construction of the results in Mukherjee (2016), the role of the permutation
dimension in the limit is played by k, the dimension of the grid approximating the continuous
domain where the limit is computed. Hence, it is sufficient to fix k large enough in order for
the continuous approximation to be reasonable (we fix k = 103, following Mukherjee (2016,
Section 2)).
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Figure 2: A comparison of different approaches to compute the partition function Zn(α)
for the Mallows footrule model. Different colors refer to different values of n, and
different line types to different strategies for computing Zn(α), as stated in the
legend (note that only the IS approximation and the Mukherjee limit are available
for n = 100).

With the aim of checking whether the limit Zlim(f, α) is a good approximation for
Zn(f, α) for reasonably large values of n, we used the IPFP with m = 104 iterations (after
verifying in different situations that the IPFP had typically already converged after 103

iterations; not shown). Finally, as it is evident from the form of the limit in Theorem 1,
once we compute Zlim(f, α) we have to rescale it in the following way

Zlim,n(f, α) = n · Zlim(f, α) + Zn(0). (1)

A comparison of Zlim,n(f, α) rescaled as in (1) to the IS approximation Ẑn(f, α) for
n = 50, 75, 100 is shown in Figure 2. For these cases, the asymptotic approximation is quite
close to the true values of the partition function. This is very useful in applications where n
is so large that even the importance sampling approximation is computationally unfeasible,
and thus using the limiting partition function Zlim(f, α) for approximating Zn(f, α) is an
excellent alternative.
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3. Additional Figures from Sections 3.3 and 4.4

3 4 5 6 7

0
5

10
15

20
25

30

Posterior density of alpha

α

de
ns

ity

N = 100
N = 1000
Z approx IS, K large
Z approx IS, K small
Z asymptotics

0 2 4 6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior CDF of d(ρ, ρtrue)

d(ρ, ρtrue)

C
D

F

●●●●●●●●●●●●●●●
●●●
●●
●●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●●
●●
●●●●

●●●●●●●●●●●●●● ● ● ● ● ●●

●●●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●●●●●●●● ●● ● ●●●● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●
●●●
●●
●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●●
●●
●●●
●●●●●●

●●●●●●●●●●● ●● ● ● ● ● ● ●

●●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●●●●●●●●●●●●●●●●● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●●●●●●
●●
●●
●●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●●
●●
●●●●

●●●●●●●●●●●●●● ● ● ● ● ● ● ●

●●●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●●●●●●●●● ●● ●● ●●● ● ● ● ● ● ● ● ● ● ●

N = 100
N = 1000

Z approx IS, K large
Z approx IS, K small
Z asymptotics

8 9 10 11 12

0
5

10
15

20
25

Posterior density of alpha

α

de
ns

ity

N = 100
N = 1000

Z approx IS, K large
Z approx IS, K small
Z asymptotics

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Posterior CDF of d(ρ, ρtrue)

d(ρ, ρtrue)

C
D

F

● ●●●●●●●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●●●●●●● ●●● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

●
●●●●●●●●● ●● ●●● ●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●●●●●●●●
●●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●●

●●●●●●●●● ● ● ● ● ●● ● ● ● ● ● ●

●●
●

●

●

●

●

●

●

●
●●●●● ● ● ● ●●● ●● ● ● ● ● ● ● ●● ● ● ● ● ● ●

●●●●●●●●
●●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●●●●●●●● ● ● ●● ● ● ● ● ● ● ●

●●
●

●

●

●

●

●

●

●●
●●●●●●●●● ● ● ● ● ●● ● ●● ● ● ● ● ● ● ● ● ●

N = 100
N = 1000

Z approx IS, K large
Z approx IS, K small
Z asymptotics

Figure 3: Results of the simulations described in Section 3.3, when n = 100. Left, posterior
density of α (the black vertical line indicates αtrue) obtained for various choices
of N (different colors), and when using different approximations to the partition
function (different line types), as stated in the legend. Right, posterior CDF of
d(ρ,ρtrue) in the same settings. First row: αtrue = 5; Second row: αtrue = 10.
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Figure 4: Results of the simulations described in Section 3.3, when n = 100 and αtrue =
5. In each heatplot, posterior marginal distribution of ρ. From left to right,
results obtained with the IS approximation ẐKn (α) with K = 108, with the IS
approximation ẐKn (α) with K = 104, and with Zlim(α). First row: N = 100;
Second row: N = 1000.
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Figure 5: Results of the simulation in Section 4.4. Barplots of the total numbers of successes
(red columns) and failures (blue columns) obtained fixing C = 1 (left), 3 (middle),
and 5 (right), for the data generated with λT = 10. For C = 1, 71% of all
predictions was correct, for C = 3, 76.8%, and for C = 5, 76.7%.
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