Active Nearest-Neighbor Learning in Metric Spaces

Aryeh Kontorovich
Sivan Sabato
Department of Computer Science
Ben-Gurion University of the Negev
Beer Sheva 8499000, Israel

Ruth Urner
Lassonde School of Engineering, EECS Department
York University
Toronto, ON, Canada

Abstract

We propose a pool-based non-parametric active learning algorithm for general metric spaces, called MArgin Regularized Metric Active Nearest Neighbor (MARMANN), which outputs a nearest-neighbor classifier. We give prediction error guarantees that depend on the noisy-margin properties of the input sample, and are competitive with those obtained by previously proposed passive learners. We prove that the label complexity of MARMANN is significantly lower than that of any passive learner with similar error guarantees. MARMANN is based on a generalized sample compression scheme, and a new label-efficient active model-selection procedure.

Keywords: Nearest-neighbors, active learning, metric spaces, non-parametric learning

1. Introduction

Active learning is a framework for reducing the amount of label supervision for prediction tasks. While labeling large amounts of data can be expensive and time-consuming, unlabeled data is often much easier to come by. In this paper we propose a non-parametric pool-based active learning algorithm for general metric spaces, which outputs a nearest-neighbor classifier.

In pool-based active learning (McCallum and Nigam, 1998), a collection of random examples is provided, and the algorithm can interactively query an oracle to label some of the examples. The goal is good prediction accuracy, while keeping the label complexity — that is, the number of labels queried — low. Our algorithm, MArgin Regularized Metric Active Nearest Neighbor (MARMANN), receives a pool of unlabeled examples in a general metric space, and outputs a variant of the 1-nearest-neighbor classifier, implemented by a 1-nearest-neighbor rule. The algorithm obtains a prediction error guarantee that depends on a noisy-margin property of the input sample, and has a provably smaller label complexity than any passive learner with a similar guarantee.

Active learning has been mostly studied in a parametric setting, in which learning takes place with respect to a fixed hypothesis class with a bounded capacity. There has also been some work on analyzing non-parametric active learning strategies under certain distributional assumptions (see Section 1.1 for more discussion on this). However, the question of whether active querying strate-
gies can yield label savings for non-parametric methods in a general setting, without distributional assumptions, had not been analyzed prior to this work. Here, we provide a first demonstration that this is indeed possible. We discuss related work in detail in Section 1.1 below.

Our contributions. MARMANN is a new non-parametric pool-based active learning algorithm, which obtains an error guarantee competitive with that of a noisy-margin-based passive learner. Additionally, it provably uses significantly fewer labels in nontrivial regimes. As far as the authors are aware, this is the first non-parametric active learner for general metric spaces, which achieves competitive prediction error guarantees to the passive learner, while provably improving label complexity. The guarantees of MARMANN are given in Theorem 4 in Section 3. We further provide a passive learning lower bound (Theorem 5), which together with Theorem 4 shows that MARMANN can have a significantly reduced label complexity compared to any passive learner. The passive lower bound is more general than previous lower bounds, relies on a novel technique, and may be of independent interest. Additionally, we give an active label complexity lower bound (Theorem 6), which holds for any active learner with similar error guarantees as MARMANN. The proof of this active lower bound relies on a new No-Free-Lunch type result, which holds for active learning algorithms.

Our approach. Previous passive learning approaches to classification using nearest-neighbor rules under noisy-margin assumptions (Gottlieb et al., 2014b, 2017) provide statistical guarantees using sample compression bounds (Graepel et al., 2005). Their finite-sample guarantees depend on the number of noisy labels relative to an optimal margin scale.

A central challenge in the active setting is performing model selection to select a margin scale with a low label complexity. A key insight that we exploit in this work is that by designing a new labeling scheme for the compression set, we can construct the compression set and estimate its error with label-efficient procedures. We obtain statistical guarantees for this approach using generalization bounds for sample compression with side information.

We derive a label-efficient, as well as computationally efficient, active model-selection procedure. This procedure finds a good scale by estimating the sample error for some scales, using a small number of active querying rounds. Crucially, unlike cross-validation, our model-selection procedure does not require a number of labels that depends on the worst possible scale, nor does it test many scales. This allows our label complexity bounds to be low, and to depend only on the final scale selected by the algorithm. Our error guarantee is a constant factor over the error guarantee of the passive learner of Gottlieb et al. (2017). An approach similar to Gottlieb et al. (2014a), proposed in Gottlieb et al. (2014b), has been shown to be Bayes consistent (Kontorovich and Weiss, 2015). The Bayes-consistency of the passive version of our approach has recently been established (Kontorovich et al., 2017).

Paper structure. Related work is discussed in Section 1.1. We lay down the preliminaries in Section 2. In Section 3 we provide our main result: Theorem 4, which gives error and label complexity guarantees for MARMANN. Additionally we state the passive and active lower bounds, Theorem 5 and Theorem 6. The rest of the paper is devoted to the description and analysis of MARMANN, and proof of the main results. Section 4 shows how MARMANN defines the nearest neighbor rule for a given scale, and Section 5 describes the model selection procedure of MARMANN. Theorem 4 is proved in Section 6, based on a framework for compression with side information. The passive lower bound in Theorem 5 is proved in Section 7. The active lower bound Theorem 6 is proved in Section 8. We conclude with a discussion in Section 9.
1.1 Related Work

The theory of active learning has received considerable attention in the past decade (e.g., Dasgupta, 2004; Balcan et al., 2007, 2009; Hanneke, 2011; Hanneke and Yang, 2015). Active learning theory has been mostly studied in a parametric setting (that is, learning with respect to a fixed hypothesis class with a bounded capacity). Benefits and limitations of various active querying strategies have been proven in the realizable setting (Dasgupta, 2004; Balcan et al., 2007; Gonen et al., 2013) as well as in the agnostic case (Balcan et al., 2009; Hanneke, 2011; Awasthi et al., 2014). It has also been shown that active queries can also be beneficial for regression tasks (Castro et al., 2005; Sabato and Munos, 2014). Further, an active model selection procedure has been developed for the parametric setting (Balcan et al., 2010).

The potential benefits of active learning for non-parametric settings are less well understood. Practical Bayesian graph-based active learning methods (Zhu et al., 2003; Wei et al., 2015) rely on generative model assumptions, and therefore come without distribution-free performance guarantees. From a theoretical perspective, the label complexity of graph based active learning has mostly been analyzed in terms of combinatorial graph parameters (Cesa-Bianchi et al., 2010; Dasarathy et al., 2015). While the latter work provides some statistical guarantees under specific conditions on the data-generating distribution, this type of analysis does not yield distribution-free statistical performance guarantees.

Castro et al. (2005); Castro and Nowak (2008) analyze minimax rates for non-parametric regression and classification respectively, for a class of distributions in Euclidean space, characterized by decision boundary regularity and noise conditions with uniform marginals. The paradigm of cluster-based active learning (Dasgupta and Hsu, 2008) has been shown to provide label savings under some distributional clusterability assumptions (Urner et al., 2013; Kpotufe et al., 2015). Dasgupta and Hsu (2008) showed that a suitable cluster-tree can yield label savings in this framework, and papers following up (Urner et al., 2013; Kpotufe et al., 2015) quantified the label savings under distributional clusterability assumptions. However, no active non-parametric strategy has been proposed so far that has label complexity guarantees for i.i.d. data from general distributions and general metric spaces. Here, we provide the first such algorithm and guarantees.

The passive nearest-neighbor classifier, introduced by Fix and Hodges (1951, 1989), is popular among theorists and practitioners alike (Fix and Hodges, 1989; Cover and Hart, 1967; Stone, 1977; Kulkarni and Posner, 1995; Boiman et al., 2008). This paradigm is applicable in general metric spaces, and its simplicity is an attractive feature for both implementation and analysis. When appropriately regularized — either by taking a majority vote among the k nearest neighbors (Stone, 1977; Devroye and Györfi, 1985; Zhao, 1987), or by enforcing a margin separating the classes (von Luxburg and Bousquet, 2004; Gottlieb et al., 2014a; Kontorovich and Weiss, 2015; Kontorovich et al. 2017) — this type of learner can be made Bayes-consistent. Another desirable property of nearest-neighbor-based methods is their ability to generalize at a rate that scales with the intrinsic data dimension, which can be much lower than that of the ambient space (Kpotufe, 2011; Gottlieb et al., 2014a; 2016; Chaudhuri and Dasgupta, 2014). Furthermore, margin-based regularization makes nearest neighbor classifiers ideally suited for sample compression, which yields a compact representation, faster classification runtime, and improved generalization performance (Gottlieb et al., 2014b). The resulting error guarantees can be stated in terms of the sample’s noisy-margin, which depends on the distances between differently-labeled examples in the input sample.
Active learning strategies specific to nearest neighbor classification have recently received attention. It has been shown that certain active querying rules maintain Bayes consistency for nearest neighbor classification, while other, seemingly natural, rules do not lead to a consistent algorithm (Dasgupta, 2012). A selective querying strategy has been shown to be beneficial for nearest neighbors under covariate shift (Berlind and Urner, 2015), where one needs to adapt to a change in the data generating process. However, the querying rule in that work is based solely on information in the unlabeled data, to account for a shift in the distribution over the covariates. It does not imply any label savings in the standard learning setting, where training and test distribution are identical. In contrast, our current work demonstrates how an active learner can take label information into account, to reduce the label complexity of a general nearest neighbor method in the standard setting.

1.2 A Remark on Bayes-Consistency

We remark on the Bayes-consistency of the margin-based passive 1-NN methods. In Gottlieb et al. (2014a), a PAC-style generalization bound was given. At a given scale t, the algorithm first ensured t-separation of the sample by solving a minimum vertex cover problem to eliminate the t-blocking pairs. Following that, the hypothesis was constructed as a Lipschitz extension from the remaining sample; the latter is computationally implemented as a nearest neighbor classifier. Structural Risk Minimization (SRM) was used to select the optimal scale t. A very close variant of this learner was shown to be Bayes-consistent by Kontorovich and Weiss (2015). The only difference between the two is that the former analyzed the hypothesis complexity in terms of fat-shattering dimension while the latter via Rademacher averages. Thus, a margin-regularized 1-NN classifier was shown to be Bayes-consistent; however, no compression was involved.

A compression-based alternative to Lipschitz extension was proposed in Gottlieb et al. (2014b). The idea is again to ensure t-separation via vertex cover and then compress the remaining sample down to a t-net. We conjecture that this latter algorithm is also Bayes-consistent, but currently have no proof. If instead one considers a compression-based passive learner implemented as in this paper (by taking majority vote in each Voronoi region rather than enforcing t-separation via vertex cover), the resulting classifier is indeed Bayes-consistent, as was recently shown by Kontorovich et al. (2017).

2. Preliminaries

In this section we lay down the necessary preliminaries. We formally define the setting and necessary notation in Section 2.1. We discuss nets in metric spaces in Section 2.2 and present the guarantees of the compression-based passive learner of Gottlieb et al. (2017) in Section 2.3.

2.1 Setting and Notation

For positive integers n, denote $[n] := \{1, \ldots, n\}$. We consider learning in a general metric space (\mathcal{X}, ρ), where \mathcal{X} is a set and ρ is the metric on \mathcal{X}. Our problem setting is that of classification of the instance space \mathcal{X} into some finite label set \mathcal{Y}. Assume that there is some distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, and let $S \sim \mathcal{D}^m$ be a labeled sample of size m, where m is an integer. Denote the sequence of unlabeled points in S by $\mathbb{U}(S)$. We sometimes treat S and $\mathbb{U}(S)$ as multisets, since the order is
unimportant. For a labeled multiset \(S \subseteq \mathcal{X} \times \mathcal{Y} \) and \(y \in \mathcal{Y} \), denote \(S^y := \{ x \mid (x, y) \in S \} \); in particular, \(\mathbb{U}(S) = \bigcup_{y \in \mathcal{Y}} S^y \).

The error of a classifier \(h : \mathcal{X} \to \mathcal{Y} \) on \(\mathcal{D} \), for any fixed \(h \), is denoted

\[
\text{err}(h, \mathcal{D}) := \mathbb{P}[h(X) \neq Y],
\]

where \((X, Y) \sim \mathcal{D}\). The empirical error on a labeled sample \(S \) instantiates to

\[
\text{err}(h, S) = \frac{1}{|S|} \sum I[h(X) \neq Y].
\]

A passive learner receives a labeled sample \(S_{\text{in}} \) as input. An active learner receives the unlabeled part of the sample \(U_{\text{in}} := \mathbb{U}(S_{\text{in}}) \) as input, and is allowed to interactively select examples from \(U_{\text{in}} \) and request their label from \(S_{\text{in}} \). In other words, the active learner iteratively selects an example and requests its label, wherein all the labels requested so far can be used to make the next selection.

When either learner terminates, it outputs a classifier \(\hat{h} : \mathcal{X} \to \mathcal{Y} \), with the goal of achieving a low \(\text{err}(\hat{h}, \mathcal{D}) \). An additional goal of the active learner is to achieve a performance competitive with that of the passive learner, while querying considerably fewer labels.

The diameter of a set \(A \subseteq \mathcal{X} \) is defined by

\[
\text{diam}(A) := \sup_{a, a' \in A} \rho(a, a').
\]

For a finite set \(U = \{ u_1, \ldots, u_{|U|} \} \subseteq \mathcal{X} \) with some fixed numbering of its elements, denote the index of the closest point in \(U \) to \(x \in \mathcal{X} \) by

\[
\kappa(x, U) := \arg\min_{i : x_i \in U} \rho(x, x_i).
\]

We assume here and throughout this work that when there is more than one minimizer for \(\rho(x, x_i) \), ties are broken arbitrarily (but in a consistent and deterministic fashion). Any labeled sample \(S = [(x_i, y_i)]_{i \in [k]} \) naturally induces the 1-nearest-neighbor classifier \(h^\text{nn}_S : \mathcal{X} \to \mathcal{Y} \), via \(h^\text{nn}_S(x) := y_{\kappa(x,U(S))} \).

For a set \(Z \subseteq \mathcal{X} \), denote by

\[
\kappa(Z, U) := \{ \kappa(z, U) \mid z \in Z \}
\]

the set of all the indices \(\kappa(z, U) \), as defined above. For \(x \in \mathcal{X} \), and \(t > 0 \), denote by \(\text{ball}(x, t) \) the (closed) ball of radius \(t \) around \(x \):

\[
\text{ball}(x, t) := \{ x' \in \mathcal{X} \mid \rho(x, x') \leq t \}.
\]

2.2 Nets

A set \(A \subseteq \mathcal{X} \) is \(t \)-separated if \(\inf_{a, a' \in A : a \neq a'} \rho(a, a') \geq t \). For \(A \subseteq B \subseteq \mathcal{X} \), the set \(A \) is a \(t \)-net of \(B \) if \(A \) is \(t \)-separated and \(B \subseteq \bigcup_{a \in A} \text{ball}(a, t) \). Thus, \(A \) is a \(t \)-net of \(B \) if it is both a \(t \)-covering and a \(t \)-packing.

1. Invoking the well-ordering principle, we may assume \(\mathcal{X} \) to be well-ordered and then any \(U \subseteq \mathcal{X} \) inherits the ordering of \(\mathcal{X} \).
The size of a t-net of a metric space is strongly related to its doubling dimension. The doubling dimension is the effective dimension of the metric space, which controls generalization and runtime performance of nearest-neighbors (Kpotufe, 2011; Gottlieb et al., 2014a). It is defined as follows. Let $\lambda = \lambda(\mathcal{X})$ be the smallest number such that every ball in \mathcal{X} can be covered by λ balls of half its radius, where all balls are centered at points of \mathcal{X}. Formally,

$$\lambda(\mathcal{X}) := \min\{\lambda \in \mathbb{N} : \forall x \in \mathcal{X}, r > 0, \exists x_1, \ldots, x_\lambda \in \mathcal{X} : \text{ball}(x, r) \subseteq \bigcup_{i=1}^{\lambda} \text{ball}(x_i, r/2)\}.$$

Then the doubling dimension of \mathcal{X} is defined by $\ddim(\mathcal{X}) := \log_2 \lambda$. In line with modern literature, we work in the low-dimension, large-sample regime, where the doubling dimension is assumed to be constant, and hence sample complexity and algorithmic runtime may depend on it exponentially. This exponential dependence is unavoidable, even under margin assumptions, as previous analyses (Kpotufe, 2011; Gottlieb et al., 2014a) indicate. Generalization bounds in terms of the doubling dimension of the hypothesis space were established in Bshouty et al. (2009), while runtime and generalization errors in terms of $\ddim(\mathcal{X})$ were given in Gottlieb et al. (2014a).

As shown in Gottlieb and Krauthgamer (2013), the doubling dimension is “almost hereditary” in the sense that for $A \subseteq \mathcal{X}$, we have $\ddim(A) \leq c \ddim(\mathcal{X})$ for some universal constant $c \leq 2$ (Feldmann et al., 2015, Lemma 6.6). In the works cited above, where generalization bounds are stated in terms of $\ddim(\mathcal{X})$, one can obtain tighter bounds in terms of $\ddim(\bigcup(S))$ when the latter is substantially lower than that of the ambient space, and it is also possible to perform metric dimensionality reduction, as in Gottlieb et al. (2016).

Constructing a minimum size t-net for a general set B is NP-hard (Gottlieb and Krauthgamer, 2013). However, a simple greedy algorithm constructs a (not necessarily minimal) t-net in time $O(m^2)$ (Gottlieb et al., 2014b, Algorithm 1). There is also an algorithm for constructing a t-net in time $2^{O(\ddim(\mathcal{X}))}m \log(1/t)$ (Krauthgamer and Lee, 2004; Gottlieb et al., 2014b). The size of any t-net of a metric space $A \subseteq \mathcal{X}$ is at most

$$\left[\frac{\diam(A)}{t}\right]^{\ddim(\mathcal{X})+1} \tag{1}$$

(Krauthgamer and Lee, 2004). In addition, the size of any t-net is at most $2^{\ddim(A)+1}$ times the size of the minimal t-net, as the following easy lemma shows.

Lemma 1 (comparison of two nets) Let $t > 0$ and suppose that M_1, M_2 are t-nets of $A \subseteq \mathcal{X}$. Then $|M_1| \leq 2^{\ddim(A)+1}|M_2|$.

Proof Suppose that $|M_1| \geq k|M_2|$ for some positive integer k. Since $M_1 \subseteq \bigcup_{x \in M_2} \text{ball}(x, t)$, it follows from the pigeonhole principle that at least one of the points in M_2 must cover at least k points in M_1. Thus, suppose that $x \in M_2$ covers the set $Z = \{z_1, \ldots, z_l\} \subseteq M_1$, meaning that $Z \subseteq \text{ball}(x, t)$, where $l = |Z| \geq k$. By virtue of belonging to the t-net M_1, the set Z is t-separated. Therefore Z is a t-net of Z. Since Z is contained in a t-ball, we have $\diam(Z) \leq 2t$. It follows from Eq. (1) that $|Z| \leq 2^{\ddim(A)+1}$, whence the claim. \hfill \blacksquare

Throughout the paper, we fix a deterministic procedure for constructing a t-net, and denote its output for a multiset $U \subseteq \mathcal{X}$ by Net(U, t). Let Par(U, t) be a partition of \mathcal{X} into regions induced by Net(U, t), that is: for Net$(U, t) = \{x_1, \ldots, x_N\}$, define Par$(U, t) := \{P_1, \ldots, P_N\}$, where

$$P_i = \{x \in \mathcal{X} : \kappa(x, \text{Net}(U, t)) = i\}.$$

For $t > 0$, let $\mathcal{N}(t) := |\text{Net}(U_{in}, t)|$ be the size of the t-net for the input sample.
2.3 Passive Compression-Based Nearest-Neighbors

Non-parametric binary classification admits performance guarantees that scale with the sample’s noisy-margin (von Luxburg and Bousquet, 2004; Gottlieb et al., 2014a, 2017). The original margin-based methods of von Luxburg and Bousquet (2004) and Gottlieb et al. (2014a) analyzed the generalization performance via the technique of Lipschitz extension. Later, it was noticed in Gottlieb et al. (2014b) that the presence of a margin allows for compression — in fact, nearly optimally so.

We say that a labeled multiset S is (ν, t)-separated, for $\nu \in [0, 1]$ and $t > 0$ (representing a margin t with noise ν), if one can remove a ν-fraction of the points in S, and in the resulting multiset, any pair of differently labeled points is separated by a distance of at least t. Formally, we have the following definition.

Definition 2 S is (ν, t)-separated if there exists a subsample $\tilde{S} \subseteq S$ such that

1. $|S \setminus \tilde{S}| \leq \nu |S|$ and
2. $\forall y_1 \neq y_2 \in Y, a \in \tilde{S}^{y_1}, b \in \tilde{S}^{y_2}$, we have $\rho(a, b) \geq t$.

For a given labeled sample S, denote by $\nu(t)$ the smallest value ν such that S is (ν, t)-separated. Gottlieb et al. (2017) propose a passive learner with the following guarantees as a function of the separation of S. Setting $\alpha := m/(m - N)$, define the following form of a generalization bound:

$$
GB(\epsilon, N, \delta, m, k) := \alpha \epsilon + \frac{2}{3} \frac{(N + 1) \log(mk) + \log(\frac{1}{\delta})}{m - N} + \frac{3}{\sqrt{2}} \sqrt{\frac{\alpha \epsilon ((N + 1) \log(mk) + \log(\frac{1}{\delta}))}{m - N}}.
$$

Further, for an integer m and $\delta \in (0, 1)$, denote

$$
G_{\min}(m, \delta) := \min_{t > 0} GB(\nu(t), N(t), \delta, m, 1).
$$

The quantity $G_{\min}(m, \delta)$ is small for datasets where we only need to remove few points to obtain a reasonably well separated subset. As an example, consider data generated by two well separated Gaussians (one generating the positively labeled points, and one generating the negatively labeled points). Then, most of the data points will be close to their respective means, but some will be farther, and may lie closer to the mean of the other Gaussian. Removing those few will result in a separated set.

Theorem 3 (Gottlieb et al. 2017) Let m be an integer, $\delta \in (0, 1)$. There exists a passive learning algorithm that returns a nearest-neighbor classifier $h_{\text{nn}}^{\text{pas}}$, where $S_{\text{pas}} \subseteq S_{\text{in}}$ such that, with probability $1 - \delta$,

$$
\text{err}(h_{S_{\text{pas}}}^{\text{nn}}, D) \leq G_{\min}(m, \delta).
$$

The bound above is data-dependent, meaning that the strength of the generalization guarantee depends on the quality of the random sample. Specifically, the passive algorithm of Gottlieb et al. (2017) generates S_{pas} of size approximately $N(t)$ for the optimal scale $t > 0$ (found by searching over all scales), by removing the $|S_{\text{in}}|/\nu(t)$ points that obstruct the t-separation between different labels in S_{in}, and then selecting a subset of the remaining labeled examples to form S_{pas}, so that the

2. The guarantees hold for the more general case of semimetrics.
examples are a t-net for S_{in} (not including the obstructing points). For the binary classification case ($|Y| = 2$) an efficient algorithm is shown in Gottlieb et al. (2017). However, in the general multi-class case, it is not known how to find a minimal t-separation efficiently — a naive approach requires solving the NP-hard problem of vertex cover. Our approach, which we detail below, circumvents this issue, and provides an efficient algorithm also for the multiclass case.

3. Main Results

We propose a novel approach for generating a subset for a nearest-neighbor rule. This approach, detailed in the following sections, does not require finding and removing all the obstructing points in S_{in}, and can be implemented in an active setting using a small number of labels. The resulting active learning algorithm, MARMANN, has an error guarantee competitive with that of the passive learner, and a label complexity that can be significantly lower. We term the subset used by the nearest-neighbor rule a compression set.

Algorithm 1 MARMANN: MArgin Regularized Metric Active Nearest Neighbor

input	Unlabeled sample U_{in} of size m, $\delta \in (0, 1)$.
\hat{t} ← SelectScale(δ).	# SelectScale is given in Section 5, Alg. 4
$\hat{S} ←$ GenerateNNSet($\hat{t}, \lfloor N(\hat{t}) \rfloor, \delta$).	# GenerateNNSet is given in Section 4, Alg. 2
Output $h_{\hat{S}}^{nn}$.	

MARMANN, listed in Alg. 1 operates as follows. First, a scale $\hat{t} > 0$ is selected, by calling $\hat{t} ←$ SelectScale(δ), where SelectScale is our model selection procedure. SelectScale has access to U_{in}, and queries labels from S_{in} as necessary. It estimates the generalization error bound GB for several different scales, and executes a procedure similar to binary search to identify a good scale. The binary search keeps the number of estimations (and thus requested labels) small. Crucially, our estimation procedure is designed to prevent the search from spending a number of labels that depends on the net size of the smallest possible scale t, so that the total label complexity of MARMANN depends only on the error of the selected \hat{t}. Second, the selected scale \hat{t} is used to generate the compression set by calling $\hat{S} ←$ GenerateNNSet($\hat{t}, \lfloor N(\hat{t}) \rfloor, \delta$), where GenerateNNSet is our procedure for generating the compression set, and $\lfloor N(\hat{t}) \rfloor \equiv \{1, \ldots, \lfloor N(\hat{t}) \rfloor \}$. Our main result is the following guarantee for MARMANN.

Theorem 4 (Main result; Guarantee for MARMANN) Let $S_{in} \sim D^m$, where $m \geq \max(6, |Y|)$, $\delta \in (0, \frac{1}{4})$. Let $h_{\hat{S}}^{nn}$ be the output of MARMANN(U_{in}, δ), where $\hat{S} \subseteq \mathcal{X} \times Y$, and let $\hat{N} := |\hat{S}|$. Let $\hat{h} := h_{\hat{S}}^{nn}$ and $\hat{\epsilon} := \text{err}(\hat{h}, S_{in})$, and denote $\hat{G} := GB(\hat{\epsilon}, \hat{N}, \delta, m, 1)$. With a probability of $1 - \delta$ over S_{in} and randomness of MARMANN,

$$\text{err}(\hat{h}, D) \leq 2\hat{G} \leq O\left(\frac{m}{\delta} \log \left(\frac{1}{\hat{G}} \right) + m\hat{G} \right),$$

and the number of labels from S_{in} requested by MARMANN is at most

$$O \left(\log^3 \left(\frac{m}{\delta} \right) \left(\frac{1}{\hat{G}} \log \left(\frac{1}{\hat{G}} \right) + m\hat{G} \right) \right).$$

(2)

Here the $O(\cdot)$ notation hides only universal multiplicative constants.
Our error guarantee is thus a constant factor over the error guarantee of the passive learner of (Gottlieb et al., 2017), given in Theorem 3. The constant factor that we derive in our analysis is in the order of 2000 (this can be seen in the proof of Theorem 15). Note that we did not focus on optimizing it, opting instead for a more streamlined analysis. As the lower bound in Theorem 6 shows, the additive term $m\hat{G}$ in Eq. (2) is essentially unavoidable. Whether the dependence on $1/\hat{G}$ is indeed necessary is currently an open problem.

To observe the advantages of MARMANN over a passive learner, consider a scenario in which the upper bound G_{\min} of Theorem 3, as well as the Bayes error of D, are of order $\tilde{\Theta}(1/\sqrt{m})$. Then $\hat{G} = \Theta(1/\sqrt{m})$ as well. Therefore, MARMANN obtains a prediction error guarantee of $\tilde{\Theta}(1/\sqrt{m})$, similarly to the passive learner, but it uses only $\tilde{\Theta}(\sqrt{m})$ labels instead of m. In contrast, the following result shows that no learner that selects labels uniformly at random from S_{in} can compete with MARMANN: Theorem 5 below shows that for any passive learner that uses $\tilde{\Theta}(\sqrt{m})$ random labels from S_{in}, there exists a distribution D with the above properties, for which the prediction error of the passive learner in this case is $\Omega(m^{-1/4})$, a decay rate which is almost quadratically slower than the $\tilde{O}(1/\sqrt{m})$ rate achieved by MARMANN. Thus, the guarantees of MARMANN cannot be matched by any passive learner.

Theorem 5 (Passive lower bound) Let $m > 0$ be an integer, and suppose that (X, ρ) is a metric space such that for some $\bar{t} > 0$, there is a \bar{t}-net T of X of size $\Theta(\sqrt{m})$. Consider any passive learning algorithm that maps i.i.d. samples $S_{\ell} \sim D_{\ell}$ from some distribution D over $X \times \{-1, 1\}$, to functions $h_{\ell} : X \to \{-1, 1\}$. For any such algorithm and any $\ell = \tilde{\Theta}(\sqrt{m})$, there exists a distribution D such that:

i. The Bayes error of D is $\Theta(1/\sqrt{m})$;

ii. With at least a constant probability, both of the following events occur:

(a) The passive learner achieves error $\text{err}(h_{\ell}, D) = \tilde{\Omega}(m^{-1/4})$,

(b) $G_{\min}(m, \delta) = \tilde{\Theta}(1/\sqrt{m})$.

Furthermore, i. and ii. continue to hold when the learning algorithm has access to the full marginal distribution over X.

Thus, MARMANN even improves over a semi-supervised learner: its label savings stem from actively selecting labels, and are not achievable by merely exploiting information from unlabeled data or by randomly selecting examples to label.

We deduce Theorem 5 from a more general result, which might be of independent interest. Theorem 18, given in Section 7, improves existing passive learning sample complexity lower bounds. In particular, our result removes the restrictions of previous lower bounds on the relationship between the sample size, the VC-dimension, and the noise level, which render existing bounds inapplicable to our parameter regime. The proof of Theorem 5 is given thereafter in Section 7, as a consequence of Theorem 18.

We further provide a label complexity lower bound, in Theorem 6 below, which holds for any active learner that obtains similar guarantees to those of MARMANN. The lower bound shows that any active learning algorithm which guarantees a multiplicative accuracy over $G_{\min}(m, \delta)$ has a label complexity which is $\tilde{\Omega}(m G_{\min}(m, \delta))$, for a wide range of values of $G_{\min}(m, \delta)$ — essentially, as long as $G_{\min}(m, \delta)$ is not trivially large or trivially small. This implies that the term $m\hat{G}$
in the upper bound of the label complexity of MARMANN in Theorem 4 cannot be significantly improved.

Theorem 6 (Active lower bound) Let $\mathcal{X} = \mathbb{R}$, $\delta \in (0, 1/14)$. Let $C \geq 1$, and let A be an active learning algorithm that outputs \hat{h}. Suppose that for any distribution \mathcal{D} over $\mathcal{X} \times \mathcal{Y}$, if the input unlabeled sample is of size m, then $\text{err}(\hat{h}, \mathcal{D}) \leq CG \min(m, \delta)$ with probability at least $1 - \delta$. Then for any $\alpha \in \left(\frac{\log(m) + \log(28)}{8\sqrt{2m}}, \frac{1}{240C}\right)$ there exists a distribution \mathcal{D} such with probability at least $\frac{1}{28}$ over $S \sim \mathcal{D}^m$ and the randomness of A, both of the following events hold:

1. $\alpha \leq G_{\min}(m, \delta) \leq 30\alpha$

2. A queries at least $\frac{1}{2} \left[mG_{\min}(m, \delta) - \log\left(\frac{\alpha^2}{8}\right) \right] \equiv \tilde{\Omega}(mG_{\min}(m, \delta))$ labels.

The proof of this lower bound is provided in Section 8. In the rest of the paper, the components of MARMANN are described in detail, and the main results are proved.

4. Active Nearest-Neighbor at a Given Scale

A main challenge for active learning in our non-parametric setting is performing model selection, that is, selecting a good scale t similarly to the passive learner of Gottlieb et al. (2017). In the passive supervised setting, the approach developed in several previous works (Gottlieb et al., 2014b; Kontorovich and Weiss, 2014; Gottlieb et al., 2014a; Kontorovich and Weiss, 2015) performs model selection by solving a minimum vertex cover problem for each considered scale t, so as to eliminate all of the t-blocking pairs — i.e., pairs of differently labeled points within a distance t. The passive algorithm generates a compression set by first finding and removing from S_{in} all points that obstruct (ν, t)-separation at a given scale $t > 0$. This incurs a computational cost but no significant sample complexity increase, aside from the standard logarithmic factor that comes from stratifying over data-dependent hierarchies (Shawe-Taylor et al., 1998).

While this approach works for passive learning, in the active setting we face a crucial challenge: estimating the error of a nearest-neighbor rule at scale t using a small number of samples. A key insight that we exploit in this work is that instead of eliminating the blocking pairs, one may simply relabel some of the points in the compression set, and this would also generate a low-error nearest neighbor rule. This new approach enables estimation of the sample accuracy of a (possibly relabeled) t-net by label-efficient active sampling. In addition, this approach is significantly simpler than estimating the size of the minimum vertex cover of the t-blocking graph. Moreover, we gain improved algorithmic efficiency, by avoiding the relatively expensive vertex cover procedure.

A small technical difference, which will be evident below, is that in this new approach, examples in the compression set have a different label than their original label in S_{in}. Standard sample compression analysis (e.g. Graepel et al., 2005) assumes that the classifier is determined by a small number of labeled examples from S_{in}. This does not allow the examples in the compression set to have a different label than their original label in S_{in}. Therefore, we require a slight generalization of previous compression analysis (following previous works on compression, see details in Section 6.1), which allows adding side information to the compression set. This side information will be used to set the label of each of the examples in the compression set. The generalization incurs a small statistical penalty, which we quantify in Section 6 as a preliminary to proving Theorem 4.
We now describe our approach to generating a compression set for a given scale \(t > 0 \). Recall that \(\nu(t) \) is the smallest value for which \(S_{in} \) is \((\nu, t)\)-separated. We define two compression sets. The first one, denoted \(S_a(t) \), represents an ideal compression set, constructed (solely for the sake of analysis) so that it induces an empirical error of at most \(\nu(t) \). Calculating \(S_a(t) \) might require many labels, thus it is only used for analysis purposes; the algorithm never constructs it. The second compression set, denoted \(\tilde{S}_a(t) \), represents an approximation to \(S_a(t) \), which can be constructed using a small number of labels, and induces a sample error of at most \(4\nu(t) \) with high probability.

We first define the ideal set \(S_a(t) := \{(x_1, y_1), \ldots, (x_N, y_N)\} \). The examples in \(S_a(t) \) are the points in \(\text{Net}(U_{in}, t/2) \), and the label of each example is the majority label, out of the labels of the examples in \(S_{in} \) to which \(x_i \) is closest. Formally, \(\{x_1, \ldots, x_N\} := \text{Net}(U_{in}, t/2) \), and for \(i \in [N] \),\(y_i := \arg\max_{y \in \mathcal{Y}} |S^y \cap P_i| \), where \(P_i = \{x \in \mathcal{X} \mid \kappa(x, \text{Net}(U, t/2)) = i\} \in \text{Par}(U_{in}, t/2) \).

Lemma 7 Let \(S \) be a labeled sample of size \(m \), and let \(\{P_1, \ldots, P_N\} \) be a partition of \(\mathcal{U}(S) \), with \(\max_i \text{diam}(P_i) \leq t \) for some \(t \geq 0 \). For \(i \in [N] \), let \(\Lambda_i := S^y \cap P_i \). Then

\[
\nu(t) \geq 1 - \frac{1}{m} \sum_{i \in [N]} |\Lambda_i|.
\]

Proof Let \(\tilde{S} \subseteq S \) be a subsample that witnesses the \((\nu(t), t)\)-separation of \(S \), so that \(|\tilde{S}| \geq m(1 - \nu(t))\), and for any two points \((x, y), (x', y') \in \tilde{S} \), if \(\rho(x, x') \leq t \) then \(y = y' \). Denote \(\tilde{U} := \mathcal{U}(\tilde{S}) \). Since \(\max_i \text{diam}(P_i) \leq t \), for any \(i \in [N] \) all the points in \(\tilde{U} \cap P_i \) must have the same label in \(\tilde{S} \). Therefore,

\[
\exists y \in \mathcal{Y} \text{ s.t. } \tilde{U} \cap P_i \subseteq \tilde{S}^y \cap P_i.
\]

Hence \(|\tilde{U} \cap P_i| \leq |\Lambda_i| \). It follows

\[
|S| - \sum_{i \in [N]} |\Lambda_i| \leq |S| - \sum_{i \in [N]} |\tilde{U} \cap P_i| = |S| - |\tilde{S}| = m \cdot \nu(t).
\]

Dividing by \(m \) we get the statement of the lemma. \(\square \)

From Lemma 7, we get Cor. 8, which upper bounds the empirical error of \(h_{S_a(t)}^{\text{nn}} \) by \(\nu(t) \).

Corollary 8 For every \(t > 0 \), \(\text{err}(h_{S_a(t)}^{\text{nn}}, S_{in}) \leq \nu(t) \).

This corollary is immediate from Lemma 7, since for any \(P_i \in \text{Par}(U_{in}, t/2) \), \(\text{diam}(P_i) \leq t \), and

\[
\text{err}(h_{S_a(t)}^{\text{nn}}, S_{in}) = 1 - \frac{1}{m} \sum_{i \in [N]} |\Lambda_i|.
\]

Now, calculating \(S_a(t) \) requires knowing most of the labels in \(S_{in} \). MARMANN constructs instead an approximation \(\tilde{S}_a(t) \), in which the examples are the points in \(\text{Net}(U_{in}, t/2) \) (so that \(\mathcal{U}(\tilde{S}_a(t)) = \mathcal{U}(S_a(t)) \)), but the labels are determined using a bounded number of labels requested from \(S_{in} \). The labels in \(\tilde{S}_a(t) \) are calculated by the simple procedure GenerateNNSet given in Alg. 2. The empirical error of the output of GenerateNNSet is bounded in Theorem 9 below.\(^3\)

3. In the case of binary labels (\(|\mathcal{Y}| = 2\)), the problem of estimating \(S_a(t) \) can be formulated as a special case of the benign noise setting for parametric active learning, for which tight lower and upper bounds are provided in Hanneke and Yang (2015). However, our case is both more general (as we allow multiclass labels) and more specific (as we are dealing with a specific “hypothesis class”). Thus we provide our own procedure and analysis.
A technicality in Alg. 2 requires explanation: In MARMANN, the generation of $\hat{S}_a(t)$ will be split into several calls to GenerateNNSet, so that different calls determine the labels of different points in $\hat{S}_a(t)$. Therefore GenerateNNSet has an additional argument I, which specifies the indices of the points in $\text{Net}(U_{in}, t/2)$ for which the labels should be returned this time. Crucially, if during the run of MARMANN, GenerateNNSet is called again for the same scale t and the same point in $\text{Net}(U_{in}, t/2)$, then GenerateNNSet returns the same label that it returned before, rather than recalculating it using fresh labels from S_{in}. This guarantees that despite the randomness in GenerateNNSet, the full $\hat{S}_a(t)$ is well-defined within any single run of MARMANN, and is distributed like the output of GenerateNNSet($t, [\mathcal{N}(t/2)], \delta$), which is convenient for the analysis. Define

$$Q(m) := \left\lceil 18 \log(4m^3/\delta) \right\rceil.$$

\section*{Algorithm 2 GenerateNNSet(t, I, δ)}

| input | Scale $t > 0$, a target set $I \subseteq [\mathcal{N}(t/2)]$, confidence $\delta \in (0, 1)$.
| output | A labeled set $S \subseteq X \times Y$ of size $|I|$.

\begin{itemize}
 \item \{x_1, \ldots, x_N\} \leftarrow \text{Net}(U_{in}, t/2), \{P_1, \ldots, P_N\} \leftarrow \text{Par}(U_{in}, t/2), S \leftarrow ()
 \item for $i \in I$ do \begin{itemize}
 \item if \hat{y}_i has not already been calculated for U_{in} with this value of t then
 \begin{itemize}
 \item Draw $Q(m)$ points uniformly at random from P_i and query their labels.
 \item Let \hat{y}_i be the majority label observed in these $Q(m)$ queries.
 \end{itemize}
 \end{itemize}
 \item end for
\end{itemize}

Output S

\section*{Theorem 9}

Let $\hat{S}_a(t)$ be the output of GenerateNNSet($t, [\mathcal{N}(t/2)], \delta$). With a probability at least $1 - \frac{\delta}{2m^2}$, the following event, which we denote by $E(t)$, holds:

$$\text{err}(h^{nn}_{\hat{S}_a(t)}, S_{in}) \leq 4\nu(t).$$

\section*{Proof}

By Cor. 8, $\text{err}(h^{nn}_{\hat{S}_a(t)}, S_{in}) \leq \nu(t)$. In $S_{in}(t)$, the labels assigned to each point in $\text{Net}(U_{in}, t/2)$ are the majority labels (based on S_{in}) of the points in the regions in $\text{Par}(U_{in}, t/2)$. As above, we denote the majority label for region P_i by $y_i := \arg\max_{y \in Y} |S^y \cap P_i|$. We now compare these labels to the labels \hat{y}_i assigned by Alg. 2. Let $p(i) = |\Lambda_i|/|P_i|$ be the fraction of points in P_i which are labeled by the majority label y_i, where Λ_i is as defined in Lemma 7. Let $\hat{p}(i)$ be the fraction of labels equal to y_i out of those queried by Alg. 2 in round i. Let $\beta := 1/6$. By Hoeffding’s inequality and union bounds, we have that with a probability of at least

$$1 - 2\mathcal{N}(t/2) \exp\left(-\frac{Q(m)}{18}\right) \geq 1 - \frac{\delta}{2m^2},$$

we have $\max_{i \in [\mathcal{N}(t/2)]} |\hat{p}(i) - p(i)| \leq \beta$. Denote this “good” event by E'. We now prove that $E' \Rightarrow E(t)$. Let $J = \{i \in [\mathcal{N}(t/2)] \mid \hat{p}(i) > \frac{1}{2}\}$. It can be easily seen that $\hat{y}_i = y_i$ for all $i \in J$. Therefore, for all x such that $\kappa(x, \bigcup(S_{a}(t))) \in J$, $h^{nn}_{\hat{S}_a(t)}(x) = h^{nn}_{S_{a}(t)}(x)$, and hence

$$\text{err}(h^{nn}_{S_{a}(t)}, S_{in}) \leq \mathbb{P}_{X \sim S_{in}}[\kappa(X, \bigcup(S_{a}(t))) \notin J] + \text{err}(h^{nn}_{\hat{S}_a(t)}, U_{in}).$$
The second term is at most $\nu(t)$ by Cor. 8, and it remains to bound the first term, on the condition that E' holds. We have $\mathbb{P}_{X \sim U}[\kappa(X, U(S_a(t))) \notin J] = \frac{1}{m} \sum_{i \notin J} |P_i|$. If E' holds, then for any $i \notin J$, $p(i) \leq \frac{1}{2} + \beta$, therefore

$$|P_i| - |\Lambda_i| = (1 - p(i))|P_i| \geq (\frac{1}{2} - \beta)|P_i|.$$

Recall that, by Lemma 7, $\nu(t) \geq 1 - \frac{1}{m} \sum_{i \in [\mathcal{N}(t/2)]} |\Lambda_i|$. Therefore,

$$\nu(t) \geq 1 - \frac{1}{m} \sum_{i \in [\mathcal{N}(t/2)]} |\Lambda_i| = \frac{1}{m} \sum_{i \in [\mathcal{N}(t/2)]} (|P_i| - |\Lambda_i|) \geq \frac{1}{m} \sum_{i \notin J} (1 - \beta)|P_i|.$$

Thus, under E',

$$\mathbb{P}_{X \sim U}[\kappa(X, U(S_a(t))) \notin J] \leq \frac{\nu(t)}{\frac{1}{2} - \beta} = 3\nu(t).$$

It follows that under E', $\text{err}(h_{\hat{S}_a}^{nn}, U_{in}) \leq 4\nu(t)$.

5. Model Selection

We now show how to select the scale \hat{t} that will be used to generate the output nearest-neighbor rule. The main challenge is to do this with a low label complexity: Generating the full classification rule for scale t requires a number of labels that depends on $\mathcal{N}(t)$, which might be very large. We would like the label complexity of MARMANN to depend only on $\mathcal{N}(\hat{t})$ (where \hat{t} is the selected scale), which is of the order $m\hat{G}$. Therefore, during model selection we can only invest a bounded number of labels in each tested scale. In addition, to keep the label complexity low, we would like to avoid testing all scales. In Section 5.1 we describe how we estimate the error on a given scale. In Section 5.2 we provide a search procedure, resembling binary search, which uses the estimation procedure to select a single scale \hat{t}.

5.1 Estimating the Error at a Given Scale

For $t > 0$, let $\hat{S}_a(t)$ be the compressed sample that MARMANN would generate if the selected scale were set to t. Our model selection procedure performs a search, similar to binary search, over the possible scales. For each tested scale t, the procedure estimates the empirical error $\epsilon(t) := \text{err}(h_{\hat{S}_a(t)}^{nn}, S)$ within a certain accuracy, using an estimation procedure given below, called EstimateErr. EstimateErr outputs an estimate $\hat{\epsilon}(t)$ of $\epsilon(t)$, up to a given threshold $\theta > 0$, using labels requested from S_{in}.

13
To estimate the error, we sample random labeled examples from S_{in}, and check the prediction error of $h^{\text{in}}_{\hat{S}_t(t)}$ on these examples. The prediction error of any fixed hypothesis h on a random labeled example from S_{in} is an independent Bernoulli variable with expectation $\text{err}(h, S_{in})$. EstimateErr is implemented using the following procedure, EstBer, which adaptively estimates the expectation of a Bernoulli random variable to an accuracy specified by the parameter θ, using a small number of random independent Bernoulli experiments. Let $B_1, B_2, \ldots \in \{0, 1\}$ be i.i.d. Bernoulli random variables. For an integer n, denote $\hat{p}_n = \frac{1}{n} \sum_{i=1}^{n} B_i$. The estimation procedure EstBer is given in Alg. 3. We prove a guarantee for this procedure in Theorem 10. Note that we assume that the threshold parameter is in $(0, 1)$, since for $\theta \geq 1$ one can simply output 1 using zero random draws to satisfy Theorem 10.

Algorithm 3 EstBer(θ, β, δ)

input A threshold parameter $\theta \in (0, 1]$, a budget parameter $\beta \geq 7$, confidence $\delta \in (0, 1)$

$S \leftarrow \{B_1, \ldots, B_4\}$

$K \leftarrow \frac{4\beta}{\pi} \log\left(\frac{8\beta}{\pi \delta}\right)$

for $i = 3 : \left\lceil \log_2 (\beta \log(2K/\delta))/\theta \right\rceil$ do

$n \leftarrow 2^i$

$S \leftarrow S \cup \{B_{n/2+1}, \ldots, B_n\}$.

if $\hat{p}_n > \beta \log(2n/\delta)/n$ then

break

end if

end for

Output \hat{p}_n.

The following theorem states that Alg. 3 essentially estimates p, the expectation of the i.i.d. Bernoulli variables B_1, B_2, \ldots, up to a multiplicative constant, except if p is smaller than a value proportional to the threshold θ, in which case the algorithm simply returns a value at most θ. Moreover, the theorem shows that the number of random draws required by the algorithm is inversely proportional to the maximum of the threshold θ and the expectation p. Thus, if p is very small, the number of random draws does not increase without bound. The parameter β controls the trade-off between the accuracy of estimation and the number of random draws.

Theorem 10 Let $\delta \in (0, 1)$, $\theta \in (0, 1]$, $\beta \geq 7$. Let $B_1, B_2, \ldots \in \{0, 1\}$ be i.i.d Bernoulli random variables with expectation p. Let p_o be the output of EstBer(θ, β, δ). The following holds with a probability of $1 - \delta$, where $f(\beta) := 1 + \frac{8}{3\beta} + \sqrt{\frac{2}{\beta}}$.

1. If $p_o \leq \theta$, then $p \leq f(\beta) \theta$. Otherwise, $\frac{p}{f(\beta)} \leq p_o \leq \frac{p}{2 - f(\beta)}$.

2. Let $\psi := \max(\theta, p/f(\beta))$. The number of random draws in EstBer is at most $\frac{4\beta \log(8\beta/\pi \delta)}{\psi}$.

Proof First, consider any single round i with $n = 2^i$. By the empirical Bernstein bound (Maurer and Pontil, 2009, Theorem 4), with a probability of $1 - \delta/n$, for $n \geq 8$, we have

$$|\hat{p}_n - p| \leq \frac{8 \log(2n/\delta)}{3n} + \frac{2\hat{p}_n \log(2n/\delta)}{n}. \quad (4)$$

4. This follows from Theorem 4 of Maurer and Pontil (2009) since $\frac{7}{4n-11} \leq \frac{8}{3n}$ for $n \geq 8$.

14
Define \(g := (\beta + 8/3 + \sqrt{2}\beta) \), so that \(f(\beta) = g/\beta \). Conditioned on Eq. (4), there are two cases:

(a) \(\hat{p}_n \leq \beta \log(2n/\delta)/n \). In this case, \(p \leq g \log(2n/\delta)/n \).

(b) \(\hat{p}_n > \beta \log(2n/\delta)/n \). In this case, \(n \geq \beta \log(2n/\delta)/\hat{p}_n \). Thus, by Eq. (4),

\[
|\hat{p}_n - p| \leq \hat{p}_n \left(\frac{8}{3\beta} + \sqrt{2/\beta} \right) = \hat{p}_n \left(\frac{g}{\beta} - 1 \right).
\]

Therefore

\[
\frac{\beta p}{g} \leq \hat{p}_n \leq \frac{p}{2 - g/\beta}.
\]

Taking a union bound on all the rounds, we have that the guarantee holds for all rounds with a probability of at least \(1 - \delta \).

Condition now on the event that these guarantees all hold. First, we prove the label complexity bound. Note that since \(\beta \geq 7 \), \(K \geq 28 \), thus we have \(2 \log(2K) > 8 \), therefore there is always at least one round. Let \(n_o \) be the value of \(n \) in the last round that the algorithm runs, and let \(p_o = \hat{p}_{n_o} \). Let \(i \) such that \(n_o = 2^{i+1} \), thus the algorithm stops during round \(i + 1 \). This implies \(\hat{p}_n \leq \beta \log(2n/\delta)/n \) for \(n = 2^i \), therefore case (a) holds for \(n \), which means \(n \leq g \log(2n/\delta)/p \).

It follows that \(n \leq 2g \log(4g/\delta)/p \), therefore \(n_o \leq 4g \log(4g/(\delta p))/p \). In addition, the number of random draws in the algorithm is \(n_o \), which is bounded by

\[
n_o \leq 2^{\left\lceil \log_2(\beta \log(2K/\delta)/\theta) \right\rceil} \leq 2 \cdot 2^{\log_2(\beta \log(2K/\delta)/\theta)} \leq 2\beta \log(2K/\delta)/\theta.
\]

Therefore we have the following bound on the number of random draws:

\[
n_o \leq \min \left(\frac{2\beta \log(2K/\delta)}{\theta} , \frac{4g \log(4g/(\delta p))}{p} \right).
\]

Plugging in the definition of \(K \) and substituting \(\beta \cdot f(\beta) \) for \(g \) yields

\[
n_o \leq \min \left(\frac{2 \log(8\beta \log(8\beta/\delta))}{\theta} , \frac{4f(\beta) \log(4\beta f(\beta)/\delta p)}{p} \right) \leq \beta \min \left(\frac{4 \log(8\beta/\delta)}{\theta} , \frac{4f(\beta) \log(4\beta f(\beta)/\delta p)}{p} \right) \leq 4\beta \min \left(\frac{1}{\theta} \log(\frac{8\beta}{\delta}) + \log(\frac{1}{\theta}) , \frac{f(\beta)}{p} \left(\log(\frac{4\beta}{\delta}) + \log(\frac{f(\beta)}{\delta}) \right) \right).
\]

Using the definition of \(\psi \), we get that the number of draws is at most \(\frac{4\beta \log(8\beta/\delta)}{\psi} \).

Next, we prove the accuracy of \(p_o \) (item 1 in the theorem statement) by considering two cases.

(I) If \(p_o > \beta \log(2n_o/\delta)/n_o \), then case (b) above holds for \(n_o \), thus

\[
\frac{\beta p}{g} \leq p_o \leq \frac{p}{2 - g/\beta}.
\]

In addition, if \(p_o \leq \theta \), the LHS implies \(p \leq f(\beta) \theta \). Thus item 1 in the theorem statement holds in this case.
(II) If \(p_o \leq \beta \log(2n_o/\delta)/n_o \), then \(\text{EstBer} \) could not have ended by breaking out of the loop, thus it ran until the last round. Therefore \(n_o \geq \beta \log(2K/\delta)/\theta \). In addition, case (a) holds for \(n_o \), therefore
\[
p \leq \frac{g\log(2n_o/\delta)}{n_o} \leq \frac{g\theta \log(2n_o/\delta)}{\beta \log(2K/\delta)}.
\]
(5)

Now, for any possible value of \(n_o \),
\[
n_o \leq 2\beta \log(2K/\delta)/\theta \leq K.
\]
The first inequality follows from the bound on \(i \) in \(\text{EstBer} \), and the second inequality holds since, as defined in \(\text{EstBer} \), \(K \geq 4\beta \theta \log(8\beta \theta \delta) \). Since \(n_o \leq K \), Eq. (5) implies that
\[
\frac{p \leq \frac{g\theta}{\beta} = f(\beta)\theta.}
\]

In addition, we have
\[
p_o \leq \beta \log(2n_o/\delta)/n_o \leq \theta \log(2n_o/\delta) \leq \theta.
\]
Therefore in this case, necessarily \(p_o \leq \theta \) and \(p \leq f(\beta)\theta \), which satisfies item 1 in the theorem statement.

In both cases item 1 holds, thus the theorem is proved.

The procedure \(\text{EstimateErr}(t, \theta, \delta) \) is then implemented as follows:

- Call \(\text{EstBer}(\theta, 52, \delta/(2m^2)) \), where the random variables \(B_i \) are independent copies of the Bernoulli variable
 \[
 B := \mathbb{I}[h^{\text{nn}}_{\hat{S}_a(t)}(X) \neq Y]
 \]
 and \((X, Y) \sim S_{\text{in}}\).

- To draw a single \(B_i \), sample a random pair \((x', y')\) from \(S_{\text{in}} \), set
 \[
 i := \kappa(x', \text{Net}(U_{\text{in}}, t/2)),
 \]
 and get \(S \leftarrow \text{GenerateNNSet}(t, \{i\}, \delta) \). This returns \(S = ((x_i, \hat{y}_i)) \) where \(\hat{y}_i \) is the label of \(x_i \) in \(\hat{S}_a(t) \). Then \(B_i := \mathbb{I}[\hat{y}_i \neq y'] \). Note that \(B_i \) is indeed distributed like \(B \), and \(\mathbb{E}[B] = \epsilon(t) \).

Note further that this call to \(\text{GenerateNNSet}(t, \{i\}, \delta) \) uses \(Q(m) \) label queries. Therefore the overall label complexity of a single draw of a \(B_i \) is \(Q(m) + 1 \).

Cor. 11 gives a guarantee for the accuracy and label complexity of \(\text{EstimateErr} \). The proof is immediate from Theorem 10, by setting \(\beta = 52 \), which implies \(f(\beta) \leq 5/4 \).

Corollary 11 Let \(t, \theta > 0 \) and \(\delta \in (0, 1) \), and let \(\epsilon(t) \leftarrow \text{EstimateErr}(t, \theta, \delta) \). Let \(Q(m) \) as defined in Eq. (3) The following properties hold with a probability of \(1 - \frac{\delta}{2m^2} \) over the randomness of \(\text{EstimateErr} \) (and conditioned on \(\hat{S}_a(t) \)).
1. If \(\hat{\epsilon}(t) \leq \theta \), then \(\epsilon(t) \leq \frac{50}{4} \). Otherwise,
\[
\frac{4\epsilon(t)}{5} \leq \hat{\epsilon}(t) \leq \frac{4\epsilon(t)}{3}.
\]

2. Let \(\psi' := \max(\theta, \epsilon(t)) \). The number of labels that EstimateErr requests is at most
\[
\frac{260(Q(m) + 1) \log\left(\frac{1040m^2}{\delta\psi'}\right)}{\psi'}.
\]

To derive item 2. above from Theorem 10, note that for \(\beta = \frac{52}{2} \),
\[
\psi' = \max(\theta, \epsilon(t)) \leq f(\beta) \max(\theta, \epsilon(t)/f(\beta)) = f(\beta)\psi \leq \frac{5}{4}\psi,
\]
where \(\psi \) is as defined in Theorem 10. Below we denote the event that the two properties in Cor. 11 hold for \(t \) by \(V(t) \).

5.2 Selecting a Scale

The model selection procedure SelectScale, given in Alg. 4, implements its search based on the guarantees in Cor. 11. First, we introduce some notation. We would like MARMANN to obtain a generalization guarantee that is competitive with \(G_{\text{min}}(m, \delta) \). Denote
\[
\phi(t) := \frac{(N(t) + 1) \log(m) + \log(\frac{1}{3})}{m},
\]
and let
\[
G(\epsilon, t) := \epsilon + \frac{2}{3}\phi(t) + \frac{3}{\sqrt{2}}\sqrt{\epsilon\phi(t)}.
\]
Note that for all \(\epsilon, t \),
\[
GB(\epsilon, N(t), \delta, m, 1) = \frac{m}{m - N(t)}G(\epsilon, t).
\]
When referring to \(G(\nu(t), t), G(\epsilon(t), t) \), or \(G(\hat{\epsilon}(t), t) \) we omit the second \(t \) for brevity.

Instead of directly optimizing \(G(\nu(t)) \), we will select a scale based on our estimate \(G(\hat{\epsilon}(t)) \) of \(G(\epsilon(t)) \). Let Dist denote the set of pairwise distances in the unlabeled dataset \(U_{\text{m}} \) (note that \(|\text{Dist}| < \binom{m}{2} \)). We remove from Dist some distances, so that the remaining distances have a net size \(N(t) \) that is monotone non-increasing in \(t \). We also remove values with a very large net size. Concretely, define
\[
\text{Dist}_{\text{mon}} := \text{Dist} \setminus \{ t \mid N(t) + 1 > m/2 \} \setminus \{ t \mid \exists t' \in \text{Dist}, t' < t \text{ and } N(t') < N(t) \}.
\]
Then for all \(t, t' \in \text{Dist}_{\text{mon}} \) such that \(t' < t \), we have \(N(t') \geq N(t) \). The output of SelectScale is always a value in \(\text{Dist}_{\text{mon}} \). The following lemma shows that it suffices to consider these scales.

Lemma 12 Assume \(m \geq 6 \) and let \(t^*_m \in \text{argmin}_{t \in \text{Dist}} G(\nu(t)) \). If \(G_{\text{min}}(m, \delta) \leq 1/3 \) then \(t^*_m \in \text{Dist}_{\text{mon}} \).
Algorithm 4 SelectScale(δ)

input $\delta \in (0, 1)$

output Scale \hat{t}

1. $\mathcal{T} \leftarrow \text{Dist}_{\text{mon}}$. # \mathcal{T} maintains the current set of possible scales
2. while $\mathcal{T} \neq \emptyset$ do
3. $t \leftarrow$ the median value in \mathcal{T} # break ties arbitrarily
4. $\hat{\epsilon}(t) \leftarrow \text{EstimateErr}(t, \phi(t), \delta)$.
5. if $\hat{\epsilon}(t) < \phi(t)$ then
6. $\mathcal{T} \leftarrow \mathcal{T} \setminus [0, t]$ # go right in the binary search
7. else if $\hat{\epsilon}(t) > \frac{11}{10} \phi(t)$ then
8. $\mathcal{T} \leftarrow \mathcal{T} \setminus [t, \infty)$ # go left in the binary search
9. else
10. $t_0 \leftarrow t$, $\mathcal{T}_0 \leftarrow \{t_0\}$.
11. break from loop
12. end if
13. end while
14. if \mathcal{T}_0 was not set yet then
15. If the algorithm ever went to the right, let t_0 be the last value for which this happened, and let $\mathcal{T}_0 := \{t_0\}$. Otherwise, $\mathcal{T}_0 := \emptyset$.
16. end if
17. Let \mathcal{T}_L be the set of all t that were tested and made the search go left
18. Output $\hat{t} := \text{argmin}_{t \in \mathcal{T}_L \cup \mathcal{T}_0} G(\hat{\epsilon}(t))$

Proof Assume by way of contradiction that $t^*_m \in \text{Dist} \setminus \text{Dist}_{\text{mon}}$. First, since $G(\nu(t^*_m)) \leq G_{\text{min}}(m, \delta) \leq 1/3$ we have

$$\frac{N(t^*_m) + 1}{m - N(t^*_m)} \log(m) \leq \frac{1}{2}.$$

Therefore, since $m \geq 6$, it is easy to verify $N(t^*_m) + 1 \leq m/2$. Therefore, by definition of Dist_{mon} there exists a $t \leq t^*_m$ with $\phi(t) < \phi(t^*_m)$. Since $\nu(t)$ is monotone over all of $t \in \text{Dist}$, we also have $\nu(t) \leq \nu(t^*_m)$. Now, $\phi(t) < \phi(t^*_m)$ and $\nu(t) \leq \nu(t^*_m)$ together imply that $G(\nu(t)) < G(\nu(t^*_m))$, a contradiction. Hence, $t^*_m \in \text{Dist}_{\text{mon}}$.

SelectScale follows a search procedure similar to binary search, however the conditions for going right and for going left are not exhaustive, thus it is possible that neither condition holds. The search ends either when neither conditions hold, or when no additional scale should be tested. The final output of the algorithm is based on minimizing $G(\hat{\epsilon}(t))$ over some of the values tested during search.

For $c > 0$, define

$$\gamma(c) := 1 + \frac{2}{3c} + \frac{3}{\sqrt{2c}}$$

and

$$\tilde{\gamma}(c) := \frac{1}{c} + \frac{2}{3} + \frac{3}{\sqrt{2c}}.$$

For all $t, \epsilon > 0$ we have the implications

$$\epsilon \geq c\phi(t) \Rightarrow \gamma(c) \epsilon \geq G(\epsilon, t) \quad \text{and} \quad \phi(t) \geq c\epsilon \Rightarrow \tilde{\gamma}(c) \phi(t) \geq G(\epsilon, t). \quad (7)$$
We now lower bound scales that are tested during The next theorem bounds the label complexity of SelectScale. Therefore G.

The following lemma uses Eq. (7) to show that the estimate $G(\hat{\epsilon}(t))$ is close to the true $G(\epsilon(t))$.

Lemma 13 Let $t > 0$, $\delta \in (0, 1)$, and suppose that SelectScale calls $\hat{\epsilon}(t) \leftarrow \text{EstimateErr}(t, \phi(t), \delta)$. Suppose that $V(t)$ as defined in Cor. 11 holds. Then

$$
\frac{1}{6}G(\hat{\epsilon}(t)) \leq G(\epsilon(t)) \leq 6.5G(\hat{\epsilon}(t)).
$$

Proof Under $V(t)$, we have that if $\hat{\epsilon}(t) < \phi(t)$ then $\epsilon(t) \leq \frac{5}{4}\hat{\epsilon}(t)$. In this case,

$$
G(\epsilon(t)) \leq \tilde{\gamma}(4/5)\phi(t) \leq 4.3\phi(t),
$$

by Eq. (7). Therefore

$$
G(\epsilon(t)) \leq \frac{3 \cdot 4.3}{2}G(\hat{\epsilon}(t)).
$$

In addition, $G(\epsilon(t)) \geq \frac{2}{3}\phi(t)$ (from the definition of G), and by Eq. (7) and $\tilde{\gamma}(1) \leq 4$,

$$
\phi(t) \geq \frac{1}{4}G(\hat{\epsilon}(t)).
$$

Therefore $G(\epsilon(t)) \geq \frac{1}{6}G(\hat{\epsilon}(t))$. On the other hand, if $\hat{\epsilon}(t) \geq \phi(t)$, then by Cor. 11

$$
\frac{4}{5}\epsilon(t) \leq \hat{\epsilon}(t) \leq \frac{4}{3}\epsilon(t).
$$

Therefore $G(\hat{\epsilon}(t)) \leq \frac{4}{3}G(\epsilon(t))$ and $G(\epsilon(t)) \leq \frac{5}{4}G(\epsilon(t))$. Taking the worst-case of both possibilities, we get the bounds in the lemma.

The next theorem bounds the label complexity of SelectScale. Let $\mathcal{T}_{test} \subseteq \text{Dist}_{\text{mon}}$ be the set of scales that are tested during SelectScale (that is, their $\hat{\epsilon}(t)$ was estimated).

Theorem 14 Suppose that the event $V(t)$ defined in Cor. 11 holds for all $t \in \mathcal{T}_{test}$ for the calls $\hat{\epsilon}(t) \leftarrow \text{EstimateErr}(t, \phi(t), \delta)$. If the output of SelectScale is \hat{t}, then the number of labels requested by SelectScale is at most

$$
9620|\mathcal{T}_{test}|(Q(m) + 1)\frac{1}{G(\epsilon(t))}\log\left(\frac{38480m^2}{\delta G(\epsilon(t))}\right).
$$

Proof The only labels used by the procedure are those used by calls to EstimateErr. Let $\psi_t := \max(\phi(t), \epsilon(t))$, and $\psi_{\text{min}} := \min_{t \in \mathcal{T}_{test}} \psi_t$. Denote also $\tilde{\psi}_t := \max(\phi(t), \hat{\epsilon}(t))$. From Cor. 11 we have that the total number of labels in all the calls to EstimateErr in SelectScale is at most

$$
\sum_{t \in \mathcal{T}_{test}} \frac{260(Q(m) + 1)\log\left(\frac{1040m^2}{\delta \psi_t}\right)}{\psi_t} \leq |\mathcal{T}_{test}| \frac{260(Q(m) + 1)\log\left(\frac{1040m^2}{\delta \psi_{\text{min}}}\right)}{\psi_{\text{min}}}.
$$

We now lower bound ψ_{min} using $G(\epsilon(t))$. By Lemma 13 and the choice of \hat{t},

$$
G(\epsilon(t)) \leq 6.5G(\hat{\epsilon}(t)) = 6.5 \min_{t \in \mathcal{T}_{t} \cup \mathcal{T}_0} G(\hat{\epsilon}(t)).
$$
From the definition of G, for any $t > 0$,

$$G(\hat{\epsilon}(t)) \leq \gamma(1) \max(\hat{\phi}(t), \hat{\epsilon}(t)) \leq 25\hat{\psi}_t.$$

Therefore

$$G(\epsilon(\hat{t})) \leq 25 \min_{t \in T_L \cup T_0} \hat{\psi}_t. \quad (9)$$

We will show a similar upper bound when minimizing over all of T_{test}, not just over $T_L \cup T_0$. This is trivial if $T_{\text{test}} = T_L \cup T_0$. Consider the case $T_L \cup T_0 \subsetneq T_{\text{test}}$. For any $t \in T_{\text{test}}$, we have one of:

- The search went left on t (step 8), hence $t \in T_L$.
- The search went nowhere on t and the loop broke (step 11), hence $t = t_0 \in T_0$.
- The search went right on t (step 6) and this was the last value for which this happened, hence $t = t_0 \in T_0$.
- The search went right on t (step 6) and this was not the last value for which this happened. Hence $t \in T_{\text{test}} \setminus (T_L \cup T_0)$.

Set some $t_1 \in T_{\text{test}} \setminus (T_L \cup T_0)$. Since the search went right on t_1, then t_0 also exists, since the algorithm did go to the right for some t (see step 15). Since the binary search went right on t_1, we have $\hat{\epsilon}(t_1) \leq \hat{\phi}(t_1)$. Since the binary search did not go left on t_0 (it either broke from the loop or went right), $\hat{\epsilon}(t_0) \leq \frac{11}{10} \hat{\phi}(t_0)$.

In addition, $t_0 \geq t_1$ (since the search went right at t_1, and t_0 was tested later than t_1), thus $\hat{\phi}(t_0) \leq \hat{\phi}(t_1)$ (since $t_0, t_1 \in \text{Dist}_{\text{mon}}$). Therefore,

$$\hat{\psi}_t = \max(\hat{\phi}(t_0), \hat{\epsilon}(t_0)) \leq \frac{11}{10} \hat{\phi}(t_0) \leq \frac{11}{10} \hat{\phi}(t_1) = \frac{11}{10} \max(\hat{\phi}(t_1), \hat{\epsilon}(t_1)) = \hat{\psi}_{t_1}.$$

It follows that for any such t_1,

$$\min_{t \in T_L \cup T_0} \hat{\psi}_t \leq \frac{11}{10} \hat{\psi}_{t_1}.$$

Therefore

$$\min_{t \in T_L \cup T_0} \hat{\psi}_t \leq \frac{11}{10} \min_{t \in T_{\text{test}}} \hat{\psi}_t.$$

Therefore, by Eq. (9)

$$G(\epsilon(\hat{t})) \leq 27.5 \min_{t \in T_{\text{test}}} \hat{\psi}_t.$$

By Cor. 11, $\hat{\epsilon}(t) \leq \max(\hat{\phi}(t), 4\epsilon(t)/3)$, therefore $\hat{\psi}_t \leq \frac{4}{3} \hat{\psi}_t$. Therefore $G(\epsilon(\hat{t})) \leq 37\hat{\psi}_{\text{min}}$. Therefore, from Eq. (8), the total number of labels is at most

$$9620|T_{\text{test}}|(Q(m) + 1) \frac{1}{G(\epsilon(\hat{t}))} \log\left(\frac{38480m^2}{\delta G(\epsilon(\hat{t}))}\right).$$

The following theorem provides a competitive error guarantee for the selected scale \hat{t}.

\[20\]
Theorem 15 Suppose that $V(t)$ and $E(t)$, defined in Cor. 11 and Theorem 9 hold for all values $t \in \mathcal{T}_{\text{test}}$, and that $G_{\min}(m, \delta) \leq 1/3$. Then SelectScale outputs $\hat{t} \in \text{Dist}_{\text{mon}}$ such that

$$GB(\epsilon(\hat{t}), N(\hat{t}), \delta, m, 1) \leq O(G_{\min}(m, \delta)),$$

Where the $O(\cdot)$ notation hides only universal multiplicative constants.

The full proof of this theorem is given below. The idea of the proof is as follows: First, we show (using Lemma 13) that it suffices to prove that $G(\nu(\nu(t^*_m))) \geq O(G(\epsilon(\hat{t})))$ to derive the bound in the theorem. Now, SelectScale ends in one of two cases: either \mathcal{T}_0 is set within the loop, or $\mathcal{T} = \emptyset$ and \mathcal{T}_0 is set outside the loop. In the first case, neither of the conditions for turning left and turning right holds for t_0, so we have $\hat{\epsilon}(t_0) = \Theta(\phi(t_0))$ (where Θ hides numerical constants). We show that in this case, whether $t^*_m \geq t_0$ or $t^*_m \leq t_0$, $G(\nu(t^*_m)) \geq O(G(\epsilon(\hat{t})))$. In the second case, there exist (except for edge cases, which are also handled) two values $t_0 \in \mathcal{T}_0$ and $t_1 \in \mathcal{T}_L$ such that t_0 caused the binary search to go right, and t_1 caused it to go left, and also $t_0 \leq t_1$, and $(t_0, t_1) \cap \text{Dist}_{\text{mon}} = \emptyset$. We use these facts to show that for $t^*_m \geq t_1$, $G(\nu(t^*_m)) \geq O(G(\epsilon(\hat{t}_1)))$, and for $t^*_m \leq t_0$, $G(\nu(t^*_m)) \geq O(G(\epsilon(t_0)))$. Since \hat{t} minimizes over a set that includes t_0 and t_1, this gives $G(\nu(t^*_m)) \geq O(G(\epsilon(\hat{t})))$ in all cases.

Proof First, note that it suffices to show that there is a constant C, such that for the output \hat{t} of SelectScale, we have $G(\epsilon(\hat{t})) \leq CG(\nu(t^*_m))$. This is because of the following argument: From Lemma 12 we have that if $G_{\min}(m, \delta) \leq 1/3$, then $t^*_m \in \text{Dist}_{\text{mon}}$. Now

$$G_{\min}(m, \delta) = \frac{m}{m - N(t^*_m)} G(\nu(t^*_m)) \geq G(\nu(t^*_m)).$$

And, if we have the guarantee on $G(\epsilon(\hat{t}))$ and $G_{\min}(m, \delta) \leq 1/3$ we will have

$$GB(\epsilon(\hat{t}), N(\hat{t}), \delta, m, 1) = \frac{m}{m - N(\hat{t})} G(\epsilon(\hat{t})) \leq 2G(\epsilon(\hat{t})) \leq 2CG(\nu(t^*_m)) \leq 2CG_{\min}(m, \delta).$$

(10)

We now prove the existence of such a guarantee and set C. Denote the two conditions checked in SelectScale during the binary search by Condition 1: $\hat{\epsilon}(t) < \phi(t)$ and Condition 2: $\hat{\epsilon}(t) > \frac{11}{10} \phi(t)$. The procedure ends in one of two ways: either \mathcal{T}_0 is set within the loop (Case 1), or $\mathcal{T} = \emptyset$ and \mathcal{T}_0 is set outside the loop (Case 2). We analyze each case separately.

In Case 1, none of the conditions 1 and 2 hold for t_0. Therefore

$$\phi(t_0) \leq \hat{\epsilon}(t_0) \leq \frac{11}{10} \phi(t_0).$$

Therefore, by Eq. (7),

$$\phi(t_0) \geq G(\hat{\epsilon}(t_0)) / \tilde{\gamma}(\frac{10}{11}).$$

By Cor. 11, since $\hat{\epsilon}(t_0) > \phi(t_0)$,

$$\frac{3}{4} \phi(t_0) \leq \frac{3}{4} \hat{\epsilon}(t_0) \leq \epsilon(t_0) \leq \frac{5}{4} \epsilon(t_0) \leq \frac{55}{40} \phi(t_0).$$

Suppose $t^*_m \geq t_0$, then

$$G(\nu(t^*_m)) \geq \nu(t^*_m) \geq \nu(t_0) \geq \frac{1}{4} \epsilon(t_0) \geq \frac{3}{16} \phi(t_0).$$
here we used \(\epsilon(t_0) \leq 4 \nu(t_0) \) by Theorem 9. Therefore, from Eq. (7) and Lemma 13,
\[
G(\nu(t_m^*)) \geq \frac{3}{16} \phi(t_0) \geq \frac{3}{16 \gamma}\left(\frac{40}{55}\right) G(\epsilon(t_0)) \geq \frac{1}{2} \left(\frac{55}{10} \gamma\right) G(\hat{\epsilon}(t_0)).
\]

Now, suppose \(t_m^* < t_0 \), then
\[
G(\nu(t_m^*)) \geq \frac{2}{3} \phi(t_m^*) \geq \frac{2}{3} \phi(t_0) \geq \frac{2}{3} \left(\frac{55}{10} \gamma\right) G(\hat{\epsilon}(t_0)).
\]

In this inequality we used the fact that \(t_m^*, t_0 \in \text{Dist}_{\text{mon}} \), hence \(\phi(t_m^*) \geq \phi(t_0) \). Combining the two possibilities for \(t_m^* \), we have in Case 1,
\[
G(\hat{\epsilon}(t_0)) \leq \max(32 \gamma, \frac{3 \gamma}{2}) G(\nu(t_m^*)).
\]

Since \(\hat{t} \) minimizes \(G(\hat{\epsilon}(t)) \) on a set that includes \(t_0 \), we have, using Lemma 13
\[
G(\epsilon(\hat{t})) \leq 6.5G(\hat{\epsilon}(\hat{t})) \leq 6.5G(\hat{\epsilon}(t_0)).
\]

Therefore, in Case 1,
\[
G(\epsilon(\hat{t})) \leq 6.5 \max(32 \gamma, \frac{3 \gamma}{2}) G(\nu(t_m^*)). \tag{11}
\]

In Case 2, the binary search halted without satisfying Condition 1 nor Condition 2 and with \(T = \emptyset \). Let \(t_0 \) be as defined in this case in SelectScale (if it exists), and let \(t_1 \) be the smallest value in \(T_L \) (if it exists). At least one of these values must exist. If both values exist, we have \(t_0 \leq t_1 \) and \((t_0, t_1) \cap \text{Dist}_{\text{mon}} = \emptyset \).

If \(t_0 \) exists, it is the last value for which the search went right. We thus have \(\hat{\epsilon}(t_0) < \phi(t_0) \). If \(t_m^* \leq t_0 \), from condition 1 on \(t_0 \) and Eq. (7) with \(\gamma(1) \leq 4 \),
\[
G(\nu(t_m^*)) \geq \frac{2}{3} \phi(t_m^*) \geq \frac{2}{3} \phi(t_0) \geq \frac{1}{6} G(\hat{\epsilon}(t_0)).
\]

Here we used the monotonicity of \(\phi \) on \(t_m^*, t_0 \in \text{Dist}_{\text{mon}} \), and Eq. (7) applied to condition 1 for \(t_0 \).

If \(t_1 \) exists, the search went left on \(t_1 \), thus \(\hat{\epsilon}(t_1) > \frac{11}{10} \phi(t_1) \). By Cor. 11, it follows that \(\hat{\epsilon}(t_1) \leq \frac{4}{3} \epsilon(t_1) \). Therefore, if \(t_m^* \geq t_1 \),
\[
G(\nu(t_m^*)) \geq \nu(t_m^*) \geq \nu(t_1) \geq \frac{1}{4} \epsilon(t_1) \geq \frac{3}{16 \gamma} G(\hat{\epsilon}(t_1)).
\]

Here we used \(\epsilon(t_1) \leq 4 \nu(t_1) \) by Theorem 9 and Eq. (7). Combining the two cases for \(t_m^* \), we get that if \(t_0 \) exists and \(t_m^* \leq t_0 \), or \(t_1 \) exists and \(t_m^* \geq t_1 \),
\[
G(\nu(t_m^*)) \geq \min\left\{ \frac{1}{6}, \frac{3}{16 \gamma(11/10)} \right\} \min_{t \in T_E} G(\hat{\epsilon}(t)).
\]

where we define \(T_E = \{ t \in \{t_0, t_1\} \mid t \text{ exists} \} \). We now show that this covers all possible values for \(t_m^* \). If both \(t_0, t_1 \) exist, then since \((t_0, t_1) \cap \text{Dist}_{\text{mon}} = \emptyset \), it is impossible to have \(t_m^* \in (t_0, t_1) \).
If only \(t_0 \) exists, then the search never went left, which means \(t_0 = \max(\text{Dist}_{\text{mon}}) \), thus \(t^*_m \leq t_0 \). If only \(t_1 \) exists, then the search never went right, which means \(t_1 = \min(\text{Dist}_{\text{mon}}) \), thus \(t^*_m \geq t_1 \).

Since \(\hat{t} \) minimizes \(G(\hat{\epsilon}(t)) \) on a set that has \(T_E \) as a subset, we have, using Lemma 13 \(G(\epsilon(\hat{t})) \leq 6.5G(\epsilon(\hat{t})) \leq 6.5 \min_{t \in T_E} G(\epsilon(t)) \). Therefore in Case 2,

\[
G(\nu(t^*_m)) \geq \frac{1}{6.5} \min \left(\frac{1}{6}, \frac{3}{16\gamma(11/10)} \right) G(\epsilon(\hat{t})). \tag{12}
\]

From Eq. (11) and Eq. (12) we get that in both cases

\[
G(\nu(t^*_m)) \geq \frac{1}{6.5} \min \left(\frac{1}{6}, \frac{3}{16\gamma(11/10)} \right) \frac{2}{3\gamma(10/11)} \frac{1}{32\gamma(\delta/5)} G(\epsilon(\hat{t})) \geq G(\epsilon(\hat{t}))/865.
\]

Combining this with Eq. (10) we get the statement of the theorem. \(\blacksquare \)

6. Bounding the Label Complexity of MARMANN

We are now almost ready to prove Theorem 4. Our last missing piece is quantifying the effect of side information on the generalization of sample compression schemes in Section 6.1. We then prove Theorem 4 in Section 6.2

6.1 Sample Compression with Side Information

It appears that compression-based generalization bounds were independently discovered by Littlestone and Warmuth (1986) and Devroye et al. (1996); some background is given in Floyd and Warmuth (1995). As noted in Section 4 our algorithm relies on a generalized sample compression scheme, which requires side information. This side information is used to represent the labels of the sample points in the compression set. A similar idea appears in Floyd and Warmuth (1995) for hypotheses with short description length. Here we provide a generalization that is useful for the analysis of MARMANN.

Let \(\Sigma \) be a finite alphabet, and define a mapping \(\text{Rec}_N : (\mathcal{X} \times \mathcal{Y})^N \times \Sigma^N \rightarrow \mathcal{Y}^\mathcal{X} \). This is a reconstruction function mapping a labeled sequence of size \(N \) with side information \(T \in \Sigma^N \) to a classifier. For \(I \subseteq [|S|] \), denote by \(S[I] \) the subsequence of \(S \) indexed by \(I \). For a labeled sample \(S \), define the set of possible hypotheses reconstructed from a compression of \(S \) of size \(N \) with side information in \(\Sigma \): \(\mathcal{H}_N(S) := \{ h : \mathcal{X} \rightarrow \mathcal{Y} \mid h = \text{Rec}_N(S[I], T) \}, I \in [m]^N, T \in \Sigma^N \} \). The following result closely follows the sample compression arguments in Graepel et al. (2005, Theorem 2), and Gottlieb et al. (2017, Theorem 6), but incorporates side information.

Theorem 16 Let \(m \) be an integer and \(\delta \in (0, 1) \). Let \(S \sim \mathcal{D}^m \). With probability at least \(1 - \delta \), if there exist \(N < m \) and \(h \in \mathcal{H}_N(S) \) with \(\epsilon := \text{err}(h, S) \leq \frac{1}{2} \), then \(\text{err}(h, \mathcal{D}) \leq \text{GB}(\epsilon, N, \delta, m, |\Sigma|) \).

Proof We recall a result of Dasgupta and Hsu (2008, Lemma 1): if \(\hat{p} \sim \text{Bin}(n, p) / n \) and \(\delta > 0 \), then the following holds with probability at least \(1 - \delta \):

\[
p \leq \hat{p} + \frac{2}{3n} \log \frac{1}{\delta} + \sqrt{\frac{9\hat{p}(1 - \hat{p})}{2n} \log \frac{1}{\delta}}. \tag{13}
\]

5. If \(\mathcal{X} \) is infinite, replace \(\mathcal{Y}^{\mathcal{X}} \) with the set of measurable functions from \(\mathcal{X} \) to \(\mathcal{Y} \).
Now fix $N < m$, and suppose that $h \in \mathcal{H}_N(S)$ has $\hat{\epsilon} \leq \frac{1}{2}$. Let $I \in [m]^N$, $T \in \Sigma^N$ such that $h = \text{Rec}_N(S[I], T)$. We have $\text{err}(h, S[[m] \setminus I]) \leq \frac{\epsilon m}{m-N} = \theta \epsilon$. Substituting into (13) $p := \text{err}(h, D)$, $n := m - N$ and $p := \text{err}(h, S[[m] \setminus I]) \leq \theta \epsilon$, yields that for a fixed $S[I]$ and a random $S[[m] \setminus I] \sim D^{m-N}$, with probability at least $1-\delta$,

$$\text{err}(h, D) \leq \theta \epsilon + \frac{2}{3(m-N)} \log \frac{1}{\delta} + \sqrt{\frac{9\theta \epsilon}{2(m-N)} \log \frac{1}{\delta}}. \quad (14)$$

To make (14) hold simultaneously for all $(I, T) \in [m]^N \times \Sigma^N$, divide δ by $(m|\Sigma)|^N$. To make the claim hold for all $N \in [m]$, stratify (as in Graepel et al. (2005, Lemma 1)) over the (fewer than) m possible choices of N, which amounts to dividing δ by an additional factor of m. \hfill \blacksquare

For MARMANN, we use the following sample compression scheme with $\Sigma = \mathcal{Y}$. Given a subsequence $S' := S[I] := (x'_1, \ldots, x'_N)$ and $T = (t_1, \ldots, t_N) \in \mathcal{Y}^N$, the reconstruction function $\text{Rec}_N(S[I], T)$ generates the nearest-neighbor rule induced by the labeled sample $\psi(S', T) := ((x'_i, t_i))_{i \in [N]}$. Formally, $\text{Rec}_N(S', T) = h_{\text{nn}}^{\psi(S', T)}$. Note the slight abuse of notation: formally, the y_i in $S_a(t)$ should be encoded as side information T, but for clarity, we have opted to “relabel” the examples $\{x_1, \ldots, x_N\}$ as dictated by the majority in each region. The following corollary is immediate from Theorem 16 and the construction above.

Theorem 17 Let $m \geq |\mathcal{Y}|$ be an integer, $\delta \in (0, \frac{1}{2})$. Let $S_{\text{in}} \sim D^m$. With probability at least $1-\delta$, if there exist $N < m$ and $S \subseteq (\mathcal{X} \times \mathcal{Y})^N$ such that $\bigcup(S) \subseteq U_{\text{in}}$ and $\epsilon := \text{err}(h_{\text{nn}}^{S'}, S_{\text{in}}) \leq \frac{1}{2}$, then $\text{err}(h_{S'}^{\psi(S', T)}, D) \leq \text{GB}(\epsilon, N, \delta, m, |\mathcal{Y}|) \leq 2\text{GB}(\epsilon, N, 2\delta, m, 1)$.

If the compression set includes only the original labels, the compression analysis of Gottlieb et al. (2017) gives the bound $\text{GB}(\epsilon, N, \delta, m, 1)$. Thus the effect of allowing the labels to change is only logarithmic in $|\mathcal{Y}|$, and does not appreciably degrade the prediction error.

6.2 Proof of Theorem 4

The proof of the main theorem, Theorem 4, which gives the guarantee for MARMANN, is almost immediate from Theorem 17. Theorem 9, Theorem 15 and Theorem 14.

Proof of Theorem 4 We have $|\text{Dist}_{\text{mon}}| \leq \binom{m}{2}$. By a union bound, the events $E(t)$ and $V(t)$ of Theorem 9 and Cor. 11 hold for all $t \in \mathcal{T}_{\text{test}} \subseteq \text{Dist}_{\text{mon}}$ with a probability of at least $1-\delta/2$. Under these events, we have by Theorem 15 that if $G_{\min}(m, \delta) \leq 1/3$,

$$\text{GB}(\epsilon(\hat{t}), N(\hat{t}), \delta, m, 1) \leq O\left(\min_{t} \text{GB}(\nu(t), N(t), \delta, m, 1)\right).$$

By Theorem 17, with a probability at least $1-\delta/2$, if $\epsilon(\hat{t}) \leq \frac{1}{2}$ then

$$\text{err}(\hat{h}, D) \leq 2\text{GB}(\epsilon(\hat{t}), N(\hat{t}), \delta, m, 1).$$

The statement of the theorem follows. Note that the statement trivially holds for $G_{\min}(m, \delta) \geq 1/3$ and for $\epsilon(\hat{t}) \geq \frac{1}{2}$, thus these conditions can be removed. To bound the label complexity, note that the total number of labels used by MARMANN is at most the number of labels used by SelectScale plus the number of labels used by GenerateNNSet when the final compression set is generated.

24
By Theorem 14, since \(Q(m) = O(\log(m/\delta)) \), the number of labels used by SelectScale is at most

\[
O\left(|T_{\text{test}}| \frac{\log^2(m/\delta)}{G(\epsilon(\hat{t}))} \log\left(\frac{1}{G(\epsilon(\hat{t}))} \right) \right).
\]

In addition,

\[
G(\epsilon(\hat{t})) \geq GB(\epsilon(\hat{t}), N(\hat{t}), \delta, m, 1) = \hat{G}.
\]

The number of tested scales in SelectScale is bounded by

\[
|T_{\text{test}}| \leq \left\lfloor \log_2(|\text{Dist}_{\text{mon}}|) + 1 \right\rfloor \leq 2 \log_2(m)
\]

Therefore the number of labels used by SelectScale is

\[
O\left(\frac{\log^3(m/\delta)}{\hat{G}} \log\left(\frac{1}{\hat{G}} \right) \right).
\]

The number of labels used by GenerateNNSet is at most \(Q(m)N(\hat{t}) \), where \(Q(m) \leq O(\log(m/\delta)) \), and from the definition of \(\hat{G}, N(\hat{t}) \leq O(m\hat{G}/\log(m)) \). Summing up the number of labels used by SelectScale and the number used by GenerateNNSet, this gives the bound in the statement of the theorem.

7. Passive Learning Lower Bounds

Theorem 5 lower bounds the performance of a passive learner who observes a limited number \(\ell \) of random labels from \(S_{\text{in}} \). The number \(\ell \) is chosen so that it is of the same order as the number of labels MARMANN observes for the case analyzed in Section 3. We deduce Theorem 5 from a more general result pertaining to the sample complexity of passive learning. The general result is given as Theorem 18 in Section 7.1. The proof of Theorem 5 is provided in Section 7.2.

We note that while the lower bounds below assume that the passive learner observes only the random labeled sample of size \(\ell \), in fact their proofs hold also if the algorithm has access to the full unlabeled sample of size \(m \) of which \(S_{\ell} \) is sampled. This is because the lower bound is based on requiring the learner to distinguish between distributions that all have the same marginal. Under this scenario, access to unlabeled examples does not provide any additional information to the learner.

7.1 A General Lower Bound

In this section we show a general sample complexity lower bound for passive learning, which may be of independent interest. We are aware of two existing lower bounds for agnostic PAC with bounded Bayes error: Devroye et al. (1996, Theorem 14.5) and Audibert (2009, Theorem 8.8). Both place restrictions on the relationship between the sample size, VC-dimension, and Bayes error level, which render them inapplicable as stated to some parameter regimes, including the one needed for proving Theorem 5.

Let \(\mathcal{H} \) be a hypothesis class with VC-dimension \(d \) and suppose that \(\mathcal{L} \) is a passive learner mapping labeled samples \(S_{\ell} = (X_i, Y_i)_{i\in[\ell]} \) to hypotheses \(\hat{h}_{\ell} \in \mathcal{H} \). For any distribution \(D \) over

\[6\] We allow \(\mathcal{L} \) access to an independent internal source of randomness.
Define $\mathcal{X} \times \{-1, 1\}$, the excess risk of \hat{h}_η by

$$\Delta(\hat{h}_\eta, \mathcal{D}) := \text{err}(\hat{h}_\eta, \mathcal{D}) - \inf_{h \in \mathcal{H}} \text{err}(h, \mathcal{D}).$$

Let $\mathcal{D}(\eta)$ be the collection of all η-bounded agnostic error distributions \mathcal{D} over $\mathcal{X} \times \{-1, 1\}$ that satisfy $\inf_{h \in \mathcal{H}} \text{err}(h, \mathcal{D}) \leq \eta$. We say that $Z \in \{-1, 1\}$ has Rademacher distribution with parameter $b \in [-1, 1]$, denoted $Z \sim R_b$, if

$$\Pr[Z = 1] = 1 - \Pr[Z = -1] = \frac{1}{2} + \frac{b}{2}.$$

All distributions on $\{-1, 1\}$ are of this form. For $k \in \mathbb{N}$ and $b \in [0, 1]$, define the function

$$\text{bayes}(k, b) = \frac{1}{2} \left(1 - \frac{1}{2} \|R^k_b - R^k_{-b}\|_1\right),$$

where $R^k_{\pm b}$ is the corresponding product distribution on $\{-1, 1\}^k$ and $\frac{1}{2} \|\cdot\|_1$ is the total variation norm. This expression previously appeared in Berend and Kontorovich (2015 Equation (25)) in the context of information-theoretic lower bounds; the current terminology was motivated in Kontorovich and Pinelis (2016), where various precise estimates on $\text{bayes}()$ were provided. In particular, the function $\text{bayes}(k, b)$ was defined as follows: for each fixed $b \in [0, 1]$, $\text{bayes}(-, b)$ is the largest convex minorant on $[0, \infty)$ of the function $\text{bayes}(-, b)$ on $\{0, 1, \ldots \}$. It was shown in Kontorovich and Pinelis (2016 Proposition 2.8) that $\text{bayes}(-, b)$ is the linear interpolation of $\text{bayes}(-, b)$ at the points $0, 1, 3, 5, \ldots$.

Theorem 18 Let $0 < \eta < \frac{1}{2}$, $\ell \geq 1$, and \mathcal{H} be a hypothesis class with VC-dimension $d > 1$. Then, for all $0 < b, p < 1$ satisfying

$$p \left(\frac{1}{2} - \frac{b}{2}\right) \leq \eta,$$

we have

$$\inf_{h \in \mathcal{H}} \sup_{\mathcal{D} \in \mathcal{D}(\eta)} \mathbb{E}\left[\Delta(\hat{h}_\eta, \mathcal{D})\right] \geq bp \text{bayes}(\ell p/(d - 1), b).$$

Furthermore, for $0 \leq u < 1$,

$$\inf_{h \in \mathcal{H}} \sup_{\mathcal{D} \in \mathcal{D}(\eta)} \Pr\left[\Delta(\hat{h}_\eta, \mathcal{D}_{\sigma,b,p}) > bpu\right] > \text{bayes}(\ell p/(d - 1), b) - u.$$

Proof This proof uses ideas from Devroye et al. (1996, Theorem 14.5), Anthony and Bartlett (1999, Theorem 5.2) and Kontorovich and Pinelis (2016, Theorem 2.2).

We will construct adversarial distributions supported on a shattered subset of size d, and hence there is no loss of generality in taking $\mathcal{X} = [d]$ and $\mathcal{H} = \{-1, 1\}^{\mathcal{X}}$. A random distribution $\mathcal{D}_{\sigma,b,p}$ over $\mathcal{X} \times \{-1, 1\}$, parametrized by a random $\sigma \sim \text{Unif}\{-1, 1\}^{d-1}$ and scalars $b, p \in (0, 1)$ to be specified later, is defined as follows. The point $x = d \in \mathcal{X}$ gets a marginal weight of $1 - p$ where p is a parameter to be set; the remaining $d - 1$ points each get a marginal weight of $p/(d - 1)$:

$$\Pr_{X \sim \mathcal{D}_{\sigma,b,p}}[X = d] = 1 - p, \quad \Pr_{X \sim \mathcal{D}_{\sigma,b,p}}[X < d] = \frac{p}{d - 1}.$$
The distribution of Y conditional on X is given by $P_{(X,Y) \sim D_{\sigma,b,p}}[Y = 1 \mid X = d] = 1$ and
\[
P_{(X,Y) \sim D_{\sigma,b,p}}[Y = \pm 1 \mid X = j < d] = \frac{1}{2} \pm \frac{b\sigma j}{2}.
\] (19)

Suppose that $(X_i, Y_i)_{i \in \mathcal{I}}$ is a sample drawn from $D_{\sigma,b,p}^\ell$. The assumption that $D_{\sigma,b,p} \in \mathcal{D}(\eta)$ implies that b and p must satisfy the constraint (15).

A standard argument (e.g., Anthony and Bartlett (1999) p. 63 display (5.5)) shows that, for any hypothesis \hat{h}_ℓ,
\[
\Delta(\hat{h}_\ell, D_{\sigma,b,p}) = \text{err}(\hat{h}_\ell, D_{\sigma,b,p}) - \inf_{h \in \mathcal{H}} \text{err}(h, D_{\sigma,b,p})
\]
\[
= \text{err}(\hat{h}_\ell, D_{\sigma,b,p}) - \inf_{h \in \mathcal{H}} \text{err}(h, D_{\sigma,b,p})
\]
\[
= \mathbb{P}_{X \sim D_{\sigma,b,p}}[X = d, \hat{h}_\ell(X) \neq 1] + \mathbb{P}_{X \sim D_{\sigma,b,p}}[X < d, \hat{h}_\ell(X) \neq \sigma(X)]
\]
\[
\geq b \mathbb{P}_{X \sim D_{\sigma,b,p}}[X < d, \hat{h}_\ell(X) \neq \sigma(X)]
\]
\[
= bp \mathbb{P}_{X \sim D_{\sigma,b,p}}[\hat{h}_\ell(X) \neq \sigma(X) \mid X < d].
\] (20)

It follows from Kontorovich and Pinelis (2016 Theorems 2.1, 2.5) that
\[
\mathbb{E}_{X \sim D_{\sigma,b,p}} \mathbb{P}_{\sigma} [\hat{h}_\ell(X) \neq \sigma(X) \mid X < d] \geq \mathbb{E}_{N \sim \text{Bin}(\ell, p/(d-1))} \text{bayes}(N/b)
\]
\[
\geq \mathbb{E}_{N \sim \text{Bin}(\ell, p/(d-1))} \text{bayes}(N/b)
\]
\[
\geq \text{bayes}(\mathbb{E}[N], b) = \text{bayes}(\ell p/(d-1), b),
\] (21)

where the second inequality holds because bayes is, by definition, a convex minorant of bayes, and the third follows from Jensen’s inequality. Combined with (20), this proves (16).

To show (17), define the random variable
\[
Z = Z(\sigma, \mathcal{L}) = \mathbb{P}_{X \sim D_{\sigma,b,p}}[\hat{h}_\ell(X) \neq \sigma(X) \mid X < d].
\]

Since $Z \in [0, 1]$, Markov’s inequality implies
\[
\mathbb{P}[Z > u] \geq \frac{\mathbb{E}[Z] - u}{1 - u} > \mathbb{E}[Z] - u, \quad 0 \leq u < 1.
\]

Now (20) implies that $\Delta(\hat{h}_\ell, D_{\sigma,b,p}) \geq bpZ$ and hence, for $0 \leq u < 1$,
\[
\inf_{\hat{h}_\ell} \sup_{D \in \mathcal{D}(\eta)} \mathbb{P}[\Delta(\hat{h}_\ell, D_{\sigma,b,p}) > bpZ] = \inf_{\hat{h}_\ell} \sup_{D \in \mathcal{D}(\eta)} \mathbb{P}[Z > u]
\]
\[
\geq \inf_{\hat{h}_\ell} \sup_{D \in \mathcal{D}(\eta)} \mathbb{E}[Z] - u
\]
\[
\geq \frac{1}{bp} \inf_{\hat{h}_\ell} \sup_{D \in \mathcal{D}(\eta)} \mathbb{E}[\Delta(\hat{h}_\ell, D_{\sigma,b,p})] - u
\]
\[
\geq \text{bayes}(\ell p/(d-1), b) - u.
\]
7.2 Proof of Theorem 5

We break down the proof into several steps. For now, we assume that the labeled examples are sampled i.i.d. as per the classic PAC setup. At the end, we show how to extend the proof to the semi-supervised setting.

(i) Defining a family of adversarial distributions. Let T be a ℓ-net of X of size $\Theta(\sqrt{m})$ and $\eta = \Theta(1/\sqrt{m})$. For any passive learning algorithm mapping i.i.d. samples of size $\ell = \Theta(\sqrt{m})$ to hypotheses $\hat{h}_\ell : X \rightarrow \{-1, 1\}$, we construct a random adversarial distribution $\mathcal{D}_{\sigma, b, p}$ with agnostic error η. We accomplish this via the construction described in the proof of Theorem 18, with $|T| = d = \Theta(\sqrt{m})$. The marginal distribution over $T = \{x_1, \ldots, x_d\}$ puts a mass of $1 - p$ on $x_d \in T$ and spreads the remaining mass uniformly over the other points, as in (18). The “heavy” point has a deterministic label and the remaining “light” points have noisy labels drawn from a random distribution with symmetric noise level b, as in (19). We proceed to choose b and p; namely,

$$p = \frac{d - 1}{2\ell} - \sqrt{\eta} = \tilde{\Theta}(m^{-1/4}), \quad b = 1 - \frac{2\eta}{p} = 1 - \tilde{\Theta}(m^{-1/4}),$$

which makes the constraint in (15) hold with equality; this means that the agnostic error is exactly η and in particular, establishes (i).

(ii.a) Lower-bounding the passive learner’s error. Our choice of p implies that $\ell p/(d - 1) = \sqrt{\eta}/2 =: \kappa < 1$. For this range of κ, Kontorovich and Pinelis (2016, Proposition 2.8) implies that $\text{bayes}(\kappa, b) = \frac{1}{2}(1 - \kappa b) = \Theta(1)$. Choosing $u = \frac{1}{4}(1 - \kappa b) = \Theta(1)$ in (17), Theorem 18 implies that

$$\inf_{h_\ell} \sup_{\mathcal{D} \in \mathcal{P}(\eta)} \mathbb{P}[\Delta(\hat{h}_\ell, \mathcal{D}) > \tilde{\Omega}(m^{-1/4})] > \Omega(1).$$

In more formal terms, there exist constants $c_0, c_1 > 0$ such that

$$\inf_{h_\ell} \sup_{\mathcal{D} \in \mathcal{P}(\eta)} \mathbb{P}[\Delta(\hat{h}_\ell, \mathcal{D}) > c_0 \eta] > c_1. \quad (22)$$

(ii.b) Upper-bounding $\nu(\ell)$. To establish (ii.b), it suffices to show that for $(X_i, Y_i)_{i \in [\ell]} \sim \mathcal{D}_{\sigma, b, p}$ we will have $\nu(\ell) = O(m^{-1/2})$ with sufficiently high probability. Indeed, the latter condition implies the requisite upper bound on $\min_{\nu > 0, \mathcal{N}(\ell) < m} \mathbb{GB}(\nu(\ell), \mathcal{N}(\ell), \delta, m, 1)$, while (i) implies the lower bound, since the latter quantity cannot be asymptotically smaller than the Bayes error (which coincides with the agnostic error for $\mathcal{H} = \{-1, 1\}^X$).

Recall that the ℓ-net points $\{x_1, \ldots, x_{d-1}\}$ are the “light” ones (i.e., each has weight $p/(d - 1)$) and define the random sets $J_j \subset [\ell]$ by

$$J_j = \{i \in [\ell] : X_i = x_j\}, \quad j \in [d - 1].$$

In words, J_j consists of the indices i of the sample points for which X_i falls on the net point x_j. For $y \in \{-1, 1\}$, put $\tau_j^y = \sum_{i \in J_j} \mathbb{I}[Y_i = y]$ and define the minority count ξ_j at the net point x_j by

$$\xi_j = \min_{y \in \{-1, 1\}} \tau_j^y = \frac{1}{2}(|\tau_j^+ + \tau_j^-| - |\tau_j^+ - \tau_j^-|).$$

Observe that by virtue of being a ℓ-net, T is ℓ-separated and hence the only contribution to $\nu(\ell)$ is from the minority counts (to which the “heavy” point x_d does not contribute due to its deterministic
A CTIVE NEAREST-NEIGHBOR LEARNING IN METRIC SPACES

\[\nu(\bar{t}) = \frac{1}{\ell} \sum_{j=1}^{d-1} \xi_j. \]

Now

\[\mathbb{E} |\tau_j^+ + \tau_j^-| = \mathbb{E} |J_j| = \frac{\ell p}{d - 1} = \Theta(m^{-1/4}) \]

and

\[\mathbb{E} |\tau_j^+ - \tau_j^-| = \mathbb{E}_{\sigma_j} \mathbb{E}[|\tau_j^+ - \tau_j^-||\sigma_j] \geq \mathbb{E}_{\sigma_j} \mathbb{E}[|\tau_j^+ - \tau_j^-||\sigma_j]]. \]

Computing

\[\mathbb{E}[\tau_j^+|\sigma_j = +1] = \left(\frac{1}{2} + \frac{b}{2} \right) \frac{\ell p}{d - 1}, \quad \mathbb{E}[\tau_j^-|\sigma_j = +1] = \left(\frac{1}{2} - \frac{b}{2} \right) \frac{\ell p}{d - 1}, \]

with an analogous calculation when conditioning on \(\sigma_j = -1 \), we get

\[\mathbb{E} |\tau_j^+ - \tau_j^-| \geq \frac{b \ell p}{d - 1}. \]

and hence

\[\mathbb{E}[\xi_j] \leq \frac{1}{2} \left(\frac{\ell p}{d - 1} - b \frac{\ell p}{d - 1} \right) = (1 - b) \frac{\ell p}{2(d - 1)} = \frac{2\eta}{p} \frac{\ell p}{2(d - 1)} = \frac{\eta \ell}{d - 1}. \]

It follows that

\[\mathbb{E}[\nu(\bar{t})] = \frac{1}{\ell} \sum_{j=1}^{d-1} \mathbb{E}[\xi_j] \leq \frac{d - 1}{\ell} \cdot \frac{\eta \ell}{d - 1} = \eta = \Theta(m^{-1/2}). \]

To give tail bounds on \(\nu(\bar{t}) \), we use Markov’s inequality: for all \(c_2 > 0 \),

\[\mathbb{P}[\nu(\bar{t}) > c_2 \mathbb{E}[\nu(\bar{t})]] \leq \frac{1}{c_2}. \]

Choosing \(c_2 \) sufficiently large that \(1 - 1/c_2 > c_1 \) (the latter from (22)) implies the existence of constants \(c_0, c_2, c_3 > 0 \) such that

\[\inf_{\hat{h}_\ell} \sup_{D \in \mathcal{D}(\eta)} \mathbb{P} \left[\left(\Delta(\hat{h}_\ell, D) > c_0 p \right) \land (\nu(\bar{t}) \leq c_2 \eta) \right] > c_3. \]
Since $p = \tilde{\Theta}(m^{-1/4})$ and $\eta = \Theta(m^{-1/2})$, this establishes (ii) and concludes the proof of Theorem 5.

(iii) **Extending to the semi-supervised setting.** Providing the learner with the exact weights of $\mathcal{X} = [d]$ under our adversarial distribution does not give it any additional power. Indeed, the information-theoretic excess risk lower bound in Eq. (21) hinges on the fact that to estimate $\sigma(x)$ with some desired certainty, the point x must be sampled some minimal number of times. The marginal probability of x does not enter that calculation, and hence knowing its value does not afford the learner an improved performance.

8. Active Learning Lower Bound

We now prove the active learning lower bound stated in Theorem 6. To prove the theorem, we first prove a result which is similar to the classical No-Free-Lunch theorem, except it holds for active learning algorithms. The proof follows closely the proof of the classical No-Free-Lunch theorem given in Shalev-Shwartz and Ben-David (2014, Theorem 5.1), with suitable modifications.

Theorem 19 Let $\beta \in [0, \frac{1}{2})$, and m be an integer. Let A any active learning algorithm over a finite domain \mathcal{X} which gets as input a random labeled sample $S \sim D^m$ (with hidden labels) and outputs \hat{h}. If A queries fewer than $\mathcal{X}/2$ labels from S, then there exists a distribution D over $\mathcal{X} \times \{0, 1\}$ such that

- Its marginal on \mathcal{X} is uniform, and for each $x \in \mathcal{X}$, $\mathbb{P}[Y = 1 \mid X = x] \in \{\beta, 1 - \beta\}$.
- $\mathbb{E}[\text{err}(\hat{h}, D)] \geq \frac{1}{4}$.

Proof Let $\mathcal{F} = \{f_1, \ldots, f_T\}$ be the set of possible functions $f_i : \mathcal{X} \to \{0, 1\}$. Let D_i to be a distribution with a uniform marginal over \mathcal{X}, and $\mathbb{P}_{(X,Y) \sim D_i}[Y = 1 \mid X = x] = f_i(x)(1 - \beta) + (1 - f_i(x))\beta$. Consider the following random process: First, draw an unlabeled sample $X = (x_1, \ldots, x_m)$ i.i.d. from D_X^m. Then, draw $B = (b_1, \ldots, b_m)$ independently from a Bernoulli distribution with $\mathbb{P}[b_i = 1] = \beta$. For $i \in [T]$, let $S^i(X, B) = ((x_1, y_1), \ldots, (x_m, y_m))$ such that x_i are set by X, and $y_i = f_i(x)$ if $b_i = 0$ and $1 - f_i(x)$ otherwise. Clearly, $S^i(X, B)$ is distributed according to D_X^m. Let $h_i(S)$ be the output of A when the labeled sample is S. Denote by \hat{h}_i the (random) output of A when the sample is drawn from D_i. Clearly

$$\mathbb{E}[\text{err}(\hat{h}_i, D_i)] = \mathbb{E}_{X,B}[\text{err}(h_i(S(X, B)), D_i)].$$

Therefore (as in (5.4) in Shalev-Shwartz and Ben-David (2014)), for some j, X, B it holds that

$$\mathbb{E}[\text{err}(\hat{h}_j, D_j)] \geq \frac{1}{T} \sum_{i=1}^{T} \mathbb{E}[\text{err}(\hat{h}_i, D_i)] \geq \frac{1}{T} \sum_{i=1}^{T} \text{err}(h_i(S(X, B)), D_i). \tag{23}$$

Fix X, B, j as above, and denote for brevity $h_i := h_i(S(X, B))$. Let V_i be the set of examples $x \in \mathcal{X}$ for which that A does not observe their label if the labeled sample is $S^i(X, B)$ (this includes both examples that are not in the sample at all as well as examples that are in the sample but their label is not requested by A). We have $|V_i| > |\mathcal{X}|/2$ by assumption. Then (as in Eq. (5.6) therein)

$$\frac{1}{T} \sum_{i=1}^{T} \text{err}(h_i, D_i) \geq \frac{1}{T} \sum_{i=1}^{T} \frac{1}{2|V_i|} \sum_{x \in V_i} \mathbb{I}[h_i(x) \neq f_i(x)]. \tag{24}$$
Since \mathcal{A} is active, it selects which examples to request, which can depend on the labels observed by \mathcal{A} so far. Therefore, V_i can be different for different i. However, an argument similar to that of the No-Free-Lunch theorem for the passive case still goes through, as follows.

Let i, i' such that $f_i(x) = f_{i'}(x)$ for all $x \notin V_i$, and $f_i(x) = 1 - f_{i'}(x)$ for all $x \in V_i$. Since X, B are fixed, \mathcal{A} observes the same labels for all $x \notin V_i$ for both $S'\left(X, B\right)$ and $S'\left(X, B\right)$, thus all its decisions and requests are identical for both samples, and so $V_i = V_{i'}$, and $h_i = h_{i'}$. Therefore, it is possible to partition T into $T/2$ pairs of indices i, i' such that for each such pair,

$$
\frac{1}{2|V_i|} \sum_{x \in V_i} \mathbb{I}[h_i(x) \neq f_i(x)] + \frac{1}{2|V_{i'}|} \sum_{x \in V_{i'}} \mathbb{I}[h_{i'}(x) \neq f_{i'}(x)]
$$

$$
= \frac{1}{2|V_i|} \sum_{x \in V_i} \mathbb{I}[h_i(x) \neq f_i(x)] + \mathbb{I}[h_i(x) \neq 1 - f_i(x)]
$$

$$
= \frac{1}{2}.
$$

Therefore, $\frac{1}{T} \sum_{i=1}^{T} \mathbb{I}(h_i, D_i) \geq \frac{1}{4}$. Therefore, from Eq. (24), $\frac{1}{T} \sum_{i=1}^{T} \mathbb{I}(h_i, D_i) \geq \frac{1}{4}$. Combining this with Eq. (23), it follows that $\mathbb{E}[\mathbb{I}(h_j, D_j)] \geq \frac{1}{4}$.

We will also make use of the following simple lemma.

Lemma 20 Let $\beta \in [0, 1]$. Let D be a distribution over $\mathcal{X} \times \{0, 1\}$ such that for $(X, Y) \sim D$, for any x in the support of D, $\mathbb{P}[Y = 1 \mid X = x] \in \{\beta, 1 - \beta\}$. Let N be the size of the support of D. Let $S \sim D^n$. Denote by n_x the number of sample pairs (x', y') in S where $x' = x$, and let n_x^+ be the number of sample pairs (x', y') where $x' = x$ and $y' = 1$. Let $\hat{p}_x = n_x^+ / n_x$ (or zero if $n_x = 0$). Then

$$
2\beta(1 - \beta)(m - N) \leq \sum_{x \in \mathcal{X}} \mathbb{E}[2n_x \hat{p}_x(1 - \hat{p}_x)] \leq 2\beta(1 - \beta)m.
$$

Proof We have

$$
\mathbb{E}[2n_x \hat{p}_x(1 - \hat{p}_x)] = \sum_{i=1}^{\infty} \mathbb{P}[n_x = i] \cdot i \cdot \mathbb{E}[2\hat{p}_x(1 - \hat{p}_x) \mid n_x = i].
$$

Note that $\mathbb{E}[2\hat{p}_x(1 - \hat{p}_x) \mid n_x = 1] = 0$. For $i > 1$, let y_1, \ldots, y_i be the labels of the examples that are equal to x in S, then

$$
\sum_{j,k \in [i]} \mathbb{I}[y_k \neq y_j] = 2n_x^+(i - n_x^+) + i^2 \cdot 2\hat{p}_x(1 - \hat{p}_x).
$$

Therefore, letting $(X_1, Y_1), (X_2, Y_2) \sim D^2$,

$$
\mathbb{E}_{S \sim D^m} \left[2\hat{p}_x(1 - \hat{p}_x) \mid n_x = i\right] = \frac{1}{i^2} \mathbb{E}_{S \sim D^m} \left[\sum_{j,k \in [n_x]} \mathbb{I}[y_k \neq y_j] \mid n_x = i\right]
$$

$$
= \frac{i^2 - i}{i^2} \mathbb{P}[Y_1 \neq Y_2 \mid X_1 = X_2 = x]
$$

$$
= 2(1 - \frac{1}{i})\beta(1 - \beta),
$$

\[31\]
Thus

\[
\mathbb{E}[2n_x \hat{p}_x^+(1 - \hat{p}_x^+)] = 2\beta(1 - \beta) \sum_{i=2}^{\infty} (i-1) \mathbb{P}[n_x = i] \\
= 2\beta(1 - \beta)(\mathbb{E}[n_x] + \mathbb{P}[n_x = 0] - 1).
\]

To complete the proof, sum over all \(x\) in the support of \(\mathcal{D}\), and note that \(\sum_x \mathbb{E}[n_x] = m\), and \(\sum_x (\mathbb{P}[n_x = 0] - 1) \in [-N, 0]\).

We now prove our lower bound, stated in Theorem 6, on the number of queries required by any active learning with competitive guarantees similar to ours.

Proof [of Theorem 6] Let \(N = \left\lfloor \frac{m\alpha - \log(m)}{\log(m)} \right\rfloor \). Let \(\beta = 8\alpha \leq \frac{1}{2}\). Consider a marginal distribution \(\mathcal{D}_X\) over \(\mathcal{X}\) which is uniform over \(N\) points \(1, \ldots, N \in \mathbb{R}\). Consider the following family of distributions: \(\mathcal{D}\) such that its marginal over \(\mathcal{X}\) is \(\mathcal{D}_X\), and for each \(x \in \mathcal{X}\), \(\mathbb{P}[Y = 1 \mid X = x] \in \{\beta, 1 - \beta\}\). Thus the Bayes optimal error for each of these distributions is \(\beta\).

Let \(S \sim \mathcal{D}^m\). If one example in \(S\) is changed, \(\nu(\frac{1}{2})\) changes by at most \(1/m\). Hence, by McDiarmid’s inequality (McDiarmid, 1989), with probability at least \(1 - \frac{1}{28}, |\nu(\frac{1}{2}) - \mathbb{E}[\nu(\frac{1}{2})]| \leq \sqrt{\frac{\log(28)}{2m}}\). Denote the event that this holds \(E_M\). Since \(\beta = 8\alpha \geq \frac{\log(m) + \log(28)}{\sqrt{2m}}\), it follows that under \(E_M\),

\[
|\nu(1/2) - \mathbb{E}[\nu(1/2)]| \leq \beta/8. \quad (25)
\]

We now bound \(\mathbb{E}[\nu(\frac{1}{2})]\). Using the notation \(\hat{p}_x^+, n_x, n_x^+\) as in Lemma 20, we have

\[
\nu(1/2) = \frac{1}{m} \sum_{x \in \mathcal{X}} \min(n_x^+, n_x - n_x^+) = \frac{1}{m} \sum_{x \in \mathcal{X}} n_x \min(p_x^+, 1 - p_x^+).
\]

Also, for all \(p \in [0, 1], \min(p, 1-p) \leq 2p(1-p) \leq 2 \min(p, 1-p)\). Therefore

\[
\frac{1}{2m} \sum_{x \in \mathcal{X}} 2n_x p_x^+(1 - p_x^+) \leq \nu(1/2) \leq \frac{1}{2m} \sum_{x \in \mathcal{X}} 2n_x p_x^+(1 - p_x^+).
\]

By Lemma 20, it follows that

\[
\frac{m - N}{m} \beta(1 - \beta) \leq \mathbb{E}[\nu(1/2)] \leq 2\beta(1 - \beta).
\]

Since \(N \leq m/2\) and \(\beta \in [0, \frac{1}{2}], \mathbb{E}[\nu(\frac{1}{2})] \in (\beta/4, 2\beta)\). Combining this with Eq. (25), we get that under \(E_M, \alpha = \beta/8 \leq \nu(\frac{1}{2}) \leq \frac{17}{8}\beta = 17\alpha\).

Now, we bound \(G_{\min}\) from above and below assuming \(E_M\) holds. Denote

\[
G(t) := GB(\nu(t), \mathcal{N}(t), \delta, m, 1).
\]

To establish a lower bound on \(G_{\min}(m, \delta)\), note that \(G_{\min}(m, \delta) = \min_{t > 0} G(t) \geq \min_{t > 0} \nu(t)\).

For \(t \in (0, \frac{1}{2})\), \(\nu(t) = \nu(\frac{1}{2})\) (since the distances between any two distinct points in \(S\) is at least 1). In addition, since \(\nu\) is monotonically increasing, we have \(\nu(t) \geq \nu(\frac{1}{2})\) for \(t \geq \frac{1}{2}\). Hence \(\min_{t > 0} \nu(t) \geq \nu(\frac{1}{2}) \geq \beta/8 = \alpha\).
To show an upper bound on $G_{\min}(m, \delta)$, we upper bound $G(\frac{1}{2})$. Note that $N(\frac{1}{2}) \leq N$. Recall the definition of $\phi(t)$ in Eq. (6). We have

$$\phi(\frac{1}{2}) = \frac{(N + 1) \log(m) + \log(\frac{1}{2})}{m} \leq \alpha.$$

Then, since $\nu(\frac{1}{2}) \leq 17\alpha$,

$$G(1/2) \leq \frac{m}{m - N} (\nu(\frac{1}{2}) + \frac{2}{3} \alpha + \frac{3}{\sqrt{2}} \sqrt{\nu(\frac{1}{2}) \alpha}) \leq 30\alpha.$$

In the last inequality we used the fact that $\frac{m}{m - N} \leq 10/9$. So if E_M holds, $G_{\min}(m, \delta) \leq G(\frac{1}{2}) \leq 30\alpha$.

From the assumption on A, with probability at least $1 - \delta$, we have $\text{err}(\hat{h}, D) \leq CG_{\min}(m, \delta) \leq 30C\alpha \leq 1/8$ (since $\alpha \leq \frac{1}{2C\alpha}$. Let $E_L(D)$ denote the event that A queries fewer than $N/2$ labels, where the probability is over the randomness of S and A. Let h' be the output of an algorithm that behaves like A in cases where $E_L(D)$ holds, and queries at most $N/2$ otherwise. By Theorem 19, there exists some D in the family of distributions such that $\mathbb{E}[\text{err}(h', D)] \geq \frac{1}{4}$. By Markov’s inequality, $\mathbb{P}[\text{err}(h', D) \geq \frac{1}{8}] \geq 1/7$. Also, $\mathbb{P}[h' = \hat{h}] \geq \mathbb{P}[E_L(D)]$. Therefore

$$\mathbb{P}[\text{err}(\hat{h}, D) \geq 1/8] \geq \mathbb{P}[\text{err}(h', D) \geq 1/8] + \mathbb{P}[E_L(D)] - 1 = \mathbb{P}[E_L(D)] - 6/7.$$

Therefore $\mathbb{P}[E_L(D)] - 6/7 \leq \mathbb{P}[\text{err}(\hat{h}, D) \geq \frac{1}{8}] \leq \delta$. Since by assumption $\delta \leq 1/14$, it follows that $\mathbb{P}[E_L(D)] \leq 6/7 + \delta \leq 13/14$. It follows that with a probability of at least $1/14$, the negation of $E_L(D)$ holds. Since also E_M holds with probability at least $1 - \frac{1}{2C\alpha}$, it follows that with a probability of at least $\frac{1}{2C\alpha}$, both E_M and the negation of $E_L(D)$ hold. Now, as shown above, E_M implies the bounds on $G_{\min}(m, \delta)$ (item 1 in the theorem statement). In addition, the negation of $E_L(D)$ implies that A queries at least $N/2 = \frac{1}{2} \left\lceil \frac{m - \log(\frac{1}{2} \alpha)}{\log(m)} \right\rceil$ labels (item 2 in the theorem statement). This completes the proof. ■

9. Discussion

We have presented an efficient fully empirical proximity-based non parametric active learner. Our approach provides competitive error guarantees for general distributions, in a general metric space, while keeping label complexity significantly lower than any passive learner with the same guarantees. MARMANN yields fully empirical error estimates, easily computable from finite samples. This is in contrast with classic techniques, that present bounds and rates that depend on unknown distribution-dependent quantities.

An interesting question is whether the guarantees can be related to the Bayes error of the distribution. Our error guarantees give a constant factor over the error guarantees of Gottlieb et al. (2017). A variant of this approach (Gottlieb et al., 2014a) was shown to be Bayes-consistent (Kontorovich and Weiss, 2015), and we conjecture that this holds also for the algorithm of Gottlieb et al. (2017). The passive component of our learning algorithm is indeed Bayes-consistent (Kontorovich et al., 2017). Since in our analysis MARMANN achieves a constant factor over the error of the passive
learner. Bayes-consistency of the active learner cannot be inferred from our present techniques; we leave this problem open for future research.

Another important issue is one of efficient implementation. We mentioned that the naive $O(m^2)$ runtime for constructing a t-net may be improved to $2^{O(\text{ddim}(X))}m \log(1/t)$, as shown in Krauthgamer and Lee (2004); Gottlieb et al. (2014b). The fast t-net construction was the algorithmic work-horse of Gottlieb et al. (2014a, b, 2017) and inspired the passive component of our learner. We note that implementing even this passive component efficiently is far from trivial; this formed the core of a Master’s thesis (Korsunsky, 2017). The remaining obstacle to making our algorithm fully practical is the magnitude of some of the constants. We believe these to be artifacts of the proof and intend to bring them down to manageable values in future work.

Acknowledgments

Acknowledgements Sivan Sabato was partially supported by the Israel Science Foundation (grant No. 555/15). Aryeh Kontorovich was partially supported by the Israel Science Foundation (grants No. 1141/12 and 755/15) and Yahoo Faculty and Paypal awards. We thank Lee-Ad Gottlieb and Dana Ron for the helpful discussions, and the referees for carefully reading the manuscript and their helpful suggestions.

References

