Abstract

Maximum mean discrepancy (MMD), also called energy distance or N-distance in statistics and Hilbert-Schmidt independence criterion (HSIC), specifically distance covariance in statistics, are among the most popular and successful approaches to quantify the difference and independence of random variables, respectively. Thanks to their kernel-based foundations, MMD and HSIC are applicable on a wide variety of domains. Despite their tremendous success, quite little is known about when HSIC characterizes independence and when MMD with tensor product kernel can discriminate probability distributions. In this paper, we answer these questions by studying various notions of characteristic property of the tensor product kernel.

Keywords: tensor product kernel, kernel mean embedding, characteristic kernel, I-characteristic kernel, universality, maximum mean discrepancy, Hilbert-Schmidt independence criterion

1. Introduction

Kernel methods (Schölkopf and Smola, 2002) are among the most flexible and influential tools in machine learning and statistics, with superior performance demonstrated in a large number of areas and applications. The key idea in these methods is to map the data samples into a possibly infinite-dimensional feature space—precisely, a reproducing kernel Hilbert space (RKHS; Aronszajn, 1950)—and apply linear methods in the feature space, without the explicit need to compute the map. A generalization of this idea to probability measures, i.e., mapping probability measures into an RKHS (Berlinet and Thomas-Agnan, 2004; Chapter 4; Smola et al., 2007) has found novel applications in nonparametric statistics and machine learning. Formally, given a probability measure \(\mathbb{P} \) defined on a measurable space \(\mathcal{X} \) and an RKHS \(\mathcal{H}_k \) with \(k : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} \) as the reproducing kernel (which is symmetric and positive definite), \(\mathbb{P} \) is embedded into \(\mathcal{H}_k \) as

\[
\mathbb{P} \mapsto \int_{\mathcal{X}} k(\cdot, x) \, d\mathbb{P}(x) =: \mu_k(\mathbb{P}),
\]
where $\mu_k(\mathbb{P})$ is called the *mean element* or *kernel mean embedding* of \mathbb{P}. The *mean embedding* of \mathbb{P} has lead to a new generation of solutions in two-sample testing (Baringhaus and Franz, 2004; Székely and Rizzo, 2004, 2005; Borgwardt et al., 2006; Harchaoui et al., 2007; Gretton et al., 2012), goodness-of-fit testing (Chwialkowski et al., 2016; Liu et al., 2016; Jetkrittum et al. 2017b; Balasubramanian et al., 2017), domain adaptation (Zhang et al., 2013) and generalization (Blanchard et al., 2017), kernel belief propagation (Song et al., 2011), kernel Bayes’ rule (Fukumizu et al., 2013), model criticism (Lloyd et al., 2014; Kim et al., 2016), approximate Bayesian computation (Park et al., 2016), probabilistic programming (Schölkopf et al., 2015), distribution classification (Muandet et al., 2011; Zaheer et al., 2017), distribution regression (Szabo et al., 2016; Law et al., 2018) and topological data analysis (Kusano et al., 2016). A recent survey on the topic is provided by Muandet et al. (2017).

Crucial to the success of the mean embedding based representation is whether it encodes all the information about the distribution, in other words whether the map in (1) is injective in which case the kernel is referred to as characteristic (Fukumizu et al., 2008; Sriperumbudur et al., 2010). Various characterizations for the characteristic property of k is known in the literature (Fukumizu et al., 2008, 2009; Sriperumbudur et al., 2010; Gretton et al., 2012) using which the popular kernels on \mathbb{R}^d such as Gaussian, Laplacian, B-spline, inverse multiquadrics, and the Matérn class are shown to be characteristic. The characteristic property is closely related to the notion of universality (Steinwart, 2001; Micchelli et al., 2006; Carmeli et al., 2010; Sriperumbudur et al., 2011)—k is said to be universal if the corresponding RKHS \mathcal{H}_k is dense in a certain target function class, for example, the class of continuous functions on compact domains—and the relation between these notions has recently been explored by Sriperumbudur et al. (2011); Simon-Gabriel and Schölkopf (2016).

Based on the mean embedding in (1), Smola et al. (2007) and Gretton et al. (2012) defined a semi-metric, called the maximum mean discrepancy (MMD) on the space of probability measures:

$$
\text{MMD}_k(\mathbb{P}, \mathbb{Q}) := \|\mu_k(\mathbb{P}) - \mu_k(\mathbb{Q})\|_{\mathcal{H}_k},
$$

which is a metric iff k is characteristic. A fundamental application of MMD is in non-parametric hypothesis testing that includes two-sample (Gretton et al., 2012) and independence tests (Gretton et al., 2008). Particularly in independence testing, as a measure of independence, MMD measures the distance between the joint distribution \mathbb{P}_{XY} and the product of marginals $\mathbb{P}_X \otimes \mathbb{P}_Y$ of two random variables X and Y which are respectively defined on measurable spaces \mathcal{X} and \mathcal{Y}, with the kernel k being defined on $\mathcal{X} \times \mathcal{Y}$. As aforementioned, if k is characteristic, then $\text{MMD}_k(\mathbb{P}_{XY}, \mathbb{P}_X \otimes \mathbb{P}_Y) = 0$ implies $\mathbb{P}_{XY} = \mathbb{P}_X \otimes \mathbb{P}_Y$, i.e., X and Y are independent. A simple way to define a kernel on $\mathcal{X} \times \mathcal{Y}$ is through the tensor product of kernels k_X and k_Y defined on \mathcal{X} and \mathcal{Y} respectively: $k = k_X \otimes k_Y$, i.e., $k((x,y),(x',y')) = k_X(x,x')k_Y(y,y')$, $x,x' \in \mathcal{X}$, $y,y' \in \mathcal{Y}$, with the corresponding RKHS $\mathcal{H}_k = \mathcal{H}_{k_X} \otimes \mathcal{H}_{k_Y}$ being the tensor product space generated by \mathcal{H}_{k_X} and \mathcal{H}_{k_Y}. This means, when $k = k_X \otimes k_Y$,

$$
\text{MMD}_k(\mathbb{P}_{XY}, \mathbb{P}_X \otimes \mathbb{P}_Y) = \|\mu_{k_X \otimes k_Y}(\mathbb{P}_{XY}) - \mu_{k_X \otimes k_Y}(\mathbb{P}_X \otimes \mathbb{P}_Y)\|_{\mathcal{H}_{k_X} \otimes \mathcal{H}_{k_Y}}. \tag{2}
$$

In addition to the simplicity of defining a joint kernel k on $\mathcal{X} \times \mathcal{Y}$, the tensor product kernel offers a principled way of combining inner products (k_X and k_Y) on domains that can
HSIC associated with \(k \) and (Sejdinovic et al., 2013b, Proposition 29): if \(k \) stronger version of this result can be obtained by combining (Lyons, 2013, Theorem 3.11) \(k \) \(k \) importance to understand the characteristic and (2) that

\[
\text{MMD}_k(\mathbb{P}_{XY}, \mathbb{P}_X \otimes \mathbb{P}_Y) = \| C_{XY} \|_{\text{HS}} =: \text{HSIC}_k(\mathbb{P}_{XY}),
\]

which is the Hilbert-Schmidt norm of the cross-covariance operator \(C_{XY} := \mu_{kX \otimes kY}(\mathbb{P}_{XY}) - \mu_{kX}(\mathbb{P}_X) \otimes \mu_{kY}(\mathbb{P}_Y) \) and is known as the Hilbert-Schmidt independence criterion (HSIC) (Gretton et al., 2005a). HSIC has enjoyed tremendous success in a variety of applications such as independent component analysis (Gretton et al., 2005a), feature selection (Song et al., 2012), independence testing (Gretton et al. 2008; Jitkrittum et al., 2017a), post selection inference (Yamada et al., 2018) and causal detection (Mooij et al., 2016; Pfister et al., 2017; Strobl et al., 2017). Recently, MMD and HSIC (as defined in (3) for two components) have been shown by Sejdinovic et al. (2013b) to be equivalent to other popular statistical measures such as the energy distance (Baringhaus and Franz, 2004; Székely and Rizzo, 2004, 2005)—also known as N-distance (Zinger et al., 1992; Klebanov, 2005)—and distance covariance (Székely et al., 2007; Székely and Rizzo, 2009; Lyons, 2013) respectively. HSIC has been generalized to \(M \geq 2 \) components (Quadrianto et al., 2009; Sejdinovic et al., 2013a) to measure the joint independence of \(M \) random variables

\[
\text{HSIC}_k(\mathbb{P}) = \left\| \mu_{\otimes_{m=1}^M k_m}(\mathbb{P}) - \otimes_{m=1}^M \mu_{k_m}(\mathbb{P}_m) \right\|_{\otimes_{m=1}^M \mathcal{H}_{k_m}},
\]

where \(\mathbb{P} \) is a joint measure on the product space \(\mathcal{X} := \times_{m=1}^M \mathcal{X}_m \) and \((\mathbb{P}_m)_{m=1}^M \) are the marginal measures of \(\mathbb{P} \) defined on \((\mathcal{X}_m)_{m=1}^M \) respectively. The extended HSIC measure has recently been analyzed in the context of independence testing (Pfister et al., 2017). In addition to testing, the extended HSIC measure is also useful in the problem of independent subspace analysis (ISA; Cardoso, 1998), wherein the latent sources are separated by maximizing the degree of independence among them. In all the applications of HSIC, the key requirement is that \(k = \otimes_{m=1}^M k_m \) captures the joint independence of \(M \) random variables (with joint distribution \(\mathbb{P} \))—we call this property as I-characteristic—, which is guaranteed if \(k \) is characteristic. Since \(k \) is defined in terms of \((k_m)_{m=1}^M \), it is of fundamental importance to understand the characteristic and I-characteristic properties of \(k \) in terms of the characteristic property of \((k_m)_{m=1}^M \), which is one of the main goals of this work.

For \(M = 2 \), the characterization of independence, i.e., the I-characteristic property of \(k \), is studied by Blanchard et al. (2011) and Gretton (2015) where it has been shown that if \(k_1 \) and \(k_2 \) are universal, then \(k \) is universal\(^2\) and therefore HSIC captures independence. A stronger version of this result can be obtained by combining (Lyons, 2013, Theorem 3.11) and (Sejdinovic et al. 2013b, Proposition 29): if \(k_1 \) and \(k_2 \) are characteristic, then the HSIC associated with \(k = k_1 \otimes k_2 \) characterizes independence. Apart from these results, not much is known about the characteristic/I-characteristic/universality properties of \(k \) in

1. In the equivalence one assumes that \(\mathcal{H}_{k_X}, \mathcal{H}_{k_Y} \) are separable; this holds under mild conditions, for example if \(X \) and \(Y \) are separable topological domains and \(k_X, k_Y \) are continuous (Steinwart and Christmann 2008, Lemma 4.33).

2. Blanchard et al. (2011) deal with \(c \)-universal kernels while Gretton (2015) deals with \(c_0 \)-universal kernels. A brief description of these notions are given in Section 3. Carmeli et al. (2010); Sriperumbudur et al. (2010) provide further details on these notions of universality.
terms of the individual kernels. Our goal is to resolve this question and understand the characteristic, \(I\)-characteristic and universal property of the product kernel \((\otimes_{m=1}^{M} k_m)\) in terms of the kernel components \((k_m)_{m=1}^{M}\) for \(M \geq 2\). Because of the relatedness of MMD and HSIC to energy distance and distance covariance, our results also contribute to the better understanding of these other measures that are popular in the statistical literature.

Specifically, our results shed light on the following surprising phenomena of the \(I\)-characteristic property of \(\otimes_{m=1}^{M} k_m\) for \(M \geq 3\):

1. characteristic property of \((k_m)_{m=1}^{M}\) is not sufficient but necessary for \(\otimes_{m=1}^{M} k_m\) to be \(I\)-characteristic;
2. universality of \((k_m)_{m=1}^{M}\) is sufficient for \(\otimes_{m=1}^{M} k_m\) to be \(I\)-characteristic, and
3. if at least one of \((k_m)_{m=1}^{M}\) is only characteristic and not universal, then \(\otimes_{m=1}^{M} k_m\) need not be \(I\)-characteristic.

The paper is organized as follows. In Section 3, we conduct a comprehensive analysis about the above mentioned properties of \(k\) and \((k_m)_{m=1}^{M}\) for any positive integer \(M\). To this end, we define various notions of characteristic property on the product space \(\mathcal{X}\) (see Definition 1 and Figure 2(a) in Section 3) and explore the relation between them. In order to keep our presentation in this section to be non-technical, we relegate the problem formulation to Section 3, with the main results of the paper being presented in Section 4. A summary of the results is captured in Figure 1 while the proofs are provided in Section 5. Various definitions and notation that are used throughout the paper are collected in Section 2.

2. Definitions and Notation

\(\mathbb{N} := \{1, 2, \ldots\}\) and \(\mathbb{R}\) denotes the set of natural numbers and real numbers respectively. For \(M \in \mathbb{N}\), \([M] := \{1, \ldots, M\}\). \(1_d := (1, 1, \ldots, 1) \in \mathbb{R}^d\) and \(0\) denotes the matrix of zeros. For \(a := (a_1, \ldots, a_d) \in \mathbb{R}^d\) and \(b := (b_1, \ldots, b_d) \in \mathbb{R}^d\), \((a, b) = \sum_{i=1}^{d} a_i b_i\) is the Euclidean inner product. For sets \(A\) and \(B\), \(A \setminus B = \{ a \in A : a \notin B \}\) is their difference, \(|A|\) is the cardinality of \(A\) and \(\times_{m=1}^{M} A_m = \{(a_1, \ldots, a_M) : a_m \in A_m \text{ for } m \in [M]\}\) is the Descartes product of sets \((A_m)_{m=1}^{M}\). \(\mathcal{P}(\mathcal{X})\) denotes the power set of a set \(\mathcal{X}\), i.e., all subsets of \(\mathcal{X}\) (including the empty set and \(\mathcal{X}\) itself). The Kronecker delta is defined as \(\delta_{a,b} = 1\) if \(a = b\), and zero otherwise. \(\chi_A\) is the indicator function of set \(A:\chi_A(x) = 1\) if \(x \in A\) and \(\chi_A(x) = 0\) otherwise. \(\mathbb{R}^{d_1 \times \ldots \times d_M}\) is the set of \(d_1 \times \ldots \times d_M\)-sized tensors.

For a topological space \((\mathcal{X}, \tau_\mathcal{X})\), \(\mathcal{B}(\mathcal{X}) := \mathcal{B}(\tau_\mathcal{X})\) is the Borel sigma-algebra on \(\mathcal{X}\) induced by the topology \(\tau_\mathcal{X}\). Probability and finite signed measures in the paper are meant w.r.t. the measurable space \((\mathcal{X}, \mathcal{B}(\mathcal{X}))\). Given \(\{(\mathcal{X}_i, \tau_i)\}_{i \in I}\) topological spaces, their product \(\times_{i \in I} \mathcal{X}_i\) is enriched with the product topology; it is the coarsest topology for which the canonical projections \(\pi_i : \times_{i \in I} \mathcal{X}_i \to (\mathcal{X}_i, \tau_i)\) are continuous for all \(i \in I\). A topological space \((\mathcal{X}, \tau_\mathcal{X})\) is called second-countable if \(\tau_\mathcal{X}\) has a countable basis;\(^3\) \(\mathcal{C}(\mathcal{X})\) denotes the space of continuous functions on \(\mathcal{X}\). \(C_0(\mathcal{X})\) denotes the class of real-valued functions vanishing at infinity on a locally compact Hausdroff (LCH) space\(^4\) \(\mathcal{X}\), i.e., for any \(\epsilon > 0\), the set \(\{x \in \mathcal{X} : |f(x)| \geq \epsilon\}\)

\(^3\) Second-countability implies separability; in metric spaces the two notions coincide (Dudley, 2004 Proposition 2.1.4). By the Urysohn’s theorem, a topological space is separable and metrizable if and only if it is regular, Hausdroff and second-countable. Any uncountable discrete space is not second-countable.

\(^4\) LCH spaces include \(\mathbb{R}^d\), discrete spaces, and topological manifolds. Open or closed subsets, finite products of LCH spaces are LCH. Infinite-dimensional Hilbert spaces are not LCH.
Figure 1: Summary of results: “char” denotes characteristic. In addition to the usual characteristic property, three new notions \otimes_0-characteristic, \otimes-characteristic and \mathcal{I}-characteristic are introduced in Definition 1 which along with c_0-universal (in the top right corner) correspond to the property of the tensor product kernel $\otimes_{m=1}^M k_m$, while the bottom part of the picture corresponds to the individual kernels $(k_m)_{m=1}^M$ being characteristic or c_0-universal. If $(k_m)_{m=1}^M$ are continuous, bounded and translation invariant kernels on \mathbb{R}^{d_m}, $m \in [M]$, all the notions are equivalent (see Theorem 4).

is compact. $C_0(\mathcal{X})$ is endowed with the uniform norm $\|f\|_\infty = \sup_{x \in \mathcal{X}} |f(x)|$. $\mathcal{M}_b(\mathcal{X})$ and $\mathcal{M}_b^+(\mathcal{X})$ are the space of finite signed measures and probability measures on \mathcal{X}, respectively. For $\mathbb{P}_m \in \mathcal{M}_b^+(\mathcal{X}_m)$, $\otimes_{m=1}^M \mathbb{P}_m$ denotes the product probability measure on the product space $\times_{m=1}^M \mathcal{X}_m$, i.e., $\otimes_{m=1}^M \mathbb{P}_m \in \mathcal{M}_b^+(\times_{m=1}^M \mathcal{X}_m)$. δ_x is the Dirac measure supported on $x \in \mathcal{X}$. For $\mathcal{F} \in \mathcal{M}_b(\times_{m=1}^M \mathcal{X}_m)$, the finite signed measure \mathbb{F}_m denotes its marginal on \mathcal{X}_m. \mathcal{H}_{k_m} is the reproducing kernel Hilbert space (RKHS) associated with the reproducing kernel $k_m : \mathcal{X}_m \times \mathcal{X}_m \to \mathbb{R}$, which in this paper is assumed to be measurable and bounded. The tensor product of $(k_m)_{m=1}^M$ is a kernel, defined as

$$\otimes_{m=1}^M k_m \left((x_1, \ldots, x_M), (x'_1, \ldots, x'_M) \right) = \prod_{m=1}^M k_m(x_m, x'_m), \quad x_m, x'_m \in \mathcal{X}_m,$$

whose associated RKHS is denoted as $\mathcal{H}_{\otimes_{m=1}^M k_m} = \otimes_{m=1}^M \mathcal{H}_{k_m}$ (Berlinet and Thomas-Agnan, 2004, Theorem 13), where the r.h.s. is the tensor product of RKHSs (\mathcal{H}_{k_m} is a RKHS) \mathcal{H}_{k_m}, $m \in [M]$. For $h_m \in \mathcal{H}_m$, $m \in [M]$, the multi-linear operator $\otimes_{m=1}^M h_m \in \otimes_{m=1}^M \mathcal{H}_m$ is defined as

$$(\otimes_{m=1}^M h_m) (v_1, \ldots, v_M) = \prod_{m=1}^M \langle h_m, v_m \rangle_{\mathcal{H}_m}, \quad v_m \in \mathcal{H}_m.$$
Specifically, $X := k$ bounded kernel

The definition is based on the observation (Sriperumbudur et al., 2010, Lemma 8) that a bounded kernel k on a topological space (X, τ_X) is characteristic if and only if

$$\int_X \int_X k(x, x') \, dF(x) \, dF(x') > 0, \quad \forall F \in \mathcal{M}_b(X) \setminus \{0\}$$

such that $F(X) = 0$.

In other words, characteristic kernels are integrally strictly positive definite (ispd; see Sriperumbudur et al., 2010, p. 1523) w.r.t. the class of finite signed measures that assign zero measure to X. The following definition extends this observation to tensor product kernels on product spaces.

Definition 1 (F-ispd tensor product kernel) Suppose $k_m : X_m \times X_m \to \mathbb{R}$ is a bounded kernel on a topological space (X_m, τ_{X_m}), $m \in [M]$. Let $\mathcal{F} \subseteq \mathcal{M}_b(X)$ be such that $0 \in \mathcal{F}$ where $X := \times_{m=1}^M X_m$. $k := \otimes_{m=1}^M k_m$ is said to be \mathcal{F}-ispd if

$$\mu_k(F) = 0 \Rightarrow F = 0 \quad (F \in \mathcal{F}), \text{ or equivalently}$$

$$\|\mu_k(F)\|_{\mathcal{H}_k}^2 = \int_{X_m \times X_m} \int_{X_m \times X_m} (\otimes_{m=1}^M k_m)(x, x') \, dF(x) \, dF(x') > 0, \quad \forall F \in \mathcal{F} \setminus \{0\}. \quad (5)$$

Specifically,

- If k_m-s are c_0-kernels on locally compact Polish (LCP) spaces X_m-s and $\mathcal{F} = \mathcal{M}_b(X)$, then k is called c_0-universal.

- If

$$\mathcal{F} = [\mathcal{M}_b(X)]^0 := \{F \in \mathcal{M}_b(X) : F(X) = 0\},$$

$$\mathcal{F} = [\otimes_{m=1}^M \mathcal{M}_b(X_m)]^0 := \{F \in \otimes_{m=1}^M \mathcal{M}_b(X_m) : F(X) = 0\},$$

$$\mathcal{F} = \mathcal{I} := \{\mathbb{P} - \otimes_{m=1}^M \mathbb{P}_m : \mathbb{P} \in \mathcal{M}_1^+ (\times_{m=1}^M X_m)\}, \quad (M \geq 2)$$

$$\mathcal{F} = \otimes_{m=1}^M \mathcal{M}_b^0(X_m) := \{F = \otimes_{m=1}^M \mathbb{P}_m : F_m \in \mathcal{M}_b(X_m) \text{, } F_m(X_m) = 0, \forall m \in [M]\},$$

then k is called characteristic, \otimes-characteristic, \mathcal{I}-characteristic and \otimes_0-characteristic, respectively.

5. A topological space is called Polish if it is complete, separable and metrizable. For example, \mathbb{R}^d and countable discrete spaces are Polish. Open and closed subsets, products and disjoint unions of countably many Polish spaces are Polish. Every second-countable LCH space is Polish.
In Definition 1, \(k \) being characteristic matches the usual notion of characteristic kernels on a product space, i.e., there are no two distinct probability measures on \(X = \times_{m=1}^{M} X_m \) such that the MMD between them is zero. The other notions such as \(\otimes \)-characteristic, \(\mathcal{I} \)-characteristic and \(\otimes_0 \)-characteristic are typically weaker than the usual characteristic property since
\[
\otimes_{m=1}^{M} M_b^0(X_m) \subseteq \left[\otimes_{m=1}^{M} M_b(X_m) \right]^0 \subseteq \left[M_b \left(\times_{m=1}^{M} X_m \right) \right]^0 \subseteq M_b \left(\times_{m=1}^{M} X_m \right).
\]

Below we provide further intuition on the \(\mathcal{F} \) measure classes enlisted in Definition 1.

Remark 2

(i) \(\mathcal{F} = M_b(X) \): If \(k_m \)-s are \(c_0 \)-kernels on LCH spaces \(X_m \) for all \(m \in [M] \), then \(k \) is also a \(c_0 \)-kernel on LCH space \(X \) implying that if \(k \) satisfies (5), then \(k \) is \(c_0 \)-universal (Sriperumbudur et al., 2010, Proposition 2). It is well known (Sriperumbudur et al., 2010) that \(c_0 \)-universality reduces to \(c \)-universality (i.e., the notion of universality proposed by Steinwart, 2001) if \(X \) is compact which is guaranteed if and only if each \(X_m, m \in [M] \) is compact.

(ii) \(\mathcal{F} = \mathcal{I} \): This family is useful to describe the joint independence of \(M \) random variables—hence the name \(\mathcal{I} \)-characteristic—defined on kernel-endowed domains \((X_m)_{m=1}^{M} \): If \(\mathcal{P} \) denotes the joint distribution of random variables \((X_m)_{m=1}^{M} \) and \((P_m)_{m=1}^{M} \) are the associated marginals on \((X_m)_{m=1}^{M} \), then by definition \(k = \otimes_{m=1}^{M} k_m \) is \(\mathcal{I} \)-characteristic iff
\[
\text{HSIC}_k(\mathcal{P}) = 0 \iff \mathcal{P} = \otimes_{m=1}^{M} P_m.
\]

In other words, HSIC captures joint independence exactly with \(\mathcal{I} \)-characteristic kernels. Similarly, the \(\mathcal{I} \)-characteristic property ensures that COCO (constrained covariance; Gretton et al., 2005b) is a joint independence measure as COCO is defined by replacing the Hilbert-Schmidt norm of the cross-covariance operator (see (3) and (4)) with its spectral norm.

(iii) \(\mathcal{F} = \otimes_{m=1}^{M} M_b^0(X_m) \): In this case \(\mathcal{F} \) is chosen to be the product of finite signed measures on \(X \) such that each marginal measure \(F_m \) assigns zero to the corresponding space \(X_m \). This choice is relevant as the characteristic property of individual kernels \((k_m)_{m=1}^{M} \) need not imply the characteristic property of \(\otimes_{m=1}^{M} k_m \), but is equivalent to the \(\otimes_0 \)-characteristic property of \(\otimes_{m=1}^{M} k_m \). The equivalence holds for bounded kernels \(k_m : X_m \times X_m \to \mathbb{R} \) on topological spaces \(X_m \) (\(m \in [M] \)) since for any \(F = \otimes_{m=1}^{M} F_m \in \otimes_{m=1}^{M} M_b(X_m), F_m(X_m) = 0 \) (\(\forall \ m \in [M] \))
\[
\| \mu_k(F) \|_{\mathcal{I}^{\otimes_{m=1}^{M} k_m}}^2 = \prod_{m=1}^{M} \| \mu_{km}(F_m) \|_{\mathcal{I}^{k_m}}^2,
\]
and the l.h.s. is positive iff each term on the r.h.s. is positive.

(iv) \(\mathcal{F} = \left[\otimes_{m=1}^{M} M_b(X_m) \right]^0 \): This class is similar to the one discussed in (iii) above—i.e., class of product measures—with the slight difference that the joint measure \(F \) is restricted to assign zero measure to \(X \) without requiring all the marginal measures \(F_m \)},
Example 1: $\otimes_{m=1}^M k_m$ is \otimes_0-characteristic but not \otimes-characteristic and therefore not characteristic.

To assign zero measure to the corresponding space X_m. While the need for considering such a measure class may not be clear at this juncture, however, based on (7), it turns out that this choice of F has quite surprising connections to the characteristic property and c_0-universality of the product kernel; for details see Remark 7.

(v) **F-ispd relations:** Given the relations in (6), it immediately follows that $k = \otimes_{m=1}^M k_m$ satisfies

$$\otimes_0\text{-characteristic} \iff \otimes\text{-characteristic} \iff \text{characteristic} \iff c_0\text{-universal} \iff I\text{-characteristic} \tag{8}$$

when X_m for all $m \in [M]$ are LCP. A visual illustration of (6) and (8) is provided in Figure 2.

$$(vi) \quad \left[\otimes_{m=1}^M M_b(X_m)\right]^0 \cap I = \{0\} : \text{While it is clear that } \left[\otimes_{m=1}^M M_b(X_m)\right]^0 \text{ and } I \text{ are subsets of } \left[M_b(\times_{m=1}^M X_m)\right]^0, \text{ it is interesting to note that } \left[\otimes_{m=1}^M M_b(X_m)\right]^0 \text{ and } I \text{ have a trivial intersection with } 0 \text{ being the measure common to each of them, assuming that } X_m\text{-s are second-countable for all } m \in [M]; \text{ see Section 5.1.}$$

Having defined the F-ispd property, our goal is to investigate whether the characteristic or c_0-universal property of k_m-s ($m \in [M]$) imply different F-ispd properties of $\otimes_{m=1}^M k_m$, and vice versa.

4. Main Results

In this section, we present our main results related to the F-ispd property of tensor product kernels, which are summarized in Figure 1. The results in this section will deal with various assumptions on X_m, such as second-countability, Hausdorff, locally compact Hausdorff
Characteristic and Universal Tensor Product Kernels

(LCH) and locally compact Polish (LCP), so that they are presented in more generality. However, for simplicity, all these assumptions can be unified by simply assuming a stronger condition that X_m’s are LCP.

Our first example illustrates that the characteristic property of k_m’s does not imply the characteristic property of the tensor product kernel. In light of Remark 2(iv) of Section 3, it follows that the class of \otimes-characteristic tensor product kernels form a strictly larger class than characteristic tensor product kernels; see also Figure 2.

Example 1 Let $X_1 = \{1, 2\}$, $\tau_{X_1} = \mathcal{P}(\{1, 2\})$, $k_1(x, x') = k_2(x, x') = 2\delta_{x,x'} - 1$. It is easy to verify that k_1 and k_2 are characteristic. However, it can be proved that $k_1 \otimes k_2$ is not \otimes-characteristic and therefore not characteristic. On the other hand, interestingly, $k_1 \otimes k_2$ is I-characteristic. We refer the reader to Section 5.2 for details.

In the above example, we showed that the tensor product of k_1 and k_2 (which are characteristic kernels) is I-characteristic. The following result generalizes this behavior for any bounded characteristic kernels. In addition, under a mild assumption, it shows the converse to be true for any M.

Theorem 3 Let $k_m : X_m \times X_m \rightarrow \mathbb{R}$ be bounded kernels on topological spaces X_m for all $m \in [M]$, $M \geq 2$. Then the following holds.

(i) Suppose X_m is second-countable for all $m \in [M]$ with $M = 2$. If k_1 and k_2 are characteristic, then $k_1 \otimes k_2$ is I-characteristic.

(ii) Suppose X_m is Hausdorff and $|X_m| \geq 2$ for all $m \in [M]$. If $\otimes_{m=1}^M k_m$ is I-characteristic, then k_1, \ldots, k_M are characteristic.

Lyons (2013) has showed an analogous result to Theorem 3(i) for distance covariances ($M = 2$) on metric spaces of negative type (Lyons, 2013, Theorem 3.11), which by Sejdinovic et al. (2013b, Proposition 29) holds for HSIC yielding the I-characteristic property of $k_1 \otimes k_2$. Recently, Gretton (2015) presented a direct proof showing that HSIC corresponding to $k_1 \otimes k_2$ captures independence if k_1 and k_2 are translation invariant characteristic kernels on \mathbb{R}^d (which is equivalent to c_0-universality). Blanchard et al. (2011) proved a result similar to Theorem 3(i) assuming that X_m’s are compact and k_1, k_2 being c-universal. In contrast, Theorem 3(i) establishes the result for bounded kernels on general second-countable topological spaces. In fact, the results of Gretton (2015); Blanchard et al. (2011) are special cases of Theorems 4 and 5 below. Theorem 3(i) raises a pertinent question: whether $\otimes_{m=1}^M k_m$ is I-characteristic if k_m’s are characteristic for all $m \in [M]$ where $M > 2$? The following example provides a negative answer to this question. On a positive side, however, we will see in Theorem 5 that the I-characteristic property of $\otimes_{m=1}^M k_m$ can be guaranteed for any $M \geq 2$ if a stronger condition is imposed on k_m’s (and X_m’s).

Example 2 Let $M = 3$ and $X_m := \{1, 2\}$, $\tau_{X_m} = \mathcal{P}(X_m)$, $k_m(x, x') = 2\delta_{x,x'} - 1$ ($m = 1, 2, 3$). As mentioned in Example 1, $(k_m)_m^{3}$ are characteristic. However, it can be shown that $\otimes_{m=1}^3 k_m$ is not I-characteristic. See Section 5.4 for details.
In Remark 2(iii) and Example 1, we showed that in general, only the \otimes_0-characteristic property of $\otimes_{m=1}^M k_m$ is equivalent to the characteristic property of k_m’s. Our next result shows that all the various notions of characteristic property of $\otimes_{m=1}^M k_m$ coincide if k_m’s are translation-invariant, continuous bounded kernels on \mathbb{R}^d.

Theorem 4 Suppose $k_m : \mathbb{R}^{d_m} \times \mathbb{R}^{d_m} \to \mathbb{R}$ are continuous, bounded and translation-invariant kernels for all $m \in [M]$. Then the following statements are equivalent:

(i) k_m-s are characteristic for all $m \in [M]$;
(ii) $\otimes_{m=1}^M k_m$ is \otimes_0-characteristic;
(iii) $\otimes_{m=1}^M k_m$ is \otimes-characteristic;
(iv) $\otimes_{m=1}^M k_m$ is \mathcal{I}-characteristic;
(v) $\otimes_{m=1}^M k_m$ is characteristic.

The following result shows that on LCP spaces, the tensor product of $M \geq 2$ c_0-universal kernels is also c_0-universal, and vice versa.

Theorem 5 Suppose $k_m : \mathcal{X}_m \times \mathcal{X}_m \to \mathbb{R}$ are c_0-kernels on LCP spaces \mathcal{X}_m ($m \in [M]$). Then $\otimes_{m=1}^M k_m$ is c_0-universal iff k_m-s are c_0-universal for all $m \in [M]$.

Remark 6 (i) A special case of Theorem 5 for $M = 2$ is proved by Lyons (2013, Lemma 3.8) in the context of distance covariance which reduces to Theorem 5 through the equivalence established by Sejdinovic et al. (2013b). Another special case of Theorem 5 is proved by Blanchard et al. (2011, Lemma 5.2) for c-universality with $M = 2$ using the Stone-Weierstrass theorem: if k_1 and k_2 are c-universal then $k_1 \otimes k_2$ is c-universal.

(ii) Since the notions of c_0-universality and characteristic property are equivalent for translation invariant c_0-kernels on \mathbb{R}^d (Carmeli et al., 2010, Prop. 5.16, Sriperumbudur et al., 2010, Theorem 9), Theorem 4 can be considered as a special case of Theorem 5. In other words, requiring $(k_m)_{m=1}^M$ to be also c_0-kernels in Theorem 4(i)-(iv) is equivalent to

(v) k_m-s are c_0-universal for all $m \in [M]$;
(vi) $\otimes_{m=1}^M k_m$ is c_0-universal.

(iii) Since the c_0-universality of $\otimes_{m=1}^M k_m$ implies its \mathcal{I}-characteristic property (see (8)), Theorem 5 also provides a generalization of Theorem 3(i) to $M \geq 2$ under additional assumptions on k_m’s, while constraining \mathcal{X}_m-s to LCP-s instead of second-countable topological spaces.

In Example 2 and Theorem 5, we showed that for $M \geq 3$ components while the characteristic property of $(k_m)_{m=1}^M$ is not sufficient, their universality is enough to guarantee the \mathcal{I}-characteristic property of $\otimes_{m=1}^M k_m$. The next example demonstrates that these results are tight: If at least one k_m is not universal but only characteristic, then $\otimes_{m=1}^M k_m$ might not be \mathcal{I}-characteristic.

Example 3 Let $M = 3$ and $\mathcal{X}_m := \{1, 2\}$, $\tau_{\mathcal{X}_m} = \mathcal{P}(\mathcal{X}_m)$, for all $m \in [3]$, $k_1(x, x') = 2\delta_{x,x'} - 1$, and $k_m(x, x') = \delta_{x,x'}$ ($m = 2, 3$). k_1 is characteristic (Example 1), k_2 and k_3 are universal since the associated Gram matrix $G = [k_m(x, x')]_{x,x' \in \mathcal{X}_m}$ is an identity matrix,
which is strictly positive definite ($m = 2, 3$). However, $\otimes_{m=1}^3 k_m$ is not \mathcal{I}-characteristic. See Section 5.7 for details.

Remark 7 Note that the l.h.s. in (7) is positive if and only if each term on the r.h.s. is positive, i.e., if $k = \otimes_{m=1}^M k_m$ is \otimes-characteristic with k_m-s being c_0-kernels on LCP \mathcal{X}_m-s, then all k_m-s are c_0-universal. A similar result was also proved by Steinwart and Ziegel (2017, Lemma 3.4). Combining this with Theorem 5 yields that for tensor product c_0-kernels, the notions of \otimes-characteristic, characteristic and c_0-universality are equivalent, which is quite surprising as for a joint kernel k (that is not of product type), these notions need not necessarily coincide. In light of this discussion, Figure 2(a) can be simplified to Figure 3.

5. **Proofs**

In this section, we provide the proofs of our results presented in Section 4.

5.1 **Proof of Remark 2(iv)**

By the second-countability of \mathcal{X}_m-s, $\mathcal{B}(\times_{m=1}^M \mathcal{X}_m) = \otimes_{m=1}^M \mathcal{B}(\mathcal{X}_m)$, where the r.h.s. is defined as the σ-field generated by the cylinder sets $A_m \times_{n\neq m} \mathcal{X}_n$ where $m \in [M]$ and $A_m \in \mathcal{B}(\mathcal{X}_m)$. Suppose there exists $\mathbb{F} \in [\otimes_{m=1}^M \mathcal{M}_b(\mathcal{X}_m)]^0 \cap \mathcal{I}$ such that $\mathbb{F} \neq 0$. This means there exists $\mathbb{P} \in \mathcal{M}_b^+ (\times_{m=1}^M \mathcal{X}_m)$ with $(\mathbb{P}_m)_{m=1}^M$ being the marginals of \mathbb{P} such that $\mathbb{F} = \otimes_{m=1}^M \mathbb{F}_m = \mathbb{P} - \otimes_{m=1}^M \mathbb{P}_m$. Since $\mathbb{F} \neq 0$ there exists $A_m \times_{n\neq m} \mathcal{X}_n$ for some $m \in [M]$ and $A_m \in \mathcal{B}(\mathcal{X}_m)$ such that $0 \neq \mathbb{F}(A_m \times_{n\neq m} \mathcal{X}_n) = \mathbb{F}_m(A_m) \prod_{n\neq m} \mathbb{F}_n(\mathcal{X}_n) = \mathbb{P}(A_m \times_{n\neq m} \mathcal{X}_n) - \mathbb{P}_m(A_m) \prod_{n\neq m} \mathbb{P}_n(\mathcal{X}_n) = \mathbb{P}(A_m) - \mathbb{P}_m(A_m) = 0$, leading to a contradiction.

5.2 **Proof of Example 1**

The proof is structured as follows.

1. First we show that $k := k_1 = k_2$ is a kernel and it is characteristic.
2. Next it is proved that $k_1 \otimes k_2$ is not \otimes-characteristic, which implies $k_1 \otimes k_2$ is not characteristic.

3. Finally, the I-characteristic property of $k_1 \otimes k_2$ is established.

The individual steps are as follows:

k is a kernel. Assume w.l.o.g. that $x_1 = \ldots = x_N = 1$, $x_{N+1} = \ldots = x_n = 2$. Then it is easy to verify that the Gram matrix $G = [k(x_i, x_j)]_{i,j=1}^n = aa^\top$ where $a := (1_1^\top, -1_{n-N}^\top)$ and a^\top is the transpose of a. Clearly G is positive semidefinite and so k is a kernel.

k is characteristic. We will show that k satisfies (5). On $X = \{1, 2\}$ a finite signed measure F takes the form $F = a_1 \delta_1 + a_2 \delta_2$ for some $a_1, a_2 \in \mathbb{R}$. Thus,

$$F \in \mathcal{M}_b(X) \setminus \{0\} \iff (a_1, a_2) \neq 0 \quad \text{and} \quad F(X) = 0 \iff a_1 + a_2 = 0. \quad (9)$$

Consider

$$\int_X \int_X k(x, x') \, dF(x) \, dF(x') = a_1^2 k(1, 1) + a_2^2 k(2, 2) + 2a_1 a_2 k(1, 2)$$

$$= a_1^2 + a_2^2 - 2a_1 a_2 = (a_1 - a_2)^2 = 2a_1^2 > 0, \quad (10)$$

where we used (9) and the facts that $k(1, 1) = k(2, 2) = 1$, $k(1, 2) = -1$.

$k_1 \otimes k_2$ is not \otimes-characteristic. We construct a witness $F = F_1 \otimes F_2 \in \otimes_{m=1}^2 \mathcal{M}_b(X_m) \setminus \{0\}$ such that

$$F(X_1 \times X_2) = F_1(X_1) F_2(X_2) = 0, \quad (11)$$

and

$$0 = \int_{X_1 \times X_2} \int_{X_1 \times X_2} \underbrace{(k_1 \otimes k_2)((i_1, i_2), (i'_1, i'_2))}_{k_1(i_1, i'_1) k_2(i_2, i'_2)} \, dF_1(i_1, i_2) \, dF_1(i'_1, i'_2)$$

$$= \prod_{m=1}^2 \int_{X_m} \int_{X_m} k_m(i_m, i'_m) \, dF_m(i_m) \, dF_m(i'_m). \quad (12)$$

Finite signed measures on $\{1, 2\}$ take the form $F_1 = F_1(a) = a_1 \delta_1 + a_2 \delta_2$, $F_2 = F_2(b) = b_1 \delta_1 + b_2 \delta_2$ form, where $a = (a_1, a_2) \in \mathbb{R}^2$, $b = (b_1, b_2) \in \mathbb{R}^2$. With these notations, (11) and (12) can be rewritten as

$$0 = (a_1 + a_2)(b_1 + b_2),$$

$$0 = \left[\sum_{i, i' = 1}^2 k_1(i, i') a_i a_{i'} \right] \left[\sum_{j, j' = 1}^2 k_2(j, j') b_j b_{j'} \right] = (a_1 - a_2)^2 (b_1 - b_2)^2.$$

Keeping the solutions where neither a nor b is the zero vector, there are 2 (symmetric) possibilities: (i) $a_1 + a_2 = 0$, $b_1 = b_2$ and (ii) $a_1 = a_2$, $b_1 + b_2 = 0$. In other words, for any $a, b \neq 0$, the possibilities are (i) $a = (a, -a)$, $b = (b, b)$ and (ii) $a = (a, a)$, $b = (b, -b)$. This establishes the non-$[\otimes_{m=1}^2 \mathcal{M}_b(X_m)]^\rho$-ispd property of $k_1 \otimes k_2.$
$k_1 \otimes k_2$ is \mathcal{I}-characteristic. Our goal is to show that $k_1 \otimes k_2$ is \mathcal{I}-characteristic, i.e., for any $\mathbb{P} \in \mathcal{M}^+_1(\mathcal{X}_1 \times \mathcal{X}_2)$, $\mu_{k_1 \otimes k_2}(\mathbb{P}) = 0$ implies $F = 0$, where $F = \mathbb{P} - \mathbb{P}_1 \otimes \mathbb{P}_2$. We divide the proof into two parts:

1. First we derive the equations of

$$F(\mathcal{X}_1 \times \mathcal{X}_2) = 0 \quad \text{and} \quad \int \int (k_1 \otimes k_2)((i,j),(r,s)) \ dF(i,j) \ dF(r,s) = 0 \quad (13)$$

for general finite signed measures $F = \sum_{i,j,k} a_{ij} \delta(i,j)$ on $\mathcal{X}_1 \times \mathcal{X}_2$.

2. Then, we apply the $F = \mathbb{P} - \mathbb{P}_1 \otimes \mathbb{P}_2$ parameterization and solve for \mathbb{P} that satisfies (13) to conclude that $\mathbb{P} = \mathbb{P}_1 \otimes \mathbb{P}_2$, i.e., $F = 0$. Note that in the chosen parametrization for F, $F(\mathcal{X}_1 \times \mathcal{X}_2) = 0$ holds automatically.

The details are as follows.

Step 1.

$$0 = F(\mathcal{X}_1 \times \mathcal{X}_2) \iff 0 = a_{11} + a_{12} + a_{21} + a_{22}, \quad (14)$$

$$0 = \int \int (k_1 \otimes k_2)((i,j),(r,s)) \ dF(i,j) \ dF(r,s)$$

$$= \sum_{i,j=1}^{2} \sum_{r,s=1}^{2} \sum_{k_1(i),k_2(j)} k_1(i,r)k_2(j,s)a_{ij}a_{rs} = \sum_{i,j=1}^{2} \sum_{r,s=1}^{2} k_1(i,r) \sum_{k_1(i),k_2(j)} k_2(j,s)a_{ij}a_{rs}$$

$$= k_1(1,1) [k_2(1,1)a_{11}a_{11} + k_2(1,2)a_{12}a_{12} + k_2(2,1)a_{12}a_{11} + k_2(2,2)a_{12}a_{12}]$$

$$+ k_1(1,2) [k_2(1,1)a_{11}a_{21} + k_2(1,2)a_{12}a_{21} + k_2(2,1)a_{12}a_{21} + k_2(2,2)a_{12}a_{21}]$$

$$+ k_1(2,1) [k_2(1,1)a_{21}a_{11} + k_2(1,2)a_{21}a_{11} + k_2(2,1)a_{22}a_{11} + k_2(2,2)a_{22}a_{11}]$$

$$+ k_1(2,2) [k_2(1,1)a_{21}a_{21} + k_2(1,2)a_{21}a_{21} + k_2(2,1)a_{22}a_{21} + k_2(2,2)a_{22}a_{21}]$$

$$= \left(a_{11}^2 - 2a_{11}a_{12} + a_{12}^2 \right) + \left(a_{21}^2 - 2a_{21}a_{22} + a_{22}^2 \right) - 2 \left(a_{11}a_{21} - a_{11}a_{22} - a_{12}a_{21} + a_{12}a_{22} \right)$$

$$= (a_{11} - a_{12} - a_{21} + a_{22})^2. \quad (15)$$

Solving (14) and (15) yields

$$a_{11} + a_{22} = 0 \quad \text{and} \quad a_{12} + a_{21} = 0. \quad (16)$$

Step 2. Any $\mathbb{P} \in \mathcal{M}^+_1(\mathcal{X}_1 \times \mathcal{X}_2)$ can be parametrized as

$$\mathbb{P} = \sum_{i,j=1}^{2} p_{ij} \delta(i,j), \quad p_{ij} \geq 0, \ \forall (i,j) \quad \text{and} \quad \sum_{i,j=1}^{2} p_{ij} = 1. \quad (17)$$

Let $F = \mathbb{P} - \mathbb{P}_1 \otimes \mathbb{P}_2 = \sum_{i,j=1}^{2} a_{ij} \delta(i,j)$; for illustration see Table 1. It follows from step 1 that F satisfying (16) is equivalent to satisfying (13). Therefore, for the choice of $F := \mathbb{P} - \mathbb{P}_1 \otimes \mathbb{P}_2$, we obtain

$$p_{11} - (p_{11} + p_{12})(p_{11} + p_{21}) + p_{22} - (p_{21} + p_{22})(p_{12} + p_{22}) = 0, \quad (18)$$

13
5.3 Proof of Theorem 3

Define $\mathcal{H}_m := \mathcal{H}_{k_m}$.

<table>
<thead>
<tr>
<th>\mathbb{P}: $y \setminus x$</th>
<th>1</th>
<th>2</th>
<th>\mathbb{P}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>p_{11}</td>
<td>p_{21}</td>
<td>$q_1 = p_{11} + p_{21}$</td>
</tr>
<tr>
<td>2</td>
<td>p_{12}</td>
<td>p_{22}</td>
<td>$q_2 = p_{12} + p_{22}$</td>
</tr>
<tr>
<td>\mathbb{P}_1</td>
<td>$p_1 = p_{11} + p_{12}$</td>
<td>$p_2 = p_{21} + p_{22}$</td>
<td>\Rightarrow</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\mathbb{F} := \mathbb{P} - \mathbb{P}_1 \otimes \mathbb{P}_2$</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a_{11} = p_{11} - (p_{11} + p_{12})(p_{11} + p_{21})$</td>
<td>$a_{21} = p_{21} - (p_{21} + p_{22})(p_{11} + p_{21})$</td>
</tr>
<tr>
<td>2</td>
<td>$a_{12} = p_{12} - (p_{11} + p_{12})(p_{12} + p_{22})$</td>
<td>$a_{22} = p_{22} - (p_{21} + p_{22})(p_{12} + p_{22})$</td>
</tr>
</tbody>
</table>

Table 1: Joint (\mathbb{P}), joint minus product of the marginals ($\mathbb{P} - \mathbb{P}_1 \otimes \mathbb{P}_2$).

<table>
<thead>
<tr>
<th>\mathbb{P}: $y \setminus x$</th>
<th>1</th>
<th>2</th>
<th>\mathbb{P}_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$p_{11} = \frac{a[1-(a+b)]}{a+b}$</td>
<td>$p_{21} = a$</td>
<td>$q_1 = \frac{a}{a+b}$</td>
</tr>
<tr>
<td>2</td>
<td>$p_{12} = \frac{b[1-(a+b)]}{a+b}$</td>
<td>$p_{22} = b$</td>
<td>$q_2 = \frac{b}{a+b}$</td>
</tr>
<tr>
<td>\mathbb{P}_1</td>
<td>$p_1 = 1 - (a+b)$</td>
<td>$p_2 = a + b$</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Family of probability distributions solving (17)–(19).

$$p_{12} - (p_{11} + p_{12})(p_{12} + p_{22}) + p_{21} - (p_{21} + p_{22})(p_{11} + p_{21}) = 0,$$

where $(p_{ij})_{i,j \in [2]}$ satisfy (17). Solving (17)–(19), we obtain

$$p_{11} = \frac{a[1-(a+b)]}{a+b}, \quad p_{12} = \frac{b[1-(a+b)]}{a+b}, \quad p_{21} = a \quad \text{and} \quad p_{22} = b,$$

with $0 \leq a, b \leq 1$, $a + b \leq 1$ and $(a, b) \neq 0$. The resulting distribution family with its marginals is summarized in Table 2. It can be seen that each member of this family (any a, b in the constraint set) factorizes: $\mathbb{P} = \mathbb{P}_1 \otimes \mathbb{P}_2$. In other words, $\mathbb{F} = \mathbb{P} - \mathbb{P}_1 \otimes \mathbb{P}_2 = 0$; hence $k_1 \otimes k_2$ is \mathcal{I}-characteristic.

Remark. We would like to mention that while k_1 and k_2 are characteristic, they are not universal. Since \mathcal{X} is finite, the usual notion of universality (also called c-universality) matches with c_0-universality. Therefore, from (10), we have $\int_{\mathcal{X}} \int_{\mathcal{X}} k(x, x') \, d\mathbb{F}(x) \, d\mathbb{F}(x) = (a_1 - a_2)^2$ where $\mathbb{F} = a_1 \delta_1 + a_2 \delta_2$ for some $a_1, a_2 \in \mathbb{R}\{0\}$. Clearly, the choice of $a_1 = a_2$ establishes that there exists $\mathbb{F} \in \mathcal{M}_0(\mathcal{X}) \setminus \{0\}$ such that $\int_{\mathcal{X}} \int_{\mathcal{X}} k(x, x') \, d\mathbb{F}(x) \, d\mathbb{F}(x) = 0$. Hence k is not universal. Note that the constraint in (9), which is needed to verify the characteristic property of k is not needed to verify its universality.

5.3 Proof of Theorem 3

Define $\mathcal{H}_m := \mathcal{H}_{k_m}$.

14
(i) Suppose \(k_1 \) and \(k_2 \) are characteristic and that for some \(F = P - P \otimes P \in \mathcal{I} \),

\[
\mathcal{H}_1 \otimes \mathcal{H}_2 \ni \int_{X_1 \times X_2} (k_1 \otimes k_2) (\cdot, x) \, dF(x) = \int_{X_1 \times X_2} k_1(\cdot, x_1) \otimes k_2(\cdot, x_2) \, dF(x) = 0, \quad (20)
\]

where \(x = (x_1, x_2) \). We want to show that \(F = 0 \). By the second-countability of \(\mathcal{X}_m \)'s, the product \(\sigma \)-field, i.e., \(\otimes^2_{m=1} \mathcal{B}(X_m) \) generated by the cylinder sets \(B_1 \times X_2 \) and \(X_1 \times B_2 \) \((B_m \in \mathcal{B}(X_m), m = 1, 2)\), coincides with the Borel \(\sigma \)-field \(\mathcal{B}(X_1 \times X_2) \) on the product space (Dudley, 2004, Lemma 4.1.7):

\[
\otimes^2_{m=1} \mathcal{B}(X_m) = \mathcal{B}(X_1 \times X_2).
\]

Hence, it is sufficient to prove that \(F(B_1 \times B_2) = 0 \), \(\forall B_m \in \mathcal{B}(X_m), m = 1, 2 \). To this end, it follows from (20) that for all \(h_2 \in \mathcal{H}_2 \),

\[
\mathcal{H}_1 \ni \int_{X_1 \times X_2} k_1(\cdot, x_1) h_2(x_2) \, dF(x) = \int_{X_1} k_1(\cdot, x_1) \, d\nu(x_1) = 0, \quad (21)
\]

where

\[
\nu(B_1) := \nu_{h_2}(B_1) = \int_{X_1 \times X_2} \chi_{B_1}(x_1) h_2(x_2) \, dF(x), \quad B_1 \in \mathcal{B}(X_1).
\]

Since \(k_1 \) is characteristic, (21) implies \(\nu = 0 \), provided that \(|\nu|(X_1) < \infty \) and \(\nu(X_1) = 0 \). These two requirements hold:

\[
\nu(X_1) = \int_{X_1 \times X_2} h_2(x_2) \, dF(x) = \int_{X_2} h_2(x_2) \, d[P - P](x_2) = 0,
\]

\[
|\nu|(X_1) \leq \int_{X_1 \times X_2} \| h_2(\cdot, x_2) \|_{1} \, d[P + P \otimes P](x_1, x_2)
\]

\[
\leq \| h_2 \|_{\mathcal{H}_2} \int_{X_1 \times X_2} \sqrt{k_2(x_2, x_2)} \, d[P + P \otimes P](x_1, x_2)
\]

\[
\leq 2 \| h_2 \|_{\mathcal{H}_2} \int_{X_2} \sqrt{k_2(x_2, x_2)} \, dP_2(x_2) < \infty,
\]

where the last inequality follows from the boundedness of \(k_2 \). The established \(\nu = 0 \) implies that for \(\forall B_1 \in \mathcal{B}(X_1) \) and \(\forall h_2 \in \mathcal{H}_2 \),

\[
0 = \nu(B_1) = \left\langle h_2, \int_{X_1 \times X_2} \chi_{B_1}(x_1) k_2(\cdot, x_2) \, dF(x) \right\rangle_{\mathcal{H}_2},
\]

and hence

\[
0 = \int_{X_1 \times X_2} \chi_{B_1}(x_1) k_2(\cdot, x_2) \, dF(x) = \int_{X_2} k_2(\cdot, x_2) \, d\theta_{B_1}(x_2), \quad (22)
\]

where

\[
\theta_{B_1}(B_2) = \int_{X_1 \times X_2} \chi_{B_1}(x_1) \chi_{B_2}(x_2) \, dF(x), \quad B_2 \in \mathcal{B}(X_2).
\]
Using the characteristic property of k_2, it follows from (22) that $\theta_{B_1} = 0$ for $\forall B_1 \in B(\mathcal{X}_1)$, i.e.,

$$0 = \theta_{B_1}(B_2) = \mathcal{F}(B_1 \times B_2), \quad \forall B_1 \in B(\mathcal{X}_1), \forall B_2 \in B(\mathcal{X}_2)$$

provided that $\theta_{B_1}(\mathcal{X}_2) = 0$ and $|\theta_{B_1}|(\mathcal{X}_2) < \infty$. Indeed, both these conditions hold:

$$\theta_{B_1}(\mathcal{X}_2) = \int_{\mathcal{X}_1 \times \mathcal{X}_2} \chi_{B_1}(x_1) d\mathcal{F}(x) = \int_{\mathcal{X}_1} \chi_{B_1}(x_1) d[\mathcal{P}_1 - \mathcal{P}_1](x_1) = 0,$$

$$|\theta_{B_1}|(\mathcal{X}_2) \leq \int_{\mathcal{X}_1 \times \mathcal{X}_2} d[\mathcal{P} + \mathcal{P}_1 \otimes \mathcal{P}_2](x) = 2.$$

(ii) Assume w.l.o.g. that k_1 is not characteristic. This means there exists $\mathcal{P}_1 \neq \mathcal{P}_1' \in \mathcal{M}_1^+(\mathcal{X}_1)$ such that $\mu_{k_1}(\mathcal{P}_1) = \mu_{k_1}(\mathcal{P}_1')$. Our goal is to construct an $\mathcal{F} \in \mathcal{M}_1^+\left(\times_{m=1}^M \mathcal{X}_m\right)$ such that

$$\mu_{\otimes_{m=1}^M k_m}(\mathcal{F} - \otimes_{m=1}^M \mathcal{F}_m) = \int_{\times_{m=1}^M \mathcal{X}_m} \otimes_{m=1}^M k_m(\cdot, m) d[\mathcal{F} - \otimes_{m=1}^M \mathcal{F}_m] = 0,$$

but $\mathcal{F} \neq \otimes_{m=1}^M \mathcal{F}_m$.

Define $\mathcal{I} := \mathcal{F} - \otimes_{m=1}^M \mathcal{F}_m \in \mathcal{I}$. In other words we want to get a witness $\mathcal{I} \in \mathcal{I}$ proving that $\otimes_{m=1}^M k_m$ is not \mathcal{I}-characteristic. Let us take $z \neq z' \in \mathcal{X}_2$, which is possible since $|\mathcal{X}_2| \geq 2$. Let us define \mathcal{F} as

$$\mathcal{F} = \frac{\mathcal{P}_1 \otimes \delta_z \otimes \otimes_{m=3}^M \mathcal{Q}_m + \mathcal{P}_1' \otimes \delta_{z'} \otimes \otimes_{m=3}^M \mathcal{Q}_m}{2} \in \mathcal{M}_1^+\left(\times_{m=1}^M \mathcal{X}_m\right).$$

It is easy to verify that

$$\mathcal{F}_1 = \frac{\mathcal{P}_1 + \mathcal{P}_1'}{2}, \quad \mathcal{F}_2 = \frac{\delta_z + \delta_{z'}}{2} \quad \text{and} \quad \mathcal{F}_m = \mathcal{Q}_m \quad (m = 3, \ldots, M),$$

where $\mathcal{Q}_3, \ldots, \mathcal{Q}_M$ are arbitrary probability measures on $\mathcal{X}_3, \ldots, \mathcal{X}_M$, respectively. First we check that $\mathcal{I} \neq 0$. Indeed it is the case since

- $z \neq z'$ and \mathcal{X}_2 is a Hausdorff space, there exists $B_2 \in B(\mathcal{X}_2)$ such that $z \in B_2$, $z' \notin B_2$.
- $\mathcal{P}_1 \neq \mathcal{P}_1'$, $\mathcal{P}_1(B_1) \neq \mathcal{P}_1'(B_1)$ for some $B_1 \in B(\mathcal{X}_1)$.

Let $S = B_1 \times B_2 \times (\times_{m=3}^M \mathcal{X}_m)$, and compare its measure under \mathcal{F} and $\otimes_{m=1}^M \mathcal{F}_m$:

$$\mathcal{F}(S) = \frac{\mathcal{P}_1(B_1) \delta_z(B_2) \prod_{m=3}^M \mathcal{Q}_m(\mathcal{X}_m) + \mathcal{P}_1'(B_1) \delta_{z'}(B_2) \prod_{m=3}^M \mathcal{Q}_m(\mathcal{X}_m)}{2} = \frac{\mathcal{P}_1(B_1)}{2},$$

$$(\otimes_{m=1}^M \mathcal{F}_m)(S) = \prod_{m=1}^M \mathcal{F}_m(B_m) = \frac{\mathcal{P}_1(B_1) + \mathcal{P}_1'(B_1) \delta_z(B_2) + \delta_{z'}(B_2) \prod_{m=3}^M \mathcal{Q}_m(\mathcal{X}_m)}{2} = \frac{\mathcal{P}_1(B_1)}{2}.$$

6. The \mathcal{F} construction specializes to that of Lyons (2013, Proposition 3.15) in the $M = 2$ case; Lyons used it for distance covariances, which is known to be equivalent to HSIC (Sejdinovic et al. 2013b).
= \frac{P_1(B_1) + P'_1(B_1)}{4} \neq \frac{P_1(B_1)}{2},

where the last equality holds since \(P_1(B_1) \neq P'_1(B_1) \). This shows that \(I = F - \otimes_{m=1}^{M} F_m \neq 0 \) since \(\mathbb{I}(S) \neq 0 \).

Next we prove that \(\mu_{\otimes_{m=1}^{M} k_m} (F - \otimes_{m=1}^{M} F_m) = 0 \). Indeed,

\[
\begin{align*}
\mu_{\otimes_{m=1}^{M} k_m} (I) &= \int_{M_{m=1}^{X_m}} \otimes_{m=1}^{M} k_m(\cdot, x_m) \, d \left[F - \otimes_{m=1}^{M} F_m \right] (x_1, \ldots, x_M) \\
&= \int_{M_{m=1}^{X_m}} \otimes_{m=1}^{M} k_m(\cdot, x_m) \, d \left[\frac{P_1 \otimes \delta_z + P'_1 \otimes \delta_{z'} - \frac{1}{2} P_1 + \frac{1}{2} P'_1 \otimes \frac{1}{2} \delta_z + \frac{1}{2} \delta_{z'} }{2} \right] \\
&= \int_{M_{m=1}^{X_m}} \otimes_{m=1}^{M} k_m(\cdot, x_m) \, d \left[\frac{P_1(x_1) \otimes \delta_z (x_2) + P'_1(x_1) \otimes \delta_{z'} (x_2)}{2} \\
&- \frac{P_1(x_1) \otimes \delta_z (x_2) + P'_1(x_1) \otimes \delta_{z'} (x_2)}{2} \right] \\
&= \left[\mu_{k_1}(P_1) \otimes k_2(\cdot, z) + \mu_{k_1}(P'_1) \otimes k_2(\cdot, z') - \frac{1}{2} \right] \\
&- \mu_{k_1}(P_1) \otimes k_2(\cdot, z) + \mu_{k_1}(P'_1) \otimes k_2(\cdot, z') - \frac{4}{2} \\
&= 0 \in \mathcal{K}_{k_1} \otimes [\otimes_{m=3}^{M} \mu_{k_m} (Q_m)] = 0,
\end{align*}
\]

where we used \(\mu_{k_1}(P_1) = \mu_{k_1}(P'_1) \) in (*).

5.4 Proof of Example 2

Let \(M = 3, X_m = \{ (i_1, i_2, i_3) : i_m \in \{ 1, 2 \}, \ m \in \{ 3 \} \}, k_m(x, x') = 2 \delta_{xx'} - 1 \). Our goal is to show that \(\otimes_{m=1}^{3} k_m \) is not \(I \)-characteristic. The structure of the proof is as follows:

1. First we describe the equations of the non-characteristic property of \(\otimes_{m=1}^{3} k_m \) with a general finite signed measure \(F = \sum_{i_1, i_2, i_3=1}^{2} a_{i_1, i_2, i_3} \delta_{(i_1, i_2, i_3)} \) on \(X_m \) where \(a_{i_1, i_2, i_3} \in \mathbb{R} (\forall i_1, i_2, i_3) \).

2. Next, we apply the \(F = P - \otimes_{m=1}^{3} F_m \) parameterization and show that there exists \(P \) that satisfies the equations of step 1 to conclude that \(\otimes_{m=1}^{3} k_m \) is not \(I \)-characteristic.

The details are as follows.

Step 1. The equations of non-characteristic property in terms of \(A = \{ a_{i_1, i_2, i_3} \}_{(i_m)^3 m=1 \in [2]^3} \in \mathbb{R}^{2 \times 2 \times 2} \) are

\[
F \in M_b (\times_{m=1}^{3} X_m) \backslash \{ 0 \} \iff A \neq 0,
\]
\[0 = F(x^3_{m=1} X_m) \iff 0 = \sum_{i_1, i_2, i_3 = 1}^{2} a_{i_1, i_2, i_3}, \quad (23) \]

\[0 = \int_{x^3_{m=1} X_m} \int_{x^3_{m=1} X_m} (\otimes^3_{m=1} k_m) \left(((i_1, i_2, i_3), (i'_1, i'_2, i'_3)) \right) dF(i_1, i_2, i_3) dF(i'_1, i'_2, i'_3) = \sum_{i_1, i_2, i_3 = 1}^{2} \sum_{i'_1, i'_2, i'_3 = 1}^{2} 3 \prod_{m=1}^{3} k_m(i_m, i'_m) a_{i_1, i_2, i_3} a_{i'_1, i'_2, i'_3}. \quad (24) \]

Solving (23) and (24) yields

\[a_{1,1,1} + a_{1,2,2} + a_{2,1,2} + a_{2,2,1} = 0 \quad \text{and} \quad a_{1,1,1} + a_{1,2,1} + a_{2,1,1} + a_{2,2,2} = 0. \]

Step 2. The equations of non-\mathcal{I}-characteristic property can be obtained from step 1 by choosing $F = \mathbb{P} - \otimes_{m=1}^{M} P_m$, where

\[\mathbb{P} = \sum_{i_1, i_2, i_3 = 1}^{2} p_{i_1, i_2, i_3} \delta(i_1, i_2, i_3) \quad \text{and} \quad P = [p_{i_1, i_2, i_3}](i_m)_{m=1}^{3} \in \mathbb{R}^{2 \times 2 \times 2}. \]

In other words, it is sufficient to obtain a P that solves the following system of equations for which $A = A(P) \neq 0$:

\[\sum_{i_1, i_2, i_3 = 1}^{2} p_{i_1, i_2, i_3} = 1, \quad (25) \]

\[p_{i_1, i_2, i_3} \geq 0, \forall (i_1, i_2, i_3) \in [2]^3, \quad (26) \]

\[a_{1,1,1} + a_{1,2,2} + a_{2,1,2} + a_{2,2,1} = 0, \quad (27) \]

\[a_{1,1,2} + a_{1,2,1} + a_{2,1,1} + a_{2,2,2} = 0, \quad (28) \]

where

\[a_{i_1, i_2, i_3} = p_{i_1, i_2, i_3} - p_{1, i_1} p_{2, i_2} p_{3, i_3}, \quad (29) \]

and

\[p_{1, i_1} = \sum_{i_2, i_3 = 1}^{2} p_{i_1, i_2, i_3}, \quad p_{2, i_2} = \sum_{i_1, i_3 = 1}^{2} p_{i_1, i_2, i_3}, \quad p_{3, i_3} = \sum_{i_1, i_2 = 1}^{2} p_{i_1, i_2, i_3}. \quad (30) \]

One can get an analytical description for the solution of (25)–(30), where the solution $P(z)$ is parameterized by $z = (z_0, \ldots, z_5) \in \mathbb{R}^6$. For explicit expressions, we refer the reader to Appendix A. In the following, we present two examples of P that satisfy (25)–(30) such that $A \neq 0$, thereby establishing the non-\mathcal{I}-characteristic property of $\otimes_{m=1}^{3} k_m$.

1. P:

\[
\begin{align*}
p_{1,1,1} &= \frac{1}{5}, & p_{1,1,2} &= \frac{1}{10}, & p_{1,2,1} &= \frac{1}{10}, & p_{1,2,2} &= \frac{1}{10}, \\
p_{2,1,1} &= \frac{1}{5}, & p_{2,1,2} &= \frac{1}{10}, & p_{2,2,1} &= \frac{1}{10}, & p_{2,2,2} &= \frac{1}{10},
\end{align*}
\]
and \(A \):

\[
\begin{align*}
 a_{1,1,1} & = \frac{1}{50}, & a_{1,1,2} & = \frac{1}{50}, & a_{1,2,1} & = \frac{1}{50}, & a_{1,2,2} & = \frac{1}{50}, \\
 a_{2,1,1} & = \frac{1}{50}, & a_{2,1,2} & = \frac{1}{50}, & a_{2,2,1} & = \frac{1}{50}, & a_{2,2,2} & = \frac{1}{50}.
\end{align*}
\]

(31)

2. \(P \):

\[
\begin{align*}
 p_{1,1,1} & = 0, & p_{1,1,2} & = \frac{1}{10}, & p_{1,2,1} & = \frac{1}{10}, & p_{1,2,2} & = \frac{1}{10}, \\
 p_{2,1,1} & = \frac{1}{10}, & p_{2,1,2} & = \frac{1}{10}, & p_{2,2,1} & = \frac{3}{10}, & p_{2,2,2} & = \frac{1}{5},
\end{align*}
\]

and \(A \):

\[
\begin{align*}
 a_{1,1,1} & = -\frac{9}{200}, & a_{1,1,2} & = \frac{11}{200}, & a_{1,2,1} & = -\frac{1}{200}, & a_{1,2,2} & = -\frac{1}{200}, \\
 a_{2,1,1} & = -\frac{1}{200}, & a_{2,1,2} & = -\frac{1}{200}, & a_{2,2,1} & = \frac{11}{200}, & a_{2,2,2} & = -\frac{9}{200}.
\end{align*}
\]

(32)

In fact these examples are obtained with the choices \(z = \left(\frac{3}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10} \right) \) and \(z = \left(\frac{3}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10}, \frac{1}{10} \right) \) respectively. See Appendix A for details.

5.5 Proof of Theorem 4

It follows from (8) and Remark 2(iii) that \((v) \Rightarrow (iii) \Rightarrow (ii) \Leftrightarrow (i) \). It also follows from (8) and Theorem 3(ii) that \((v) \Rightarrow (iv) \Rightarrow (i) \). We now show that \((i) \Rightarrow (v) \) which establishes the equivalence of \((i)-(v) \). Suppose \((i) \) holds. Then by Bochner’s theorem (Wendland, 2005, Theorem 6.6), we have that for all \(m \in [M] \),

\[
k_m(x_m, y_m) = \int_{\mathbb{R}^{d_m}} e^{-\sqrt{-1}(\omega_m, x_m - y_m)} \, d\Lambda_m(\omega_m), \quad x_m, y_m \in \mathbb{R}^{d_m},
\]

where \((\Lambda_m)_{m=1}^M \) are finite non-negative Borel measures on \((\mathbb{R}^{d_m})_{m=1}^M \) respectively. This implies

\[
\otimes_{m=1}^M k_m(x_m, y_m) = \otimes_{m=1}^M \int_{\mathbb{R}^{d_m}} e^{-\sqrt{-1}(\omega_m, x_m - y_m)} \, d\Lambda_m(\omega_m) = \int_{\mathbb{R}^d} e^{-\sqrt{-1}(\omega, x - y)} \, d\Lambda(\omega),
\]

where \(x = (x_1, \ldots, x_M) \in \mathbb{R}^d, \ y = (y_1, \ldots, y_M) \in \mathbb{R}^d, \ \omega = (\omega_1, \ldots, \omega_M) \in \mathbb{R}^d, \ d = \sum_{m=1}^M d_m \) and \(\Lambda := \otimes_{m=1}^M \Lambda_m \). Sriperumbudur et al. (2010, Theorem 9) showed that \(k_m \) is characteristic iff \(\text{supp} (\Lambda_m) = \mathbb{R}^{d_m} \), where \(\text{supp}(\cdot) \) denotes the support of its argument. Since \(\text{supp}(\Lambda) = \text{supp} (\otimes_{m=1}^M \Lambda_m) = \times_{m=1}^M \text{supp} (\Lambda_m) = \times_{m=1}^M \mathbb{R}^{d_m} = \mathbb{R}^d \), it follows that \(\otimes_{m=1}^M k_m \) is characteristic.

5.6 Proof of Theorem 5

The \(c_0 \)-kernel property of \(k_m \) \((m = 1, \ldots, M) \) implies that of \(\otimes_{m=1}^M k_m \). Moreover, \(X_m \)s are LCP spaces, hence \(\times_{m=1}^M X_m \) is also LCP.
(⇐) Assume that $\otimes_{m=1}^{M} k_m$ is c_0-universal. Since $\otimes_{m=1}^{M} \mathcal{M}_b(\mathcal{X}_m) \subseteq \mathcal{M}_b(\times_{m=1}^{M} \mathcal{X}_m)$, we have that for all $F = \otimes_{m=1}^{M} F_m \in \otimes_{m=1}^{M} \mathcal{M}_b(\mathcal{X}_m) \setminus \{0\},$

$$0 < \int_{\times_{m=1}^{M} \mathcal{X}_m} \int_{\times_{m=1}^{M} \mathcal{X}_m} \left(\prod_{m=1}^{M} k_m(x, x') \right) \mathcal{F}(x) \mathcal{F}(x') \prod_{m=1}^{M} k_m(x_m, x_m')$$

$$= \prod_{m=1}^{M} \int_{\mathcal{X}_m \times \mathcal{X}_m} k_m(x_m, x_m') \mathcal{F}_m(x_m) \mathcal{F}_m(x_m'),$$

where $x = (x_1, \ldots, x_M)$ and $x' = (x'_1, \ldots, x'_M)$. The above inequality implies

$$\int_{\mathcal{X}_m \times \mathcal{X}_m} k_m(x_m, x_m') \mathcal{F}_m(x_m) \mathcal{F}_m(x_m') > 0, \forall m \in [M].$$

Since $F \in \otimes_{m=1}^{M} \mathcal{M}_b(\mathcal{X}_m) \setminus \{0\}$ iff $F_m \in \mathcal{M}_b(\mathcal{X}_m) \setminus \{0\}$ for all $m \in [M]$, the result follows.

(⇒) Assume that k_m’s are c_0-universal. By the note above $\otimes_{m=1}^{M} k_m$ is c_0-kernel; its c_0-universality is equivalent to the injectivity of $\mu = \mu_{\otimes_{m=1}^{M} k_m}$ on $\mathcal{M}_b(\times_{m=1}^{M} \mathcal{X}_m)$. In other words, we want to prove that $\mu(F) = 0$ implies $F = 0$, where $F \in \mathcal{M}_b(\times_{m=1}^{M} \mathcal{X}_m)$. We will use the shorthand $\mathcal{H}_m = \mathcal{H}_{k_m}$ below.

Suppose there exists $F \in \mathcal{M}_b(\times_{m=1}^{M} \mathcal{X}_m)$ such that

$$\mu_F = \int_{\times_{m=1}^{M} \mathcal{X}_m} \left(\prod_{m=1}^{M} k_m(\cdot, x) \right) \mathcal{F}(x) = 0 \quad (\in \otimes_{m=1}^{M} \mathcal{H}_m).$$

(33)

Since \mathcal{X}_m’s are LCP, $\otimes_{m=1}^{M} \mathcal{B}(\mathcal{X}_m) = \mathcal{B}(\times_{m=1}^{M} \mathcal{X}_m)$ (Steinwart and Christmann, 2008, page 480). Hence, in order to get $F = 0$ it is sufficient to prove that

$$F(\times_{m=1}^{M} B_m) = 0, \quad \forall B_m \in \mathcal{B}(\mathcal{X}_m), m \in [M].$$

We will prove by induction that for $m = 0, \ldots, M$

$$(\otimes_{j=m+1}^{M} \mathcal{H}_j \ni) 0 = \int_{\times_{j=1}^{M} \mathcal{X}_j} \prod_{j=1}^{M} \chi_{B_j}(x_j) \otimes_{j=m+1}^{M} k_j(\cdot, x_j) \mathcal{F}(x)$$

$$= o(B_1, \ldots, B_m, k_{m+1}, \ldots, k_M), \forall B_j \in \mathcal{B}(\mathcal{X}_j), j \in [m],$$

(34)

which

(*) reduces to (33) when $m = 0$ by defining $\prod_{j=1}^{0} \chi_{B_j}(x_j) := 1$;

(†) for $m = M$, $\otimes_{m=M+1}^{M} \mathcal{H}_m$ is defined to be equal to \mathbb{R} and $\otimes_{m=M+1}^{M} k_m(\cdot, x_m) := 1$, in which case $o(B_1, \ldots, B_M) = F(\times_{j=1}^{M} B_j) = 0 \Rightarrow F = 0$, the result we want to prove.

From the above, it is clear that (34) holds for $m = 0$. Assuming (34) holds for some m, we now prove that it holds for $m+1$. To this end, it follows from (34) that $\forall h_{m+2} \in \mathcal{H}_{m+2}, \forall h_M \in \mathcal{H}_M,$

$$(\mathcal{H}_{m+1} \ni) 0 = o(B_1, \ldots, B_m, k_{m+1}, \ldots, k_M) (h_{m+2}, \ldots, h_M)$$

20
where we used the boundedness of k_{m+1} and therefore

\[\nu = \nu_{B_1, \ldots, B_m, h_{m+2}, \ldots, h_M}(B)\]

\[
= \int_{\chi_{m+1}} k_{m+1}(\cdot, x_{m+1}) \left[\prod_{j=1}^{m} \chi_{B_j}(x_j) \right] h_{m+2}(x_{m+2}) \cdots h_M(x_M) \, d\nu(x_{m+1}),
\]

where

\[
\nu(B) := \nu_{B_1, \ldots, B_m, h_{m+2}, \ldots, h_M}(B)
\]

\[
= \int_{\chi_{m+1}} \prod_{j=1}^{m} \chi_{B_j}(x_j) \left[\prod_{j=m+2}^{M} h_j(x_j) \right] \, d\nu(x_{m+1}), \quad B \in \mathcal{B}(\chi_{m+1}).
\]

By the c_0-universality of k_{m+1},

\[
\nu = 0 \quad \text{for} \quad \forall h_{m+2} \in \mathcal{H}_{m+2}, \ldots, \forall h_M \in \mathcal{H}_M
\]

provided that $\nu \in \mathcal{M}_b(\chi_{m+1})$, in other words if $|\nu|\chi_{m+1} < \infty$. This condition is met:

\[
|\nu|\chi_{m+1} \leq \int_{\chi_{m+1}} \prod_{j=m+2}^{M} \left[\langle h_j, k_{m+1}(\cdot, x_j) \rangle_{\mathcal{H}_j} \right] \, d|\mathbb{F}|(x)
\]

\[
\leq \|h_j\|_{\mathcal{H}_j} \sup_{x \in \chi_j, x' \in \chi_j} \sqrt{k_j(x, x')} < \infty,
\]

where we used the boundedness of k_{m+1} in the last inequality. (35) implies that for $\forall B_1 \in \mathcal{B}(\chi_1), \ldots, \forall B_{m+1} \in \mathcal{B}(\chi_{m+1})$ and $\forall h_{m+2} \in \mathcal{H}_{m+2}, \ldots, \forall h_M \in \mathcal{H}_M$

\[
0 = \nu(B_{m+1}) = \int_{\chi_{m+1}} \prod_{j=1}^{m+1} \chi_{B_j}(x_j) \left[\prod_{j=m+2}^{M} h_j(x_j) \right] \, d\mathbb{F}(x)
\]

\[
= \left(\otimes_{j=m+2}^{M} h_j \right) \int_{\chi_{m+1}} \prod_{j=1}^{m+1} \chi_{B_j}(x_j) \left[\otimes_{j=m+2}^{M} k_j(\cdot, x_j) \, d\mathbb{F}(x) \right]
\]

and therefore

\[
o(B_1, \ldots, B_{m+1}, k_{m+2}, \ldots, k_M) = \int_{\chi_{m+1}} \prod_{j=1}^{m+1} \chi_{B_j}(x_j) \left[\otimes_{j=m+2}^{M} k_j(\cdot, x_j) \, d\mathbb{F}(x) \right]
\]

\[
= 0 \quad (\in \otimes_{j=m+2}^{M} \mathcal{H}_j)
\]
for \(\forall B_1 \in \mathcal{B}(\mathcal{X}_1), \ldots, \forall B_{m+1} \in \mathcal{B}(\mathcal{X}_{m+1}) \), i.e., (34) holds for \(m+1 \). Therefore, by induction, (34) holds for \(m = M \) and the result follows from (†). To justify the convention in (†), consider the case of \(m = M - 1 \) in which case (34) can be written as

\[
\int_{\mathcal{X}_M} k_M(\cdot, x_M) \, d\nu(x_M) = 0,
\]

where

\[
\nu(B) = \int_{\times_{j=1}^{M} X_j} \prod_{j=1}^{M-1} \chi_{B_j}(x_j) \chi_B(x_M) \, d\Pi(x), \quad B \in \mathcal{B}(\mathcal{X}_M).
\]

Then by the \(\mathfrak{c}_0 \)-universal property of \(k_M \), since

\[
|\nu(\mathcal{X}_M)| \leq \int_{\times_{j=1}^{M} X_j} 1 \, d|\Pi|(x) = |\Pi|(\times_{j=1}^{M} X_j) < \infty
\]

we obtain

\[
\int_{\times_{j=1}^{M} X_j} \prod_{j=1}^{M} \chi_{B_j}(x_j) \, d\Pi(x) = \Pi(\times_{j=1}^{M} B_j) = 0, \forall B_1 \in \mathcal{B}(\mathcal{X}_1), \ldots, \forall B_M \in \mathcal{B}(\mathcal{X}_M).
\]

5.7 Proof of Example 3

The proof follows by a simple modification of that of Example 2 (Section 5.4). The equations of a witness \(A = [a_{i_1,i_2,i_3}]_{(i_m)_{m=1}^{3}} \in [2]^3 \) (and corresponding \(P = [p_{i_1,i_2,i_3}]_{(i_m)_{m=1}^{3}} \) for the non-\(\mathcal{L} \)-characteristic property of \(\otimes_{m=1}^{3} k_m \) take the form:

\[
\mathcal{A} \neq 0,
\]

\[
0 = \sum_{i_1,i_2,i_3=1}^{2} a_{i_1,i_2,i_3}, \quad \text{(36)}
\]

\[
0 = \sum_{i_1,i_2,i_3=1}^{2} \sum_{i'_1,i'_2,i'_3=1}^{2} \prod_{m=1}^{3} k_m(i_m,i'_m)a_{i_1,i_2,i_3}a_{i'_1,i'_2,i'_3}
\]

\[
= (a_{1,1,1} - a_{2,1,1})^2 + (a_{1,1,2} - a_{2,1,2})^2 + (a_{1,2,1} - a_{2,2,1})^2 + (a_{1,2,2} - a_{2,2,2})^2, \quad \text{(37)}
\]

where (36) and (37) are equivalent to

\[
0 = \sum_{i_1,i_2,i_3=1}^{2} a_{i_1,i_2,i_3}, \quad a_{1,1,1} = a_{2,1,1}, \quad a_{1,1,2} = a_{2,1,2}, \quad a_{1,2,1} = a_{2,2,1}, \quad a_{1,2,2} = a_{2,2,2}. \quad \text{(38)}
\]

While (38) is more restrictive than (27) and (28) (hence its solution set might even be empty), one can immediately see that the example of \(\mathcal{A} \neq 0 \) given in (31) and (32) fulfills (38) proving the non-\(\mathcal{L} \)-characteristic property of \(\otimes_{m=1}^{3} k_m \).
Acknowledgments

The authors profusely thank Ingo Steinwart for fascinating discussions on topics related to the paper and for contributing to Remark 7. The authors also thank the anonymous reviewers for their constructive comments that improved the manuscript. A part of the work was carried out while BKS was visiting ZSz at CMAP, École Polytechnique. BKS is supported by NSF-DMS-1713011 and also thanks CMAP and DSI for their generous support. ZSz is highly grateful for the Greek hospitality around the Aegean Sea; it greatly contributed to the development of the induction arguments.

Appendix A. Analytical Solution to (25)–(30) in Example 2

The solution of (25)–(30) takes the form

\[
p_{1,1,1} = -\frac{z_2 + z_1 + z_4 + z_5 - 3z_2z_1 - 4z_2z_4 - 4z_1z_4 - z_2z_3 - z_2z_0 - 2z_1z_3 - 3z_2z_5}{2z_2z_1 - z_1 - 2z_4 - z_3 - z_0 - 2z_5 - z_2 + 2z_2z_4 + 2z_1z_4 + 2z_2z_0 + 2z_1z_3 + 2z_2z_5},
\]

\[
p_{1,1,2} = z_2,
\]

\[
p_{1,2,1} = z_1,
\]

\[
p_{1,2,2} = z_4,
\]

\[
p_{2,1,1} = -\frac{z_4 + z_3 + z_0 + z_5 - 2z_2z_1 - z_1z_4 - z_2z_3 - 2z_2z_0 - 2z_1z_3 - 2z_2z_5}{2z_2z_1 - z_1 - 2z_4 - z_3 - z_0 - 2z_5 - z_2 + 2z_2z_4 + 2z_1z_4 + 2z_2z_0 + 2z_1z_3 + 2z_2z_5},
\]

\[
p_{2,1,2} = z_3,
\]

\[
p_{2,2,1} = z_0,
\]

\[
p_{2,2,2} = z_5,
\]
form, where \(z = (z_0, z_1, \ldots, z_5) \in \mathbb{R}^6 \) satisfies

\[
0 \leq (2z_0z_2 - z_1 - z_2 - z_3 - 2z_4 - 2z_5 - z_0 + 2z_0z_3 + 2z_1z_2 + 2z_0z_4 + 2z_1z_3 + 2z_0z_5 \\
+ 2z_1z_4 + 2z_1z_5 + 2z_2z_4 + 2z_2z_5 + 2z_3z_4 + 2z_3z_5 + 4z_4z_5 + 2z_4^2 + 2z_5^2) \\
\times \\
(z_0 - z_3 - z_4 - z_5 - z_0z_1 - z_0 - z_1z_2 + z_0z_3 - z_2z_3 - z_1z_5 - 2z_2z_4 - 2z_3z_5 \\
+ 2z_3z_5 + 2z_0z_2^2 + 2z_1z_2^2 + 2z_2z_2^2 + 2z_0z_4^2 + 2z_1z_4^2 + 2z_2z_4^2 + 2z_3z_4^2 + 2z_1z_5^2 \\
+ 2z_2z_5^2 + 2z_3z_5^2 + 2z_3z_5^2 + 2z_0z_2^2 + 2z_1z_2^2 + 2z_2z_2^2 + 2z_0z_4^2 + 2z_1z_4^2 + 2z_2z_4^2 \\
+ 2z_3z_4^2 + 2z_1z_5^2 \\
+ 2z_2z_5^2 + 2z_3z_5^2 + 2z_0z_1z_2 + 2z_0z_1z_3 + 2z_0z_1z_4 + 2z_0z_2z_3 + 2z_0z_1z_5 + 4z_0z_2z_4 + 2z_1z_2z_3 + 2z_0z_2z_5 \\
+ 2z_0z_3z_4 + 6z_1z_2z_5 + 4z_1z_3z_4 + 2z_0z_4z_5 + 2z_1z_3z_5 + 2z_2z_3z_4 + 6z_1z_4z_5 \\
+ 2z_2z_3z_5 + 6z_2z_4z_5 + 2z_3z_4z_5),
\]

\[
0 \leq (2z_0z_2 - z_1 - z_2 - z_3 - 2z_4 - 2z_5 - z_0 + 2z_0z_3 + 2z_1z_2 + 2z_0z_4 + 2z_1z_3 + 2z_0z_5 \\
+ 2z_1z_4 + 2z_1z_5 + 2z_2z_4 + 2z_2z_5 + 2z_3z_4 + 2z_3z_5 + 4z_4z_5 + 2z_4^2 + 2z_5^2) \\
\times \\
(z_1 - 2z_2 - z_2 - z_3 - 5z_0z_1 - 3z_0z_3 - z_1 - z_0z_4 - 2z_0z_5 + z_1z_4 - z_2z_3 + z_2z_4 \\
- z_3z_4 - 2z_2z_5 + 2z_0z_2^2 + 2z_0z_4^2 + 2z_0z_2^2 + 2z_1z_2^2 + 2z_2z_4^2 + 2z_0z_4^2 + 4z_0z_2^2 + 2z_3z_5^2 \\
+ 2z_1z_2^2 + 2z_2z_5^2 + 2z_3z_5^2 + 2z_3z_4^2 + 4z_3z_5^2 + 2z_3z_5^2 + 4z_4z_5^2 + 2z_2z_5^2 - z_0^2 - z_3^2 + z_4^2 \\
- z_5^2 + 2z_3^2 + 2z_5^2 + 2z_0z_1z_2 + 2z_0z_1z_3 + 2z_0z_1z_4 + 2z_0z_2z_3 + 2z_0z_1z_5 + 2z_0z_2z_4 + 2z_1z_2z_3 \\
+ 4z_0z_2z_5 + 4z_0z_3z_4 + 6z_0z_3z_5 + 2z_1z_2z_5 + 2z_1z_3z_4 + 6z_0z_4z_5 + 4z_1z_3z_5 + 2z_2z_3z_4 \\
+ 2z_1z_4z_5 + 2z_2z_3z_5 + 2z_2z_4z_5 + 2z_3z_4z_5),
\]

\[
2z_0z_2 + 2z_0z_3 + 2z_1z_2 + 2z_0z_4 + 2z_1z_3 + 2z_0z_5 + 2z_1z_4 + 2z_1z_5 + 2z_2z_4 + 2z_2z_5 \\
+ 2z_3z_4 + 2z_3z_5 + 4z_4z_5 + 2z_4^2 + 2z_5^2 \neq z_0 + z_1 + z_2 + z_3 + 2z_4 + 2z_5,
\]

\[
(2z_0z_2 - z_1 - z_2 - z_3 - 2z_4 - 2z_5 - z_0 + 2z_0z_3 + 2z_1z_2 + 2z_0z_4 + 2z_1z_3 + 2z_0z_5 \\
+ 2z_1z_4 + 2z_1z_5 + 2z_2z_4 + 2z_2z_5 + 2z_3z_4 + 2z_3z_5 + 4z_4z_5 + 2z_4^2 + 2z_5^2) \\
\times \\
(z_1 + z_2 + z_4 + z_5 - 2z_0z_1 - z_0z_3 - z_1 - 2z_0z_4 - 2z_1z_3 - z_0z_5 - 4z_1z_4 \\
- z_2z_3 - 3z_1z_5 - 4z_2z_4 - 3z_2z_5 - 2z_3z_4 - z_3z_5 - 4z_4z_5 + 2z_0z_2^2 + z_1z_2^2 + 2z_3z_5^2 \\
+ 2z_0z_2^2 + 2z_3z_5^2 + 4z_1z_2^2 + 2z_2z_2^2 + 2z_1z_4^2 + 2z_2z_4^2 + 2z_2z_5^2 + 2z_3z_4^2 \\
+ 2z_2z_5^2 + 2z_3z_5^2 + 4z_4z_5^2 - z_1^2 - z_2^2 - 3z_4^2 + 2z_1z_4^2 + 2z_3z_5^2 \\
+ 2z_0z_1z_2 + 2z_0z_1z_3 + z_2z_0z_2z_3 + 2z_2z_0z_2z_4 + 2z_1z_2z_5 + 2z_0z_2z_5 \\
+ 2z_0z_3z_4 + 6z_1z_2z_5 + 4z_1z_3z_4 + 2z_0z_4z_5 + 2z_1z_3z_5 + 2z_2z_3z_4 + 6z_1z_4z_5 \\
+ 2z_2z_3z_5 + 6z_2z_4z_5 + 2z_3z_4z_5) \leq 0,
\]

\[
(2z_0z_2 - z_1 - z_2 - z_3 - 2z_4 - 2z_5 - z_0 + 2z_0z_3 + 2z_1z_2 + 2z_0z_4 + 2z_1z_3 + 2z_0z_5 \\
+ 2z_1z_4 + 2z_1z_5 + 2z_2z_4 + 2z_2z_5 + 2z_3z_4 + 2z_3z_5 + 4z_4z_5 + 2z_4^2 + 2z_5^2) \\
\times \\
(z_0 + z_3 + z_4 + z_5 - 2z_0z_1 - 2z_0z_2 - 3z_0z_3 - z_1 - 2z_0z_4 - 2z_1z_3 - 4z_0z_5 \\
- z_1z_4 - 2z_2z_3 - 2z_1z_5 - 2z_2z_5 - 3z_3z_4 - 4z_3z_5 - 4z_4z_5 + 2z_0z_2^2
\]
Characteristic and Universal Tensor Product Kernels

\[+2z_0z_3^2 + 2z_0^2z_3 + 2z_0z_4^2 + 2z_1z_3^2 + 2z_1z_4^2 + 4z_0z_5^2 + 2z_0^2z_5 + 2z_1z_5^2 + 2z_2z_5^2 \]
\[+2z_3z_4^2 + 2z_3^2z_4 + 4z_3z_5^2 + 2z_3^2z_5 + 4z_4z_5^2 + 2z_4^2z_5 - z_0^2 - z_3^2 - z_4^2 - 3z_5^2 + 2z_5^3 \]
\[+2z_0z_1z_2 + 2z_0z_1z_4 + 2z_0z_1z_5 + 2z_0z_2z_3 + 2z_0z_2z_4 + 2z_1z_2z_3 \]
\[+4z_0z_3z_5 + 4z_0^2z_3 + 6z_0z_3z_5 + 2z_1z_2z_5 + 2z_1z_3z_4 + 6z_0z_4z_5 + 4z_1z_3z_5 \]
\[+2z_2z_3z_4 + 2z_1z_4z_5 + 2z_2z_3z_5 + 2z_2z_4z_5 + 6z_3z_4z_5 \leq 0, \]

and \(0 \leq z_0, z_1, z_2, z_3, z_4, z_5 \leq 1. \)

The above analytic solution to (25)–(30) is obtained by symbolic math programming in MATLAB.

References

L. Klebanov. *N-Distances and Their Applications*. Charles University, Prague, 2005.

