
Journal of Machine Learning Research 22 (2021) 1-5 Submitted 3/20; Revised 7/21; Published 8/21

TensorHive: Management of Exclusive GPU Access
for Distributed Machine Learning Workloads

Pawe l Rościszewski pawel.rosciszewski@pg.edu.pl

Micha l Martyniak michal.martyniak@linux.pl

Filip Schodowski filipschodowski@gmail.com

Department of Computer Architecture, Faculty of Electronics, Telecommunications and Informatics,

Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12 80-233 Gdańsk, Poland

Editor: Andreas Mueller

Abstract

TensorHive is a tool for organizing work of research and engineering teams that use
servers with GPUs for machine learning workloads. In a comprehensive web interface, it
supports reservation of GPUs for exclusive usage, hardware monitoring, as well as config-
uring, executing and queuing distributed computational jobs. Focusing on easy installation
and simple configuration, the tool automatically detects the available computing resources
and monitors their utilization. Reservations granted on the basis of flexible access control
settings are protected by pluggable violation hooks. The job execution module includes
auto-configuration templates for distributed neural network training jobs in frameworks
such as TensorFlow and PyTorch. Documentation, source code, usage examples and issue
tracking are available at the project page: https://github.com/roscisz/TensorHive/

Keywords: GPU reservation, access control, hardware monitoring, job orchestration

1. Background and Motivations

In the face of the spectacular improvements in many practical applications introduced by
deep learning (LeCun et al., 2015), both research and engineering teams all over the world
are equipped with computing accelerators such as GPUs for neural network training. Be-
cause such emerging work groups are often formed for the needs of specific projects with
varying requirements and the GPU specifications are rapidly changing, we argue that there
is an increasing need for GPU management approaches that are easy to set up and tailored
for contemporary machine learning workloads. At the same time, quality of the trained
models depends heavily on the sizes of training data sets and trained models, as well as
experimental optimization of multiple hyper-parameters (Hestness et al., 2017). This makes
model training workloads heavy enough to consider speeding them up by combining comput-
ing power of multiple accelerators using data and model parallelism methods (Dean et al.,
2012). Distributed implementations based on deep learning frameworks such as TensorFlow
(Abadi et al., 2016) and PyTorch (Paszke et al., 2019) require new job orchestration tools.

In high performance computing (HPC), sharing computing resources between multiple
users is often organized using batch queuing systems such as SLURM, an open-source, highly
scalable job scheduling system for Linux clusters proposed by Yoo et al. (2003). In such
systems, access to resources is granted to users for some duration of time, based on certain

c©2021 Pawe l Rościszewski, Micha l Martyniak and Filip Schodowski.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v22/20-225.html.

https://github.com/roscisz/TensorHive/
https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v22/20-225.html


Rościszewski, Martyniak and Schodowski

priorities and limits. Users submit their computational tasks to queues for execution in the
future. Although this has been the usual use case in HPC systems, we would like to point
out the importance of another one, which we find useful for the aforementioned machine
learning work groups: reserving in advance some duration of time when exclusive access to
selected GPUs is granted to the user. This way, not only workloads prepared beforehand
can be executed, but also interactive work is supported, including experimentation and
iterative code development. This is often desirable in neural network training applications,
because it allows for debugging, babysitting the models, tuning the training programs to
the capabilities of the specific GPUs, testing various training parameters such as batch size,
model modifications, data augmentation modes, etc.

Resource allocation for immediate interactive work is possible in SLURM using salloc,
but reservation for future is only available for super users that have access to the scontrol
command. SLURM’s modular design and flexible plugin mechanism has allowed to intro-
duce multiple features and tools, such as generic resource scheduling1 that allows to manage
GPU allocation or the ”SLURM-web” web application frontend2. However, although sim-
plicity was one of the main design goals of Yoo et al. (2003), using the additional plugins
and tools developed over the years complicates the installation and configuration process.

Some overhead has also to be added to the basic administration effort (significant itself)
required to enable convenient running of distributed trainings on platforms specialized for
other use cases. For example, tf-operator3 for the container orchestration system Kubernetes
(Burns et al., 2016) or tf-yarn4 for the big data computing resource negotiator Apache
Hadoop YARN (Vavilapalli et al. 2013). Our motivation is to develop a standalone solution
tailored for typical model training scenarios, that would work out of the box.

In this paper we propose TensorHive, an open-source GPU management tool that
combines exclusive GPU reservations with job execution and monitoring, while focusing on
user-friendliness, simple configuration and support for frameworks and scenarios typical for
high performance machine learning. We describe key features of the tool in Section 2, a
technical overview in Section 3 and we summarize the paper in Section 4.

2. Key Features

The key features of TensorHive can be divided into three categories: reservations, job
execution and monitoring described in Sections 2.1, 2.2 and 2.3, respectively.

2.1 Reservations

Long term overview: A table with long-term overview of GPU occupancy. Available GPUs
grouped by host constitute the table rows, while columns represent consecutive hours in a
chosen time span. Cell colors represent the reservation status (free, reserved by someone
else, reserved by the user). The overview is useful for narrowing the set of considered GPUs,
especially when the number of available GPUs is too high for detailed visualization. Hosts
or GPUs selected in this view will be shown in the reservation calendar.

1. See https://slurm.schedmd.com/gres.html.
2. See https://github.com/edf-hpc/slurm-web.
3. See https://github.com/kubeflow/tf-operator.
4. See https://github.com/criteo/tf-yarn.

2

https://slurm.schedmd.com/gres.html
https://github.com/edf-hpc/slurm-web
https://github.com/kubeflow/tf-operator
https://github.com/criteo/tf-yarn


TensorHive

Reservation calendar: A calendar widget focused on chosen 7 days. Sub-columns for each
day, corresponding to the consecutive GPUs, are filled with boxes containing reservation
owner’s usernames and short reservation descriptions. New reservations can be made by
interacting with the calendar widget, and specifying the details in a dialog panel. Overriding
existing reservations is forbidden, cancellation is available to owners and superusers.

Access control: Administrators can grant specific users (or groups) access to specific
devices (or nodes), in flexibly configurable time windows (e.g. Mondays 8AM-4PM).

Violation handlers: The TensorHive core program actively monitors the processes that
use each GPU. If one of them belongs to a user who does not own the current reservation,
configurable violation handlers are called, including informing the offender via interactive
terminals and sending appropriate e-mail to the offender and system admin.

Usage statistics: Among the details of already outdated reservations, usage statistics are
available, such as average GPU utilization throughout the reservation time.

2.2 Job Execution

Definition: Jobs in TensorHive are coherently managed groups of tasks - shell commands
composed from interlaced static and variable fields. The latter can be used for conveniently
duplicating commands and changing only certain parameters. Assigning tasks to specific
devices results in executing them on the appropriate hosts and setting the appropriate value
of the CUDA VISIBLE DEVICES environment variable.

Queue for non-reserved time: Users can add jobs to a queue, so that they will be au-
tomatically executed by TensorHive when it detects a longer period when all resources
required by the job tasks are not reserved.

Templates: Defining training tasks for chosen frameworks is vastly simplified by tem-
plates that automatically configure cluster definition arguments, including TF CONFIG
and standard command-line parameters for TensorFlow and PyTorch. Usage examples for
each template are provided in the examples/ directory.

Attaching to interactive process sessions: Each process is executed within GNU screen.
This allows for example to gain interactive control over the process by logging to the ap-
propriate host and attaching to the process session using the screen -x option.

2.3 Monitoring

A re-arrangable chart dashboard presents the following parameters of auto-detected devices:

GPU and CPU state: Time series charts show recent values of various GPU and CPU
attributes, including utilization and memory usage.

GPU process monitoring: Processes that currently use GPUs on the selected host are
listed in a table with owner usernames, PIDs and executed commands in columns.

3. Technical Overview

Essentially, TensorHive is a Python program that maintains SSH connections to a set of
hosts and provides a REST API for convenient interaction with them. Although the API
could be useful via various kinds of user interfaces (for example command-line scripts using
curl), the tool provides also a dedicated web application in Vue.js, self-hosted by default.

3



Rościszewski, Martyniak and Schodowski

Supported platforms: TensorHive is a package for Python v3.5+, developed and tested
on various distributions of GNU/Linux including Debian Buster and Ubuntu 18.04, both
on the hosting and the monitored nodes. For connectivity, TensorHive requires that SSH
connections are possible from the appropriate user on the hosting node to the monitored
nodes without password authentication. We suggest key-based authentication, which is of-
ten already configured in target environments. For GPU monitoring, nvidia-smi is required.
Installation: Current version with all dependencies can be installed using pip install

tensorhive. For a specific version of the repository directory pip install . can be used.
Configuration and running: By default, configuration files will be installed in the home
configuration directory: ∼/.config/TensorHive. Minimal configuration requires only
providing hostnames and usernames for logging into the available computing nodes in
hosts config.json. Advanced options, including listening URLs, paths and violation han-
dler settings, can be found in main config.json, while e-mail settings for warnings in mail-
bot config.json. The tool is launched simply by executing the tensorhive command, which
also provides additional options (see tensorhive --help for usage and tensorhive init

for semi-automatic configuration wizard that is automatically started in the first run).
Advanced authorization for job execution: Users who wish to use the job execution fea-
ture need to authorize the tool to log in to their respective accounts via SSH. Authoriza-
tion can be easily granted or revoked by adding/removing the public TensorHive key
to .ssh/authorized keys on the appropriate hosts. The public key is available through the
tensorhive key command and on the web application login page.
Development: TensorHive is distributed under the Apache Licence 2.0, versioned under
a git repository, following the git-flow pattern, hosted on GitHub. We use GitHub issue
tracking tools for bug and feature reports, as well as code review through pull requests.
Code quality is inspected by the flake8 and mypy tools, and chosen parts of the core code
are subject to unit tests during build checks on continuous integration platforms.

4. Summary

TensorHive is an open-source tool that facilitates efficient coordination of exclusive access
to computing resources for machine learning workloads by introducing a hybrid mechanism
of reservations and job queuing. The monitoring and job execution modules along with
reservation violation handlers encourage the users to fully utilize the granted resources,
while the flexible access control rules allow the admins to look after proper resource usage.

Acknowledgments

This work has been partially supported by Statutory Funds of Electronics, Telecommunica-
tions and Informatics Faculty, Gdańsk University of Technology that provided the NVIDIA
DGX servers for deployment tests. The work was partially supported within grant funded by
the European Union Regional Operation Program for the Pomeranian Voivodship for years
2014-2020 based on the Resolution no 190/214/17 of the Pomeranian Voivodship Board.
The authors would like to thank the top TensorHive contributors: Bartosz Jankowski,
Tomasz Menet, Martyna Oleszkiewicz, Mateusz Piotrowski and Jacek Szempliński.

4



TensorHive

References

Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and John Wilkes. Borg,
Omega, and Kubernetes. Commun. ACM, 59(5):50–57, 2016. URL http://doi.acm.

org/10.1145/2890784.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and others. Large
scale distributed deep networks. In Advances in Neural Information Pro-
cessing Systems, pages 1223–1231, 2012. URL http://papers.nips.cc/paper/

4687-large-scale-distributed-deep-networks.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan
Kianinejad, Md Patwary, Mostofa Ali, Yang Yang, and Yanqi Zhou. Deep Learning
Scaling is Predictable, Empirically. arXiv preprint arXiv:1712.00409, 2017.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):
436–444, May 2015. ISSN 0028-0836, 1476-4687. doi: 10.1038/nature14539. URL http:

//www.nature.com/doifinder/10.1038/nature14539.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style-high-performance-deep-learning-library.

pdf.

Vinod Kumar Vavilapalli, Siddharth Seth, Bikas Saha, Carlo Curino, Owen O’Malley, San-
jay Radia, Benjamin Reed, Eric Baldeschwieler, Arun C. Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe, and Hitesh Shah.
Apache Hadoop YARN: yet another resource negotiator. In Proceedings of the 4th an-
nual Symposium on Cloud Computing - SOCC ’13, pages 1–16, Santa Clara, Califor-
nia, 2013. ACM Press. ISBN 978-1-4503-2428-1. doi: 10.1145/2523616.2523633. URL
http://dl.acm.org/citation.cfm?doid=2523616.2523633.

Andy B. Yoo, Morris A. Jette, and Mark Grondona. SLURM: Simple Linux Utility for
Resource Management. In Dror Feitelson, Larry Rudolph, and Uwe Schwiegelshohn,
editors, Job Scheduling Strategies for Parallel Processing, Lecture Notes in Computer
Science, pages 44–60, Berlin, Heidelberg, 2003. Springer. ISBN 978-3-540-39727-4. doi:
10.1007/10968987 3.

5

http://doi.acm.org/10.1145/2890784
http://doi.acm.org/10.1145/2890784
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks
http://www.nature.com/doifinder/10.1038/nature14539
http://www.nature.com/doifinder/10.1038/nature14539
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://dl.acm.org/citation.cfm?doid=2523616.2523633

	Background and Motivations
	Key Features
	Reservations
	Job Execution
	Monitoring

	Technical Overview
	Summary

