
Journal of Machine Learning Research 3 (2002) 483-506 Submitted 6/02; Published 11/02

On Boosting with Polynomially Bounded Distributions

Nader H. Bshouty bshouty@cs.technion.ac.il

Dmitry Gavinsky demitry@cs.technion.ac.il

Department of Computer Science
Technion
Haifa, Israel, 32000

Editor: Philip M. Long

Abstract

We construct a framework which allows an algorithm to turn the distributions produced by
some boosting algorithms into polynomially smooth distributions (w.r.t. the PAC oracle’s
distribution), with minimal performance loss.

Further, we explore the case of Freund and Schapire’s AdaBoost algorithm, bounding
its distributions to polynomially smooth. The main advantage of AdaBoost over other
boosting techniques is that it is adaptive, i.e., it is able to take advantage of weak hy-
potheses that are more accurate than it was assumed a priori. We show that the feature
of adaptiveness is preserved and improved by our technique.

Our scheme allows the execution of AdaBoost in the on-line boosting mode (i.e., to
perform boosting “by filtering”). Executed this way (and possessing the quality of smooth-
ness), now AdaBoost may be efficiently applied to a wider range of learning problems than
before.

In particular, we demonstrate AdaBoost’s application to the task of DNF learning using
membership queries. This application results in an algorithm that chooses the number
of boosting iterations adaptively, and, consequently, adaptively chooses the size of the
produced final hypothesis. This answers affirmatively a question posed by Jackson.

1. Introduction

Boosting, first introduced by Schapire (1990), is a learning method which demonstrates
learning-theoretic equivalence between two learning models: the model of distribution-free
(strong) PAC-learning and that of distribution-free weak PAC-learning. The PAC-model
was first introduced by Valiant (1984), the strong and the weak cases were distinguished
by Kearns and Valiant (1994).

The general framework for boosting is as follows. Suppose that we are dealing with some
binary concept class, say C, which is a subclass of all functions from a domain X to {−1, 1},
and that there exists some concept f ∈ C “known” to an oracle. Each time it is called, the
oracle provides the learner with an instance x ∈ X, chosen according to some fixed but
unknown to the learner target distribution D and with the corresponding labeling f(x) of
the instance. In the distribution-free (strong) PAC-learning model, the learner’s aim is to
produce, with probability at least 1− δ, a final hypothesis h(x) which (1− ε)-approximates
the concept c w.r.t. the distribution D, when ε and δ are parameters passed to the learner.

c©2002 Nader H. Bshouty and Dmitry Gavinsky.

Bshouty and Gavinsky

In the framework of boosting, the learner is supplied with an auxiliary algorithm WL
(the weak learner) which, according to the distribution-free weak PAC-learning model,
satisfies the following. Given an access to the standard PAC-oracle that answers according
to some target function f ∈ C over the distribution Di,

1 WL produces a hypothesis hi,
which is a (possibly real-valued) mapping from X to [−1, 1], s.t.

1
2
− γi = εi , E

Di

[|f(x)− hi(x)|
2

]
≤ 1

2
− γmin

for some γmin with confidence 1− δi (i.e., with probability at least 1− δi). Note that γmin

is defined as a function of other parameters (n and δ) for a specific weak learner; in order
for the learner to be efficient, γmin should be inverse polynomial.

The booster is allowed to use WL as a subroutine, sequentially providing distributions
Di and receiving corresponding weak hypotheses hi; afterwards it combines the received
weak hypotheses in some manner producing the (potentially) strong PAC-hypothesis hf .
This “coupling” of booster and weak learner should possess all qualities required from a
learner by the standard distribution-free PAC model and its complexity bounds should be
polynomial in all the allowed complexity parameters.

One of the possibilities for choosing complexity parameters (which we adopt here) is
as follows. We denote by n the value of log X, or, in other words, the length of an in-
stance representation (e.g., in Section 6 we will use X = {0, 1}n). Similarly, by s we denote
the (minimal) representation length of the target f . For both the strong and the weak
PAC learning models, our set of complexity parameters includes n, s and the confidence
parameter δ; for the strong model we also add ε to the set.

1.1 Smooth Boosting

Sometimes an additional restriction is put upon the booster: all the distributions Di should
be polynomially smooth w.r.t. D or polynomially near-D, i.e., for all i and all x ∈ X it should
hold that Di(x) ≤ D(x) · α, where α is the smoothness parameter and must be bounded
above by a polynomial in (strong) PAC complexity parameters, as described above.

Among the known applications for this restriction are noise-tolerant learning (Freund,
1999, Domingo and Watanabe, 2000, Servedio, 2001), learning via extended statistical
queries Bshouty and Feldman (2001), agnostic learning (Ben-David, Long and Mansour,
2001, Gavinsky, 2002), and learning concept classes using weak learning algorithms whose ef-
ficiency depends on the smoothness of the provided distribution Di. Sometimes the smooth-
ness restriction makes sense when the target distribution D is polynomially near-uniform, as
it happens in the case of DNF membership learning (Jackson, 1997, Klivans and Servedio,
1999) considered in Section 6. Naturally, in this case all the (near-D) distributions Di are
polynomially near-uniform.

There exist a number of known smooth boosting algorithms (Freund, 1990, 1992, Kli-
vans and Servedio, 1999, Freund, 1999, Domingo and Watanabe, 2000, Servedio, 2001),
which show learning-theoretic equivalence between poly-distribution-dependent strong PAC
learning and poly-distribution-dependent weak PAC learning. In other words, suppose that

1. Index i is used here for correspondence with further notation.

484

On Boosting with Polynomially Bounded Distributions

we have certain family of “favorable” distributions (over X), and we say that a distribu-
tion D is polynomially-close to the family if the infimum of the smoothness parameters
of D w.r.t. the favorable family members is polynomially bounded. The following fact is
implied by the existence of smooth boosting algorithms: Whenever a weak learner may
be constructed which performs efficiently under distributions polynomially-close to favor-
able, a strong learner may be constructed whose performance would be efficient under those
distributions. In particular, this holds for the case of (near-)uniform DNF learning.

1.2 Boosting Modes: Filtering versus Sampling

Boosting by sampling means that the learning is performed in two stages. In the first stage
the algorithm collects a sufficient number of learning examples (i.e., a subset S ⊂ X) and in
the second stage it performs the learning over this collection of examples only. The training
collection S is polynomial in size.

After achieving a certain accuracy of the final hypothesis on the training set, information-
theoretic techniques (based on Occam’s Razor principle, VC dimension, etc.) may be applied
to measure the overall accuracy (i.e., w.r.t. some distribution over X) of this hypothesis.
The latter stage is sometimes called generalization and the (additional) error introduced by
the domain widening is referred to as generalization error.

A possible reason for adopting this approach is that the booster is not smooth. A
distribution which is not polynomially near-D cannot be efficiently simulated over a super-
polynomially large domain.

On the other hand, the meaning of boosting by filtering is that the booster takes the
whole set of instances as its learning domain. The examples received by the booster are not
stored (the set S used by a sampling algorithm), but are “filtered”: after being received from
the PAC-oracle, an example is either forwarded to the current session of WL or “rejected”
(i.e., not used at all).

This approach has two obvious advantages over boosting by sampling: the space com-
plexity is reduced because of not storing the examples and no generalization error is in-
troduced. At the same time, the analysis and the algorithm itself become slightly more
complicated, as now the booster cannot get exact “statistics” by running through all the
instances of the domain and needs to use some estimation schemes (based on Chernoff-like
bounds).

As mentioned above, boosting by filtering may be used only if the underlying booster is
polynomially smooth.

1.3 Our Results

A boosting algorithm which is not smooth may, on the other hand, possess some other
“valuable properties”; we show that when certain assumptions regarding the algorithm’s
structure hold, it is possible to “force” the booster to produce only polynomially-smooth
distributions. Moreover, our modification seems to be rather “neutral” towards other char-
acteristics of the booster; in particular, in the specific case considered below we show that
all the required properties of the booster are preserved when we apply our technique.

After introducing our technique, we will consider the case of the AdaBoost algorithm
which was invented by Freund and Schapire (1997). This algorithm’s main “valuable prop-

485

Bshouty and Gavinsky

erty” is adaptiveness ; informally, this means that the algorithm is able to take advantage
of weak hypotheses which are more accurate than it was assumed a priori A more formal
definition of adaptiveness and further discussion may be found in Section 5.

Originally, the AdaBoost algorithm was designed so that different weak hypotheses
“play different roles” in the final hypothesis: The final hypothesis is constructed in a form
of weighted majority vote over weak hypotheses, and the weights are assigned in accordance
with individual accuracies of the weak hypotheses; more accurate weak hypotheses receive
more weight in the final construction. However, AdaBoost is (exponentially) not smooth
(a proof may be found in Subsection 4.2).

Using our technique, we transform AdaBoost into a smooth booster, while the feature of
adaptiveness is preserved (and in a sense improved, as we show in Section 5). In particular,
we construct a modification of AdaBoost’s that works by filtering. Then we apply the mod-
ified AdaBoost to the task of learning DNF using membership queries, thus affirmatively
answering the question posed by Jackson (1997).

In this connection, interesting work by Domingo and Watanabe (2000) should be men-
tioned. They construct a smooth modification of AdaBoost (which they call MadaBoost);
however, their result is shown to be adaptive only for a decreasing sequence of weak hypothe-
ses accuracies (i.e., when γi’s declines as a function of i), which seems to be a quite strong
limitation. Besides, their result applies only to the case of binary-valued weak hypotheses.

2. Definitions and Notation

We call a boosting algorithm producing only polynomially near-D distributions polynomially
near-D (the word “polynomially” will be omitted sometimes).

Let B be a boosting algorithm learning some concept class C and using a weak learning
algorithm WL. Consider the way B produces its final hypothesis from the weak hypotheses
received during the boosting iterations: For example, the final hypothesis may be con-
structed as a weighted majority vote over all the received weak hypotheses (which is the
case for AdaBoost). In such a final hypothesis structure, one interesting feature can be
observed. Suppose that some weak hypothesis hi which “appears” in the final hypothesis
construction hf is replaced by another hypothesis h′i (locally, not affecting the other parts
of the final hypothesis construction). Then, in the worst case, such change may increase
the overall classification error of the final hypothesis by the value of

ε′ , Pr
x∼D

[
hi(x) = f(x), h′i(x) 6= f(x)

]
;

in particular, it holds that
ε′ ≤ Pr

x∼D

[
h′i(x) 6= hi(x)

]
.

We call a final hypothesis structure possessing this quality and boosting algorithms pro-
ducing such hypotheses accuracy preserving.

Throughout this essay we denote the mean value of a random variable V by µ [V]. We
denote the value of

Pr
x∼D

[h(x) 6= f(x)]

by ErrD [h(x)], when the value of corresponding f is clear from the context.

486

On Boosting with Polynomially Bounded Distributions

3. Providing Near-D Bounds to Distributions

In this section we develop our technique for making the distributions generated by a boosting
algorithm for a weak learner smooth.

Consider an accuracy preserving boosting algorithm B which collects T weak hypotheses
before halting: If after the final hypothesis is constructed we add error of no more than ε′

to each one of the T weak hypotheses, this may result, in the worst case, in T · ε′ additional
inaccuracy in the final hypothesis.

The modification we perform over B may be viewed as an additional layer constructed
between the original booster and the weak learner. Naturally, the booster estimates some
random values during its execution; in this introductory subsection, for simplicity and
generality, we “assume” that we know exactly all the mean values that we need.

i

hi

iD’

h’i

iD’

Di

hi

D

modified booster

WB

original boosting scheme

B W

ih

Figure 1: Modified boosting scheme

In order to perform our construction, we assume that for each distribution Di supplied
by B to the weak learner we can efficiently estimate the probability assigned by Di to any
instance x ∈ X. Below we show that this assumption is valid for AdaBoost.

Suppose that in the i’th stage the booster intends to provide a distribution Di to the
weak learner that is “too rough”: This means that at least one instance x0 ∈ X has

Di(x0) > η ·D(x0),

for some η to be fixed later. In this case the intermediate layer acts in the following manner.
First it estimates the total weight w.r.t. Di of all the instances x ∈ X whose weight is above
η ·D(x); if this weight exceeds 3

4 , the weak learner is not called at all and an arbitrary
hypothesis (e.g., const. −1) is returned to the booster. Otherwise, our intermediate layer
“suppresses” all those instances whose weight exceeds η ·D(x); i.e., those instances are not
allowed to pass from the booster to the weak learner when the booster tries to send them.
As a result of such “filtering”, WL may, in general, be faced with a distribution different

487

Bshouty and Gavinsky

from Di; we denote this new distribution by D′
i. For a chart describing our modification,

see Figure 1.
According to the above principle, WL either was or was not executed during the i’th

stage. It can be seen that if WL was executed then

D′
i(x) =

{
Di(x)

Prx∼Di
[Di(x)≤η·D(x)] Di(x) ≤ η ·D(x)

0 otherwise
. (1)

Because in this case

Pr
x∼Di

[Di(x) ≤ η ·D(x)] ≥ 1
4
,

we have

D′
i(x) ≤ Di(x)

Prx∼Di [Di(x) ≤ η ·D(x)]
≤ η ·D(x)

Prx∼Di [Di(x) ≤ η ·D(x)]
≤ 4η ·D(x),

and the resulting distribution is therefore (4η)-near-D.
Therefore, the newly introduced layer successfully makes the general boosting scheme

smooth, from WL’s “point of view” (i.e., WL sees only smooth distributions). It remains
to check what happens on B’s side – whether the received weak hypotheses may be used in
order to construct a successful final hypothesis. In general, the weak hypotheses returned
to the booster do not meet the requirements of the weak learner. For example, this can be
easily observed in a case when a constant −1 hypothesis is returned to the booster.

In order to improve the situation, we “force” the boosting algorithm to behave as if all
the “high weight instances” of the distribution Di (i.e., such x ∈ X that Di(x) > η ·D(x))
were classified correctly by the weak hypothesis received. More specifically, if at the i’th
stage our modified booster receives some hypothesis hi then it should behave as the original
algorithm would upon receiving of

h′i(x) =
{

hi(x) if Di(x) ≤ η ·D(x)
f(x) otherwise

, (2)

when f(x) denotes the target concept, as defined before. Of course, not all boosting
algorithms allow such modifications; we assume that our B does allow them. We show
below that this is the case when AdaBoost is playing B’s role.

Let us examine the consequences of the above modification: First, we have to verify that
h′i(x) is always at least (1/2 + γ)-accurate w.r.t. Di; second, we have to review the influence
of the modification upon the final hypothesis’ accuracy (which results from the fact that the
final hypothesis will be constructed out of the “actual” hi’s instead of the “virtual” h′i’s).

For the first check, note that, if during the i’th iteration WL was not executed by the
intermediate layer, then Prx∼Di [Di(x) > η ·D(x)] ≥ 3

4 and the accuracy of h′i(x) w.r.t. Di

is as well above 3/4, which is good enough.2 Otherwise (when WL was executed) note
that the received weak hypothesis may be assumed to be (1

2 + γ)-accurate w.r.t. D′
i, in

accordance with WL’s specification. Therefore, as follows from (1) and (2), in this case

2. Formally assume, that before the algorithm started, we had set γ → min{γ, 1/4}.

488

On Boosting with Polynomially Bounded Distributions

h′i(x) is accurate enough as well:

µx∼Di

[|h′i(x)−f(x)|
2

∣∣∣ Di(x) ≤ η ·D(x)
]

= µx∼Di

[|hi(x)−f(x)|
2

∣∣∣ Di(x) ≤ η ·D(x)
]

= µx∼D′
i

[|hi(x)−f(x)|
2

]
≤ 1

2 − γ,

µx∼Di

[|h′i(x)−f(x)|
2

∣∣∣ Di(x) > η ·D(x)
]

= 0,

and therefore
µ

x∼Di

[|h′i(x)− f(x)|
2

]
≤ 1

2
− γ.

So, we see that the h′i’s are always at least (1/2 + γ)-accurate w.r.t. Di.
For the second check, we are going to make use of the fact that B’s final hypothesis is

accuracy-preserving. Let us estimate the maximum error which may be added by using hi

instead of h′i (for a single i)

µx∼D

[|hi(x)−f(x)|
2

]
− µx∼D

[|h′i(x)−f(x)|
2

]
≤ Prx∼D [h′i 6= hi]
≤ Prx∼D [Di(x) > η ·D(x)]
< 1

η , ε′.

If B performs T iterations then the maximum additional error of the final hypothesis hf

which may be added by application of our smoothing technique is T
η .

So, we have developed a technique whose analysis gives rise to the following claim.

Proposition 1 Assume that the structure of an accuracy preserving boosting algorithm B
allows the described modifications; suppose also that we know that B performs not more than
T boosting iterations in order to produce a final hypothesis whose error would be bounded
above by ε.

Then it is possible to modify the boosting algorithm so that by performing the same
number of iterations, but providing only η-smooth distributions to WL, it will produce a
final hypothesis whose error would be not higher than ε + T

η .

The confidence parameter δ which was not explicitly dealt with in this section does not
affect the result in any significant way (we have supposed that all the calls to WL were
successful).

4. The Case of AdaBoost

As mentioned above (and as follows from its name), AdaBoost is adaptive but it is not
smooth; we would like to turn it into a smooth boosting algorithm.

First note that the final hypothesis produced by AdaBoost is accuracy preserving. In
order to be able to apply our technique, we need some upper bound Tupper on the number
of iterations performed – otherwise we cannot decide which value may be chosen for the
parameter η, as required by Proposition 1. However, because the booster is adaptive, the

489

Bshouty and Gavinsky

number of iterations depends on all the weak hypotheses received during the boosting
iterations; on the other hand, if we fix T a priori, based on the least possible value for γi’s,
then we make the algorithm non-adaptive.

This apparent contradiction may be resolved in the following way: We do not fix the
actual number of the boosting iterations to be performed, and it remains adaptive; however,
we make an a priori “worst case” estimation for T and we use this estimation in order to
appropriately fix a value for η. Denote the least possible value for any of the γi’s by γmin; as
shown by Freund and Schapire (1997), in this case the number T of AdaBoost’s iterations
satisfies

T ≤
⌈

1
2γ2

min

ln
1
ε

⌉
.

4.1 Boosting by Filtering

In this section we apply our technique to construct a smooth modification of AdaBoost that
performs boosting by filtering.

We no longer assume that WL is “confident”, now it is executed with a confidence
parameter δ′ (the allowed probability to fail).

We call our algorithm QuickF ilt; it is represented in Figures 2 and 3. The parameters
passed to this algorithm are (EX, WL, γmin, ε, δ), where EX is a PAC oracle.

In accordance with the principles defined above, in our algorithm we denote by Tupper

our a priori upper bound on the number of iterations. We find a satisfactory value for Tupper

using the supplied parameter γmin; if this value is higher than some constant, we redefine
γmin to that constant value.

The original AdaBoost algorithm always holds a “weight” corresponding to each one of
the sample’s instances and updates these values between iterations: During a given boosting
iteration, the weight w(x0) corresponding to some instance x0 defines (being multiplied by
a normalizing factor) the probability of the pair (x0, f(x0)) to be given as an example to
the weak learner. In our case, however, we cannot permanently maintain all those weights
(simply since the learning domain is “too large”); instead, we use a subroutine Get w
(described below) which calculates the current value of w(x0) for a specific x0.

4.1.1 QuickF ilt’s Analysis

The QuickF ilt algorithm has a subroutine Evaluate which is used to estimate mean values
of random variables, based on the Hoeffding bound.3 Called with parameters (X, λ

b−a , δ),
this subroutine estimates the mean value of X with error bounded from above by λ and
with confidence parameter δ (which is the allowed probability that the estimation fails). Its
time and sample complexity is

O


 ln

(
1
δ

)
(

λ
b−a

)2


 .

3. The Hoeffding bound is Pr
[| 1

m

∑m
i=1 xi − µ| ≥ λ

] ≤ 2 exp

(
−2

(
λ

b−a

)2

·m
)

, where xi’s are independent

samples from a random variable X with mean value µ and values from the real range [a, b].

490

On Boosting with Polynomially Bounded Distributions

QuickF ilt(EX, WL, γmin, ε, δ)
1. set: γ′min = min{γmin,

1
30}; Tupper =

⌈
1

2γ′2min
ln

(
6
ε

)⌉
2. set: εc = 1; i = 1
3. while (εc ≥ 5ε

6)
4. let: X be a variable drawn ∼ D;

let: Y be a correlated variable = Get w(i, X, f(X))
5. set: Zi = Evaluate(Y, ε

54Tupper
, δ

4Tupper
)

6. call: WL(δ′ = δ
4Tupper

), providing it with distribution generated
by Digen; denote the returned weak hypothesis by hi

7. define: h′i(x) ,
{

hi(x) if w(x) ≤ 6TupperZi

ε
f(x) otherwise

8. let: X be a variable drawn ∼ Digen;
let: Y be a correlated variable = |h′i(X)−f(X)|

2

9. set: εi = Evaluate(Y, ε
64Tupper

, δ
4Tupper

)

10. set: βi = max
{

εi
1−εi

, 1
2

}
11. define: hprev(x) =

{
1 if

∑i
t=1(log 1

βt
)ht(x) ≥ 0

−1 otherwise

12. let: X be a variable drawn ∼ D;
let: Y be a correlated variable = |hprev(X)−f(X)|

2

13. set: εc = Evaluate(Y, ε
6 , δ

4Tupper
)

14. set: i = i + 1
15. end-while
16. Output the final hypothesis: hf (x) = hprev(x)

Figure 2: The QuickF ilt(EX, WL, γmin, ε, δ) hypothesis boosting algorithm.

In the case of filtering, we cannot permanently keep the value of w(x) for each instance.
Subroutine Get w is used to calculate wi(x)’s (which is the value of w(x) in the i’th itera-
tion); sometimes we will denote for brevity the output produced by Get w(i, x, f(x)) simply
by wi(x).

For QuickF ilt’s analysis, we use the notation of
〈

value
〉

to denote “true” values, as
distinct from estimated values produced by the algorithm. For example, we denote

εi = µ
x∼Di

[|h′i(x)− f(x)|
2

]

and εi, as defined by QuickF ilt, is a result of the corresponding estimation; similarly, by
βi we denote the value that is assigned in line 10 to the variable of the same name during a
specific algorithm’s execution, while βi is the value that would be received using εi instead
of εi: βi = max

{
εi

1−εi
, 1

2

}
. Further, we denote the corresponding estimation inaccuracy by

491

Bshouty and Gavinsky

Evaluate(X, λ
b−a , δ)

1. set: m =
⌈

ln
(

2
δ

)/
2

(
λ

b−a

)2
⌉

2. return
∑m

i=1 Xi

m

Digen
1. do:
2. receive: (x, f(x)) from EX; draw randomly: r ∼ U0,1

3. if (r < Get w(i, x, f(x)) · ε
27TupperZi

) then return (x, f(x))
4. end-do

Get w(i, x, f(x))
1. set: w′ = 1, k = 1
2. while (k < i)

3. set: w′ = w′ · β1− |h
′
k(x)−f(x)|

2
k

4. set: k = k + 1
5. end-while
6. return wi(x) = w′

Figure 3: Subroutines used in QuickF ilt hypothesis boosting algorithm.

err [< value >], i.e.,

err [< value >] =
∣∣< value > − 〈

value
〉∣∣ .

The subroutine Digen is used to produce distributions for the weak learner. The distri-
bution produced by Digen during the i’th iteration is denoted by Di (with an exception of
line 9 of QuickF ilt, where a more “constructive” notation is used).

Claim 2 Each time lines 6-10 of QuickF ilt are executed, with probability at least 1− δ
2Tupper

the following statements are true:

- The resulting weak hypothesis h′i satisfies w.r.t. Di:

1
2
− γmin ≥ εi, err [εi] ≤ ε

64Tupper
, err [βi] ≤ ε

16Tupper
.

- It holds that
1
2
≤ βi < 1.

Proof of Claim 2 Follows from the estimations performed by QuickF ilt.
¥Claim 2

492

On Boosting with Polynomially Bounded Distributions

Note that in QuickF ilt no distribution “smoothing” is actually performed: the required
smoothness of Di results from the h′i−1’s accuracy over the “high” instances of Di−1. We
show that all the distributions produced by QuickF ilt are polynomially near uniform.

Claim 3 Let T be the overall number of boosting iterations performed, then with probability
at least 1− Tδ

4Tupper
the following statements hold:

- All the estimations of Zi performed in line 5 of QuickF ilt are accurate up to the
multiplicative factor 3

2 , i.e., 2
3Zi ≤ Zi ≤ 3

2Zi.

- For each i, x ∈ X,

Di(x) =
wi(x)D(x)∑

x∈X wi(x)D(x)
=

wi(x)
Zi

·D(x). (3)

- All the distributions Di provided to WL during boosting are (18Tupper

ε)-near D; i.e.,
for each i, x ∈ X,

Di(x) ≤ 18Tupper

ε
·D(x). (4)

Proof of Claim 3 With probability at least 1− Tδ
4Tupper

all the estimations of Zi per-

formed in line 5 of QuickF ilt are accurate within the allowed value for λ
b−a , i.e., err [Zi] ≤ ε

54Tupper

(0 < Zi ≤ 1); from this point on we assume that this is the case.
The further proof possesses the structure of induction. For the basis notice that at the

first boosting stage (i = 1) the claim holds.
Suppose that the claim is true for some i; in particular, it holds that

∀x : Di(x) =
wi(x)

Zi

·D(x).

Consider the way the weights are updated between iterations (see Get w subroutine): each
weight either remains the same or is multiplied by βi. Because 1

2 ≤ βi < 1 (Claim 2), it
holds that Zi+1 ≥ βi · Zi ≥ 1

2Zi. Also note that during the estimation of Zi+1, the given
value of λ

b−a satisfies
λ

b− a
=

ε

54Tupper
. (5)

As follows from h′i’s definition (line 7 of QuickF ilt), during the i’th iteration the weights
of all the instances x ∈ X satisfy

(
18TupperZi

ε
≥

)
wi(x) >

9TupperZi

ε
≥ 6TupperZi

ε

are correctly classified by h′i’s and thus multiplied by βi; therefore the probabilities of corre-
sponding instances do not rise before the next iteration. Among x’s satisfying wi(x) ≤ 6TupperZi/ ε,

493

Bshouty and Gavinsky

the greatest individual probabilities (and w(x)’s) for the next iteration can be achieved for
instances x where

wi(x) =
9TupperZi

ε

(which is possible when Zi = 3
2Zi); the corresponding w(x)’s would satisfy

wi+1(x)
Zi+1

=
wi(x)
Zi+1

≤ 2
wi(x)

Zi

≤ 18Tupper

ε
.

Consequently, for each x ∈ X it holds that

wi+1(x) ≤ 18TupperZi+1ε
. (6)

From Equations (5) and (6), for the estimation of Zi+1 (line 5 of QuickF ilt),

λ

b− a
≤ Zi+1/3

wi+1
max

holds, where wi+1
max , max{wi+1(x)}. Since in this case b− a ≤ wi+1

max, therefore

λ ≤ Zi+1/3.

This fulfills the proof of Z estimations accuracy.
It follows from (6) that (3) and (4) hold. This fulfills the induction step.
The result follows.

¥Claim 3

It was shown by Jackson (1997) that for the boosting algorithm used there it is possible
to estimate efficiently, up to a constant multiplicative factor, the distributions Di provided to
the weak learner (by distribution estimation we mean the ability to evaluate the probabilistic
weight assigned to each individual point in the domain). Similarly, such estimation is
possible for QuickF ilt.

This feature is critical for the possibility of application of the boosting algorithm to the
task of DNF-learning with membership queries under uniform distributions.

Theorem 4 Suppose QuickF ilt was executed with arguments (EX, WL, γmin, ε, δ) and
that each time WL was called with argument δ′ over distribution Di, it produced a hypothesis
hi s.t.

Pr
[

µ
x∼Di

[|hi(x)− f(x)|
2

]
≤ 1

2
− γmin

]
≥ 1− δ′.

Then with probability at least (1− δ), the algorithm QuickF ilt halts and returns a final
hypothesis which makes (1− ε)-correct predictions over the instance space.

Proof of Theorem 4 Suppose that QuickF ilt performed T iterations and WL re-
turned hypotheses h1, ..., hT .

494

On Boosting with Polynomially Bounded Distributions

With probability at least 1− Tδ
4Tupper

, the εc-estimation performed in line 13 of QuickF ilt
always satisfies the accuracy requirement. The overall probability for this assumption to-
gether with all the assumptions previously made (in the proofs of Claims 2 and 3) to hold
is at least 1− Tδ

Tupper
.

As follows from Claim 3 and from the construction of Get w, the distributions Di’s
produced by Digen subroutine are identical to those defined “according to the principle of
AdaBoost”, i.e.,

Di(x) =
D(x) ·∏i−1

k=1 β
1− |h

′
k(x)−f(x)|

2
k∑

x∈X

[∏i−1
k=1 β

1− |h
′
k
(x)−f(x)|

2
k ·D(x)

] =
wi(x) ·D(x)∑

x∈X [wi(x) ·D(x)]
.

Recall that 1
2 > εi and max {1

2 , εi
1−εi

} = βi < 1. Consequently, if in i’th iteration it holds
that βi = εi

1−εi
, then

∑
x∈X wi+1(x)D(x) =

∑
x∈X wi(x)D(x)β

1− |h
′
i(x)−f(x)|

2
i

≤ ∑
x∈X wi(x)D(x)(1− (1− βi)(1− |h′i(x)−f(x)|

2))
=

(∑
x∈X wi(x)D(x)

)
(1− (1− εi)(1− βi))

≤ (∑
x∈X wi(x)D(x)

)
(1− (1− εi)(1− βi − ε

16Tupper
))

<
(∑

x∈X wi(x)D(x)
) · (2εi + ε

16Tupper
) .

Otherwise βi = 1
2 , εi < 1

3 , εi < 1
3 + ε

64Tupper
and

∑
x∈X wi+1(x)D(x) ≤ (∑

x∈X wi(x)D(x)
)
(1− (1− εi)(1− βi))

=
(∑

x∈X wi(x)D(x)
)
(1− 1

2(1− εi))
=

(∑
x∈X wi(x)D(x)

)
(2
3 + ε

128Tupper
) .

Therefore ∑
x∈X

wT+1(x)D(x) ≤
T∏

i=1

(
2 max {εi, 1/ 3}+

ε

16Tupper

)
. (7)

Let us now define a “virtual” version of the final hypothesis:

ĥprev(x) =

{
1 if

∑T
t=1(log 1

βt
)h′t(x) ≥ 0

−1 otherwise
,

and denote ε′f , µx∼D

[
|ĥprev(x)−f(x)|

2

]
. Then ĥprev(x) makes a mistake on x only if

T∏
i=1

β
− |h

′
i(x)−f(x)|

2
i ≥

(
T∏

i=1

βi

)−1/2

.

495

Bshouty and Gavinsky

Since wT+1(x) =
∏T

i=1 β
1− |h

′
i(x)−f(x)|

2
i , it holds that

∑
x∈X

wT+1(x)D(x) ≥ ε′f ·
(

T∏
i=1

βi

)1/2

.

From (7) it follows that

ε′f ≤ ∏T
i=1

2 max {εi,1/3}+ ε
16Tupper√

βi

≤ ∏T
i=1 max


 2εi+

ε
16Tupper√

εi
1−εi

− ε
16Tupper

,
2
3
+ ε

16Tupper
1√
2


 ,

and because ε
64Tupper

≤ min{γ′2min,
1
16} and 1

2 − γ′min ≥ εi, we get

ε′f ≤
T∏

i=1

2 max
{√

εi(1− εi),
√

2
/

3
}

+ T
ε

4Tupper
.

Denote: γmin
i , min

{
1
2 − εi,

1
6

}
, then

ε′f ≤
T∏

i=1

√
1− 4γmin

i
2 + T

ε

4Tupper
.

Once again we use the transformation from Freund and Schapire (1997), thus achieving

ε′f ≤ exp
(
−2

∑T
i=1 γmin

i
2
)

+ T ε
4Tupper

≤ exp(−2T · γ′2min) + T ε
4Tupper

.
(8)

In order to bound the overall error, it remains to estimate the “differences” between the
functions hi used to produce the final hypothesis and corresponding “virtual” functions h′i
considered in the analysis above.

As follows from the construction of the algorithm,

ε′ , µ

[|hi(x)− h′i(x)|
2

]
≥ µ

[|hi(x)− f(x)|
2

]
− µ

[|h′i(x)− f(x)|
2

]
,

and the (actual) final error εc satisfies that εc ≤ ε′f + T · ε′. From the h′i’s definition,

hi(x) 6= h′i(x) only for those instances that satisfy w(x) >
4TupperZi

ε , and therefore ε′ ≤ ε
4Tupper

.
Now it can be inferred that

εc ≤ ε′f +
Tε

4Tupper
. (9)

We have assumed that the εc-estimation performed in line 13 of QuickF ilt keeps within
the accuracy required; therefore the algorithm halts as soon as εc ≤ εc + ε

6 ≤ 5ε
6 , i.e., when

496

On Boosting with Polynomially Bounded Distributions

εc ≤ 2ε
3 . By substitution of this expression into (9), we conclude that a (sufficient) halt

condition is ε′f + Tε
4Tupper

≤ 2ε
3 , and using (8) we may replace it by

exp(−2T · γ′2min) + T

(
ε

4Tupper
+

ε

4Tupper

)
≤ 2ε

3
.

Suppose that

T

(
ε

4Tupper
+

ε

4Tupper

)
≤ ε

2
, (10)

then the algorithm halts when

exp(2Tγ′2min) ≥
6
ε
, (11)

which is satisfied by T = Tupper, as defined in QuickF ilt. Also, assumption (10) holds for
T = Tupper and therefore the algorithm halts after Tupper iterations at most.

As mentioned above, the probability for all the assumptions made in the beginning of
the proof to hold is at least 1− δ, which completes the proof.
¥Theorem 4

Note that sometimes WL’s complexity depends upon the smoothness of the provided
distribution. In the present analysis we leave the issue aside, it will be considered in
Section 6, dealing with DNF learning.

Theorem 5 Suppose that all the assumptions of Theorem 4 hold. Suppose also that if WL
was called in the i’th iteration, provided with distribution Di, it returned a weak hypothesis
hi satisfying µx∼Di

[|hi(x)−f(x)|
2

]
= 1

2 − γi. Then QuickF ilt(EX, WL, γmin, ε, δ) performs

O

(
ln(ε−1)

µ1≤i≤T

[
γ2

i

]
)

iterations, makes

Õ

(
Q[WL]

εγ2
min · µ1≤i≤T

[
γ2

i

] +
1

ε3γ6
min · µ1≤i≤T

[
γ2

i

]
)

queries and halts in time

Õ

(
T [WL]

µ1≤i≤T

[
γ2

i

] +
Q[WL]

εγ2
min

(
µ1≤i≤T

[
γ2

i

])2 +
1

ε3γ6
min

(
µ1≤i≤T

[
γ2

i

])2

)
.

The final hypothesis is represented as a weighted majority vote of the weak hypotheses whose
number equals the number of iterations performed, and all the distributions provided to WL

are O
(

ln(ε−1)
εγ2

min

)
-near D.

497

Bshouty and Gavinsky

Proof of Theorem 5 First note that the statements of the last sentence of the theorem
are obviously true if the rest of the theorem statements hold.

As shown in the proof of Theorem 4, the algorithm always halts within T ≤ Tupper

iterations. Denote T1 ,
{

i
∣∣∣βi = εi

1−εi

}
, T2 , {1, ..., T} \ T1.

By analogy to Equation (11), a sufficient condition for halting is that

exp

(
2|T1| · µ

i∈T1

[
γ2

i

]
+ 2|T2| ·

(
1
30

)2
)
≥ 6

ε
.

Consequently,

T1 ≤
⌈

1
2 µi∈T1

[
γ2

i

] ln
(

6
ε

)⌉
, T2 ≤

⌈
450 ln

(
6
ε

)⌉
.

Note that a subscript of “i ∈ T1” appears in the last expressions. In order to prove our
theorem we would like to change it into “1 ≤ i ≤ T”. The former range for i corresponds
to the latter one with exclusion of the indices of iterations when “actual” βi was replaced
by 1/2. But this does not really harm the algorithm’s performance, if we evaluate the
complexity in terms of O:

µ
i∈T1

[
γ2

i

]
=

1
|T1|

∑
i∈T1

γ2
i ≥

1
|T1|


 ∑

1≤i≤T

γ2
i −

1
4
|T2|


 ≥ µ

1≤i≤T

[
γ2

i

]− |T2|
4|T1|

and consequently,

T1 ≤



1

2 µ1≤i≤T

[
γ2

i

]− |T2|
2|T1|

ln
(

6
ε

)
 .

Further, we consider two cases:

1.

|T2|
2|T1| ≤

µ
1≤i≤T

[
γ2

i

] → T1 ≤
⌈

1
µ1≤i≤T

[
γ2

i

] ln
(

6
ε

)⌉
= O

(
ln(ε−1)

µ1≤i≤T

[
γ2

i

]
)

.

2.

|T2|
2|T1| > µ

1≤i≤T

[
γ2

i

] → T1 <
|T2|

2 µ1≤i≤T

[
γ2

i

] = O

(
ln(ε−1)

µ1≤i≤T

[
γ2

i

]
)

.

In any case, it holds that

T = T1 + T2 = O

(
ln(ε−1)

µ1≤i≤T

[
γ2

i

]
)

. (12)

We estimate the overall time complexity of the algorithm in two stages: first we deal
with complexity of the whole algorithm apart from the Digen’s executions, and then we
consider the overall complexity of Digen.

498

On Boosting with Polynomially Bounded Distributions

Each one of Evaluate’s occurrences is encountered at most once during each iteration,
but some calls to Evaluate provide it with argument X which depends on w(x). Because

the time complexity of Get w is O(T) and
(

λ
b−a

)−1
= O (ε/ Tupper), a single Evaluate call

may consume up to

O

(
ln(

Tupper

δ
)
T · T 2

upper

ε2

)
= Õ

(
T · T 2

upper

ε2

)
= Õ

(
T

γ4
minε

2

)

time. The time complexity of the whole algorithm apart from Digen is bounded by

Õ

(
T ·

(
T

γ4
minε

2
+ T [WL]

))
,

assuming that T [WL(γWL)] is logarithmically bounded w.r.t. its confidence parameter
γWL.

It remains to estimate Digen’s complexity. Notice that the overall number N of examples
required per a single iteration is bounded by

Õ

(
T 2

upper

ε2
+ Q[WL(γWL =

δ

4Tupper
)]

)
.

As follows from Digen’s construction, when it receives an instance x from EX,

Pr [x is chosen] =
w(x)

27TupperZi

ε

≥ w(x)
81TupperZi

2ε

.

Therefore, the probability PDi that Digen returns a result in any single iteration is

PDi =
∑
x∈X

D(x) · Pr [x is chosen] ≥ 2ε

81TupperZi

·
∑
x∈X

(w(x) ·D(x)) =
2ε

81Tupper
.

The expected total number of “trials” to receive N examples is at most

Õ

(
1

εγ2
min

·
(

1
γ4

minε
2

+ Q[WL]
))

,

still assuming logarithmic dependence of WL(γWL)’s complexity on γWL. Multiplying this
expression by (12) gives the desired query complexity bound.

Each Digen’s “trial” requires some w(x)’s value, therefore the overall time consumed
by Digen during QuickF ilt’s execution equals

Õ

(
T 2

εγ2
min

·
(

Q[WL] +
1

γ4
minε

2

))
.

The summarizing expression for the time complexity of QuickF ilt is

Õ

(
T 2

εγ2
min

·Q[WL] +
T 2

ε3γ6
min

+ T · T [WL]
)

.

499

Bshouty and Gavinsky

Using Equation (12), we get the required time complexity bound, which completes the
proof.
¥Theorem 5

Notice that QuickF ilt’s time complexity depends on two different “γ-related” attributes:
γ2

min and µ1≤i≤T

[
γ2

i

]
. In fact, in both cases γ2

min is used only to pre-estimate the overall
number of boosting iterations and may be replaced by any lower bound for µ1≤i≤T

[
γ2

i

]
.

Also notice that the query complexity may be significantly reduced by reuse of the same
set of instances throughout the iterations. That can be done because an oblivious sampling
is used by the algorithm: the samples are chosen without regard to the target function.
Notice that in this case the boosting analysis is still applied to the whole set of instances,
and aside from the additional memory required to store the set of examples, this approach
entirely corresponds to boosting in filtering mode.

4.2 Original AdaBoost is not smooth.

We give a simple proof for the fact that the distributions provided by AdaBoost are not
smooth if the algorithm is executed on a domain of exponential size.

Claim 6 Suppose that AdaBoost was executed on uniform distribution D over domain
X of size 2n and provided with accuracy parameter ε. Suppose also that each time WL
was called it provided at least γ-accurate weak hypothesis. Then there exists a responses
scheme for WL so that one of the distributions provided by AdaBoost would not be smooth.
Namely, the weight of a specific point x0 ∈ X w.r.t. the same distribution would be either
const1/γ ·D(x0) (for a fixed const > 1) or at least γ · 2n ·D(x0).

Proof of Claim 6 Suppose that all the weak hypotheses received by AdaBoost are
of accuracy exactly γ. In this case the booster assigns the same weights to all the weak
hypotheses in the generated final hypotheses; moreover, the weight update factor β used by
AdaBoost constantly equals 1/2−γ

1/2+γ .
We may apply Freund’s result (1992), showing that there exists a behavioral scheme for

the weak learner which satisfies the requirement γi ≡ γ and forces the booster to make

1
2
γ−2 log(ε−1)

iterations. As well, all the produced weak hypotheses are (±1)-valued. For the rest of the
proof, we assume that γi ≡ γ. Note that we should not care about the representation length
of the weak hypotheses (since no assumptions are made regarding the “generality” of the
weak learner in the standard analysis of AdaBoost).

Let WL′ be a weak learner following the mentioned scheme for the given ε, for γ′ , 2γ
and for the domain X ′ , X \ {x0}. We will use another weak learner WL: it always cre-
ates a hypothesis h following WL′ on X ′ and giving the incorrect (binary) value for x0.
Further, we tune the resulting overall accuracy: If it is greater than γ then we negate
some correct labels of points in X ′, thus bringing the accuracy to γ, if that is possible. If
that cannot be performed, this means that the individual weight of x0 is more than γ and
Di(x0) ≥ γ · 2n ·D(x0).

500

On Boosting with Polynomially Bounded Distributions

The booster needs to bring the accuracy of the majority vote over X ′ to accuracy at
least 1− ε, for that it must perform at least

T , 1
2
γ′−2 log(ε−1) =

1
8
γ−2 log(ε−1)

iterations, as follows from Freund’s lower bound. As follows from the analysis of AdaBoost,
for the last iteration the “mean” of the weights of all the points is at most (1− 2γ)T−1, while
the individual weight of x0 remains unchanged (≡ 1), and therefore DT (x0) ≥ constγ−1

for
some const > 1, Q.E.D.
¥Claim 6

5. Adaptiveness versus Smoothness, or Why Do We Call QuickF ilt
“AdaBoost”?

The smoothing technique we introduced does not “dramatically” affect the number of iter-
ations performed by the algorithm: If we recall Proposition 1, we may note that in order
for the “new” final error to be bounded by ε, it suffices to bound both the “old” final error
and T

p by ε/2. This is done (up to certain constants) in Section 4 (using Tupper which is
an upper bound on the number of boosting iterations). The smoothness parameter which
results from this approach is O(Tupperε

−1) and the number of performed iterations remains
unchanged (when evaluated in terms of O). Since the number of iterations usually defines
uniquely the size of the final hypothesis, the latter characteristic remains unaffected as well.
For instance, this situation occurs in the case of AdaBoost.

On the other hand, the influence of our modifications becomes apparent in terms of the
complexity of a single iteration, which is increased.

Let us now try to advocate the claim that we are actually “extending” the range of
applicability of the original algorithm AdaBoost. One of the distinctive valuable features
of AdaBoost is its adaptiveness. Informally, we say that a boosting algorithm is adaptive
if it utilizes the “additional advantage” of those weak hypotheses whose actual accuracy is
higher than the corresponding lower bound (denoted above by γmin). This general intuition
may be formalized as follows.

First of all, let us clarify what we mean by saying that some quantity is adaptive in
the parameters γi of all the weak hypotheses hi which were received from WL during the
boosting process. For our current needs, it suffices to say that a quantity is adaptive when
it depends polynomially upon the value of µ1≤i≤T

[
γ2

i

]
; on the other hand, by saying that a

quantity is non-adaptive we mean that it depends on the value of γmin (if this dependence
is either polynomial or logarithmic we accordingly say that the quantity is polynomially or
logarithmically non-adaptive).

We give two possible definitions for adaptiveness, which differ between them in their
“strictness”. The more flexible requirement – we denote it by (I) – is that the number of
iterations performed by the booster is adaptive in γi’s. The second (more strict) requirement
(denoted by (II)) is that algorithm, being used to learn a concept over an exponentially
large domain, runs in overall adaptive time.

In the case of AdaBoost (both in its original form and under our modification), the
number of iterations, being expressed in terms of µ1≤i≤T

[
γ2

i

]
and ε, does not depend on

501

Bshouty and Gavinsky

γmin. However, for the original AdaBoost the parameter ε is not an “independent” one, its
value is inversely linear in the size of the learning sample. The latter should obviously chosen
a priori; moreover, since we are willing to bound the generalization error, the required size
of the learning sample depends upon the size of the final hypothesis and therefore upon
µ1≤i≤T

[
γ2

i

]
as well. Therefore we have to find a lower bound for µ1≤i≤T

[
γ2

i

]
before the

learning is even started, which obviously cannot be done adaptively and has to rely upon
the “worst case assumption” for the values of γi’s, namely upon γmin. Since the booster’s
behavior is not “random”, it is not clear how a “statistical” lower bound for µ1≤i≤T

[
γ2

i

]
which would be significantly better than γ2

min may be found.
In the case of AdaBoost, however, the non-adaptiveness in sense (I) is only logarithmic

(since logarithmic is dependence of AdaBoost’s complexity on ε).
Since the above considerations in fact apply to any boosting algorithm working by

sampling whose final hypothesis size depends on γi’s (in either straightforward or adaptive
way), we claim that any such algorithm cannot be adaptive (when executed over a domain
of super-polynomial size), even w.r.t. the definition (I) (and obviously not w.r.t. (II), which
is “strictly stronger” than (I)).

On the other hand, as follows from Theorem 5, QuickF ilt is adaptive w.r.t. (I); however
we note that QuickF ilt does not satisfy the requirement (II)(Gavinsky, 2002, describes an
algorithm satisfying (II)).

As mentioned before, QuickF ilt depends on γmin because it needs an a priori bound on
the number of iterations to be performed (exactly like AdaBoost, when facing the need to
determine the size of the training set). Consequently, QuickF ilt’s non-adaptiveness is of
the same “origin” as that of AdaBoost; on the other hand, unlike AdaBoost, QuickF ilt is
fully adaptive w.r.t. the definition (I) above.

6. Learning DNF in the PAC-Model with Membership Oracle under
Polynomially Near-Uniform Distribution

Jackson (1997) had posed the question of whether AdaBoost may be applied to solve the
task of uniform DNF learning with membership queries.

First of all, let us introduce the corresponding learning model – PAC with membership
queries. It may be viewed as an “extended” PAC model (considered before). The extension
is as follows: a learner is allowed to query the value of the target function f in a specific
point x (or, in other words, to query the membership of x in the set {x ∈ X|f(x) = 1}).

Second, let us try to understand better the meaning of Jackson’s question. Roughly
speaking, there are two “problems” with AdaBoost: it cannot work in the filtering mode and
it is not smooth. On the other hand, there are some potential benefits in using an adaptive
booster (like AdaBoost): While in DNF learning a polynomially small lower bound may be
provided for the values of γi’s, it seems that in many cases this bound can be noticeably
surpassed in practice during specific iterations of boosting. Therefore, adaptiveness, though
not essential for efficient learning, is obviously a pleasurable advantage.

It would be useful to figure out what kind of smoothness should we anticipate from the
possible application of AdaBoost? Using the smoothness gradation introduced in Section 5,
let us recall that (II) was shown to fail for AdaBoost – unfortunately we have to limit our-
selves to (I) only (Gavinsky, 2002, describes a boosting algorithm satisfying (II)). The

502

On Boosting with Polynomially Bounded Distributions

application of our technique makes it possible to execute AdaBoost in filtering mode: Be-
low we construct a learner which “properly” satisfies (I) and produces a final hypothe-
sis of adaptive size (unlike original AdaBoost which is logarithmically non-adaptive even
w.r.t. (I)).

While we’ve chosen the problem of DNF learning for the purpose of demonstrating the
smoothing technique, there are (as mentioned before) some other problems which are solved
using (essentially) smooth boosting, like noise-tolerant learning (Freund, 1999, Domingo
and Watanabe, 2000, Servedio, 2001), learning via extended statistical queries (Bshouty
and Feldman, 2001), agnostic learning (Ben-David, Long and Mansour, 2001, Gavinsky,
2002) and maybe some others. Using our technique for applying smooth AdaBoost the
(potentially pleasurable) feature of adaptiveness may be added to all those solutions.

But let us return to the problem of DNF learning. We assume that X = {0, 1}n and
that the target distribution D of the booster is polynomially near-uniform, satisfying

∀x ∈ X : D(x) ≤ 1
2n
· αD,

for some αD. As follows from QuickF ilt’s analysis (Theorem 5), in this case the distribu-
tions the booster produces are Õ(ε−1γ−2

min · αD)-near uniform.
In Jackson’s paper (Jackson, 1997), the algorithm used for weak DNF membership learn-

ing was based on algorithm KM , introduced by Kushilevitz and Mansour (1993). In this
paper we use a more recent algorithm introduced by Bshouty, Jackson and Tamon (1999)
(denoted by W), which was developed from another algorithm described by Levin (1993).
The algorithm W has, in the context of DNF-learning, certain complexity advantages over
the originally used KM (in particular, W was used by Klivans and Servedio (1999) to
construct the most efficient algorithm for DNF-learning known so far).

Like its predecessors, W is capable of finding “heavy” Fourier coefficients of the target
w.r.t. the uniform distribution. In this case, the basis for Fourier transform4 coincides with
the set of all the parity functions:

∀A ⊆ {1, ..., n} : χA , (−1)
∑

i∈A xi .

The following statement is taken from Jackson (1997):

Fact 7 For every DNF expression f with s terms and for every distribution D on the
instance space of f , there exist a parity function χA so that µx∼D

[|f(x)−χA(x)|
2

]
≤ 1

2 − 1
4s+2 .

Although the aforementioned algorithms for weak DNF learning using parity functions
are capable of learning only under the uniform distribution, a simple trick (Jackson, 1997)
may be used to overcome this difficulty. The resulting performance of the weak learners
depends critically on the smoothness of the target distribution; moreover it seems that
weakly learning DNF (even given an access to the membership oracle) over arbitrary target
distributions is hard (see Jackson, 1997, for a discussion). So, in this case the smoothness
limitation being put on a boosting algorithm results from the qualities of the weak learner.

4. For an overview of Fourier analysis applications to Machine Learning, see, for example, Mansour (1994).

503

Bshouty and Gavinsky

In order to cope with the (“strict”) uniformity limitation, the following reduction is
used. Instead of weakly learning the target binary function f(x) under some non-uniform
distribution Di, we will ask WL to weakly approximate w.r.t. the uniform (U) the following
(real-valued) function g(x):

g(x) , 2nDi(x) · f(x).

It is shown by Jackson (1997) that this function has “heavy” Fourier coefficients which
weakly approximate f(x) over the distribution Di. Moreover, the quantitative value of
µU [χ′(x)g(x)] (which is the coefficient corresponding to χ′ in g(x)’s Fourier expansion)
satisfies

µ
U

[
χ′(x)g(x)

]
= µ

x∼Di

[
χ′(x)f(x)

]
= 1− µ

x∼Di

[|f(x)− χ′(x)|] .

We conclude that in the case of weak DNF approximation using parity functions, the
value of γmin is bounded below by Ω(s−1) (recall that s is the number of DNF-terms con-
tained in the formula). Algorithm W requires a lower bounds θ for the magnitude of Fourier
coefficients to be found, which in our case corresponds to twice the lower bound on γmin,
as stated above.

We provide W with a membership oracle for the function

g′(x) , g(x)
maxx{2nDi(x)}

(which can be easily simulated knowing f(x), Di(x) and maxx{2nDi(x)}) and with

θ′ , θ

maxx{2nDi(x)} .

Algorithm W requires a “distribution oracle”: during the i’th iteration, the booster
should be able to report what probabilistic weight it assigned by Di to a specific point
x ∈ {0, 1}n, up to some constant multiplicative factor. As mentioned in Subsection 4.1.1,
such estimation is possible for QuickF ilt. Jackson shows that an estimation is sufficient
and it doesn’t adversely affect the performance of KM ; the same holds for W that we use.

Denote d∞(Di) , maxx{2nDi(x)}. As follows from the construction of g′(x), it holds
that

θ′−1 = O(d∞(Di) · γ−1
min) = Õ

(
ε−1γ−3

min · αD

)
= Õ

(
s3αD

ε

)
,

using the bound on γmin provided by Fact 7. The algorithm W ’s complexity depends on
θ′ and equals Õ(nθ′−2), which leads us to

Q[W] = T [W] = Õ

(
ns6α2

D

ε2

)
.

A straightforward “filtering” application of QuickF ilt gives us the complexity of

Õ
(
ns10ε−3 · α2

D(n)
)

504

On Boosting with Polynomially Bounded Distributions

queries and
Õ

(
ns12ε−3 · α2

D(n)
)

time.5 As mentioned above, the query complexity may be lowered by example reuse
throughout the iterations. Another possibility for query complexity improvement comes
from the fact that now we are given a membership oracle. Therefore, no query is in fact
needed when a point is “rejected” by the booster’s filtering scheme and the query complexity
of receiving an example from Digen may be reduced to a single (membership) query.

As a result of our application, the boosting algorithm is (I)-adaptive, it performs

O

(
ln(ε−1)

µ1≤i≤T

[
γ2

i

]
)

iterations and produces a final hypothesis of the same size.

Acknowledgments

We would like to thank COLT 2001 conference participants whose comments contributed
to the evolution of this essay.

References

N. Bshouty and V. Feldman. On Using Extended Statistical Queries to Avoid Membership
Queries. Proceedings of the 14th Annual Conference on Computational Learning Theory,
pp. 529-545, 2001.

N. Bshouty, J. Jackson and C. Tamon. More efficient PAC-learning of DNF with membership
queries under the uniform distribution. Proceedings of the 12th Annual Conference on
Computational Learning Theory, pp. 286-295, 1999.

S. Ben-David, P. M. Long and Y. Mansour. Agnostic Boosting. Proceedings of the 14th
Annual Conference on Computational Learning Theory, pp. 507-516, 2001.

C. Domingo and O. Watanabe. MadaBoost: A modification of AdaBoost. Proceedings of
the 13th Annual Conference on Computational Learning Theory, pp. 180-189, 2000.

Y. Freund. Boosting a weak learning algorithm by majority. Proceedings of the 3th Annual
Conference on Computational Learning Theory, pp. 202-216, 1990.

Y. Freund. An improved boosting algorithm and its implications on learning complexity.
Proceedings of the 5th Annual Conference on Computational Learning Theory, pp. 391-
398, 1992.

Y. Freund. Boosting a weak learning algorithm by majority. Information and Computation
121(2), pp. 256-285, 1995.

5. The most efficient non-adaptive result known so far has been achieved by Klivans and Servedio (1999).

505

Bshouty and Gavinsky

Y. Freund. An adaptive version of the boost by majority algorithm. Proceedings of the 12th
Annual Conference on Computational Learning Theory, pp. 102-113, 1999.

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences 55(1), pp. 119-139,
1997.

D. Gavinsky. Optimally-Smooth Adaptive Boosting and Application to Agnostic Learning.
Proceedings of the 13th International Conference on Algorithmic Learning Theory, , 2002.

J. Jackson. An efficient membership-query algorithm for learning DNF with respect to
the uniform distribution. Journal of Computer and System Sciences 55(3), pp. 414-440,
1997.

E. Kushilevitz and Y. Mansour. Learning Decision Trees using the Fourier Spectrum. SIAM
Journal on Computing 22(6), pp. 1331-1348, 1993.

A. R. Klivans and R. A. Servedio. Boosting and Hard-Core Sets. Proceedings of the 40th
Annual Symposium on Foundations of Computer Science, pp. 624-633, 1999.

M. Kearns and L. Valiant. Cryptographic limitations on learning boolean formulae and
finite automata. Journal of the ACM 41(1), pp. 67-95, 1994.

L. Levin. Randomness and Non-determinism. Journal of Symbolic Logic 58(3), pp. 1102-
1103, 1993.

Y. Mansour. Learning Boolean Functions via the Fourier Transform. Theoretical Advances
in Neural Computing and Learning, Kluwe Academic Publishers, , 1994.

R. E. Schapire. The strength of weak learnability. Machine Learning 5(2), pp. 197-227,
1990.

R. Servedio. Smooth Boosting and Learning with Malicious Noise. Proceedings of the 14th
Annual Conference on Computational Learning Theory, pp. 473-489, 2001.

L. Valiant. A theory of learnable. Communications of the ACM 27(11), pp. 1134-1142,
1984.

506

