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Abstract
We apply a variational method to automatically determine the number of mixtures of indepen-

dent components in high-dimensional datasets, in which the sources may be nonsymmetrically
distributed. The data are modeled by clusters where each cluster is described as a linear mixture
of independent factors. The variational Bayesian method yields an accurate density model for the
observed data without overfitting problems. This allows the dimensionality of the data to be iden-
tified for each cluster. The new method was successfully applied to a difficult real-world medical
dataset for diagnosing glaucoma.
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1. Introduction

The performance of a method for pattern classification is often determined by how well it can
model the underlying statistical distribution of the data. Independent component analysis (ICA)
models non-Gaussian structure, e.g., platykurtic or leptokurtic probability density functions. In ICA
(Hyvarinen et al., 2001), the observed data x are assumed to be generated from a linear combination
of independent sources s:

x = As + ν ,
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where A is the mixing matrix, which can be non-square. The sources s have non-Gaussian density
such as p(sm) ∝ exp(−|sm|q). The noise term ν can have non-zero mean. ICA is a generalization
of principal component analysis (PCA), in which columns of A are constrained to be orthogonal and
p(sm) ∝ exp(−s2

m). ICA has been applied to speech separation and analyzing fMRI and EEG data
(Jung et al., 2001). When modeling the data density, ICA tries to locate independent axes within the
data cloud and finds projections that may uncover interesting structure in the data.

Real data sets often have clusters; unsupervised clustering could help uncover the structure of
the data density. Clusters of data can be described by an ICA mixture model (Lee et al., 2000).
In addition to modeling the data density, ICA can also discover interesting hidden features in data
(Olshausen and Field, 1996). This valuable property could be used to study the features of each
cluster.

In unsupervised classification, one is interested in obtaining a close fit to the observed data dis-
tribution without overfitting. However, maximum likelihood (ML) may overfit the data, especially
in high dimensional spaces. Dimensionality of the data may be reduced by first performing PCA, but
the intrinsic dimensionality within each cluster could be different. More importantly, the subspace
of the clusters may orient differently with respect to each other. It would be desirable to determine
the dimensionality of each cluster, instead of performing a single dimensionality reduction on the
whole dataset.

The Bayesian approach helps find number of clusters and number of sources in each clus-
ter. In a full Bayesian treatment, the parameters θ in a model H are given a prior distribution
P (θ|H). Instead of the likelihood P (X|θ,H) on a dataset X, the marginal likelihood, P (X|H) =
∫

P (X|θ,H)P (θ|H) dθ, for different models are compared. An overly-complex or flexible model
H will have a low marginal likelihood and can be ruled out. The solution for the chosen model is
given as a posterior distribution over the parameter θ, P (θ|X,H), rather than a point estimate θ̂ as
in the maximum likelihood approach. However, full Bayesian treatments are rarely tractable. The
variational method (Jordan et al., 1999, Ghahramani and Beal, 2000) provides an approximate an-
alytical solution by a mean field approach to P (θ|X,H) and P (X|H). Besides performing model
selection and avoiding overfitting, the variational Bayesian treatment provides uncertainty estimates
for the model parameters, which is not directly available with the ML or MAP approach.

In many treatments of ICA, the form of the source distribution p(sm) (or equivalently the
“non-linearity”) is fixed and assumed symmetric. Real data sets often contain both super and sub-
Gaussian sources. These sources may also be skewed and therefore non-symmetric. Recently,
Karvanen et al. (2000) used non-symmetric source density models to perform ICA under the max-
imum likelihood approach. We use mixtures of Gaussians (Moulines et al., 1997, Attias, 1999a,
Welling and Weber, 2001) for source densities instead of assuming fixed distributions. The use of
mixtures of Gaussians allows closed form solution in the variational Bayesian learning while main-
taining a flexible model for non-symmetric sources with mixed kurtosis.

The variational approach to ICA has been studied by a number of researchers (Lappalainen,
1999, Miskin, 2000, Højen-Sørensen et al., 2002). In this paper, we extend the mixture model of
Ghahramani and Beal (2000) and ICA model of Miskin (2000), and propose a mixture of under-
complete non-symmetric ICA solution to describe the underlying distribution of small but high
dimensional dataset. A preliminary version of these results were described by Chan et al. (2001). A
similar variational method for ICA clusters was independently proposed by Choudrey and Roberts
(2001).
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2. Theory and Method

In this section, we describe the density model for ICA clusters and study the application of varia-
tional Bayesian learning to the density model.

2.1 Density model

Observations X = {xt ∈ RN}, t = [1, · · · , T ] are assumed to be generated from one of C clusters
centered at νc and with diagonal Gaussian noise variance [Ψc]−1:

P (xt|ρ,Ac,νc,Ψc) =
C

∑

c

P (ct =c|ρc)P (xt|Ac,νc,Ψc)

P (ct =c|ρc) = ρc ,

(1)

ρ = (ρ1, . . . , ρC) are the weights on the C clusters. Inside each cluster, observation xt is a linear
combination of M independent sources s

c
t = (sc

1t, . . . , s
c
Mt)

>:

P (xt|Ac,νc,Ψc) =

∫

N (xt|Ac
s
c
t + νc,Ψc)P (sc

t) dsc
t . (2)

To allow for non-symmetric sources, the density of each sc
mt is modeled by a mixture of K Gaus-

sians

P (sc
mt|πc

mk, φ
c
mk, βc

mk) =
∑K

k πc
mkN (sc

mt|φc
mk, βc

mk) , (3)

where β is an inverse variance parameter. Following Bishop (1999), we assume an automatic rele-
vance determination (ARD) Gaussian density (Neal, 1996) for A

c,

P (Ac
nm|αc

m) = N (Ac
nm|0, αc

m) . (4)

The generative model described by the above equations can be summarized by the simplified di-
rected graph in Figure 1. The observed variable is xt and the hidden variables are kmt, st and ct.
The rest are model parameters. Nodes inside the dashed box should be repeated for each of the
C ICA clusters. The condition dependencies between the variables is evident from the graph. For
example, once given the value of hidden variable ct, the generation of xt is independent of the value
of ρ. We use θ to denote the collection of the parameters ρ, Ac, νc, Ψc, αc, πc

m, φc
mk and βc

mk .

2.2 Variational Bayesian learning

Instead of maximizing the likelihood of the data L(θ;X) = P (X|θ) and finding the maximum
likelihood estimate of θ, we use a Bayesian approach to obtain the posterior distribution P (θ|X)
over θ:

P (θ|X)P (X) = P (X|θ)P (θ) , (5)

where P (θ) is the prior distribution for θ, defined in Appendix A. Using the variational learning
approach of Miskin (2000) and Ghahramani and Beal (2000), we introduce posterior probability
Q(θ) and employ Jensen’s inequality (see Appendix B). The log of the marginal likelihood is then
lower bounded by

log P (X) ≥
∫

Q(θ)
∑

t

log P (xt|θ) dθ +

∫

Q(θ) log
P (θ)

Q(θ)
dθ . (6)
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Figure 1: A simplified graphical representation for the generative model of the mixture of varia-
tional ICA. xt is the observed variable, kmt, st and ct are hidden variables and the rest
are model parameters. The nodes inside the dashed box should be repeated for each of
the C ICA clusters.

Repeatly introducing Q(ct), Q(sc
t), we arrive at

log P (X) ≥
∫

Q(θ)
∑

t

∑

c

Q(ct)

∫

Q(sc
t )

[

log P (xt|sc
t , θ) + log

P (sc
t |θ)

Q(sc
t )

]

dsc
t dθ

+

∫

Q(θ)
∑

t

∑

c

Q(ct) log
P (ct=c|ρc)

Q(ct)
dθ +

∫

Q(θ) log
P (θ)

Q(θ)
dθ . (7)

And finally log P (sc
t |θ) is replaced as

log P (sc
t |θ) =

∑

m

log P (sc
mt|θ) ≥

∑

m k

Q(kc
mt)

[

logN (sc
mt|φc

mk, βc
mk) + log

πc
mk

Q(kc
mt)

]

(8)

to complete the expansion. Notice that Q(kc
mt) is short for Q(kc

mt = k) and similarly Q(ct) is
short for Q(ct = c). Learning is accomplished by functional maximization of the lower bound of
log P (X) over Q(θ), Q(sc

t), Q(ct) and Q(kc
mt). We assume a separable posterior Q(θ):

Q(θ) = Q(ρ)
∏

c

[

Q(νc)Q(Ψc)Q(Ac)Q(αc)
∏

m

Q(πc
m)

∏

mk

Q(φc
mk)Q(βc

mk)

]

, (9)

in order to obtain analytical solutions. Learning rules for Q(θ) are given in Appendix C.
To compare different solutions resulting from different initial conditions, we computed their

corresponding lower bounds E(X, Q(θ)) on the log marginal likelihood P (X) using (7) and (8).
After some manipulations, E(X, Q(θ)) can be expressed as

E(X, Q(θ)) =
∑

t

log Zt +

∫

Q(θ) log
P (θ)

Q(θ)
dθ ,
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where Zt is defined in (15). The solution with highest E(X, Q(θ)) is preferred. The appearance of
the normalization term Zt has no surprise since the marginal likelihood P (X) is itself the normal-
ization term for modifying P (X|θ)P (θ) to P (θ|X).

2.3 Some heuristics

Translational and scale degeneracies exist in the model as described by (1) to (4). After each update
of Q(πc

m), Q(φc
mk) and Q(βc

mk), we rescale P (sc
mt) to be zero mean and unit variances. The dis-

tributions Q(Ac), Q(αc) and Q(νc) etc. are adjusted accordingly. This removes the degeneracies
and speeds up convergence.

Local maxima of E(X, Q(θ)) exist since each cluster is itself a mixture of (correlated) Gaus-
sians. For example, during learning, two clusters may be regarded as one containing a bimodal
sub-Gaussian source. This adversely affects the effectiveness of identifying other sources. We em-
ploy two heuristics to detect the presence of heavily bimodal source and split the cluster along that
axis. The first heuristic is similar to the Fisher’s discriminant

J = |φk − φk′ | ×
√

πkβk + πk′βk′ .

This index compares the distance |φk−φk′ | between adjacent Gaussians in P (sc
mt) to their averaged

spread: 1/
√

πkβk + πk′βk′ . For each source sc
m, J is computed for each pair of adjacent Gaussians

kk′ in P (sc
mt). The cluster c is then split along A

c
m whenever J > Jo (Jo = 5 was effective in our

experiments). The second heuristic numerically computes the height of each “valley” in P (sc
mt)

and compares it to the height of the shorter peak next to it. A ratio of 1:5 serves as the splitting
criteria. These two heuristics worked well together in our experiments.

By the Central Limit Theorem, linearly mixing arbitrary sources of finite variances leads to
a near-Gaussian density. Early in learning with A

c randomly initialized, P (sc
mt) was sometimes

driven to a single Gaussian, especially when the sources to be learned contain some near Gaussian
components. To counteract this, the sources were reinitialized when all but one of the Gaussians in
P (sc

mt) died, keeping the A
c unchanged.

2.4 Choosing priors

In performing cluster analysis, the number of clusters required and the intrinsic dimension of each
cluster can be obtained by comparing the marginal likelihood P (X|H) for different possible can-
didate models H. For models of up to C clusters and M dimensions, there are f(M,C) models to
consider1 . The Bayesian method provides another way to perform model selection. Expanding on
the R.H.S. of (14) in Appendix B, we get

log P (X) ≥
∫

Q(θ) log P (X|θ) dθ +

∫

Q(θ) log
P (θ)

Q(θ)
dθ

= 〈log P (X|θ)〉Q − KL(Q(θ), P (θ))

= 〈logL(θ;X)〉Q − penality .

Here L(θ;X) is the data likelihood function. In contrast to the maximum likelihood, the Bayesian
method automatically incorporates a penalty term rooted in a measurement of “distance” between

1. f(M, C) = 1 + f(M − 1, C) + f(M, C − 1) and f(M, 1) = M , f(1, C) = C
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the approximate posterior Q(θ) and the prior distribution P (θ). Q(θ) maximizes the averaged log
likelihood 〈log P (X|θ)〉Q, while minimizing the penality. The set of parameters θ ′ not getting
support from the data X (or equivalently contributing little towards 〈logL(θ;X)〉Q) will result in
Q(θ′) close to P (θ′). Hence, proper choice of P (θ) helps prevent overfitting and facilitates model
selection.

We used non-informative priors, also know as maximum entropy priors (Jaynes, 1983), for the
model parameters. The non-informative prior for a location parameter µ, is uniform in µ, i.e. p(µ) ∝
1. This was approximated by a Gaussian with very large variance. The non-informative prior for
a scale parameter σ is uniform in log σ, i.e. p(σ) ∝ 1/σ. This transforms into p(Λ) ∝ 1/Λ for
Λ = 1/σ2. Finally, for proportion parameter ρ = {ρ1, · · · , ρc, · · · , ρC}, the non-informative prior
is p(ρ) ∝ 1/Πρc. It is interesting that all these priors are improper, i.e., they are not normalizable.
They are approximated by limiting the Gaussian, gamma and Dirichlet distributions respectively
(Appendix A).

2.5 Relationship to MAP

The maximum a posterior (MAP) solution arrives when Q(θ) is constrained to be the delta function
δ(θ − θ′) in the functional maximization of the log marginal likelihood lower bound (equation 6):

max
Q(θ)=δ(θ−θ′)

[
∫

Q(θ) log P (X|θ) dθ +

∫

Q(θ) log
P (θ)

Q(θ)
dθ

]

, max
θ′

∫

δ(θ − θ′) log [P (X|θ)P (θ)] dθ

= max
θ′

log
[

P (X|θ′)P (θ′)
]

.

Here , denotes ‘is equivalent to’ since the entropy term
∫

Q(θ) log Q(θ) dθ is constant and can
be dropped when Q(θ) = δ(θ − θ′). Thus MAP further simplifies the approximation of P (θ|X)
by Q(θ) to a point estimate. One advantage of variational Bayesian method over MAP is that the
Q(θ) also carries information about the uncertainty in θ, although the estimate could be rough due
to the assumption that Q(θ) is separable. Notice that Λ is the precision parameter for the normal
distribution, while a and d are the precision parameters for the gamma and Dirichlet distributions
respectively (equations 10–12). From the learning rules in Appendix C, these hyperparameters
are roughly proportional to the number of data points supporting their corresponding parameters.
Parameters receiving few votes from the data points will then have a low precision and high un-
certainty. Besides, model comparison and averaging is not available in MAP since computation of
P (X) is deliberately avoided. If we start out with an oversized model, MAP would return the best
parameter values under the Bayesian framework, but give no information on how well a selected
model is over its alternatives. On the other hand, the lower bound to P (X) in variational approach
can be used to compare and combine models of different structures.

3. Experiments

In this section, we demonstrate the ability of the proposed Bayesian ICA clustering algorithm to
model arbitrary source densities, reduce dimensionality and perform unsupervised clustering.
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3.1 Sources of various non-symmetric densities

In this experiment, we mixed sources of various skewness and kurtosis: Laplacian, uniform, gamma,
beta, generalized Gaussian (∝ exp(−|x|q)), and rectified generalized Gaussian, to form five clus-
ters in a two dimensional space. The number of points in each cluster ranged from 200 to 400 and
–50 dB noise was added to the data. The model was initialized with 8 to 10 clusters. On most trials
a five cluster solution was obtained. Figure 2 shows the densities of the 10 sources recovered. For
most of the sources densities, three Gaussians fitted the source histograms well. Discrepancies from
the true distribution arose from randomness in samples generation and misestimation of variances
in some difficult distributions. In particular, since data points at tail were assigned to other clusters,
the estimated mean of the rectified super-exponential distribution in Figure 2b) was shifted away
from its tail and hence the variance was under-estimated. Figure 3 shows the initial and final con-
figurations. In Figure 4, the evolution of the lower bound of log marginal likelihood is plotted. Dips
correspond to splitting of clusters, and large jumps correspond to vanishing of some clusters. The
average signal to noise ratio (SNR) for the mixed sources was 9 dB and the SNR for the recovered
sources was on average 38 dB.

a) b) c) d) e)

Figure 2: Source densities for the five clusters in the synthetic data experiment. Histograms: re-
covered sources distribution; dashed lines: original probability densities; solid line: mix-
ture of Gaussians modeled probability densities; dotted lines: contribution of component
Gaussians.

3.2 Dimensionality reduction

In this experiment, three clusters containing two, three and four sources respectively were embed-
ded in a four dimensional space. The Laplacian, uniform, gamma, beta and generalized Gaussian
distributions were again used as source densities. Each cluster had 250 data points and –33 dB
noise. The correct number of clusters and their intrinsic dimension were obtained in all trials. The
original and learned mixing matrix A’s from one run are shown in Table 1. Both the columns of
A and the corresponding rows of sc

mt were negligible values for ‘killed’ components. The signal to
noise ratios (SNRs) for the mixed and recovered sources of each cluster are listed in Table 2. The
average SNR for mixed and recovered sources were 5 dB and 22 dB respectively.
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Figure 3: Initial and final configurations of one typical run in the synthetic data experiment.
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Figure 4: Evolution of E(X, Q(θ)) as function of number of iterations for the sample run shown in
Figure 3.

3.3 Medical data set analysis: Glaucoma

To evaluate the unsupervised classification ability of the Bayes learning algorithm on high dimen-
sional data, we applied it to a glaucoma data set. Glaucoma is a progressive optic neuropathy with
characteristic structural changes in the optic nerve head reflected in the visual field (Hitchings and Spaeth,
1977). Standard automated perimetry (SAP) is currently the visual function test most relied upon
to measure visual function in glaucoma (Johnson, 1997). Automated threshold perimetry gives de-
tailed quantitative data. A commonly used procedure worldwide is the full threshold SAP test of
the Humphrey Visual Field Analyzer (HFA, Humphrey-Zeiss, Dublin, CA). Figure 5 shows part of
a sample printout from the HFA. In the middle is the absolute visual field sensitivities (in dB) over
the retina. On the right is a smoothed gray scale plot.

The data vector is composed of the 52 visual sensitivities over the visual field and the patient’s
age. The dataset included of 189 normal fields and 156 glaucomatous fields, as defined by the
presence of glaucomatous optic neuropathy (GON). Supervised classification on the data by various
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Table 1: Original and learned mixing matrix A’s for the three clusters in experiment 2
CLUSTER ORIGINAL A LEARNED A

1









−3.0 2.0 0.1 0.0
2.0 2.0 −3.0 3.0
0.0 3.0 1.0 2.0
1.0 1.0 0.5 0.0

















3.04 0.11 0.23 −1.99
−1.95 2.56 3.28 −1.80
−0.15 −1.26 2.36 −2.63
−0.96 −0.72 0.14 −0.91









2









2.0 2.0 3.0
1.0 3.0 −1.0

−3.0 0.0 2.0
1.0 1.0 1.0

















2.51 −0.00 2.72 −1.93
2.88 0.00 −1.30 −0.76
0.20 0.00 1.96 2.85
1.18 −0.00 0.88 −0.95









3









−3.0 2.0
2.0 −3.0
1.0 3.0
2.0 −4.0

















3.15 1.80 0.00 0.00
−2.25 −2.85 −0.00 −0.00
−0.71 3.04 0.00 0.00

1.62 −4.13 −0.00 −0.00









Table 2: Signal to noise ratio (SNR) of mixed and recovered sources in experiment 2
CLUSTER MIXTURE (dB) RECOVERED (dB)

1
2
3

6 5 1 2
5 8 3
5 11

21 18 24 19
31 21 19
25 24

machine learning classifiers was studied previously (Chan et al., 2002). Here we explore hidden
structure in the data by fitting a compact density model. With the variational ICA clusters algorithm,
we started with one cluster and look for 20 or less sources. The most stable solution consisted of
two clusters after some splitting and deletions. Figure 6 shows the strength of the sources in the two
clusters and the density distribution of the leading sources. It suggests 12 dimensions in cluster 1
and 6 dimensions in cluster 2. When matching the two clusters to the unseen label GON (cluster
1=glaucoma, 2=normal), we get a true positive rate (sensitivity) of 105/156=67% and a true negative
rate (specificity) of 185/189=98%. The log marginal likelihood lower bound from this model was
−1.451 × 104.

We also performed unsupervised classification using a variational mixture of factor analysis
(MFA) (Ghahramani and Beal, 2000, Attias, 1999b). This was done by setting K to be one in the
density model. Starting from different random initial conditions, solutions containing more than
three clusters were obtained. In these solutions, the normal group was modeled by one cluster
while the glaucoma group was divided into few clusters. The best classification had a sensitivity of
69%, a specificity of 97% with four clusters. However, a two cluster solution was preferred by the
maximum E(X, Q(θ)|H) criteria. The best two cluster solution had a log marginal likelihood lower
bound of −1.459 × 104, sensitivity of 63% and a specificity of 98%.

Besides providing the raw measurement data, the Humphrey Field Analyzer (HFA) comes with
a statistical analysis package that performs specialized statistical analyses related to diagnosing
glaucoma. The purpose of these analyses is to aid the clinicians in interpretation of the visual field.
One of the traditionally used index is glaucoma hemifield test (GHT). GHT yielded a sensitivity of

107



CHAN, LEE AND SEJNOWSKI

Figure 5: A sample of partial printout from the HFA showing absolute visual sensitivities and gray
scale plot over the 54 locations on the retina. Measurement at two locations corresponding
to the blind spot were excluded in the analysis.

67% and a specificity of 100% on our dataset. Specificity of > 95% is desired in the glaucoma
community. The large difference between sensitivity and specificity occurs because the glaucoma
class contains large number of ‘normal looking’ examples, while the normal class data is relatively
pure.

3.4 Comparing to variational MFA

In the experiment on glaucoma data, the difference in log marginal likelihood lower bound, sensi-
tivity and specificity between the variational mixture of ICA and MFA was not significant. They
performed equally well in our glaucoma dataset in terms of density modeling and unsupervised
classification. However, since MFA broke down the glaucoma class into smaller Gaussians, infor-
mation about the intrinsic dimension of that cluster was lost. Instead, the variational mixture ICA
located independent axes inside the glaucoma class. These axes were represented by the column
vectors of mixing matrix A. On the right of Figure 6 are the gray scale plots of values of column
A1 mapped onto the retina for the two clusters. It is interesting to see that the first principal source
for the glaucoma cluster indicates a depression in visual sensitivity of the lower fields, while the
normal group shows a relatively uniform visual sensitivity. Contrast in visual sensitivities of the
upper and lower hemifields of the retina is a common phenomenon found in glaucoma patients
and is exploited by GHT to detect glaucoma. In Figure 7, we show the linear decomposition of a
sample visual field into defects with different patterns by variational ICA. The identification of the
independent patterns aids glaucoma experts in decomposing and generalizing visual fields losses
seen in glaucoma patients. This would not be achievable with the MFA clustering. Although the
true generative mechanism for dataset may not be linear as described by (1), (2) and (3), locating
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Figure 6: A 2 cluster solution for the glaucoma dataset. Cluster 1 corresponds to the GON group
and cluster 2 corresponds to the normal group. Left: standard deviation (∝ |Am|) of the
sources. It shows an intrinsic dimensions of 12 for cluster 1 and 6 for cluster 2. Center
column: marginal density distributions for the first source of each cluster. Right: grey
scale visual fields map of basic function A1.

non-trivial projections by ICA would enhance understanding and reveal interesting features in the
data set.

4. Conclusion

In this paper, we derived the learning rules for the variational learning of mixtures of undercomplete
non-symmetric ICA solution. Modeling independent source densities by a mixture of Gaussians is
common. Here we extend the algorithm to the multi-clusters case and study its use in unsupervised
classification. This is a generalization of Ghahramani and Beal (2000)’s variational learning of
mixture of factor analysers, Miskin (2000) and Lappalainen (1999)’s ensemble learning of ICA and
Attias (1999a)’s independent factor analysis. The proposed model was successfully applied to a
glaucoma data set to identify hidden sources and perform unsupervised classification. The features
of the visual fields discovered for the glaucoma data are supported by physiological evidence since
they are commonly used by physicians to determine the disease.

Correctly identifying the number of sources in signal mixtures has always been an important and
challenging issue. In particular, different numbers of components may be identified for different
clusters. A common way to obtain undercomplete ICA solution is to perform complete ICA on
PCA reduced data. Although some efficient methods (e.g. Amari, 1999) have been proposed for
performing undercomplete ICA skipping PCA, there are no general guidelines on how many sources
to expect. This paper exploits the automatic dimensionality reduction of the Bayesian method to
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– =

subject 338 glaucoma mean

– 0.1 + 0.6 + 1.7 ...

inferior hemifield superior hemifield inferior arcuate

Figure 7: The mixture of ICA separates the visual field into linear combinations of independent
patterns. Shown above is the decomposition of subject 338’s visual field into defects of
different areas.

identify the number of sources in undercomplete noisy ICA. The use of arbitrary source densities
allows a flexible linear model for data densities fitting.

Appendix A. The Density Model

Besides the mixture density (1) and (2), sources s
c
t (3) and the mixing matrix A

c (4), we employ the
following priors on the parameters and hyper-parameters.

P (πc
m) = D (πc

m1, · · · , πc
mK |do(π

c
m1), · · · , do(π

c
mK))

P (φc
mk) = N (φc

mk|µo(φ
c
mk),Λo(φ

c
mk))

P (βc
mk) = G(βc

mk|ao(β
c
mk), bo(β

c
mk))

P (αc
m) = G(αc

m|ao(α
c
m), bo(α

c
m))

P (νc
n) = N (νc

n|µo(ν
c
n),Λo(ν

c
n))

P (Ψc
n) = G(Ψc

n|ao(Ψ
c
n), bo(Ψ

c
n))

P (ρ) = D(ρ1, · · · , ρC |do(ρ1), · · · , do(ρC)) .

Here N (·), G(·) and D(·) are the normal, gamma and Dirichlet distributions respectively,

N (x|µ,Λ) =

√

|Λ|
(2π)N

e−
1

2
(x−µ)>Λ(x−µ) (10)

G(x|a, b) =
ba

Γ(a)
xa−1e−bx (11)

D(π|d) =
Γ(

∑

dk)
∏

Γ(dk)
πd1−1

1 × · · · × πdK−1
K . (12)
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And we use the following values for the hyper-parameter in the priors: µo(ν
c
n) = 0,Λo(ν

c
n) =

0.001, do(ρc) = do(π
c
mk) = 0.001, µo(φ

c
mk) = 0,Λo(φ

c
mk) = 1, ao(β

c
mk) = 1.2, bo(β

c
mk) = 0.1,

ao(α
c
m) = bo(α

c
m) = 0.001 and ao(Ψ

c
n) = bo(Ψ

c
n) = 0.001.

Appendix B. Variational Bayesian Method

Taking log on both sides of (5) and introducing normalized density Q(θ), we have

log
P (θ|X)

Q(θ)
+ log P (X) = log

P (X|θ)P (θ)

Q(θ)
∫

Q(θ) log
P (θ|X)

Q(θ)
dθ + log P (X) =

∫

Q(θ) log
P (X|θ)P (θ)

Q(θ)
dθ . (13)

The first term on the left is identified as the negative Kullback-Leibler Divergence between Q(θ)
and true posterior P (θ|X),

KL(Q(θ), P (θ|X)) =

∫

Q(θ) log
Q(θ)

P (θ|X)
dθ .

Functional minimization of KL(Q(θ), P (θ|X)) provides an alternative way of analyzing the Bayes
rule (5). Since KL(Q(θ), P (θ|X)) ≥ 0, the Jensen’s inequality:

log P (X) = log

∫

Q(θ)
P (X|θ)P (θ)

Q(θ)
dθ

≥
∫

Q(θ) log
P (X|θ)P (θ)

Q(θ)
dθ (14)

is recovered by dropping it from (13). The lower bound of log P (X) from the Jensen’s inequality
can then be used as the objective function for solving Q(θ), which is an approximation to P (θ|X).

Appendix C. Learning Rules

Using the separable posterior Q(θ) (equation 9) together with the posterior on the hidden variables
Q(ct), Q(sc

t) and Q(kc
mt), we perform functional maximization on the lower bound of the marginal

likelihood (equations 7 and 8) to obtain the following recursive learning rules. Because of the choice
of conjugate priors, free-form optimization results in the same form of Q(·) as P (·), but of different
hyper-parameters. The only exception is Q(sc

t ):

Q(sc
t) = N (sc

t |µ(sc
t ),Λ(sc

t ))

Λ(sc
t) = 〈Ac>

Ψ
c
A

c〉 + diag(
∑

k
Q(kc

mt)〈βc
mk〉)

Λ(sc
t)µ(sc

t) = 〈Ac>
Ψ

c(xt − νc)〉 +
∑

k







Q(kc
1t)〈βc

1kφ
c
1k〉

...
Q(kc

Mt)〈βc
Mkφ

c
Mk〉







Q(φc
mk) = N (φc

mk|µ(φc
mk),Λ(φc

mk))

Λ(φc
mk) = Λo(φ

c
mk) +

∑

t
Q(ct)Q(kc

mt)〈βc
mk〉

µ(φc
mk) = [Λo(φ

c
mk)µo(φ

c
mk) +

∑

t
Q(ct)Q(kc

mt)〈βc
mksc

mt〉]/Λ(φc
mk)
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Q(βc
mk) = G(βc

mk|a(βc
mk), b(βc

mk))

a(βc
mk) = ao(β

c
mk) +

1

2

∑

t

Q(ct)Q(kc
mt)

b(βc
mk) = bo(β

c
mk) +

1

2

∑

t

Q(ct)Q(kc
mt)〈(sc

mt − φc
mk)

2〉

Q(πc
m) = D(πc

m|d(πc
m))

d(πc
mk) = do(π

c
mk) +

∑

tQ(ct)Q(kc
mt)

Q(Ac) =
∏

n

N (Ac
n|µ(Ac

n),Λ(Ac
n))

Λ(Ac
n) = diag(〈αc

1〉 , · · · , 〈αc
m〉) +

∑

tQ(ct)〈Ψc
n〉〈sc

ts
c>
t 〉

µ(Ac
n) = [〈Ψc

n〉
∑

tQ(ct)〈(xnt − νn)sc>
t 〉](Λ(Ac

n))−1

Q(αc) =
∏

m

G(αc
m|a(αc

m), b(αc
m))

a(αc
m) = ao(α

c
m) +

N

2

b(αc
m) = bo(α

c
m) +

1

2

∑

n

〈A2
nm〉

Q(νc) =
∏

n

N (νc
n|µ(νc

n,Λ(νc
n))

Λ(νc
n) = Λo(ν

c
n) +

∑

t
Q(ct)〈Ψc

n〉
µ(νc

n) = [Λo(ν
c
n)µo(ν

c
n) +

∑

tQ(ct)〈(xnt −A
c
ns

c
t)Ψn〉] /Λ(νc

n)

Q(Ψc) =
∏

n

G(Ψc
n|a(Ψc

n), b(Ψc
n))

a(Ψc
n) = ao(Ψ

c
n) +

1

2

∑

t

Q(ct)

b(Ψc
n) = bo(Ψ

c
n) +

1

2

∑

t

Q(ct)〈(xnt −A
c
ns

c
t − νc

n)2〉

Q(ρ) = D(ρ|d(ρ))

d(ρc) = do(ρc) +
∑

tQ(ct) .

〈·〉 denote the expectation of over the posterior distributions Q(·). Hidden variables distributions
Q(ct) and Q(kc

mt) are given by

log Q(kc
mt) = 〈log πc

mk〉 + 〈log
√

βc
mk

2π
〉 − 1

2
〈βc

mk(sc
mt − φc

mk)
2〉 − log zc

mt ;

log Q(ct) = 〈log ρc〉 + 〈log P (xt|sc
t ,A

c,νc,Ψc)〉 − 〈log Q(sc
t)〉 +

∑

m log zc
mt − log Zt . (15)

where zc
mt and Zt are the normalization constants.
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