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1 Proof of Lemma 20

The article R. Herbrich and R. Williamson. Algorithmic Luckiness. Journal of Machine Learning
Research 3. pp. 175-212. 2002 contains a mistake on page 195. In the proof of Lemma 20 it is
argued that the probability that a binomially distributed random variable with an expectation of
more than ε is greater than or equal to ε(n−m)

2 is at least 1− (1− ε)n−m provided ε (n−m) ≥ 2.
This is wrong; in order to see this let A and B be defined as follows

A :=
{

i ∈ N
∣∣∣∣i ≥

ε (n−m)
2

}
, B := {i ∈ N |i ≥ 1} .

Since ε (n−m) ≥ 2 we know that A ⊆ B and thus P (A) ≤ P (B). By the binomial tail bound we
know that P

(
B

) ≤ (1− ε)n−m and thus P (B) ≥ 1− (1− ε)n−m. Now we can see that the paper
incorrectly tied a lower bound on P (B) with an upper bound on P (B).

Nevertheless, the lemma remains true if we use the following theorem due to Mingrui Wu. In
the current application we replace n in the theorem with n − m from Lemma 20 and µ in the
theorem with ε from Lemma 20.

Theorem (Binomial mean deviation bound). Let X1, . . . , Xn be independent random variables
such that, for all i ∈ {1, . . . , n}, PXi (Xi = 1) = 1 − PXi (Xi = 0) = EXi [Xi] = µ. Then, for all
ε ∈ (

2
n , µ

)
we have

PXn

(
1
n

n∑

i=1

Xi ≥ ε

2

)
>

1
2

.

Proof. Since µ > ε it suffices to show

PXn

(
1
n

n∑

i=1

Xi ≥ ε

2

)
≥ PXn

(
1
n

n∑

i=1

Xi ≥ µ

2

)
>

1
2

,

assuming that nµ > 2. This statement is equivalent to

PXn

(
n∑

i=1

Xi <
nµ

2

)
≤ 1

2
. (1.1)

Let l be the largest integer such that l < nµ
2 . Since µ ∈ [0, 1] and n is an integer we know that

2l + 1 ≤ n. Note that S :=
∑n

i=1 Xi is binomially distributed with parameters n and µ. Thus,
(1.1) is equivalent to

l∑

j=0

(
n

j

)
µj (1− µ)n−j ≤ 1

2
. (1.2)

Case 1: µ > 1
2 In this case µ > 1− µ and for j ∈ {0, . . . , l} we have j < n− j so it follows that

(
n

j

)
µj (1− µ)n−j

<

(
n

j

)
µn−j (1− µ)j =

(
n

n− j

)
µn−j (1− µ)j

.
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Hence, double summation of (1.2) gives

2
l∑

j=0

(
n

j

)
µj (1− µ)n−j

<

l∑

j=0

(
n

j

)
µj (1− µ)n−j +

n∑

j=n−l

(
n

j

)
µj (1− µ)n−j

≤
n∑

j=0

(
n

j

)
µj (1− µ)n−j = 1 , .

Case 2: µ ≤ 1
2 By assumption nµ > 2 and thus l ≤ n

4 and n > 4. In the rest of the proof we will
show that

∀j ∈ {1, . . . , l} :
(

n

j

)
µj (1− µ)n−j

<

(
n

j + l

)
µj+l (1− µ)n−j−l

, (1.3)

(1− µ)n
<

(
n

2l + 1

)
µ2l+1 (1− µ)n−2l−1

. (1.4)

Using these two results, (1.2) can be seen to hold by noticing that (1.3) and (1.4) imply

l∑

j=0

(
n

j

)
µj (1− µ)n−j =

l∑

j=1

(
n

j

)
µj (1− µ)n−j + (1− µ)n

<

2l+1∑

j=l+1

(
n

j

)
µj (1− µ)n−j

.

Hence, double summation of (1.2) again gives

2
l∑

j=0

(
n

j

)
µj (1− µ)n−j

<

2l+1∑

j=0

(
n

j

)
µj (1− µ)n−j

≤
n∑

j=0

(
n

j

)
µj (1− µ)n−j = 1 ,

where we used the fact that 2l+1 ≤ n. It remains to show (1.3) and (1.4). In order to prove
(1.3) we divide the right hand side by the left hand side. For the jth term this results in

(
n

j+l

)
µj+l (1− µ)n−j−l

(
n
j

)
µj (1− µ)n−j

=
l∏

t=1

µ

1− µ
· n− j − l + t

j + t

≥
l∏

t=1

µ

1− µ
· n− 2l + t

l + t

=
l∏

t=1

µ

1− µ

(
1 +

n− 3l

l + t

)

≥
l∏

t=1

µ

1− µ
· n− l

2l

=
(

µ

1− µ
· n− l

2l

)l

>

(
µ

1− µ
.
n− nµ

2

nµ

)l

=
(

1− µ
2

1− µ

)l

> 1 ,
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where we used j ≤ l in the second line, t ≤ l and n − 3l ≥ 0 in the third line and l < nµ
2

in the penultimate line. In order to show (1.4) we assume l ≥ 1; otherwise the statement
follows easily. Again, dividing the right hand side of (1.4) by the left hand side of (1.4) we
obtain

(
n

2l+1

)
µ2l+1 (1− µ)n−2l−1

(1− µ)n

=
2l+1∏
t=1

µ

1− µ
· n− 2l − 1 + t

t

=

(
2l∏

t=2

µ

1− µ
· n− 2l − 1 + t

t

) (
n (n− 2l)

2l + 1

(
µ

1− µ

)2
)

>

(
2l∏

t=2

µ

1− µ
· n− 1

2l

) (
n (n− nµ)

2l + 1

(
µ

1− µ

)2
)

=
(

nµ− µ

2l − 2lµ

)2l−1 (
n2µ2

(2l + 1) (1− µ)

)

>

(
2l − µ

2l − 2lµ

)2l−1 (
n2µ2

2l + 1

)

>

(
2l − µ

2l − 2lµ

)2l−1 (
n2µ2

nµ + 1

)
> 1 ,

where the third and fifth line uses t ≤ 2l < nµ and the last line uses nµ > 2.

The theorem is proven.
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