Errata "Algorithmic Luckiness"

15th April 2004

Proof of Lemma 20 1

The article R. Herbrich and R. Williamson. Algorithmic Luckiness. Journal of Machine Learning Research 3. pp. 175-212. 2002 contains a mistake on page 195. In the proof of Lemma 20 it is argued that the probability that a binomially distributed random variable with an expectation of more than ε is greater than or equal to $\frac{\varepsilon(n-m)}{2}$ is at least $1 - (1-\varepsilon)^{n-m}$ provided $\varepsilon(n-m) \ge 2$. This is wrong; in order to see this let A and B be defined as follows

$$A := \left\{ i \in \mathbb{N} \left| i \ge \frac{\varepsilon \left(n - m \right)}{2} \right\}, \quad B := \left\{ i \in \mathbb{N} \left| i \ge 1 \right\} \right\}.$$

Since $\varepsilon (n-m) \ge 2$ we know that $A \subseteq B$ and thus $\mathbf{P}(A) \le \mathbf{P}(B)$. By the binomial tail bound we know that $\mathbf{P}(\overline{B}) \le (1-\varepsilon)^{n-m}$ and thus $\mathbf{P}(B) \ge 1 - (1-\varepsilon)^{n-m}$. Now we can see that the paper incorrectly tied a lower bound on $\mathbf{P}(B)$ with an upper bound on $\mathbf{P}(B)$.

Nevertheless, the lemma remains true if we use the following theorem due to Mingrui Wu. In the current application we replace n in the theorem with n-m from Lemma 20 and μ in the theorem with ε from Lemma 20.

Theorem (Binomial mean deviation bound). Let X_1, \ldots, X_n be independent random variables such that, for all $i \in \{1, ..., n\}$, $\mathbf{P}_{X_i}(X_i = 1) = 1 - \mathbf{P}_{X_i}(X_i = 0) = \mathbf{E}_{X_i}[X_i] = \mu$. Then, for all $\varepsilon \in \left(\frac{2}{n}, \mu\right)$ we have

$$\mathbf{P}_{\mathsf{X}^n}\left(\frac{1}{n}\sum_{i=1}^n\mathsf{X}_i\geq\frac{\varepsilon}{2}\right)>\frac{1}{2}$$

Proof. Since $\mu > \varepsilon$ it suffices to show

$$\mathbf{P}_{\mathsf{X}^n}\left(\frac{1}{n}\sum_{i=1}^n\mathsf{X}_i\geq\frac{\varepsilon}{2}\right)\geq\mathbf{P}_{\mathsf{X}^n}\left(\frac{1}{n}\sum_{i=1}^n\mathsf{X}_i\geq\frac{\mu}{2}\right)>\frac{1}{2}\,,$$

assuming that $n\mu > 2$. This statement is equivalent to

$$\mathbf{P}_{\mathbf{X}^n}\left(\sum_{i=1}^n \mathsf{X}_i < \frac{n\mu}{2}\right) \le \frac{1}{2}.$$
(1.1)

Let *l* be the largest integer such that $l < \frac{n\mu}{2}$. Since $\mu \in [0, 1]$ and *n* is an integer we know that $2l + 1 \le n$. Note that $\mathsf{S} := \sum_{i=1}^{n} \mathsf{X}_{i}$ is binomially distributed with parameters *n* and μ . Thus, (1.1) is equivalent to

$$\sum_{j=0}^{l} \binom{n}{j} \mu^{j} \left(1-\mu\right)^{n-j} \le \frac{1}{2}.$$
(1.2)

Case 1: $\mu > \frac{1}{2}$ In this case $\mu > 1 - \mu$ and for $j \in \{0, \ldots, l\}$ we have j < n - j so it follows that

$$\binom{n}{j}\mu^{j}(1-\mu)^{n-j} < \binom{n}{j}\mu^{n-j}(1-\mu)^{j} = \binom{n}{n-j}\mu^{n-j}(1-\mu)^{j}.$$

Hence, double summation of (1.2) gives

$$2\sum_{j=0}^{l} \binom{n}{j} \mu^{j} (1-\mu)^{n-j} < \sum_{j=0}^{l} \binom{n}{j} \mu^{j} (1-\mu)^{n-j} + \sum_{j=n-l}^{n} \binom{n}{j} \mu^{j} (1-\mu)^{n-j} \\ \leq \sum_{j=0}^{n} \binom{n}{j} \mu^{j} (1-\mu)^{n-j} = 1,.$$

Case 2: $\mu \leq \frac{1}{2}$ By assumption $n\mu > 2$ and thus $l \leq \frac{n}{4}$ and n > 4. In the rest of the proof we will show that

$$\forall j \in \{1, \dots, l\}: \binom{n}{j} \mu^{j} \left(1 - \mu\right)^{n-j} < \binom{n}{j+l} \mu^{j+l} \left(1 - \mu\right)^{n-j-l}, \tag{1.3}$$

$$(1-\mu)^n < \binom{n}{2l+1} \mu^{2l+1} (1-\mu)^{n-2l-1} .$$
 (1.4)

Using these two results, (1.2) can be seen to hold by noticing that (1.3) and (1.4) imply

$$\sum_{j=0}^{l} \binom{n}{j} \mu^{j} (1-\mu)^{n-j} = \sum_{j=1}^{l} \binom{n}{j} \mu^{j} (1-\mu)^{n-j} + (1-\mu)^{n}$$
$$< \sum_{j=l+1}^{2l+1} \binom{n}{j} \mu^{j} (1-\mu)^{n-j}.$$

Hence, double summation of (1.2) again gives

$$2\sum_{j=0}^{l} \binom{n}{j} \mu^{j} (1-\mu)^{n-j} < \sum_{j=0}^{2l+1} \binom{n}{j} \mu^{j} (1-\mu)^{n-j} \\ \leq \sum_{j=0}^{n} \binom{n}{j} \mu^{j} (1-\mu)^{n-j} = 1,$$

where we used the fact that $2l + 1 \le n$. It remains to show (1.3) and (1.4). In order to prove (1.3) we divide the right hand side by the left hand side. For the *j*th term this results in

$$\begin{split} \frac{\binom{n}{j+l}\mu^{j+l}\left(1-\mu\right)^{n-j-l}}{\binom{n}{j}\mu^{j}\left(1-\mu\right)^{n-j}} &=& \prod_{t=1}^{l}\frac{\mu}{1-\mu}\cdot\frac{n-j-l+t}{j+t}\\ &\geq& \prod_{t=1}^{l}\frac{\mu}{1-\mu}\cdot\frac{n-2l+t}{l+t}\\ &=& \prod_{t=1}^{l}\frac{\mu}{1-\mu}\left(1+\frac{n-3l}{l+t}\right)\\ &\geq& \prod_{t=1}^{l}\frac{\mu}{1-\mu}\cdot\frac{n-l}{2l}\\ &=& \left(\frac{\mu}{1-\mu}\cdot\frac{n-l}{2l}\right)^{l}\\ &\geq& \left(\frac{\mu}{1-\mu}\cdot\frac{n-\frac{n\mu}{2}}{n\mu}\right)^{l}\\ &=& \left(\frac{1-\frac{\mu}{2}}{1-\mu}\right)^{l} > 1, \end{split}$$

where we used $j \leq l$ in the second line, $t \leq l$ and $n - 3l \geq 0$ in the third line and $l < \frac{n\mu}{2}$ in the penultimate line. In order to show (1.4) we assume $l \geq 1$; otherwise the statement follows easily. Again, dividing the right hand side of (1.4) by the left hand side of (1.4) we obtain

$$\begin{split} \frac{\binom{n}{2l+1}\mu^{2l+1}\left(1-\mu\right)^{n-2l-1}}{\left(1-\mu\right)^{n}} \\ &= \prod_{t=1}^{2l+1}\frac{\mu}{1-\mu}\cdot\frac{n-2l-1+t}{t} \\ &= \left(\prod_{t=2}^{2l}\frac{\mu}{1-\mu}\cdot\frac{n-2l-1+t}{t}\right)\left(\frac{n\left(n-2l\right)}{2l+1}\left(\frac{\mu}{1-\mu}\right)^{2}\right) \\ &> \left(\prod_{t=2}^{2l}\frac{\mu}{1-\mu}\cdot\frac{n-1}{2l}\right)\left(\frac{n\left(n-n\mu\right)}{2l+1}\left(\frac{\mu}{1-\mu}\right)^{2}\right) \\ &= \left(\frac{n\mu-\mu}{2l-2l\mu}\right)^{2l-1}\left(\frac{n^{2}\mu^{2}}{(2l+1)\left(1-\mu\right)}\right) \\ &> \left(\frac{2l-\mu}{2l-2l\mu}\right)^{2l-1}\left(\frac{n^{2}\mu^{2}}{n\mu+1}\right) \\ &> \left(\frac{2l-\mu}{2l-2l\mu}\right)^{2l-1}\left(\frac{n^{2}\mu^{2}}{n\mu+1}\right) > 1\,, \end{split}$$

where the third and fifth line uses $t \leq 2l < n \mu$ and the last line uses $n \mu > 2.$ The theorem is proven.