Errata “Algorithmic Luckiness”

15th April 2004

1 Proof of Lemma 20

The article R. Herbrich and R. Williamson. Algorithmic Luckiness. Journal of Machine Learning

Research 8. pp. 175-212. 2002 contains a mistake on page 195. In the proof of Lemma 20 it is

argued that the probability that a binomially distributed random variable with an expectation of

more than ¢ is greater than or equal to w is at least 1 — (1 — )"~ ™ provided ¢ (n —m) > 2.
This is wrong; in order to see this let A and B be defined as follows
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Since € (n —m) > 2 we know that A C B and thus P (4) < P (B). By the binomial tail bound we
know that P (B) < (1 —¢)"""™ and thus P (B) >1— (1 —¢)""™. Now we can see that the paper
incorrectly tied a lower bound on P (B) with an upper bound on P (B).

Nevertheless, the lemma remains true if we use the following theorem due to Mingrui Wu. In
the current application we replace n in the theorem with n — m from Lemma 20 and g in the
theorem with ¢ from Lemma 20.

Theorem (Binomial mean deviation bound). Let Xy,..., X, be independent random variables
such that, for all i € {1,...,n}, Px, (X; =1) = 1 — Px, (X; =0) = Ex, [X;] = p. Then, for all

€€ (%,u) we have
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Proof. Since p > ¢ it suffices to show
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assuming that ny > 2. This statement is equivalent to
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Let [ be the largest integer such that [ < %*. Since p € [0,1] and n is an integer we know that
20 +1 < n. Note that S := >""" | X; is binomially distributed with parameters n and p. Thus,

(1.1) is equivalent to
!
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Case 1: y > 3 In this case p > 1 — p and for j € {0,...,1} we have j < n — j so it follows that
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Hence, double summation of (1.2) gives
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Case 2: u < % By assumption nu > 2 and thus [ < % and n > 4. In the rest of the proof we will
show that
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Using these two results, (1.2) can be seen to hold by noticing that (1.3) and (1.4) imply
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Hence, double summation of (1.2) again gives
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where we used the fact that 2l +1 < n. It remains to show (1.3) and (1.4). In order to prove
(1.3) we divide the right hand side by the left hand side. For the jth term this results in
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where we used j < [ in the second line, ¢ < [ and n — 3l > 0 in the third line and | < %
in the penultimate line. In order to show (1.4) we assume [ > 1; otherwise the statement
follows easily. Again, dividing the right hand side of (1.4) by the left hand side of (1.4) we
obtain
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where the third and fifth line uses ¢ < 2] < nu and the last line uses ny > 2.

The theorem is proven. O



