Errata "Algorithmic Luckiness"

15th April 2004

1 Proof of Lemma 20

The article R. Herbrich and R. Williamson. Algorithmic Luckiness. Journal of Machine Learning Research 3. pp. 175-212. 2002 contains a mistake on page 195. In the proof of Lemma 20 it is argued that the probability that a binomially distributed random variable with an expectation of more than ε is greater than or equal to $\frac{\varepsilon(n-m)}{2}$ is at least $1-(1-\varepsilon)^{n-m}$ provided $\varepsilon(n-m) \geq 2$.

This is wrong; in order to see this let A and B be defined as follows

$$
A:=\left\{i \in \mathbb{N} \left\lvert\, i \geq \frac{\varepsilon(n-m)}{2}\right.\right\}, \quad B:=\{i \in \mathbb{N} \mid i \geq 1\}
$$

Since $\varepsilon(n-m) \geq 2$ we know that $A \subseteq B$ and thus $\mathbf{P}(A) \leq \mathbf{P}(B)$. By the binomial tail bound we know that $\mathbf{P}(\bar{B}) \leq(1-\varepsilon)^{n-m}$ and thus $\mathbf{P}(B) \geq 1-(1-\varepsilon)^{n-m}$. Now we can see that the paper incorrectly tied a lower bound on $\mathbf{P}(B)$ with an upper bound on $\mathbf{P}(B)$.

Nevertheless, the lemma remains true if we use the following theorem due to Mingrui Wu. In the current application we replace n in the theorem with $n-m$ from Lemma 20 and μ in the theorem with ε from Lemma 20.

Theorem (Binomial mean deviation bound). Let $\mathrm{X}_{1}, \ldots, \mathrm{X}_{n}$ be independent random variables such that, for all $i \in\{1, \ldots, n\}, \mathbf{P}_{\mathrm{X}_{i}}\left(\mathrm{X}_{i}=1\right)=1-\mathbf{P}_{\mathrm{X}_{i}}\left(\mathrm{X}_{i}=0\right)=\mathbf{E}_{\mathrm{X}_{i}}\left[\mathrm{X}_{i}\right]=\mu$. Then, for all $\varepsilon \in\left(\frac{2}{n}, \mu\right)$ we have

$$
\mathbf{P}_{\mathrm{X}^{n}}\left(\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i} \geq \frac{\varepsilon}{2}\right)>\frac{1}{2}
$$

Proof. Since $\mu>\varepsilon$ it suffices to show

$$
\mathbf{P}_{\mathrm{X}^{n}}\left(\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i} \geq \frac{\varepsilon}{2}\right) \geq \mathbf{P}_{\mathrm{X}^{n}}\left(\frac{1}{n} \sum_{i=1}^{n} \mathrm{X}_{i} \geq \frac{\mu}{2}\right)>\frac{1}{2}
$$

assuming that $n \mu>2$. This statement is equivalent to

$$
\begin{equation*}
\mathbf{P}_{\mathrm{X}^{n}}\left(\sum_{i=1}^{n} \mathrm{X}_{i}<\frac{n \mu}{2}\right) \leq \frac{1}{2} \tag{1.1}
\end{equation*}
$$

Let l be the largest integer such that $l<\frac{n \mu}{2}$. Since $\mu \in[0,1]$ and n is an integer we know that $2 l+1 \leq n$. Note that $\mathrm{S}:=\sum_{i=1}^{n} \mathrm{X}_{i}$ is binomially distributed with parameters n and μ. Thus, (1.1) is equivalent to

$$
\begin{equation*}
\sum_{j=0}^{l}\binom{n}{j} \mu^{j}(1-\mu)^{n-j} \leq \frac{1}{2} \tag{1.2}
\end{equation*}
$$

Case 1: $\mu>\frac{1}{2}$ In this case $\mu>1-\mu$ and for $j \in\{0, \ldots, l\}$ we have $j<n-j$ so it follows that

$$
\binom{n}{j} \mu^{j}(1-\mu)^{n-j}<\binom{n}{j} \mu^{n-j}(1-\mu)^{j}=\binom{n}{n-j} \mu^{n-j}(1-\mu)^{j}
$$

Hence, double summation of (1.2) gives

$$
\begin{aligned}
2 \sum_{j=0}^{l}\binom{n}{j} \mu^{j}(1-\mu)^{n-j} & <\sum_{j=0}^{l}\binom{n}{j} \mu^{j}(1-\mu)^{n-j}+\sum_{j=n-l}^{n}\binom{n}{j} \mu^{j}(1-\mu)^{n-j} \\
& \leq \sum_{j=0}^{n}\binom{n}{j} \mu^{j}(1-\mu)^{n-j}=1
\end{aligned}
$$

Case 2: $\mu \leq \frac{1}{2}$ By assumption $n \mu>2$ and thus $l \leq \frac{n}{4}$ and $n>4$. In the rest of the proof we will show that

$$
\begin{align*}
\forall j \in\{1, \ldots, l\}:\binom{n}{j} \mu^{j}(1-\mu)^{n-j} & <\binom{n}{j+l} \mu^{j+l}(1-\mu)^{n-j-l} \tag{1.3}\\
(1-\mu)^{n} & <\binom{n}{2 l+1} \mu^{2 l+1}(1-\mu)^{n-2 l-1} \tag{1.4}
\end{align*}
$$

Using these two results, (1.2) can be seen to hold by noticing that (1.3) and (1.4) imply

$$
\begin{aligned}
\sum_{j=0}^{l}\binom{n}{j} \mu^{j}(1-\mu)^{n-j} & =\sum_{j=1}^{l}\binom{n}{j} \mu^{j}(1-\mu)^{n-j}+(1-\mu)^{n} \\
& <\sum_{j=l+1}^{2 l+1}\binom{n}{j} \mu^{j}(1-\mu)^{n-j}
\end{aligned}
$$

Hence, double summation of (1.2) again gives

$$
\begin{aligned}
2 \sum_{j=0}^{l}\binom{n}{j} \mu^{j}(1-\mu)^{n-j} & <\sum_{j=0}^{2 l+1}\binom{n}{j} \mu^{j}(1-\mu)^{n-j} \\
& \leq \sum_{j=0}^{n}\binom{n}{j} \mu^{j}(1-\mu)^{n-j}=1
\end{aligned}
$$

where we used the fact that $2 l+1 \leq n$. It remains to show (1.3) and (1.4). In order to prove (1.3) we divide the right hand side by the left hand side. For the j th term this results in

$$
\begin{aligned}
\frac{\binom{n}{j+l} \mu^{j+l}(1-\mu)^{n-j-l}}{\binom{n}{j} \mu^{j}(1-\mu)^{n-j}} & =\prod_{t=1}^{l} \frac{\mu}{1-\mu} \cdot \frac{n-j-l+t}{j+t} \\
& \geq \prod_{t=1}^{l} \frac{\mu}{1-\mu} \cdot \frac{n-2 l+t}{l+t} \\
& =\prod_{t=1}^{l} \frac{\mu}{1-\mu}\left(1+\frac{n-3 l}{l+t}\right) \\
& \geq \prod_{t=1}^{l} \frac{\mu}{1-\mu} \cdot \frac{n-l}{2 l} \\
& =\left(\frac{\mu}{1-\mu} \cdot \frac{n-l}{2 l}\right)^{l} \\
& >\left(\frac{\mu}{1-\mu} \cdot \frac{n-\frac{n \mu}{2}}{n \mu}\right)^{l} \\
& =\left(\frac{1-\frac{\mu}{2}}{1-\mu}\right)^{l}>1
\end{aligned}
$$

where we used $j \leq l$ in the second line, $t \leq l$ and $n-3 l \geq 0$ in the third line and $l<\frac{n \mu}{2}$ in the penultimate line. In order to show (1.4) we assume $l \geq 1$; otherwise the statement follows easily. Again, dividing the right hand side of (1.4) by the left hand side of (1.4) we obtain

$$
\begin{aligned}
& \frac{\binom{n}{2 l+1} \mu^{2 l+1}(1-\mu)^{n-2 l-1}}{(1-\mu)^{n}} \\
& \quad=\prod_{t=1}^{2 l+1} \frac{\mu}{1-\mu} \cdot \frac{n-2 l-1+t}{t} \\
& \quad=\left(\prod_{t=2}^{2 l} \frac{\mu}{1-\mu} \cdot \frac{n-2 l-1+t}{t}\right)\left(\frac{n(n-2 l)}{2 l+1}\left(\frac{\mu}{1-\mu}\right)^{2}\right) \\
& \quad>\left(\prod_{t=2}^{2 l} \frac{\mu}{1-\mu} \cdot \frac{n-1}{2 l}\right)\left(\frac{n(n-n \mu)}{2 l+1}\left(\frac{\mu}{1-\mu}\right)^{2}\right) \\
& \quad=\left(\frac{n \mu-\mu}{2 l-2 l \mu}\right)^{2 l-1}\left(\frac{n^{2} \mu^{2}}{(2 l+1)(1-\mu)}\right) \\
& \quad>\left(\frac{2 l-\mu}{2 l-2 l \mu}\right)^{2 l-1}\left(\frac{n^{2} \mu^{2}}{2 l+1}\right) \\
& \quad>\left(\frac{2 l-\mu}{2 l-2 l \mu}\right)^{2 l-1}\left(\frac{n^{2} \mu^{2}}{n \mu+1}\right)>1
\end{aligned}
$$

where the third and fifth line uses $t \leq 2 l<n \mu$ and the last line uses $n \mu>2$.
The theorem is proven.

