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Abstract

Pairwise proximity data, given as similarity or dissimilarity matrix, can violate metricity. This
occurs either due to noise, fallible estimates, or due to intrinsic non-metric features such as they
arise from human judgments. So far the problem of non-metric pairwise data has been tackled
by essentially omitting the negative eigenvalues or shifting the spectrum of the associated (pseu-
do-)covariance matrix for a subsequent embedding. However, little attention has been paid to the
negative part of the spectrum itself. In particular no answer was given to whether the directions
associated to the negative eigenvalues would at all code variance other than noise related. We show
by a simple, exploratory analysis that the negative eigenvalues can code for relevant structure in the
data, thus leading to the discovery of new features, which were lost by conventional data analysis
techniques. The information hidden in the negative eigenvalue part of the spectrum is illustrated
and discussed for three data sets, namely USPS handwritten digits, text-mining and data from cog-
nitive psychology.

Keywords: Feature discovery, exploratory data analysis, embedding, non-metric, pairwise data,
unsupervised learning

1. Introduction

A large class of data analysis algorithms is based on a vectorial representation of the data. How-
ever, for major fields such as bioinformatics (e.g. Altschul et al., 1997), image analysis (Hofmann
et al., 1998; Jacobs et al., 2000) or cognitive psychology (Gati and Tversky, 1982; Goldstone et al.,
1991), the data is not available as points lying in some vector space but solely arises as scores of
pairwise comparisons, typically measuring similarity or dissimilarity between the data points. A
global overview of pairwise proximity data can be found in Everitt and Rabe-Hesketh (1997). Ta-
ble 1 gives a simple instance of pairwise data obtained from human similarity judgments of Morse
code (Everitt and Rabe-Hesketh, 1997).
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1 2 3 4 5
1 84 63 13 8 10
2 62 89 54 20 5
3 18 64 86 31 23
4 5 26 44 89 42
5 14 10 30 69 90

Table 1: Test subjects are asked to judge the pairwise similarity of auditory Morse code (long and
short tones). Here we show the similarity matrix for the first five digits. The entries
correspond to the percentage of a large number of observers who responded ‘same’ to the
row signal followed by the column signal. (Excerpt from Table 1.3 given in Everitt and
Rabe-Hesketh (1997)). Note that this proximity matrix is asymmetric.

These pairwise proximities, or “data points”, are in no natural way related to the common view-
point of objects lying in some “well behaved” space like a vector space which always is—albeit
possibly high dimensional—a very restrictive structure.

There is a class of algorithms specifically designed for pairwise data, e.g. KNN, pairwise k-
means (Duda et al., 2001). Otherwise the pairwise data is first "embedded" into a vector space
in order to make it available for the numerous algorithms based on vectorial input (Cox and Cox,
2001). Pairwise data satisfying restrictive conditions can be embedded distortionless with respect
to metricity into a Euclidean space (Roth et al., 2003b).

Often pairwise data is non-metric and the dissimilarity matrix does not satisfy the mathematical
requirements of a metric function. Metric violations preclude the use of well established machine
learning methods, which typically have been formulated for metric data only, and more precisely,
for vectorial data, thus limiting the interest of raw pairwise data. Non-metric pairwise data can
not be embedded distortionless into a (Euclidean) vector space. So, in general, embedding into a
Euclidean space (and often subsequent dimension reduction) amounts to distorting pairwise data to
enforce Euclidean metricity. This procedure is exemplified by Multi Dimensional Scaling (Cox and
Cox, 2001). Other popular methods are e.g. Locally Linear Embedding (Roweis and Saul, 2000)
and Isomap (Tenenbaum et al., 2000).

However, little is known about the real information loss incurred by enforcing metricity, when
non-metric data is forcefully embedded into a vector space on the assumption that non-metricity be a
mere artifact of noise. This assumption certainly holds for many cases, especially when the pairwise
comparison is the output of some algorithm tuned to be metric but relying on some random initial-
ization. It does not hold for pairwise data which is inherently non-metric, e.g. for human similarity
judgments, summarizing geometrical (metric) and categorial thinking (possibly non-metric).

Technically, non-metricity translates into indefinite similarity matrices, also called “pseudo-
covariance” matrices (Torgerson, 1958), a fact, which imposes severe constraints on the data analy-
sis procedures. Typical approaches to tackle these problems involve omitting altogether the negative
eigenvalues like in classical scaling (Young and Householder, 1938) or shifting the spectrum (Roth
et al., 2003a) for subsequent (kernel-)PCA (Schölkopf et al., 1998).

The central and so far unanswered question is therefore: Does the negative part of the spectrum
of a similarity matrix code anything useful other than noise?

802



FEATURE DISCOVERY IN NON-METRIC PAIRWISE DATA

This work will contribute by showing that the negative eigenvalues can code for relevant struc-
ture in the data. The exploratory technique outlined below can lead to the discovery of systemat-
ically new features, which were so far lost or have gone unnoticed by existing algorithms. This is
discussed for three illustrative examples after a brief theoretic discussion of the issue of negative
eigenvalues and a simple explanation of how negative spectra can code specific information.

2. Embedding of Non-Metric Data

In this section we will describe the issue of embedding pairwise proximity data into a vector space.
Embedding pairwise data corresponds to finding points in a vector space, such that their mutual
distance is as close as possible to the initial dissimilarity matrix with respect to some cost function.
Embedding yields points in a vector space, thus making the data available to the numerous ma-
chine learning techniques which require vectorial input. Embedding also allows visualization after
dimension reduction.

Let D = (Di j) be an n×n dissimilarity matrix. We want to find n vectors xi in a p-dimensional
vector space such that the distance between xi and x j is close to the dissimilarity Di j with respect to
some cost function measuring the distortion incurred by the embedding procedure.

Let X be the matrix whose column are given by the vectors xi. The matrix defined by 1
n XX> is

called the covariance matrix and is positive semi-definite, i.e., all its eigenvalues λi are positive or
zero (λi ≥ 0). The covariance matrix plays an important role in spectral methods like (kernel-)PCA.
The directions corresponding to the leading eigenvalues describe the directions which capture large
variance in the data. Thus we expect to find interesting features there.

2.1 Mathematical Statement of the Embedding Problem

We will briefly state the mathematical formulation of the embedding problem and give the necessary
and sufficient condition for a Euclidean embedding.

A dissimilarity matrix D will be called metric if there exists a metric function d such that Di j =
d(·, ·). In other words, D is positive and symmetric, its elements are 0 if and only if they are on the
diagonal,1 and they satisfy the triangle inequality. D = (Di j) will be called squared-Euclidean if the
metric function d derives from the Euclidean norm l2.

Let C = − 1
2 QDQ where Q = I − 1

n ee′. Q is the projection matrix onto the orthogonal comple-
ment of e = (1,1, . . . 1)>. The operation D → QDQ corresponds to the centralizing operation. The
meaning of C will become clear subsequently.

We have the following important theorem (Torgerson, 1958; Young and Householder, 1938):

Theorem 1 D is squared-Euclidean iff C is positive semi-definite.

In other words, the pairwise dissimilarities given by D can be embedded into a Euclidean vector
space if and only if the associated matrix C is positive semi-definite.

2.2 Embedding when D is Squared-Euclidean

When D is squared-Euclidean, C is semi-definite positive and can readily be interpreted as covari-
ance matrix (via simple algebra). The embedded vectors can be recovered by usual kernel-PCA
(Schölkopf et al., 1998; Cox and Cox, 2001):

1. We reasonably suppose that there are no two identical data points with different labels in the data set.
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D
C = −1/2QDQ

−−−−−−−−−−−−→C with n positive eigenvalues

C
spectral decomposition

−−−−−−−−−−−−−−−−→V ΛV>

XK = |ΛK |
1/2V>

K ,

where V = (v1, . . . ,vn) with eigenvectors vi’s and Λ = diag(λ1, . . . ,λn) with eigenvalues λ1 ≥ ·· · ≥
λn ≥ 0. K is the subspace of chosen directions vi. The columns of XK contain the vectors xi in
p-dimensional subspace K, where VK is the column-matrix of the selected eigenvectors and ΛK the
diagonal matrix of the corresponding eigenvectors.

If K = {v1 . . . vp} the distances between these vectors differ the least from the distances D with
respect to the quadratic approximation error. For p = n− 1 the mutual distances coincide with D,
i.e. Di j = ||xi − x j||

2. In other words: there is a direct algebraic transformation between D and the
set of xi’s.
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Figure 1: Examples of spectra of C for a squared-Euclidean dissimilarity (left) and non squared-
Euclidean dissimilarity matrices. The eigenvalues are plotted against rank order.

2.3 Embedding for General D’s

For non squared-Euclidean dissimilarity matrices D the associated C is not positive semi-definite
and is not a covariance matrix. In this case we will call it pseudo-covariance matrix. Figure 1 shows
an instance of a spectrum associated to a positive semi-definite C (left) and two instances of negative
spectra: in the middle, a spectrum associated to a pairwise dissimilarity which essentially is metric
but corrupted by noise which translates into a spectrum with only a few negative eigenvalues of
small magnitude. On the right, a spectrum with negative eigenvalues large in magnitude associated
to intrinsic non-metricity.

In order to study the possible loss incurred by omitting the negative part of the spectrum we
propose the following simple algorithm, which allows to specifically visualize the information coded
by the negative eigenvalues.

Algorithm. Start with some symmetric dissimilarity D or similarity S. If non-symmetric cases
the pairwise proximity matrix must first be symmetrized. Furthermore, when the proximity data
are similarities, a problem specific dissimilarity is computed. D typically is related to S via, e.g.,
Di j = 1−Si j or Di j = Sii +S j j −2Si j. Recall that Q = I− 1

n ee′ with e = (1,1, . . . 1)>. C denotes the
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pseudo-covariance matrix.

D
C = −1/2QDQ

−−−−−−−−−−−−→C with p positive and q negative eigenvalues

C
spectral decomposition

−−−−−−−−−−−−−−−−→V ΛV> = V |Λ|
1
2 M|Λ|

1
2 V>

XK = |ΛK |
1/2V>

K ,

where M is the block matrix consisting of the blocks Ip×p, −Iq×q and 0k×k (with k = n− p−q).
The columns of XK contain the vectors xi in the p-dimensional subspace K. At this point K can

be very general. However, as for PCA, we will find it sensible to choose a few leading eigendirec-
tions which can also include eigendirections associated to the negative part of the spectrum.

Visualization. Retaining only the first two coordinates (K = {v1,v2}) of the obtained vectors
corresponds to a projection onto the first two leading eigendirections. Retaining the last two (K =
{vn−1,vn}) is a projection onto the last two eigendirections: This corresponds to a projection onto
directions related to the metric violations of C

This simple algorithm2 is very akin to the well known PCA algorithm except that it does not
require the spectrum to be positive.

To finish this short overview about embedding pairwise data, it is important to stress the fact
that in general metricity is not enough for pairwise data to be loss-free embeddable into a Euclidean
vector space. Pairwise data may be metric, yet have an associated spectrum with negative eigenval-
ues. The interesting case, however, is given for the Euclidean metric since Theorem 1 establishes
a very simple relationship between the requirements on the dissimilarity matrix and its loss-free
embeddability into a Euclidean vector space.

2.4 Issue of Information Loss

Classical approaches to the embedding into a Euclidean vector space usually involve techniques
like multi-dimensional scaling (Cox and Cox, 2001). In its simplest version, classical scaling, MDS
proceeds as the algorithm in Section 2.1. However Λ1/2

K is only defined for K ⊂ {v1 . . . vp} with
p ≤ t where t is the number of positives eigenvalues. The requirement p ≤ t leads to a cut-off of
the negative eigenvalues. Another variant of MDS is called non-metric MDS and treats ordinal-
scale data, where the projections only try to preserve the rank order between the distances, not their
absolute value (Kruskal, 1964; Shepard, 1962). It is important to notice here that in our work non-
metricity refers to the violations of metric requirements and the subsequent impossibility of a loss-
free embedding into a Euclidean vector space. Non-metric MDS does not discover the information
coded specifically by metric violations.

Recently Constant Shift Embedding was introduced which guarantees distortionless embedding
of non-metric pairwise data w.r.t. cluster assignment in the case of a shift invariant cluster cost
function (Roth et al., 2003b,a). However, in practical applications, the need for dimension reduction
to speed up optimization and robustify solutions, effectively results in retaining only the leading
eigendirections and cutting off large parts of the spectrum. For other cases than noise corrupted
non-metric pairwise data (Figure 1, middle) it is an open question whether the removal of negative
eigenvalues leads to an information loss.

2. A Matlab implementation can be found under http://ida.first.fraunhofer.de/˜jlaub/.
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The above methods, unlike ours, do not permit to specifically study the information coded by
non-metricity.

3. Interpretation and Modeling of Negative Spectra

In this section we will discuss the issue of information loss raised by the preceding considerations.
We will first show by simple from-scratch constructions how negative spectra can occur. Further
understanding will be gained by interpretation of the negative eigenspaces. In particular, a model is
presented that can explain negative spectra in the case of human similarity judgments in cognitive
psychology. A simple toy illustration will conclude this section.

3.1 Constructing Negative Spectra

Let us first introduce two simple constructions of non-metric pairwise data sets whose non-metric
part codes for specific information. These constructions typically come about in situations involving
penalization and/or competition of dissimilarity measures by subtraction or division:

Di j = (D1 −D2)i j or Di j =
(D1)i j

(D2)i j
, (1)

with the assumption that (D2)i j 6= 0 ∀i, j = 1,2 . . . n in the latter case. See Figure 2 for a schematic
illustration. The structure of the penalized cells is reflected in non-metricity. Such similarity scores
occur in various image matching algorithms or in text mining via e.g. the min-max dis/similarity
(Banerjee and Ghosh, 2002; Dagan et al., 1995), but also in alignment algorithms from e.g. bioin-
formatics.

D1 =

























and D2 =

























D =

























snapshot
−−−−−−→

Penalized dissimilarities

Figure 2: Principle of penalization: the penalized cells can form a structure on their own, which
is reflected in non-metricity. The snapshot shows the alternate structure of the penalized
entries (small circles).

3.2 Interpreting Negative Eigenspaces

For a positive semi-definite C the projections along the leading eigendirections can readily be inter-
preted as projections along the axis of high variances of the data. For pseudo-covariance matrices
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this still holds up to a scaling factor when shifting the spectrum so as to assure positive semi-
definiteness.

For projections onto the negative eigendirections the interpretation is not so straightforward
since there is no clear intuition on what “negative variance” represents. However the above pre-
sented algorithm relies on a pseudo-Euclidean-style decomposition of the embedding space. The
pseudo-Euclidean space effectively amounts to two Euclidean spaces one of which has a positive
semi-definite inner product and the other a negative semi-definite inner product. An interesting in-
terpretation of the distances in a squared-Euclidean space is that they can be looked at as a difference
of squared-Euclidean distances from the “positive” and the “negative” space, by the decomposition
R

(p,q) = R
p + iRq, so that Di j = D(Rp)

i j −D(Rq)
i j , where the Di j are squared-Euclidean. This is the

rationale behind the first construction of a non-metric D via Di j = (D1 −D2)i j.
The power of this decomposition resides in the fact that the negative eigenvalues now admit the

natural interpretation of variances of the data projected onto directions in R
q. Thus the variance

along vn is
√

|λn|, the variance along vn−1 is
√

|λn−1|, etc. (c.f. Pȩkalska et al., 2001).

3.3 Modeling Negative Spectra

While the dissimilarity matrix constructions obtained from Equation 1 can account for a class of
non-metric pairwise data from domains such as image matching, text-mining or bioinformatics,
where penalization models underlie the computed similarities, they cannot necessarily appropriately
model the generic case where a pairwise dissimilarity matrix is given from an experiment, say in
cognitive psychology. The simple model for non-metric pairwise data introduced in the following is
inspired by approaches in cognitive psychology to explain human similarity judgments (Tenenbaum,
1996). Let { f1, f2, . . . fn} be a basis. A given data point xi can be decomposed in this basis as

xi = ∑n
k=1 α(i)

k fk. The squared l2 distance between xi and x j therefore reads: di j = ||xi − x j||
2 =

∣

∣

∣

∣∑n
k=1

(

α(i)
k −α( j)

k

)

fk
∣

∣

∣

∣

2
. However this assumes constant feature-perception, i.e. a constant mental

image with respect to different tasks. In the realm of human perception this is often not the case,
as illustrated by the following well known visual “traps” (Figure 3). Our perception has several
ways to interpret the figures which can give rise to asymmetry (Thomas and Mareschal, 1997) by
a different weighting of the perceived dissimilarities. It is important to notice here that for human
similarity judgments, one can hardly speak of artifact or erroneous judgments with respect to a
Euclidean norm. The latter seems rather exceptional in these cases.

A possible way to model different interpretations of a given geometric object is to introduce
states {ω(1),ω(2) . . . ω(d)}, ω(l) ∈ R

n for l = 1,2, . . . d, affecting the features. The similarity judg-
ment between objects then depends on the perceptual state (weight) the observer is in. Assuming
that the person is in state ω(l) the distance becomes:

di j = ||xi − x j||
2 =

∣

∣

∣

∣

∣

∣

n

∑
k=1

(

α(i)
k −α( j)

k

)

ω(l)
k fk

∣

∣

∣

∣

∣

∣

2
. (2)

With no further restriction this model yields non metric distance matrices.
In the worst case l is random, but usually perception-switches can be modeled and l becomes

some function of (i, j). For random l, non-metricity is an artifact of sample size, since when aver-
aging the d’s over p observers the mean dissimilarity is asymptotically metric in p (〈d〉→ metric as
p → ∞): the mean ω becomes constant for all i, j equal to the expectation of its distribution.
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Figure 3: Left: What do you see? A small cube in the corner of a room or a large cube with a
cubic hole or a small cube sticking with one corner on a large one? Right: What do you
see? A young lady or an old woman? If you were to compare this picture to a large set
of images of young ladies or old women, the (unwilling) perception switch could induce
large individual weights on the similarity.

On the other hand, if we suppose that the function l of (i, j) does not vary much between
observers, then the averaging does not flatten out the non-metric structure induced by the systematic
perception-switch.

3.4 Illustration (Proof of Principle)

The importance of the information coded by the negative eigenvalues is exemplified by the following
simple example: consider n objects, labeled 1,2, . . . n, presenting two salient features. Suppose that
they cluster into {1, . . . n

2} and { n
2 +1, . . . n} according to the first feature, and into {1,3,5, . . . n−1}

and {2,4,6, . . . n} according to the second. Let D1 and D2 be the dissimilarity matrices correspond-
ing to feature 1 and 2 respectively. Save very pathological cases the spectra associated to the D
obtained by subtraction or division of D1 and D2 contain steeply falling negative eigenvalues. Fur-
thermore the projection onto the first two eigenvalues exhibits a clear distinction w.r.t. feature 1
whereas the projection onto the last two eigenvalues exhibits a clear distinction w.r.t. feature 2.

Let e.g. n = 8. Two artificial dissimilarity matrices D1 and D2 were constructed to reflect the
above surmise about the underlying structure:

D1 =









0.00 2.36 2.59 1.78 4.74 4.82 4.98 4.72
2.36 0.00 2.39 1.60 4.98 5.06 5.22 4.96
2.59 2.39 0.00 2.09 5.29 5.37 5.53 5.27
1.78 1.60 2.09 0.00 5.08 5.16 5.32 5.06
4.74 4.98 5.29 5.08 0.00 1.20 1.82 1.62
4.82 5.06 5.37 5.16 1.20 0.00 2.98 1.78
4.98 5.22 5.53 5.32 1.82 2.98 0.00 2.02
4.72 4.96 5.27 5.06 1.62 1.78 2.02 0.00









and D2 =









0.00 4.15 2.03 4.14 1.26 4.33 0.690 4.85
4.15 0.00 4.70 0.570 4.37 1.82 4.24 2.02
2.03 4.70 0.00 4.69 1.85 4.88 1.68 5.40
4.14 0.570 4.69 0.00 4.36 1.83 4.23 2.67
1.26 4.37 1.85 4.36 0.00 4.55 0.730 5.07
4.33 1.82 4.88 1.83 4.55 0.00 4.42 2.14

0.690 4.24 1.68 4.23 0.730 4.42 0.00 4.94
4.85 2.02 5.40 2.67 5.07 2.14 4.94 0.00









.

Figure 4 shows the result obtained by Algorithm 2.3. The spectrum associated to D = D1 −D2

is non positive. The information contained in the positive and the negative part is recovered: We
see that the information represented in the first two eigendirections is related to the variance due
to the cluster structure {1, . . . 4} and {5, . . . 8} whereas the information represented in the last two
eigendirection relates to the cluster structure {1,3, . . . 7} and {2,4, . . . 8}. This last information
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Figure 4: Sorted spectrum associated to the non-metric E (right), Projection onto the two lead-
ing positive eigendirection and projection onto the two leading negative eigendirections
(right).

would have been lost by usual methods relying on high variance and thus neglecting the negative
eigenvalues.

4. Summary

We summarize the procedure and the rationale behind it (see schematic diagram Figure 5).
Consider the following illustrative setting: we have apples of different sizes and two colors.

There are two salient features: size (geometric) and color (categorial). These apples are pairwise
compared, either by a computer algorithm, a human test subject or any other mechanism. This
comparison yields a dissimilarity matrix D or a similarity matrix S. In the latter case a problem
specific dissimilarity matrix D is obtained from S.

From D we compute the centralized (pseudo-)covariance matrix C and its spectrum. C is positive
semi-definite if and only if D is squared-Euclidean. For generic D this is not the case and the usual
techniques fail to take this into account.

We project the data onto the first two leading eigenvectors explaining the variance associated
to the first feature (size). Second, we project the data onto the last two eigenvectors accounting
for the variance of the second feature (color). This last step is done by an embedding into the
pseudo-Euclidean space.

The second feature is lost by any method relying exclusively on high variance, that is, the
majority of machine learning techniques. We propose the exploration of the negative eigenspectrum
for feature discovery.

5. Further Illustrative Applications

To go beyond toy examples showing that non-metricity can code for interesting features, we will
now illustrate our feature discovery technique by three applications from real-world domains, namely
image matching, text mining and cognitive psychology.

5.1 USPS Handwritten Digits

A similarity matrix is computed from binary image matching on the digits 0 and 7 of the USPS data
set. Digits 0 and 7 have been chosen since they exhibit clear geometric differences. All images have
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Figure 5: Summarizing diagram.

been sorted according to decreasing sum of pixel value (1 to 256) thus separating the bold digits
from the light ones. A total of 1844 samples have been retained. The images have been normalized
and discretized to have binary pixel values 0 and 1.

Binary image matching. Let r and s denote the labels of two images and Srs the score rating
mutual similarity. In the case of binary images, Srs is a function of a, b, c and d, where a counts the
number of variables where both objects s and r score 1, b the number where r scores 1 and s scores
0, c the number of variables where r scores 0 and s scores 1 and d the number of where both objects
score 0. The counting variables a, b, c and d allow to define a variety of similarity scores Srs (see
Cox and Cox, 2001). We will be interested in the Simpson score, defined by

Srs =
a

min(a+b,a+ c)
.

It exhibits a strongly falling negative spectrum, corresponding to highly non-metric data. Projection
onto the eigenvectors associated to the first leading eigenvalues and projection onto the eigenvectors
associated to the last eigenvalues yield results different in nature.

In each case there is a clear interpretation of the variance according to salient features: (i)
Figure 6 shows that the variance in the “positive” eigenvectors corresponds to the geometrical dis-
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Figure 6: Projection onto the first two positive eigendirections. The explained variance is associated
to the geometric shape.
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Figure 7: Projection onto the last two negative eigendirections. The explained variance is associated
to the stroke weight.

tinction between the shapes of the 0’s and the 7’s; (ii) Figure 7 on the other hand shows that in
the “negative” eigenvectors the variance is associated to the feature of stroke weight. This inter-
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esting feature would have been lost if we had embedded the data by conventional methods thereby
discarding the negative part of the spectrum.

5.2 Text-Mining

We are interested in the semantic structure of nouns and adjectives from two topically unrelated
sources, namely Grimm’s Fairy Tales (Gutenberg) and popular science articles about space explo-
ration (NASA). Both sources contributed 60 documents containing roughly between 500 and 1500
words each. A subset of 120 nouns and adjectives has been selected, containing both very specific
and very general terms out of both data sources.

Similarity measure for words. From a set of p documents and a choice of n keywords we can
construct a contingency table, by simply indicating whether word i (1 ≤ i ≤ n) appears in document
k (1 ≤ k ≤ p) or not. This yields a p×n boolean matrix.

We will take the Keyword Semantic Proximity as similarity measure (Rocha, 2001; Rocha and
Bollen, 2001), which expresses that two words are similar if they often appear together in a docu-
ment. This similarity is penalized if they individually spread over a large number of documents:

si j =
#{documents where word i and word j appear}
#{documents where word i or word j appear}

.

From this similarity measure, we obtain a dissimilarity matrix via, e.g. di j = − log(si j). In Rocha
(2001) the author uses di j = 1/si j −1 which is another possible choice. In either case, the resulting
dissimilarity matrix d is not squared-Euclidean such that the associated (pseudo-)covariance matrix
exhibits strong negative eigenvalues (see inset in Figure 8).

The data is projected on the first two leading eigenvectors (Figure 8). On the far left we find
the words stemming from the popular science articles (e.g. “nuclear”, “computer”, “physics” etc.)
whereas on the far right we have those from Grimm’s Fairy Tales (e.g. “castle”, “queen”, “ravens”
etc.). The captured variance can be interpreted as the semantic context of the words.

Projection onto the last two eigendirections yields a distribution over a new interesting feature
(Figure 9). We notice that in the upper half we find words of high specificity of either of the sources
(e.g. “astronauts”, “wolf”, “witch” etc.). In the lower half we see an accumulation of words with
general, unspecific, meaning, expected to be found in a large variety of documents (e.g. “day”,
“world”, “thing” etc.). Thus to our understanding the variance associated to the last eigendirection
again corresponds to the specificity of the words (relative to the data source). This feature would
have gone unnoticed by algorithms not specifically taking into account the negative eigenvalues.

5.3 Cognitive Psychology

We finally present an example from human similarity judgments in cognitive psychology. This will
also allow us to illustrate the model presented in Section 3.3.

The pairwise dissimilarity data is obtained from Gati and Tversky (1982). The stimuli tested
consist of 16 images of flowers having leaves of varying elongation and stems of increasing size
(Figure 10). These two stimuli were presented to a group of thirty undergraduate students from the
Hebrew University who, individually, evaluated the mutual dissimilarity of the flowers on a 20-point
scale (see Gati and Tversky, 1982).

We have processed the data according to Algorithm 2.3. In the positive eigendirections we
obtain a very good reconstruction of the two geometric features, namely the elongation of the leaves
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Figure 8: Projection onto the first two eigendirections.

and the size of the stem: see Figure 11, middle. There seems to be no tendency to favor one over
the other. The first component explains the variance in leaf elongation (horizontal axis), the second
the variance of the stem size (vertical axis).

Interestingly, the projection onto the last two negative eigendirections exhibits further structure,
as shown by Figure 11, right. The interpretation, however, is not so straightforward. Two clusters
loosely form, separated by the last eigendirection (vertical axis). They are {1,2, 5,6,11,12,15,16}
and {3,4,7,8,9,10,13,14}. A possible feature could be the oddness of a plant, such that the first
cluster contains the odd plants, and the second the “normal” ones, since one could expect plants
with small leaves to be of small size and plants with large leaves to be of greater size. The odds here
are the small plants with large leaves and the large plants with small leaves. This would correspond
to categorial perception while judging similarity.

Features related to the concept of normality, or expectation, are not uncommon in cognitive
psychology. In Navarro and Lee (2002) features like the normality or usuality of faces are discussed
in the context of the Modified Contrast Model, along with certainly not easily graspable features
like relationships in parenthood. While the authors focus on common and distinctive features and
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Figure 9: Projection onto the last two negative eigendirections.

distinguish between conceptual and perceptual features, the interpretation of the discovered features
remains as a second independent step in data analysis.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Figure 10: Images of the flowerpots as presented to the test person.

We explain the flowerpot experiment according to the model presented in Section 3.3, starting
from a uniform distribution of 16 points in three dimensions and choosing the feature vectors fk,
k = 1,2,3 to be the unit vectors e1 = (1,0,0) etc.
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Figure 11: Left: Sorted eigenvalues. Middle: Projection onto the leading two positive eigenvalues.
Right: projection onto the last two eigendirections.

The states are obtained by fitting the d defined in Equation 2 heuristically to the experimental
dissimilarity by minimization of the difference of the means over all matrix elements.

We obtain a good model fit for six states {(8.3,0,0), (0,3.5,0), (4.7,4.7,4.7), (6.4,6.4,0),
(0,3.4,3.4), (3.1,0,3.1)}. See Figure 12.

In other words, following the semantics of the model presented, one can explain the results of
the obtained dissimilarities by six perceptual states of the observer; i.e. the weight vectors model the
bias in perception. These seem to outnumber the actually observed features (in the two-dimensional
representations) which are three in number (the two geometric features in the positives and the
categorial one in the negatives). However, we must keep in mind that one may reduce the number
of weights required to approximate d by a deeper knowledge of the initial feature presentation,
including its dimensionality. We have taken a uniform distribution in three dimensions for lack of
more precise knowledge.
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Figure 12: Prediction of flowerpot experiment.

6. Conclusion and Outlook

This work studies the potential of relevant information being coded specifically by the non-metric
part of the spectrum of a pseudo-covariance matrix. It has been shown that non-metricity can indeed
code for features relevant to a better understanding of the data set. The proposed algorithm effec-
tively overcomes the drawback of most variance based algorithms which take only into account the
variance of the leading eigendirections. Model.illustrations provide a simple intuition and explana-
tion of the phenomena. Note, however, that spectra like Figure 1 (right) are only potentially—not
necessarily—containing interesting information in their negative part, some fancy noise process
might also be the cause of such a structure.

815



LAUB AND MÜLLER

Concluding, it is an important step in unsupervised data analysis to find out whether the negative
part of the spectrum codes for interesting variance. The present technique can be employed as
a general exploratory feature discovery tool. Application fields range from cognitive psychology,
marketing, biology, engineering and bioinformatics, where in principle new structure awaits its
discovery.

A further interesting direction is to go beyond visualization toward automated structure learning.
Investigations to overcome low-dimensional feature discovery based on visualization will focus on,
e.g., stability analysis (Roth et al., 2002; Meinecke et al., 2002) of various projections onto the
possibly negative eigenspace in order to assess quantitatively relevant structure and to rule out noise
related, erroneous, feature interpretations.

A major focus will concern the automated distinction of structure induced by intrinsic non-
metricity from mere artifacts of some fancy noise process with the overall goal to provide automated
learning and procedures that can optimally make use of the information coded by intrinsic non-
metricity.
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