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Abstract
We study the problem of on-line classification in which the prediction algorithm, for each “sig-
nificance level” δ, is required to output as its prediction a range of labels (intuitively, those labels
deemed compatible with the available data at the level δ) rather than just one label; as usual, the
examples are assumed to be generated independently from the same probability distribution P. The
prediction algorithm is said to be “well-calibrated” for P and δ if the long-run relative frequency of
errors does not exceed δ almost surely w.r. to P. For well-calibrated algorithms we take the number
of “uncertain” predictions (i.e., those containing more than one label) as the principal measure of
predictive performance. The main result of this paper is the construction of a prediction algorithm
which, for any (unknown) P and any δ: (a) makes errors independently and with probability δ at ev-
ery trial (in particular, is well-calibrated for P and δ); (b) makes in the long run no more uncertain
predictions than any other prediction algorithm that is well-calibrated for P and δ; (c) processes
example n in time O(logn).

Keywords: Transductive Confidence Machine, on-line prediction

1. Introduction

Typical machine learning algorithms output a point prediction for the label of an unknown object.
This paper continues study of an algorithm called the Transductive Confidence Machine (TCM),
introduced by Saunders et al. (1999) and Vovk et al. (1999), that complements its predictions with
some measures of confidence. There are different ways of presenting TCM’s output; in this paper (as
in the related Vovk, 2002a,b) we use TCM as a “region predictor”, in the sense that it outputs a nested
family of prediction regions (indexed by the significance level δ) rather than a point prediction.

Any TCM is well-calibrated when used in the on-line mode: for any significance level δ the
long-run relative frequency of erroneous predictions does not exceed δ. What makes this feature
of TCM especially appealing is that it is far from being just an asymptotic phenomenon: a slight
modification of TCM called randomized1 TCM (rTCM) makes errors independently at different
trials and with probability δ at each trial. The property of being well-calibrated then immediately
follows by the Borel strong law of large numbers. Figure 1 shows the cumulative numbers of errors
at the significance levels 1%–5% made on the well-known USPS data set of hand-written digits
(randomly permuted); as expected, these are straight lines with the slope approximately equal to the
significance level. For proofs and further information, see Vovk (2002a).

1. Randomization is needed to break ties and deal efficiently with borderline cases.

c©2004 Vladimir Vovk.
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Figure 1: TCM’s cumulative errors at the significance levels 1%–5% on the USPS data set

The justification of the study of TCM given by Vovk (2002a) was its good performance on
real-world and standard benchmark data sets. For example, Figure 2 shows that for the significance
levels between 1% and 5% most examples in the USPS data set can be predicted categorically (by
a simple 1-Nearest Neighbour TCM, used in all experiments reported in this paper): the prediction
region contains only one label.

This paper presents theoretical results about TCM’s performance in the problem of classifica-
tion, where the number of possible labels is finite; we show that there exists a universal rTCM,
which, for any significance level δ and without knowing the true distribution P generating the ex-
amples:

• produces, asymptotically, no more uncertain predictions than any other prediction algorithm
that is well-calibrated for P and δ;

• produces, asymptotically, at least as many empty predictions as any other prediction algorithm
that is well-calibrated for P and δ and whose percentage of uncertain predictions is optimal
(in the sense of the previous item).

The importance of the first item is obvious: we want to minimize the number of uncertain predic-
tions. This asymptotic criterion ceases to work, however, when the number of uncertain predictions
stabilizes, as in Figure 2 for significance levels 3%–5%. In such cases the number of empty predic-
tions becomes important: empty predictions (automatically leading to an error) provide a warning
that the object is atypical (looks very different from the previous objects), and one would like to
be warned as often as possible, taking into account that the relative frequency of errors (including
empty predictions) is guaranteed not to exceed δ in the long run. Remember that TCM outputs a
whole family of prediction regions, so the fact that at some significance level the prediction region
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Figure 2: Cumulative number of “uncertain” predictions (i.e., prediction regions containing more
than one label) made by the 1-Nearest Neighbour TCM at the significance levels 1%–5%
on the USPS data set

becomes empty does not mean that all potential labels for a new object become equally likely: we
should just shift our attention to other significance levels. Figure 3 shows the cumulative numbers
of empty predictions for the USPS data set.

The full prediction output by a TCM is a complicated mathematical object: for each significance
level δ we have a prediction region. In practice, a good starting point might be first to look at
the prediction regions corresponding to two or three conventional significance levels, such as 1%
and 5% (afterwards, of course, the prediction regions at other significance levels should be looked
at). For example, denoting Γδ the prediction region at significance level δ, we could say that the
prediction is “highly certain” if |Γ1%| ≤ 1 and “certain” if |Γ5%| ≤ 1; similarly, we could say that
the new object (whose label is being predicted) is “highly atypical” if |Γ1%| = 0 and “atypical” if
|Γ5%| = 0. In the case of classification, the family of prediction regions Γδ can be summarized by
reporting the confidence

sup{1−δ : |Γδ| ≤ 1},

the credibility

inf{δ : |Γδ| = 0},

and the prediction Γδ, where 1− δ is the confidence (in the case of TCM, |Γδ| ≤ 1 and usually
|Γδ| = 1 when 1− δ is the confidence). Reporting the prediction, confidence, and credibility, as
in Saunders et al. (1999) and Vovk et al. (1999), is analogous to reporting the observed level of
significance (Cox and Hinkley, 1974, p. 66) in statistics.
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Figure 3: Cumulative number of empty predictions made by the 1-Nearest Neighbour TCM at the
significance levels 1%–5% on the USPS data set (there are no empty predictions for 1%
and 2%)

This paper’s result elaborates on Vovk (2002b), where it was shown that an optimal randomized
TCM exists when the distribution P generating the examples is known. In the rest of this paper we
consider only randomized TCM, so we drop the adjective “randomized”.

The two areas of mainstream machine learning that are most closely connected with this paper
are PAC learning theory and Bayesian learning theory. Whereas we often use the rich arsenal of
mathematical tools developed in these fields, they do not provide the same kind of guarantees (the
right probability of error at each significance level, with errors at different trials independent) under
unknown P; for more details, see Vovk (2002a) and references therein. Several papers (such as
Rivest and Sloan, 1988; Freund et al., 2004) extend the standard PAC framework by allowing the
prediction algorithm to abstain from making a prediction at some trials. Our results show that for
any significance level δ there exists a prediction algorithm that: (a) makes a wrong prediction with
relative frequency at most δ; (b) has an optimal frequency of abstentions among the prediction
algorithms that satisfy property (a) (for details, see Remark 2 on p. 580). The paper by Freund
et al. (2004) is especially close to the approach of this paper, defining a very natural TCM in the
situation where a hypothesis class is given (the “empirical log ratio” of Freund et al. (2004), taken
with appropriate sign, can be used as an “individual strangeness measure”, as defined in §3).

2. Main Result

In our learning protocol, Reality outputs pairs (x1,y1),(x2,y2), . . . called examples. Each example
(xi,yi) consists of an object xi and its label yi. The objects are chosen from a measurable space X
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called the object space and the labels are elements of a measurable space Y called the label space. In
this paper we assume that Y is finite (and endowed with the σ-algebra of all subsets). The protocol
includes variables Errδ

n (the total number of errors made up to and including trial n at significance
level δ) and errδ

n (the binary variable showing whether an error is made at trial n). It also includes
analogous variables Uncδ

n, uncδ
n, Empδ

n, empδ
n for uncertain and empty predictions:

Errδ
0 := 0, Uncδ

0 := 0, Empδ
0 := 0 for all δ ∈ (0,1);

FOR n = 1,2, . . . :
Reality outputs xn ∈ X;
Predictor outputs Γδ

n ⊆ Y for all δ ∈ (0,1);
Reality outputs yn ∈ Y;

errδ
n :=

{

1 if yn /∈ Γδ
n

0 otherwise
, Errδ

n := Errδ
n−1 +errδ

n for all δ ∈ (0,1);

uncδ
n :=

{

1 if |Γδ
n| > 1

0 otherwise
, Uncδ

n := Uncδ
n−1 +uncδ

n for all δ ∈ (0,1);

empδ
n :=

{

1 if |Γδ
n| = 0

0 otherwise
, Empδ

n := Empδ
n−1 +empδ

n for all δ ∈ (0,1)

END FOR.

We will use the notation Z := X×Y for the example space; Γδ
n will be called the prediction region

(or just prediction).
We will assume that each example zn = (xn,yn), n = 1,2, . . . , is output according to a probability

distribution P in Z and the examples are independent of each other (so the sequence z1z2 . . . is output
by the power distribution P∞). This is Reality’s randomized strategy.

A region predictor is a measurable function

Γδ(x1,τ1,y1, . . . ,xn−1,τn−1,yn−1,xn,τn), (1)

where δ ∈ (0,1), n = 1,2, . . . , the (xi,yi) ∈ Z, i = 1, . . . ,n−1, are examples, xn ∈ X is an object, and
τi ∈ [0,1] (i = 1, . . . ,n), which satisfies

Γδ1 (x1,τ1,y1, . . . ,xn−1,τn−1,yn−1,xn,τn) ⊆ Γδ2 (x1,τ1,y1, . . . ,xn−1,τn−1,yn−1,xn,τn)

whenever δ1 ≥ δ2. The measurability of (1) means that for each n the set

{

(δ,x1,τ1,y1, . . . ,xn,τn,yn) :yn ∈ Γδ(x1,τ1,y1, . . . ,xn−1,τn−1,yn−1,xn,τn)
}

⊆ (0,1)× (X× [0,1]×Y)n

is measurable.
Since we are interested in prediction with confidence, the region predictor (1) is given an extra

input δ ∈ (0,1), which we call the significance level (typically it is close to 0, standard values
being 1% and 5%); the complementary value 1− δ is called the confidence level. We will always
assume that τn are independent random variables uniformly distributed in [0,1]. This makes a region
predictor a family (indexed by δ ∈ (0,1)) of Predictor’s randomized strategies.

We will often use the notation errδ
n, uncδ

n, etc., in the case where Reality and Predictor are using
given randomized strategies. For example, errδ

n(P
∞,Γ) is the random variable equal to 0 if Predictor
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is right at trial n and at significance level δ and equal to 1 otherwise. It is always assumed that the
random numbers τn used by Γ and the random examples zn chosen by Reality are independent.

We say that a region predictor Γ is (conservatively) well-calibrated for a probability distribution
P in Z and a significance level δ ∈ (0,1) if

limsup
n→∞

Errδ
n(P

∞,Γ)

n
≤ δ a.s.

We say (as in Vovk, 2002b) that Γ is optimal for P and δ if, for any region predictor Γ† which is
well-calibrated for P and δ,

limsup
n→∞

Uncδ
n(P

∞,Γ)

n
≤ liminf

n→∞

Uncδ
n(P

∞,Γ†)

n
a.s. (2)

(It is natural to assume in this and other similar definitions that the random numbers used by Γ and
Γ† are independent, but this assumption is not needed for our mathematical results and we do not
make it.) Of course, the definition of optimality is natural only for well-calibrated Γ.

A region predictor Γ is universal well-calibrated if:

• it is well-calibrated for any P and δ;

• it is optimal for any P and δ;

• for any P, any δ, and any region predictor Γ† which is well-calibrated and optimal for P and
δ,

liminf
n→∞

Empδ
n(P

∞,Γ)

n
≥ limsup

n→∞

Empδ
n(P

∞,Γ†)

n
a.s.

Recall that a measurable space X is Borel if it is isomorphic to a measurable subset of the
interval [0,1]. The class of Borel spaces is very rich; for example, all Polish spaces (such as finite-
dimensional Euclidean spaces R

n, R
∞, functional spaces C and D) are Borel.

Theorem 1 Suppose the object space X is Borel. There exists a universal well-calibrated region
predictor.

This is the main result of the paper. In §3 we construct a universal well-calibrated region predictor
(processing example n in time O(logn)) and in §4 outline the idea of the proof that it indeed satisfies
the required properties. Technical details will be given in §5.

Remark The protocol of Rivest and Sloan (1988) and Freund et al. (2004) is in fact a restriction
of our protocol, in which Predictor is only allowed to output a one-element set or the whole of
Y; the latter is interpreted as abstention. (And in the situation where the numbers of errors and
uncertain predictions are of primary interest, as in this paper, the difference between these two
protocols is not significant.) The universal well-calibrated region predictor can be adapted to the
restricted protocol by replacing an uncertain prediction with Y and replacing an empty prediction
with a randomly chosen label. In this way we obtain a prediction algorithm in the restricted protocol
which is well-calibrated and has an optimal frequency of abstentions, in the sense of (2), among the
well-calibrated algorithms.
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3. Construction of a Universal Well-Calibrated Region Predictor

In this section we first define the general notion of Transductive Confidence Machine, and then
we specialize it using a nearest neighbours procedure to obtain a universal well-calibrated region
predictor.

3.1 Preliminaries

If τ is a number in [0,1], we split it into two numbers τ′,τ′′ ∈ [0,1] as follows: if the binary expansion
of τ is 0.a1a2 . . . (redefine the binary expansion of 1 to be 0.11 . . . ), set τ′ := 0.a1a3a5 . . . and
τ′′ := 0.a2a4a6 . . . . If τ is distributed uniformly in [0,1], then both τ′ and τ′′ are, and they are
independent of each other.

We will often apply our procedures (e.g., the “individual strangeness measure” in §3.2, the
Nearest Neighbours rule in §3.3) not to the original objects x ∈ X but to extended objects (x,σ) ∈
X̃ := X× [0,1], where x is complemented by a random number σ (to be extracted from one of the
τn). In other words, along with examples (x,y) we will also consider extended examples (x,σ,y) ∈
Z̃ := X× [0,1]×Y.

Let us set X := [0,1]; we can do this without loss of generality since X is Borel. This makes
the extended object space X̃ = [0,1]2 a linearly ordered set with the lexicographic order: (x1,σ1) <
(x2,σ2) means that either x1 = x2 and σ1 < σ2 or x1 < x2. We say that (x1,σ1) is nearer to (x3,σ3)
than (x2,σ2) is if

|x1 − x3,σ1 −σ3| < |x2 − x3,σ2 −σ3|, (3)

where

|x,σ| :=

{

(x,σ) if (x,σ) ≥ (0,0)

(−x,−σ) otherwise.
(4)

The value |x1 − x2,σ1 −σ2| plays the role of the distance between extended objects (x1,σ1) and
(x2,σ2). Despite such distances being two-dimensional, they are still always comparable using the
lexicographic order.

Our construction will be based on the Nearest Neighbours algorithm, which is known to be
strongly universally consistent in the traditional theory of pattern recognition (see, e.g., Devroye
et al., 1996, Chapter 11); the random components σ are needed for tie-breaking.

3.2 Transductive Confidence Machines

Transductive Confidence Machine, or TCM, is a way of transition from what we call an “individual
strangeness measure” to a region predictor. A family of measurable functions {An :n = 1,2, . . .},
where An : Z̃n → R

n for all n, is called an individual strangeness measure if, for any n = 1,2, . . . ,
each αi in

An : (w1, . . . ,wn) 7→ (α1, . . . ,αn) (5)

is determined by wi and the multiset *w1, . . . ,wn+. (The difference between a multiset *w1, . . . ,wn+
and a set {w1, . . . ,wn} is that the former can contain several copies of the same element.)

The TCM associated with an individual strangeness measure An is the following region predic-
tor Γδ(x1,τ1,y1, . . . ,xn−1,τn−1,yn−1,xn,τn): at any trial n and for any label y ∈ Y, define

(α1, . . . ,αn) := An((x1,τ′1,y1), . . . ,(xn−1,τ′n−1,yn−1),(xn,τ′n,y)),
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and include y in Γδ if and only if

τ′′n <
#{i = 1, . . . ,n :αi ≥ αn}−nδ

#{i = 1, . . . ,n :αi = αn}
(6)

(in particular, include y in Γδ if #{i = 1, . . . ,n :αi > αn}/n > δ and do not include y in Γδ if #{i =
1, . . . ,n :αi ≥ αn}/n ≤ δ).

A TCM is the TCM associated with some individual strangeness measure. It was shown in Vovk
(2002a) that

Proposition 2 Every TCM is well-calibrated for every P and δ.

The definition of TCM can be illustrated by the following simple example of an individual
strangeness measure, the one used in producing Figures 1–3: mapping (5) can be defined, in the
spirit of the 1-Nearest Neighbour Algorithm, as (assuming the objects are vectors in a Euclidean
space)

αi :=
min j 6=i:y j=yi d(xi,x j)

min j 6=i:y j 6=yi d(xi,x j)
,

where d is the Euclidean distance (i.e., an object is considered strange if it is in the middle of objects
labelled in a different way and is far from the objects labelled in the same way).

3.3 Universal TCM

Fix a monotonically non-decreasing sequence of integer numbers Kn, n = 1,2, . . . , such that

Kn → ∞, Kn = o
(

√

n/ lnn
)

(7)

as n → ∞. The Nearest Neighbours TCM is defined as follows. Let w1, . . . ,wn be a sequence of
extended examples wi = (xi,σi,yi). To define the corresponding αs , as seen in (5), we first define
Nearest Neighbours approximations P 6=

n (y |xi,σi) to the true (but unknown) conditional probabilities
P(y |xi): for every extended example (xi,σi,yi) in the sequence,

P 6=
n (y |xi,σi) := N 6=(xi,σi,y)/Kn, (8)

where N 6=(xi,σi,y) is the number of j = 1, . . . ,n such that y j = y and (x j,σ j) is one of the Kn nearest
neighbours, in the sense of (3), of (xi,σi) in the sequence

((x1,σ1), . . . ,(xi−1,σi−1),(xi+1,σi+1), . . . ,(xn,σn)).

(The upper index 6= reminds us of the fact that (xi,σi) is not counted as one of its own nearest
neighbours in this definition.) If Kn ≥ n or Kn ≤ 0, this definition does not work, so set, e.g.,
P 6=

n (y |xi,σi) := 1/|Y| for all y and i (this particular convention is not essential since, by (7), 0 <
Kn < n from some n on). If the expression “Kn nearest neighbours” is not defined because of distance
ties, we again set P 6=

n (y |xi,σi) := 1/|Y| for all y and i (this convention is not essential since distance
ties happen with probability zero).

Define the “empirical predictability function” f 6=n by

f 6=n (xi,σi) := max
y∈Y

P 6=
n (y |xi,σi). (9)
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For each (xi,σi) fix some
ŷn(xi,σi) ∈ argmax

y
P 6=

n (y |xi,σi) (10)

(e.g., take the first element of argmaxy P 6=
n (y |xi,σi) in a fixed ordering of Y) and define the map-

ping (5) (where wi = (xi,σi,yi), i = 1, . . . ,n) setting

αi :=

{

− f 6=n (xi,σi) if yi = ŷn(xi,σi)

f 6=n (xi,σi) otherwise.
(11)

This completes the definition of the Nearest Neighbours TCM, which will later be shown to be
universal.

Proposition 3 Let ∆ ⊆ (0,1) be finite. If X = [0,1] and Kn → ∞ sufficiently slowly, the Nearest
Neighbours TCM can be implemented for significance levels δ ∈ ∆ so that the computations at trial
n are performed in time O(logn).

Proposition 3 assumes a computational model that allows operations (such as comparison) with
real numbers. If X is an arbitrary Borel space, for this proposition to be applicable X should be
embedded in [0,1] first; e.g., if X ⊆ [0,1]n, an x = (x1, . . . ,xn) ∈ X can be represented as

(x1,1,x2,1, . . . ,xn,1,x1,2,x2,2, . . . ,xn,2, . . .) ∈ [0,1],

where 0.xi,1xi,2 . . . is the binary expansion of xi. We use the expression “can be implemented” in a
wide sense, only requiring that the implementation should give the correct results almost surely.

4. Fine Details of Region Prediction

In this section we make first steps towards the proof of Theorem 1. Let P be the true distribution
in Z generating the examples. We denote by PX the marginal distribution of P in X (i.e., PX(E) :=
P(E ×Y)) and by PY |X(y |x) the conditional probability that, for a random example (X ,Y ) chosen
from P, Y = y provided X = x (we fix arbitrarily a regular version of this conditional probability).
We will often omit lower indices X and Y |X and P itself from our notation.

The predictability of an object x ∈ X is

f (x) := max
y∈Y

P(y |x)

and the predictability distribution function is the function F : [0,1] → [0,1] defined by

F(β) := P{x : f (x) ≤ β}.

An example of such a function F is given in Figure 4 (left), where the graph of F is the thick line.
The success curve SP of P is defined by the equality

SP(δ) = inf

{

B ∈ [0,1] :
∫ 1

0
(F(β)−B)+dβ ≤ δ

}

, (12)

where t+ stands for max(t,0); the function SP is also of the type [0,1] → [0,1]. Geometrically,
SP(δ) is defined from the graph of F as follows (see Figure 4, left; we often drop the lower index P):
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Figure 4: The predictability distribution function F and the success curve S(δ) (left); the comple-
mentary success curve C(δ) (right)

move the point B from A to Z until the area of the curvilinear triangle ABC becomes δ or B reaches
Z; the ordinate of B is then S(δ).

The complementary success curve CP of P is defined by

CP(δ) = sup

{

B ∈ [0,1] :B+
∫ 1

0
(F(β)−B)+dβ ≤ δ

}

, (13)

where sup /0 is interpreted as 0. Similarly to the case of S(δ), C(δ) is defined as the value such that
the area of the part of the box AZOD below the thick line in Figure 4 (right) is δ (C(δ) = 0 if such
a value does not exist).

Define the critical significance level δ0 as

δ0 :=
∫ 1

0
F(β)dβ. (14)

It is clear that

δ ≤ δ0 =⇒
∫ 1

0
(F(β)−S(δ))+dβ = δ & C(δ) = 0

δ ≥ δ0 =⇒ S(δ) = 0 & C(δ)+
∫ 1

0
(F(β)−C(δ))+dβ = δ.

The following result is proved in Vovk (2002b).

Proposition 4 Let P be a probability distribution in Z and δ ∈ (0,1) be a significance level. If a
region predictor Γ is well-calibrated for P and δ, then

liminf
n→∞

Uncδ
n(P

∞,Γ)

n
≥ SP(δ) a.s. (15)

In this paper we complement Proposition 4 with
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Proposition 5 Let P be a probability distribution in Z and δ ∈ (0,1) be a significance level. If a
region predictor Γ is well-calibrated for P and δ and satisfies

limsup
n→∞

Uncδ
n(P

∞,Γ)

n
≤ SP(δ) a.s., (16)

then

limsup
n→∞

Empδ
n(P

∞,Γ)

n
≤ CP(δ) a.s.

Theorem 1 immediately follows from Propositions 2, 4, 5 and the following proposition.

Proposition 6 Suppose X is Borel. The Nearest Neighbours TCM constructed in §3.3 satisfies, for
any P and any significance level δ,

limsup
n→∞

Uncδ
n(P

∞,Γ)

n
≤ SP(δ) a.s. (17)

and

liminf
n→∞

Empδ
n(P

∞,Γ)

n
≥ CP(δ) a.s. (18)

5. Proofs

In this section we will assume that all extended objects (xi,τ′i) ∈ [0,1]2, where xi are output by
Reality and τi are the random numbers used, are different and that all pairwise distances between
them are also different (this is true with probability one, since τ′i are independent random numbers
uniformly distributed in [0,1]).

5.1 Proof Sketch of Proposition 3

Without loss of generality we assume that ∆ contains only one significance level δ, which will be
omitted from our notation. Our computational model has an operation of splitting τ ∈ [0,1] into τ′
and τ′′ (or is allowed to generate both τ′n and τ′′n at every trial n).

We will use two main data structures in our implementation of the Nearest Neighbours TCM:

• a red-black binary search tree;2

• a growing array of nonnegative integers indexed by k ∈ {−Kn,−Kn + 1, . . . ,Kn} (where n is
the ordinal number of the example being processed).

Immediately after processing the nth extended example (xn,τn,yn) the contents of these data struc-
tures are as follows:

• The search tree contains n vertices, corresponding to the extended examples (xi,τi,yi) seen so
far. The key of vertex i is the extended object (xi,τ′i) ∈ [0,1]2; the linear order on the keys is
the lexicographic order. The other information contained in vertex i is the random number τ′′i ,

2. See, e.g., Cormen et al. (2001), Chapters 12–14. The only two operations on red-black trees we need in this paper
are the query SEARCH and the modifying operation INSERT.
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the label yi, the set {P 6=
n (y |xi,τ′i) :y ∈ Y} of conditional probability estimates (8), the pointer

to the following vertex (i.e., the vertex that has the smallest key greater than (xi,τ′i); if there is
no greater key, the pointer is NIL), and the pointer to the previous vertex (i.e., the vertex that
has the greatest key smaller than (xi,τ′i); if (xi,τ′i) is the smallest key, the pointer is NIL).

• The array contains the numbers

N(k) := #{i = 1, . . . ,n :αi = k/Kn}

(αi are defined by (11) with σi := τ′i).

Notice that the information contained in vertex i of the search tree is sufficient to find ŷn(xi,τ′i) and
αi in time O(1).

We will say that an extended object (x j,τ′j) is in the vicinity of an extended object (xi,τ′i), i 6= j,
if there are less than Kn extended objects (xk,τ′k) (strictly) between (xi,τ′i) and (x j,τ′j).

When a new object xn becomes known, the algorithm does the following:

• Generates τ′n and τ′′n .

• Locates the successor and predecessor of (xn,τ′n) in the search tree (using the query SEARCH

and the pointers to the following and previous vertices); this requires time O(logn).

• Computes the estimated conditional probabilities {P 6=
n (y |xn,τ′n) :y ∈ Y}; this also gives

ŷn(xn,τ′n). This involves scanning the vicinity of (xn,τ′n) for the Kn nearest neighbours of
(xn,τ′n), which can be done in time O(Kn): the Kn nearest neighbours can be extracted from
the vicinity of (xn,τ′n) sorted in the order of increasing distances from (xn,τ′n); since initially
the vicinity consists of two sorted lists (to the left and to the right of (xn,τ′n)), the procedure
MERGE used in the merge sort algorithm (see, e.g., Cormen et al. 2001, §2.3.1) will sort the
whole vicinity in time O(Kn). Therefore, the required time is O(Kn) = O(logn).

• For each y ∈ Y looks at what happens if the nth example is (xn,τn,yn) = (xn,τn,y): computes
αn and updates (if necessary) αi for (xi,τ′i) in the vicinity of (xn,τ′n); using the array and τ′′n ,
finds whether y ∈ Γn. This requires time O(K2

n ) = O(logn), since there are O(Kn) αi’s in the
vicinity of (xn,τ′n) and each of them can be computed in time O(Kn).

• Outputs the prediction region Γn (time O(1)).

When the label yn arrives, the algorithm:

• Inserts the new vertex (xn,τ′n,τ′′n,yn,{P 6=
n (y |xn,τ′n) :y ∈ Y}) in the search tree, repairs the

pointers to the following and previous elements for (xn,τ′n)’s left and right neighbours, ini-
tializes the pointers to the following and previous elements for (xn,τ′n) itself, and rebalances
the tree (time O(logn)).

• Updates (if necessary) the conditional probabilities

{P 6=
n−1(y |xi,τ′i) :y ∈ Y} 7→ {P 6=

n (y |xi,τ′i) :y ∈ Y}

for the 2Kn existing vertices (xi,τ′i) in the vicinity of (xn,τ′n); this requires time O(K2
n ) =

O(logn). The conditional probabilities for other (xi,τ′i), i = 1, . . . ,n−1, do not change.
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• Updates the array, changing N(Knαi) for the (xi,τ′i) 6= (xn,τ′n) in the vicinity of (xn,τ′n) and
for both old and new values of αi and changing N(Knαn) (time O(Kn) = O(logn)).

In conclusion we discuss how to do the updates required when Kn changes. At the critical trials
n when Kn changes the array and the estimated conditional probabilities P 6=

n (y |xi,τ′i) have to be
recomputed, which, if done naively, would require time Θ(nKn).

The assumption we have made about Kn so far is that Kn = O(
√

logn). We now also assume
that Kn is monotonic non-decreasing and

#{n :Kn < c} = O(#{n :Kn = c}) (19)

as c → ∞. This is the full explication of the “Kn → ∞ sufficiently slowly” in the statement of the
lemma, as used in this proof.

An epoch is defined to be a maximal sequence of ns with the same Kn. Since the changes that
need to be done when a new epoch starts are substantial, they will be spread over the whole pre-
ceding epoch; we will only discuss updating the estimated conditional probabilities P 6=

n (y |xi,τ′i):
the array is treated similarly. An epoch is odd if the corresponding Kn is odd and even if Kn

is even. At every step in an epoch we prepare the ground for the next epoch. By the end
of epoch n = A + 1,A + 2, . . . ,B we need to change B sets {P 6=

n (y |xi,τ′i) :y ∈ Y} in B− A steps
(the duration of the epoch). Therefore, each vertex of the search tree should contain not only
{P 6=

n (y |xi,τ′i)} for the current epoch but also {P 6=
n (y |xi,τ′i)} for the next epoch (two structures for

holding {P 6=
n (y |xi,τ′i)} will suffice, one for even epochs and one for odd epochs). Our assumptions

of the slow growth of Kn, as seen in 19), imply that B = O(B−A). This means that at each step
O(1) sets {P 6=

n (y |xi,τ′i)} for the next epoch should be added. This will take time O(Kn) = O(logn).
As soon as a set {P 6=

n (y |xi,τ′i) :y ∈ Y} for the next epoch is added at some trial, both sets (for the
current and next epoch) will have to be updated for each new example.

5.2 Proof Sketch of Proposition 5

The proof of Proposition 5 is similar to (but more complicated than) the proof of Theorems 1 and 1r
in Vovk (2002b); this proof sketch can be made rigorous using the Neyman–Pearson lemma, as
in Vovk (2002b).

We will use the notations g′left and g′right for the left and right derivatives, respectively, of a
function g. The following lemma parallels Lemma 2 in Vovk (2002b), which deals with S(δ).

Lemma 7 The complementary success curve C : [0,1] → [0,1] always satisfies these properties:

1. There is a point δ0 ∈ [0,1] (namely, the critical significance level) such that C(δ) = 0 for
δ ≤ δ0 and C(δ) is concave for δ ≥ δ0.

2. C′
right(δ0) < ∞ and C′

left(1) ≥ 1; therefore, for δ ∈ (δ0,1), 1 ≤ C′
right(δ) ≤ C′

left(δ) < ∞ and
the function C(δ) is increasing.

3. C(δ) is continuous at δ = δ0; therefore, it is continuous everywhere in [0,1].

If a function C : [0,1] → [0,1] satisfies these properties, there exist a measurable space X, a finite
set Y, and a probability distribution P in X×Y for which C is the complementary success curve.
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Proof sketch The statement of the lemma follows from the fact that the complementary success
curve C can be obtained from the predictability distribution function F using these steps (labelling
the horizontal and vertical axes as x and y respectively):

1. Invert F : F1 := F−1.

2. Integrate F1: F2(x) :=
∫ x

0 F1(t)dt.

3. Increase F2: F3(x) := F2(x)+δ0, where δ0 :=
∫ 1

0 F(x)dx.

4. Invert F3: F4 := F−1
3 .

It can be shown that C = F4, if we define g−1(y) := sup{x :g(x) ≤ y} for non-decreasing g (so that
g−1 is continuous on the right).

Complement the protocol of §2 in which Reality plays P∞ and Predictor plays Γ with the fol-
lowing variables:

errn := (P×U)
{

(x,y,τ) :y /∈ Γδ(x1,τ1,y1, . . . ,xn−1,τn−1,yn−1,x,τ)
}

,

uncn := (PX ×U)
{

(x,τ) : |Γδ(x1,τ1,y1, . . . ,xn−1,τn−1,yn−1,x,τ)| > 1
}

,

empn := (PX ×U)
{

(x,τ) : |Γδ(x1,τ1,y1, . . . ,xn−1,τn−1,yn−1,x,τ)| = 0
}

,

δ being fixed and U standing for the uniform distribution in [0,1], and

Errn :=
n

∑
i=1

erri, Uncn :=
n

∑
i=1

unci, Empn :=
n

∑
i=1

empi .

By the martingale strong law of large numbers, to prove the proposition it suffices to consider only
these “predictable” versions of Errn, Uncn, and Empn: indeed, since Errn−Errn, Uncn−Uncn, and
Empn−Empn are martingales (with increments bounded by 1 in absolute value) with respect to the
filtration Fn, n = 0,1, . . . , where each Fn is generated by (x1,τ1,y1), . . . ,(xn,τn,yn), we have

lim
n→∞

Errn−Errn

n
= 0 a.s.,

lim
n→∞

Uncn−Uncn

n
= 0 a.s.,

and

lim
n→∞

Empn−Empn

n
= 0 a.s.

(See, e.g., Shiryaev, 1996, Theorem VII.5.4.)
Without loss of generality we can assume that Predictor’s move Γn at trial n is {ŷ(xn)} (where

x 7→ ŷ(x) ∈ argmaxy P(y |x) is a fixed “choice function”) or the empty set /0 or the whole label space
Y. Furthermore, we can assume that, at every trial, the predictions are certain for the new objects
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Figure 5: An admissible region predictor. The thick line is the predictability distribution function
F; the area of the curvilinear triangle ABC is errn−empn; the area of the rectangle DZOG
is empn; the (non-negative) area of the curvilinear quadrangle BDEC is denoted εn

above the straight line BC in Figure 5,3 and that the predictions are empty for the objects below the
straight line DG in Figure 5.4 It is clear that for the region predictor to satisfy (16) it must hold that

lim
n→∞

1
n

n

∑
i=1

(εi ∧ empi) = 0

(otherwise Uncn can be decreased substantially, which contradicts (15); εi are defined in the caption
of Figure 5), and so we can assume, without loss of generality, that either εn = 0 or empn = 0 at
every trial n, i.e., that

uncn = S(errn), empn = C(errn)

at every trial.
Let us check that to achieve (16) the region predictor must satisfy

δ < δ0 =⇒ limsup
n→∞

1
n

n

∑
i=1

(erri−δ0)
+ = 0 (20)

δ ≥ δ0 =⇒ limsup
n→∞

1
n

n

∑
i=1

(δ0 − erri)
+ = 0, (21)

where the convergence is, as usual, almost certain. It was shown in Vovk (2002b) (Lemma 2) that
the success curve S is convex, non-increasing, continuous, and has slope at most −1 before it hits

3. More formally, predictions are certain for new extended objects (x,τ) satisfying

F(x,τ) := F( f (x)−)+ τ(F( f (x)+)−F( f (x)−)) ≥ S(errn−empn).

Intuitively, considering extended objects makes the vertical axis “infinitely divisible”.
4. Indeed, predictions of this kind are admissible in the sense that we cannot improve uncn and empn simultaneously,

and all admissible predictions are equivalent to predictions of this kind. A formal argument for the case where empn
are omitted is given in Vovk (2002b).
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the x axis at δ = δ0. The second implication, (21), now immediately follows from the fact that,
under δ ≥ δ0 and (16),

0 = limsup
n→∞

Uncn

n
= limsup

n→∞

1
n

n

∑
i=1

S(erri) ≥ limsup
n→∞

1
n

n

∑
i=1

(δ0 − erri)
+ .

The first implication, (20), can be extracted from the chain

Uncn

n
=

1
n

n

∑
i=1

unci =
1
n

n

∑
i=1

S(erri) ≥ S

(

1
n

n

∑
i=1

erri

)

= S

(

Errn

n

)

≥ S(δ)− ε (22)

(with the last inequality holding almost surely for an arbitrary ε > 0 from some n on) used by Vovk
(2002b, in the proof of Theorems 1 and 1r). Indeed, it can be seen from (22) that, assuming the
predictor is well-calibrated and optimal and δ < δ0,

Errn /n → δ a.s.

and, therefore,

S(δ) ≥ limsup
n→∞

Uncn

n
= limsup

n→∞

1
n

n

∑
i=1

S(erri) = limsup
n→∞

1
n

n

∑
i=1

S(erri∧δ0)

≥ limsup
n→∞

S

(

1
n

n

∑
i=1

(erri∧δ0)

)

= limsup
n→∞

S

(

Errn

n
− 1

n

n

∑
i=1

(erri−δ0)
+

)

= limsup
n→∞

S

(

δ− 1
n

n

∑
i=1

(erri−δ0)
+

)

= S

(

δ− limsup
n→∞

1
n

n

∑
i=1

(erri−δ0)
+

)

almost surely. This proves (20).
Using (20), (21), and the fact that the complementary success curve C is concave, increasing,

and (uniformly) continuous for δ ≥ δ0 (see Lemma 7), we obtain: if δ < δ0,

Empn

n
=

1
n

n

∑
i=1

empi =
1
n

n

∑
i=1

C(erri)

≤ 1
n

C′
right(δ0)

n

∑
i=1

(erri−δ0)
+ → 0 (n → ∞);

if δ ≥ δ0,

Empn

n
=

1
n

n

∑
i=1

C(erri) =
1
n

n

∑
i=1

C(erri∨δ0)

≤ C

(

1
n

n

∑
i=1

(erri∨δ0)

)

= C

(

1
n

n

∑
i=1

erri +
1
n

n

∑
i=1

(δ0 − erri)
+

)

≤ C

(

1
n

n

∑
i=1

erri

)

+o(1) ≤ C(δ)+ ε,

the last inequality holding almost surely for an arbitrary ε > 0 from some n on and δ being the
significance level used.

590



UNIVERSAL WELL-CALIBRATED CLASSIFICATION

5.3 Proof Sketch of Proposition 6

Let us first modify and extend the notation P 6=
n (y |xi,σi) introduced in (8). Consider the sequence of

extended examples wi = (xi,τ′i,yi), i = 1, . . . ,n ((xi,yi) are the first n examples chosen by Reality and
τi are the random numbers used by Predictor). We define the Nearest Neighbours approximations
Pn(y |x,σ) to the conditional probabilities P(y |x) as follows: for every (x,σ,y) ∈ Z̃,

Pn(y |x,σ) := N(x,σ,y)/Kn, (23)

where N(x,σ,y) is the number of i = 1, . . . ,n such that (xi,τ′i) is among the Kn nearest neighbours
of (x,σ) and yi = y (this time (xi,τ′i) is not prevented from being counted as one of the Kn nearest
neighbours of (x,σ) if (xi,τ′i) = (x,σ)). We define the empirical predictability function fn by

fn(x,σ) := max
y∈Y

Pn(y |x,σ). (24)

The proof will be based on the following version of a well-known fundamental result.

Lemma 8 Suppose Kn → ∞, Kn = o(n), and Y = {0,1}. For any ε > 0 and large enough n,

P

{

∫

|P(1 |x)−Pn(1 |x,σ)|PX(dx)U(dσ) > ε
}

≤ e−nε2/40,

where the outermost probability distribution P (essentially (P×U)∞) generates the extended exam-
ples (xi,τi,yi), which determine the empirical distributions Pn.

Proof This is almost a special case of Devroye et al.’s (1994) Theorem 1. There is, however, an
important difference between the way we break distance ties and the way Devroye et al. (1994) do
this. In that work, instead of our (3),

(|x1 − x3|, |σ1 −σ3|) < (|x2 − x3|, |σ2 −σ3|)

is used. (Our way of breaking ties better agrees with the lexicographic order on [0,1]2, which is
useful in the proof of Proposition 3 and, less importantly, in the proof of Lemma 10.) It is easy to
check that the proof given by Devroye et al. (1994) also works (and becomes simpler) for our way
of breaking distance ties.

Lemma 9 Suppose Kn → ∞ and Kn = o(n). For any ε > 0 there exists an ε∗ > 0 such that, for large
enough n,

P

{

(PX ×U)

{

(x,σ) :max
y∈Y

|Pn(y |x,σ)−P(y |x)| > ε
}

> ε
}

≤ e−ε∗n;

in particular,
P

{

(PX ×U){(x,σ) : | fn(x,σ)− f (x)| > ε} > ε
}

≤ e−ε∗n.

Proof We apply Lemma 8 to the binary classification problem obtained from our classification
problem by replacing label y ∈ Y with 1 and replacing all other labels with 0:

P

{

∫

|P(y |x)−Pn(y |x,σ)|PX(dx)U(dσ) > ε
}

≤ e−nε2/40.
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By Markov’s inequality this implies

P

{

(PX ×U){|P(y |x)−Pn(y |x,σ)| >
√

ε} >
√

ε
}

≤ e−nε2/40,

which, in turn, implies

P

{

(PX ×U)

{

max
y∈Y

|P(y |x)−Pn(y |x,σ)| >
√

ε
}

> |Y|
√

ε
}

≤ e−nε2/40.

This completes the proof, since we can take the ε in the last equation arbitrarily small as compared
to the ε in the statement of the lemma.

We will use the shorthand “∀∞n” for “from some n on”.

Lemma 10 Suppose Kn → ∞ and Kn = o(n). For any ε > 0 there exists an ε∗ > 0 such that, for
large enough n,

P







#
{

i :maxy

∣

∣

∣
P(y |xi)−P 6=

n (y |xi,τ′i)
∣

∣

∣
> ε
}

n
> ε







≤ e−ε∗n.

In particular,

∀∞n : P







#
{

i :
∣

∣

∣
f (xi)− f 6=n (xi,τ′i)

∣

∣

∣
> ε
}

n
> ε







≤ e−ε∗n.

Proof Since
∣

∣

∣
P 6=

n (y |xi,τ′i)−Pn(y |xi,τ′i)
∣

∣

∣
≤ 1

Kn
= o(1),

we can, and will, ignore the upper indices 6= in the statement of the lemma.
Define

In(x,σ) :=











0 if maxy |P(y |x)−Pn(y |x,σ)| ≤ ε
1 if maxy |P(y |x)−Pn(y |x,σ)| ≥ 2ε
(maxy |P(y |x)−Pn(y |x,σ)|− ε)/ε otherwise

(intuitively, In(x,σ) is a “soft version” of I{maxy |P(y |x)−Pn(y |x,σ)|>ε}).
The main tool in this proof (and several other proofs in this section) will be McDiarmid’s theo-

rem (see, e.g., Devroye et al., 1996, Theorem 9.2). First we check the possibility of its application.
If we replace an extended object (x j,τ′j) by another extended object (x∗j ,τ∗j), the expression

n

∑
i=1

In(xi,τ′i)

will change as follows:

• the addend In(xi,τ′i) for i = j changes by 1 at most;

• the addends In(xi,τ′i) for i 6= j such that neither (x j,τ′j) nor (x∗j ,τ∗j) are among the Kn nearest
neighbours of (xi,τ′i) do not change at all;
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• the sum over the at most 4Kn (see below) addends In(xi,τ′i) for i 6= j such that either (x j,τ′j)
or (x∗j ,τ∗j) (or both) are among the Kn nearest neighbours of (xi,τ′i) can change by at most

4Kn
1
ε

1
Kn

=
4
ε
. (25)

The left-hand side of (25) reflects the following facts: the change in Pn(y |xi,τ′i) for i 6= j is at most
1/Kn; the number of i 6= j such that (x j,τ′j) is among the Kn nearest neighbours of (xi,τ′i) does not
exceed 2Kn (since the extended objects are linearly ordered and (3) is used for breaking distance
ties); analogously, the number of i 6= j such that (x∗j ,τ∗j) is among the Kn nearest neighbours of
(xi,τ′i) does not exceed 2Kn.

Therefore, by McDiarmid’s theorem,

P

{

1
n

n

∑
i=1

In(xi,τ′i)−E

(

1
n

n

∑
i=1

In(xi,τ′i)

)

> ε

}

≤ exp
(

−2ε2n/(1+4/ε)2
)

= exp

(

− 2ε4

(4+ ε)2 n

)

. (26)

Next we find:

E

(

1
n

n

∑
i=1

In(xi,τ′i)

)

= E

(

In(xn,τ′n)
)

≤ E

(

In−1(xn,τ′n)
)

+o(1)

≤ E(PX ×U){(x,σ) :max
y

|P(y |x)−Pn−1(y |x,σ)| > ε}+o(1)

≤ e−ε∗n + ε+o(1) ≤ 2ε

(the penultimate inequality follows from Lemma 9) from some n on. In combination with (26) this
implies

∀∞n : P

{

1
n

n

∑
i=1

In(xi,τ′i) > 3ε

}

≤ exp

(

− 2ε4

(4+ ε)2 n

)

,

in particular

P

{

#{i :maxy |P(y |xi)−Pn(y |xi,τ′i)| ≥ 2ε}
n

> 3ε
}

≤ exp

(

− 2ε4

(4+ ε)2 n

)

.

Replacing 3ε by ε, we obtain that, from some n on,

P

{

#{i :maxy |P(y |xi)−Pn(y |xi,τ′i)| > ε}
n

> ε
}

≤ exp

(

− 2(ε/3)4

(4+ ε/3)2 n

)

,

which completes the proof.

We say that an extended example (xi,τi,yi), i = 1, . . . ,n, is n-strange if yi 6= ŷn(xi,τ′i); otherwise,
(xi,τi,yi) will be called n-ordinary. We will assume that ( f 6=n (xi,τ′i),τ′′i ), i = 1, . . . ,n, are all different
for all n; even more than that, we will assume that τ′′i are all different (we can do so since the
probability of this event is one).

593



VOVK

-

6

β

F(β)

r

r

rS(δ)

q

c

ε ε ε ε
-

6

β

F(β)

r

r

S(δ) p

p

q

c

ε ε ε ε

r

Figure 6: Cases F(c) = S(δ) (left) and F(c) > S(δ) (right). The vertical bands of width ε determine
the division of the first n extended examples into five classes

Lemma 11 Suppose (7) is satisfied and δ ≤ δ0. With probability one, the b(1 − S(δ))nc ex-
tended examples with the largest (in the sense of the lexicographic order) ( f 6=n (xi,τ′i),τ′′i ) among
(x1,τ1,y1), . . . ,(xn,τn,yn) contain at most nδ+o(n) n-strange extended examples as n → ∞.

Proof Define
c := sup{β :F(β) ≤ S(δ)}.

It is clear that 0 < c < 1. Our proof will work both in the case where F(c) = S(δ) and in the case
where F(c) > S(δ), as illustrated in Figure 6.

Let ε > 0 be a small constant (we will let ε → 0 eventually). Define a “threshold” (c′n,c
′′
n) ∈

[0,1]2 requiring that

P

{

f (xn) = c,( fn−1(xn,τ′n),τ
′′
n) > (c′n,c

′′
n)
}

= F(c)−S(δ)− ε (27)

if F(c) > S(δ); we assume that ε is small enough for

2ε < F(c)−S(δ) (28)

to hold . Among other things this will ensure the validity of the definition (27). If F(c) = S(δ), we
set (c′n,c

′′
n) := (c+ ε,0); in any case, we will have

P

{

f (xn) = c,( fn−1(xn,τ′n),τ
′′
n) > (c′n,c

′′
n)
}

≥ F(c)−S(δ)− ε. (29)

Let us say that an extended example (xi,τi,yi) is above the threshold if

( f 6=n (xi,τ′i),τ
′′
i ) > (c′n,c

′′
n);

otherwise, we say it is below the threshold. Divide the first n extended examples (xi,τi,yi), i =
1, . . . ,n, into five classes:

Class I: Those satisfying f (xi) ≤ c−2ε.
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Class II: Those that satisfy f (xi) = c and are below the threshold.

Class III: Those satisfying c−2ε < f (xi) ≤ c+2ε but not f (xi) = c.

Class IV: Those that satisfy f (xi) = c and are above the threshold.

Class V: Those satisfying f (xi) > c+2ε.

First we explain the general idea of the proof. The threshold (c′,c′′) was chosen so that approxi-
mately b(1−S(δ))nc of the available extended examples will be above the threshold. Because of
this, the extended examples above the threshold will essentially be the b(1−S(δ))nc extended ex-
amples with the largest ( f 6=n (xi,τ′i),τ′′i ) referred to in the statement of the lemma. For each of the
five classes we will be interested in the following questions:

• How many extended examples are there in the class?

• How many of those are above the threshold?

• How many of those above the threshold are n-strange?

If the sum of the answers to the last question does not exceed nδ by too much, we are done.
With this plan in mind, we start the formal proof. (Of course, we will not be following the

plan literally: for example, if a class is very small, we do not need to answer the second and third
questions.) The first step is to show that

c− ε ≤ c′n ≤ c+ ε (30)

from some n on; this will ensure that the classes are conveniently separated from each other. We
only need to consider the case F(c) > S(δ). The inequality c′n ≤ c+ ε follows from

∀∞n : P

{

f (xn) = c, fn−1(xn,τ′n) > c+ ε
}

< ε < F(c)−S(δ)− ε

Simply combine Lemma 9 with (28). The inequality c− ε ≤ c′n follows in a similar way from

∀∞n : P

{

f (xn) = c, fn−1(xn,τ′n) ≥ c− ε
}

= P{ f (xn) = c}−P

{

f (xn) = c, fn−1(xn,τ′n) < c− ε
}

> F(c)−F(c−)− ε ≥ F(c)−S(δ)− ε.

Now we are ready to analyze the composition of our five classes. Among the Class I extended
examples at most

εn (31)

will be above the threshold from some n on almost surely (by Lemma 10 and the Borel–Cantelli
lemma). None of the Class II extended examples will be above the threshold, by definition. The
fraction of Class III extended examples among the first n extended examples will tend to

F(c+2ε)−F(c)+F(c−)−F(c−2ε) (32)

as n → ∞ almost surely.
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To estimate the number NIV
n of Class IV extended examples among the first n extended ex-

amples, we use McDiarmid’s theorem. If one extended example is replaced by another, N IV
n will

change by at most 2Kn + 1 (since this extended example can affect f 6=n (xi,τ′i) for at most 2Kn other
extended examples (xi,τi,yi)). Therefore,

P

{∣

∣

∣

∣

1
n

NIV
n − 1

n
ENIV

n

∣

∣

∣

∣

≥ ε
}

≤ 2e−2ε2n/(2Kn+1)2
;

the assumption Kn = o
(

√

n/ lnn
)

and the Borel–Cantelli lemma imply that

∣

∣

∣

∣

1
n

NIV
n − 1

n
ENIV

n

∣

∣

∣

∣

< ε

from some n on almost surely. Since

1
n

ENIV
n = P

{

f (xn) = c,( fn−1(xn,τ′n),τ
′′
n) > (c′n,c

′′
n)
}

≥ F(c)−S(δ)− ε,

as in (29), we have
NIV

n > (F(c)−S(δ)−2ε)n (33)

from some n on almost surely. Of course, all these examples are above the threshold.
Now we estimate the number N IV,str

n of n-strange extended examples of Class IV. Again McDi-
armid’s theorem implies that

∣

∣

∣

∣

1
n

NIV,str
n − 1

n
ENIV,str

n

∣

∣

∣

∣

< ε

from some n on almost surely. Now, from some n on,

1
n

ENIV,str
n = P

{

f (xn) = c,( fn−1(xn,τ′n),τ
′′
n) > (c′n,c

′′
n), ŷn(xn,τ′n) 6= yn

}

= E

((

1−PY |X
(

ŷn(xn,τ′n) |xn
))

I{ f (xn)=c,( fn−1(xn,τ′n),τ′′n)>(c′n,c′′n)}
)

≤ e−ε∗n + ε+(1− c+2ε)
×P{ f (xn) = c,( fn−1(xn,τ′n),τ

′′
n) > (c′n,c

′′
n)}

= e−ε∗n + ε+(1− c+2ε)(F(c)−S(δ)− ε) (34)

≤ (F(c)−S(δ))(1− c)+4ε (35)

in the case F(c) > S(δ); the first inequality in this chain follows from Lemma 9: indeed, this lemma
implies that, unless an event of the small probability e−ε∗n + ε happens,

P
(

ŷn(xn,τ′n) |xn
)

≥ Pn−1
(

ŷn(xn,τ′n) |xn,τ′n
)

− ε = fn−1
(

xn,τ′n
)

− ε ≥ f (xn)−2ε. (36)

If F(c) = S(δ), the lines (34) and (35) of that chain have to be changed to

≤ e−ε∗n + ε+(1− c+2ε)P{ f (xn) = c, fn−1(xn,τ′n) ≥ c+ ε}

≤ e−ε∗n + ε+(1− c+2ε)
(

e−ε∗n + ε
)

< 4ε
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(where the obvious modification of Lemma 9 with all “> ε” changed to “≥ ε” is used), but the
inequality between the extreme terms of the chain still holds. Therefore, the number of n-strange
Class IV extended examples does not exceed

((F(c)−S(δ))(1− c)+5ε)n (37)

from some n on almost surely.
By the Borel strong law of large numbers, the fraction of Class V extended examples among the

first n extended examples will tend to

1−F(c+2ε) (38)

as n → ∞ almost surely. By Lemma 10, the Borel–Cantelli lemma, and (30), almost surely from
some n on at least

(1−F(c+2ε)−2ε)n (39)

extended examples in Class V will be above the threshold.
Finally, we estimate the number NV,str

n of n-strange extended examples of Class V among the
first n extended examples. By McDiarmid’s theorem,

∣

∣

∣

∣

1
n

NV,str
n − 1

n
ENV,str

n

∣

∣

∣

∣

< ε

from some n on almost surely. Now

1
n

ENV,str
n = P

{

f (xn) > c+2ε, ŷn(xn,τ′n) 6= yn
}

= E

((

1−PY |X
(

ŷn(xn,τ′n) |xn
))

I{ f (xn)>c+2ε}
)

≤ e−ε∗n + ε+E

(

(1− f (xn)+2ε)I{ f (xn)>c+2ε}
)

≤ e−ε∗n +3ε+E

(

(1− f (xn))I{ f (xn)>c+2ε}
)

= e−ε∗n +3ε+
∫ 1

0
(F(β)−F(c+2ε))+dβ

<
∫ 1

0
(F(β)−F(c))+dβ+4ε

from some n on. The first inequality follows from Lemma 9, as in (36). Therefore,

1
n

NV,str
n <

∫ 1

0
(F(β)−F(c))+dβ+5ε (40)

from some n on almost surely.
Summarizing, we can see that the total number of extended examples above the threshold among

the first n extended examples will be at least

(F(c)−S(δ)−2ε+1−F(c+2ε)−2ε)n = (1−S(δ)+F(c)−F(c+2ε)−4ε)n (41)
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(see (33) and (39)) from some n on almost surely. The number of n-strange extended examples
among them will not exceed

(

ε+F(c+2ε)−F(c)+F(c−)−F(c−2ε)+ ε

+(F(c)−S(δ))(1− c)+5ε+
∫ 1

0
(F(β)−F(c))+dβ+5ε

)

n

=

(

F(c+2ε)−F(c)+F(c−)−F(c−2ε)

+(F(c)−S(δ))(1− c)+
∫ 1

0
(F(β)−F(c))+dβ+12ε

)

n (42)

(see (31), (32), (37), and (40)) from some n on almost surely. Combining (41) and (42), we can see
that the number of n-strange extended examples among the b(1−S(δ))nc extended examples with
the largest ( f 6=n (xi,τ′i),τ′′i ) does not exceed

(

F(c+2ε)−F(c)+F(c−)−F(c−2ε)+(F(c)−S(δ))(1− c)

+
∫ 1

0
(F(β)−F(c))+dβ+12ε

)

n+(F(c+2ε)−F(c)+4ε)n

=

(

2(F(c+2ε)−F(c))+(F(c−)−F(c−2ε))+(F(c)−S(δ))(1− c)

+
∫ 1

0
(F(β)−F(c))+dβ+16ε

)

n

from some n on almost surely. Since ε can be arbitrarily small, the coefficient in front of n in the
last expression can be made arbitrarily close to

(F(c)−S(δ))(1− c)+
∫ 1

0
(F(β)−F(c))+dβ =

∫ 1

0
(F(β)−S(δ))+dβ = δ,

which completes the proof.

Lemma 12 Suppose (7) is satisfied. The fraction of n-strange extended examples among the first n
extended examples (xi,τi,yi) approaches δ0 asymptotically with probability one.

Proof sketch The lemma is not difficult to prove using McDiarmid’s theorem and the fact that,
by Lemma 10, P(ŷn(xi,τ′i) |xi) will typically differ little from f (xi). Notice, however, that the part
that we really need in this paper (that the fraction of n-strange extended examples does not exceed
δ0 + o(1) as n → ∞ with probability one) is just a special case of Lemma 11, corresponding to
δ = δ0.

Lemma 13 Suppose (7) is satisfied and δ > δ0. The fraction of n-ordinary extended examples
among the bC(δ)nc extended examples (xi,τi,yi), i = 1, . . . ,n, with the lowest ( f 6=n (xi,τ′i),τ′′i ) does
not exceed δ−δ0 +o(1) as n → ∞ with probability one.
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Lemma 13 can be proved analogously to Lemma 11.

Lemma 14 Let F1 ⊇ F2 ⊇ ·· · be a decreasing sequence of σ-algebras and ξ1,ξ2 . . . be a bounded
adapted (in the sense that ξn is Fn-measurable for all n) sequence of random variables such that

limsup
n→∞

E(ξn |Fn+1) ≤ 0 a.s.

Then

limsup
n→∞

1
n

n

∑
i=1

ξi ≤ 0 a.s.

Proof Replacing, if necessary, ξn by ξn −E(ξn |Fn+1), we reduce our task to the following special
case (a reverse Borel strong law of large numbers): if ξ1,ξ2, . . . is a bounded reverse martingale
difference, in the sense of being adapted and satisfying ∀n : E(ξn |Fn+1) = 0, then

lim
n→∞

1
n

n

∑
i=1

ξi = 0 a.s. (43)

Fix a bounded reverse martingale difference ξ1,ξ2, . . . ; our goal is to prove (43). By the martingale
version of Hoeffding’s inequality (Devroye et al., 1996, Theorem 9.1) applied to the martingale
difference (ξi,Fi), i = n, . . . ,1,

P

{∣

∣

∣

∣

∣

1
n

n

∑
i=1

ξi

∣

∣

∣

∣

∣

≥ ε

}

≤ 2e−2ε2n/(2C)2
, (44)

where C is an upper bound on supn |ξn|. Combined with the Borel–Cantelli–Lévy lemma, (44)
implies (43).

Now we can sketch the proof of Proposition 6. Define Fn, n = 1,2, . . . , to be the σ-algebra on
Z̃∞ generated by the multiset of the first n−1 extended examples (xi,τi,yi), i = 1, . . . ,n−1, and the
sequence of extended examples (xi,τi,yi), i = n,n+1, . . . (starting from the nth extended example).

Suppose first that δ < δ0. Consider the b(1−S(δ− ε))nc extended examples with the largest
( f 6=n (xi,τ′i),τ′′i ) among (x1,τ1,y1), . . . ,(xn,τn,yn), where ε ∈ (0,δ) is a small constant. Let us show
that each of these examples will be predicted with certainty from the other extended examples in
the sequence (x1,τ1,y1), . . . ,(xn,τn,yn), from some n on. We will be assuming n large enough.

Let (xk,τk,yk) be the extended example with the (b(δ−ε/2)nc+1)th largest (in the sense of the
lexicographic order) ( f 6=n (xi,τ′i),τ′′i ) among all n-strange extended examples (xi,τi,yi), i = 1, . . . ,n.
(Remember that all τ′′i are assumed to be different.) Let (x j,τ j,y j) be one of the b(1−S(δ− ε))nc
extended examples with the largest ( f 6=n (xi,τ′i),τ′′i ) and let y ∈ Y be a label different from ŷn(x j,τ′j).
It suffices to prove that

τ′′j ≥
#{i = 1, . . . ,n :αy

i ≥ αy
j}−nδ

#{i = 1, . . . ,n :αy
i = αy

j}
(45)

(cf. (6) on p. 582), where all αy are computed as α in (11) from the sequence

(x1,τ1,y1), . . . ,(xn,τn,yn)
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with y j replaced by y. It will be more convenient to write (45) in the form

#{i :αy
i > αy

j}+(1− τ′′j )#{i :αy
i = αy

j} ≤ nδ.

Since αy
j = f 6=n (x j,τ′j) and αy

i 6= αi for at most 2Kn +1 values of i (indeed, changing y j will affect at
most 2Kn +1 αs), it suffices to prove

#{i :αi > f 6=n (x j,τ′j)}+(1− τ′′j )#{i :αi = f 6=n (x j,τ′j)} ≤ n(δ− ε∗), (46)

where ε∗ � ε is a positive constant.
Since ( f 6=n (x j,τ′j),τ′′j )≥ (αk,τ′′k ) (indeed, by Lemma 11, there are less than (δ−ε/2)n n-strange

extended examples among the b(1−S(δ−ε))nc extended examples with the largest ( f 6=n (xi,τ′i),τ′′i )),
(46) will follow from

#{i :αi > αk}+(1− τ′′k )#{i :αi = αk} ≤ n(δ− ε∗). (47)

If #{i :αi = αk} ≤ ε
3 n, the left-hand side of (47) does not exceed

(

δ− ε
2

)

n+
ε
3

n < n(δ− ε∗),

so we can, and will, assume without loss of generality that

#{i :αi = αk} >
ε
3

n. (48)

Since τ′′i for the extended examples satisfying αi = αk are output according to the uniform distribu-
tion U, the expected value of 1− τ′′k is about

(δ− ε/2)n−#{i :αi > αk}
#{i :αi = αk}

,

and so by Hoeffding’s inequality and the Borel–Cantelli lemma we will have (from some n on)

1− τ′′k ≤
(δ− ε/2)n−#{i :αi > αk}

#{i :αi = αk}
+ ε∗, (49)

remembering (48). Equation (47) will hold because its left-hand side can be transformed using (49)
as

#{i :αi > αk}+(1− τ′′k )#{i :αi = αk} ≤ (δ− ε/2)n+ ε∗#{i :αi = αk}
≤ (δ− ε/2+ ε∗)n ≤ (δ− ε∗)n.

The assertion we have just proved means that, almost surely from some n on,

P({uncn = 0}|Fn+1) ≥
b(1−S(δ− ε))nc

n
≥ 1−S(δ− ε)− 1

n
.

Since ε can be arbitrarily small and S is continuous (Vovk, 2002b, Lemma 2), this implies

limsup
n→∞

E(uncn |Fn+1) ≤ S(δ) a.s.
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By Lemma 14 this implies, in turn,

limsup
n→∞

1
n

n

∑
i=1

unci ≤ S(δ) a.s.,

which coincides with (17).
If δ ≥ δ0, Lemma 12 implies that

lim
n→∞

E(uncn |Fn+1) = 0 a.s.

(and actually E(uncn |Fn+1) = 0 from some n on if δ > δ0); in combination with Lemma 14 this
again implies (17).

Inequality (18) is treated in a similar way to (17). Lemmas 12 and 13 imply that

liminf
n→∞

E(empn |Fn+1) ≥ C(δ) a.s. (50)

(this inequality is vacuously true when δ ≤ δ0). Another application of Lemma 14 gives

liminf
n→∞

1
n

n

∑
i=1

empi ≥ C(δ) a.s.,

i.e., (18).

Remark The derivation of Proposition 6 from Lemmas 11–14 would be very simple if we defined
the individual strangeness measure by, say,

αi :=

{

(− f 6=n (xi,σi),σi) if yi = ŷn(xi,σi)

( f 6=n (xi,σi),σi) otherwise

(with the lexicographic order on the α’s) instead of (11) (in which case the denominator of (6) would
be 1 almost surely). Our definition (11), however, is simpler and, most importantly, facilitates the
proof of Proposition 3. Another simplification would be to use Lemma 11 (applied to δ := δ−C(δ))
instead of Lemma 13 in the derivation of (50); we preferred a more symmetric picture.

6. Conclusion

We have shown that there exist universal well-calibrated region predictors, thus satisfying, to some
degree, the desiderata mentioned in §1: well-calibratedness and optimal performance. Notice,
however, that the ways in which these two desiderata are satisfied are very different: the well-
calibratedness holds in a very specific finitary sense, since the errors have probability δ and are
independent, whereas the optimal performance is achieved only asymptotically.

An important direction of further research is to obtain non-asymptotic results about TCM’s
optimality. A natural setting is where we have a Bayesian model for Reality’s strategy, {Pθ :θ ∈
Θ} with a prior µ(dθ) on Θ, and our goal is to minimize Uncδ

n under this model. The intuition
behind this setting is that we do not really believe that the data is generated from our model and so
prefer a predictor that is well-calibrated regardless the correctness of the model; but if the model is
correct, we would like to have an optimal performance. A special case of this setting, with µ(dθ)
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concentrated at one point, was considered in Vovk (2002b); however, all results in that paper are
asymptotic.
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Appendix A. Notation

The following table contains, strictly speaking, not only the notation used in this paper but also the
preferred use of symbols.

X object space
Y label space
Z example space (Z = X×Y)
P the probability distribution in Z generating individual examples

z1 = (x1,y1),z2 = (x2,y2), . . .
δ significance level
Γδ

n prediction region
errδ

n indicator of error at trial n
uncδ

n indicator of uncertain prediction at trial n
empδ

n indicator of empty prediction at trial n
Errδ

n cumulative number of errors up to trial n
Uncδ

n cumulative number of uncertain predictions up to trial n
Empδ

n cumulative number of empty predictions up to trial n
τn the nth random number used by a region predictor
τ′n, τ′′n two components of τn, as defined in §3.1
X̃ the extended object space X× [0,1]
Z̃ the extended example space X× [0,1]×Y
<, ≤ may refer to the lexicographic order on [0,1]2, as defined on p. 581
|x,σ| the absolute value of (x,σ) ∈ [0,1]2, as defined in (4)
An individual strangeness measure
αi values taken by an individual strangeness measure
#E the size of set E
Kn the number of nearest neighbours taken into account at trial n

P 6=
n (y |xi,σi) empirical estimate of P(y |xi) without taking yi into account,

as defined in (8)
f 6=n (xi,σi) corresponding empirical predictability function, (9)
ŷn(xi,σi) “choice function”, as defined in (10)
∆ finite set of significance levels
PX the marginal distribution of P in X
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PY |X the regular conditional distribution of y ∈ Y given x ∈ X,
where (x,y) is distributed as P

f (x) predictability of object x
F(β) predictability distribution function
S(δ) success curve, defined in (12)
C(δ) complementary success curve, defined in (13)
δ0 critical significance level, defined in (14)
err, unc, emp “predictable” versions of err, unc, emp, as defined on p. 588
Err, Unc, Emp “predictable” versions of Err, Unc, Emp
F(t−) the limit of F(u) as u approaches t from below
F(t+) the limit of F(u) as u approaches t from above
u∨ v the maximum of u and v, also denoted max(u,v)
u∧ v the minimum of u and v, also denoted min(u,v)
t+ t ∨0
t− (−t)∨0
U the uniform probability distribution in [0,1]
Pn(y |x,σ) empirical estimate of P(y |x), defined by (23)
fn(x,σ) corresponding empirical predictability function, defined by (24)
P probability
E expectation
∀∞n from some n on
IE the indicator function of set E
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Luc Devroye, László Györfi, and Gábor Lugosi. A Probabilistic Theory of Pattern Recognition.
Springer, New York, 1996.

Yoav Freund, Yishay Mansour, and Robert E. Schapire. Generalization bounds for averaged classi-
fiers. Annals of Statistics, 32(4), 2004.

Ronald L. Rivest and Robert H. Sloan. Learning complicated concepts reliably and usefully. In
Proceedings of the First Annual Conference on Computational Learning Theory, pages 69–79,
San Mateo, CA, 1988. Morgan Kaufmann.

Craig Saunders, Alex Gammerman, and Vladimir Vovk. Transduction with confidence and credi-
bility. In Thomas Dean, editor, Proceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, volume 2, pages 722–726. Morgan Kaufmann, 1999.

603



VOVK

Albert N. Shiryaev. Probability. Springer, New York, second edition, 1996.

Vladimir Vovk. On-line Confidence Machines are well-calibrated. In Proceedings of the Forty
Third Annual Symposium on Foundations of Computer Science, pages 187–196, Los Alamitos,
CA, 2002a. IEEE Computer Society.

Vladimir Vovk. Asymptotic optimality of Transductive Confidence Machine. In Proceedings of the
Thirteenth International Conference on Algorithmic Learning Theory, volume 2533 of Lecture
Notes in Artificial Intelligence, pages 336–350, Berlin, 2002b. Springer.

Vladimir Vovk. Universal well-calibrated algorithm for on-line classification. In Bernhard
Schölkopf and Manfred K. Warmuth, editors, Learning Theory and Kernel Machines: Sixteenth
Annual Conference on Learning Theory and Seventh Kernel Workshop, volume 2777 of Lecture
Notes in Artificial Intelligence, pages 358–372, Berlin, 2003. Springer.

Vladimir Vovk, Alex Gammerman, and Craig Saunders. Machine-learning applications of algorith-
mic randomness. In Proceedings of the Sixteenth International Conference on Machine Learning,
pages 444–453, San Francisco, CA, 1999. Morgan Kaufmann.

604


