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Abstract

We present a probabilistic kernel approach to ordinal eggom based on Gaussian processes. A
threshold model that generalizes fmbit function is used as the likelihood function for ordinal
variables. Two inference techniques, based on the Lapfgm®gimation and the expectation prop-
agation algorithm respectively, are derived for hyperpeater learning and model selection. We
compare these two Gaussian process approaches with ays@ritinal regression method based
on support vector machines on some benchmark and real-datédsets, including applications of
ordinal regression to collaborative filtering and gene expion analysis. Experimental results on
these data sets verify the usefulness of our approach.

Keywords: Gaussian processes, ordinal regression, approximatesBayiaference, collaborative
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1. Introduction

Practical applications of supervised learning frequently involve situatieni®iting an order among

the different categories, e.g. a teacher always rates his/her stuglagitiny grades on their overall

performance. In contrast to metric regression problems, the gradeswally discrete and finite.

These grades are also different from the class labels in classificatibleprs due to the existence
of ranking information. For example, grade labels have the ordéringD < C < B < A. This is

a learning task of predicting variables of ordinal scale, a setting bridgityd®en metric regression
and classification referred to eemnking learningor ordinal regression

There is some literature about ordinal regression in the domain of machimengaKramer
et al. (2001) investigated the use of a regression tree learner by mahpiongdinal variables into
numeric values. However there might be no principled way of devising propgate mapping
function. Frank and Hall (2001) converted an ordinal regressioblpm into nested binary clas-
sification problems that encode the ordering of the original ranks, amdttieeresults of standard
binary classifiers can be organized for prediction. Har-Peled et @D3]2proposed a constraint
classification approach for ranking problems based on binary classiftahen et al. (1999) con-
sidered general ranking problems in the form of preference judgemétesbrich et al. (2000)
applied the principle of Structural Risk Minimization (Vapnik, 1995) to ordiregression lead-
ing to a new distribution-independent learning algorithm based on a los8dorbetween pairs of
ranks. Shashua and Levin (2003) generalized the formulation of guypgpcor machines to or-
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dinal regression and the numerical results they presented shows acsignifiprovement on the
performance compared with the on-line algorithm proposed by Crammeriager$2002).

In the statistics literature, most of the approaches are based on gernkliakze models (Mc-
Cullagh and Nelder, 1983). The cumulative model (McCullagh, 1980) Iskmewn in classical
statistical approaches for ordinal regression, in which they rely oreifgpdistributional assump-
tion on the unobservable latent variables and a stochastic ordering oftltespace. Johnson and
Albert (1999) described Bayesian inference on parametric modelsdorab data using sampling
techniques. Tutz (2003) presented a general framework for semipaia models that extends
generalized additive models (Hastie and Tibshirani, 1990) by incorpgrattnparametric parts.
The nonparametric components of the regression model are fitted by maximeiradized log
likelihood, and model selection is carried out using AIC.

Gaussian processes (O’Hagan, 1978; Neal, 1997) have provigesh@dsing non-parametric
Bayesian approach to metric regression (Williams and Rasmussen, 19P6é)aanification prob-
lems (Williams and Barber, 1998). The important advantage of Gaussieegxmodels (GPs) over
other non-Bayesian models is the explicit probabilistic formulation. This nigt movides prob-
abilistic predictions but also gives the ability to infer model parameters suttioas that control
the kernel shape and the noise level. The GPs are also different feogethiparametric approach
of Tutz (2003) in several ways. First, the additive models (Fahrmeir ait Z001) are defined by
functions in each input dimension, whereas the GPs can have morelgeresdditive covariance
functions; second, the kernel trick allows to use infinite basis functioarsipns; third, the GPs
perform Bayesian inference in the space of the latent functions.

In this paper, we present a probabilistic kernel approach to ordigegssion in Gaussian pro-
cesses. We impose a Gaussian process prior distribution on the latetibrignand employ an
appropriate likelihood function for ordinal variables which can be mggmas a generalization of
the probit function. Two Bayesian inference techniques are applied to implement raddpta-
tion by using the Laplace approximation (MacKay, 1992) and the expectatipragation (Minka,
2001) respectively. Comparisons of the generalization performaraesaghe support vector ap-
proach (Shashua and Levin, 2003) on some benchmark and real-daiddsets, such as movie
ranking and gene expression analysis, verify the usefulness of thisagh.

The paper is organized as follows: in Section 2, we describe the Bayfesmework in Gaus-
sian processes for ordinal regression; in Section 3, we discuss yesiBa techniques for hyperpa-
rameter inference; in Section 4, we present the predictive distributiqgrddabilistic prediction; in
Section 5, we give some extensive discussion on these techniquestion®eeve report the results
of numerical experiments on some benchmark and real-world data setsnaleide this paper in
Section 7.

2. Bayesian Framework

Consider a data set composednagamples. Each of the samples is a pair of input vegter R @
and the corresponding targgte 9" where?  is a finite set ofr ordered categories. Without loss
of generality, these categories are denoted as consecutive infggergl, 2,...,r} that keep the
known ordering information. The main idea is to assume an unobservableflatetion f (X)) € R
associated witly; in a Gaussian process, and the ordinal varigdteependent on the latent function
f(x) by modelling the ranks as intervals on the real line. A Bayesian framewossisrithed with
more details in the following.
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2.1 Gaussian Process Prior

The latent functiong f(x;)} are usually assumed as the realizations of random variables indexed
by their input vectors in a zero-mean Gaussian process. The Gauss@sp can then be fully
specified by giving the covariance matrix for any finite set of zero-maadom variable$ f (x)}.

The covariance between the functions corresponding to the irpartslx; can be defined by Mercer
kernel functions (Wahba, 1990; Silkopf and Smola, 2001), e.g. Gaussian kernel which is defined

as
d

z(x?—x?>2> @

=1

Covif(x), f(xj)] = K(x,Xj) = exp(—g

wherek > 0 andx,-c denotes the-th element ofx.> Thus, the prior probability of these latent
functions{ f(x)} is a multivariate Gaussian

P(f) = Z%exp(—%ﬁZ”) 2)

wheref = [f(x1), f(x2),..., f(Xn)]T, Z¢ = (21'[)3\21%, andX is then x n covariance matrix whose
ij-th element is defined as in (1).

2.2 Likelihood for Ordinal Variables

The likelihood is the joint probability of observing the ordinal variables gitlee latent functions,
denoted a®(D|f) whereD denotes the target s¢y; }. Generally, the likelihood can be evaluated
as a product of the likelihood function on individual observation:

2(2]1) = [ 200110 e

where the likelihood functiorP(y;| f (x;)) could be intuitively defined as

Baeal¥i| T(%)) = { é o _étﬁefr\s\i?s?eS i (4)
wherebg = —c andb, = +o0 are defined subsidiariya; € X and the other threshold variables can
be further defined asj = by + !, A, with positive padding variable, andi = 2,...,r —1. The
role ofb; < by < ... < by_1 is to divide the real line into contiguous intervals; these intervals map
the real function valud (x) into the discrete variablg while enforcing the ordinal constraints.
The likelihood function (4) is used for ideally noise-free cases. In tlesgmwce of noise from
inputs or targets, we may explicitly assume that the latent functions are contagiiyssesaussian
noise with zero mean and unknown variawée’ A (3; 4, 02) is used to denote a Gaussian random
variabled with meanu and variance? henceforth. Then the ordinal likelihood function becomes

P(yi|f(x)) = /iPudeal(Yi\f(Xi) +3)N(8:;0,0%)d8 = ® () — P (2)) (5)

1. Other Mercer kernel functions, such as polynomial kernels dlivteggernels etc., can also be used in the covariance
function.
2. In principle, any distribution rather than a Gaussian can be assumggtfiooise on the latent functions.
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Figure 1: The graph of the likelihood function for an ordinal regrespi@blem withr = 3, along
with the first and second order derivatives of the loss function (negktgarithm of the
likelihood function), where the noise variana&= 1, and the two thresholds abg = —3
andb, = +3.

wherez, = B of(x') Z,= by -1 fx) ,and®(2) = [ N(¢0,1)dc. Note that binary classification
is a special case of ordinal regression whhea 2, and in this case the likelihood function (5) be-
comes theprobit function. The quantity-InP(y;| f (X)) is usually referred to as the loss function
{(yi, f(x)). The derivatives of the loss function with respectf{o;) are needed in some approx-

imate Bayesian inference methods. The first order derivative of thefuostion can be written

as _ ,
oLy, f(x)) _ 1A(#:0,1) — N(2:0,1) ()
of(x) o D(z) — P(2)
and the second order derivative can be given as
*0(yi, (%)) _ <-‘7\£(21,0 1) - N(2:0, 1)>2 L1 4N(7;0,1) ~ZN(2;0,1) @
?f(x) o2 () - () 0? ®(Z) - (2) '

We present graphs of the ordinal likelihood function (5) and the d&ras of the loss function
in Figure 1 as an illustration. Note that the first order derivative (6) is aatoorcally increasing
function of f(x;), and the second order derivative (7) is always a positive value Iaet@eand—
Given the facts thaigea(yi|f (%) + &) is log-concave in(f(x),8) and A((&;;0,0?) is also Iog-
concave, as pointed out by Pratt (1981), the convexity of the losgifunfollows, because the
integral of a log-concave function with respect to some of its arguments @-eolocave function
of its remaining arguments (Brascamp and Lieb, 1976, Cor. 3.5).

2.3 Posterior Probability

Based on Bayes’ theorem, the posterior probability can then be written as
P(f|D) = |'|£P yilf (%)) 2(f) (8)

where the prior probability?( ) is defined as in (2), the likelihood functiah(y;|f (X)) is defined
asin (5), and?P(D) = [P(D|f)P(f)df.
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The Bayesian framework we described above is conditional on the mo@ahpters including
the kernel parametersin the covariance function (1) that control the kernel shape, the tbicsh
parametergbs, Ay, ..., A1} and the noise leved in the likelihood function (5). All these param-
eters can be collected inf) which is the hyperparameter vector. The normalization fa@{@p)
in (8), more exactlyP(|0), is known as the evidence fér a yardstick for model selection. In the
next section, we discuss techniques for hyperparameter learning.

3. Model Adaptation

In a full Bayesian treatment, the hyperparame®raust be integrated over tiespace. Monte
Carlo methods (Neal, 1997) can be adopted here to approximate the iratgcsively. However
these might be prohibitively expensive to use in practice. Alternativelycovesider model se-
lection by determining an optimal setting f6r The optimal values of hyperparametérsan be
simplyinferred by maximizing the posterior probabili®(6|?), where®(6|D) O P(D|6)P(0).
The prior distribution on the hyperparametét®) can be specified by domain knowledge, or al-
ternatively some vague uninformative distribution. The evidence is giyea ligh dimensional
integral, 7(D|0) = [P(D|f)P(f)df. A popular idea for computing the evidence is to approxi-
mate the posterior distributiai( f|2) as a Gaussian, and then the evidence can be calculated by an
explicit formula (MacKay, 1992; Csatet al., 2000; Minka, 2001). In this section, we describe two
Bayesian techniques for model adaptation by using the Laplace approxinaaticthe expectation
propagation respectively.

3.1 MAP Approach with Laplace Approximation

The evidence can be calculated analytically after applying the Laplacexapmation at the max-
imum a posteriori (MAP) estimate, and gradient-based optimization methods embd¢hused to
infer the optimal hyperparameters by maximizing the evidence. The MAP estimatesdatent
functions is referred td,,p = argmax P(f|D), which is equivalent to the minimizer of negative
logarithm of P(f|D), i.e.

S(f) :_if(Yi,f(Xi))Jr% fretf (9)

wherel(y;, f (X)) = —InP(yi| f(xi)) is known as the loss function. Note t 3 <ffT) =z 1t+Aisa

positive definite matrix, wherA is a diagonal matrix whosé-th entry is%&(’f)) given asin (7).

Thus, this is a convex programming problem with a unique solitidhe Laplace approximation
of S(f) refers to carrying out the Taylor expansion at the MAP point and retaithiederms up
to the second order (MacKay, 1992). Since the first order deravatith respect tdf vanishes at
fuaps S(f) can also be written as

1 _
S(f) =~ S(fyap) + é(f — famap) T (271 Amap) (f — fyap) (10)
whereAnap denotes the matrii at the MAP estimate. This is equivalent to approximating the pos-

terior distribution?(f|2D) as a Gaussian distribution centeredfggp with the covariance matrix

3. The Newton-Raphson formula can be used to find the solution for sirapés.
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(Z1 4+ Amap) L ie. P(F|D) ~ N(F; fyaps (271 4+ Amap) 7). Using the Laplace approximation
(10) andZ; defined as in (2), the evidence can be computed analytically as follows

2(018) = - [ exp(-5(F))df ~ exp~S(Funp)ll + Zsp] (1)

wherel is ann x nidentity matrix. The gradients of the logarithm of the evidence (11) with respec
to the hyperparametefscan be derived analytically. Then gradient-based optimization methods
can be employed to search for the maximizer of the evidence. Refer to Appeifor the detailed
gradient formulae and the outline of our algorithm for model adaptation.

3.2 Expectation Propagation with Variational Methods

The expectation propagation algorithm (EP) is an approximate Bayesiaaringemethod (Minka,
2001), which can be regarded as an extension of assumed-densityAilE). The EP algorithm
has been applied in Gaussian process classification along with variatioaldaéor model selec-
tion (Seeger, 2002; Kim and Ghahramani, 2003). In the setting of Gaysiaesses, EP attempts
to approximateP(f| D) as a product distribution in the form &f(f) = 'L, &i(f(x))P(f) where
fi(f(x)) =sexp(—3pi(f(x)—m)?). The parameterfs, m, pi } in {fi} are successively optimized
by minimizing the following Kullback-Leibler divergence,

" =arg manL <?(f)

(il (%))

| ‘%ﬂ;k) . (12)
SinceQ(f) is in the exponential family, this minimization can be simply solved by moment match-
ing up to the second order. A detailed updating scheme can be found iméigp®. At the
equilibrium of Q(f), we obtain an approximate posterior distribution®(d | D) ~ A((f; (=1 +
M)~1Nm, (=1 +M)~1) wherel is a diagonal matrix whoseth entry isp; andm= [my, mp, ..., my]T.

Variational methods can be used to optimize the hyperparamteyamaximizing the lower
bound on the logarithm of the evidence. By applying Jensen’s inequaétiawe

log®(D|6) = log f “YHFQ(F)df > [ Q(f)log “ 5T d f a3

= JQ(f)log?(D[f)df+ [Q(f)log?(f)df— [Q(f)logQ(f)df = F(B).

The lower boundf (8) can be written as an explicit expression at the equilibriu®(df), and then
the gradients with respect fbcan be derived by neglecting the possible dependen€( bf on 6.
The detailed formulation can be found in Appendix C.

4. Prediction

We have described two techniques, the MAP approach and the EP elpptoanfer the optimal
model. At the optimal hyperparameters we inferred, denote@ aket us take a test casefor
which the targeyy is unknown. The latent variabli(x) and the column vectof containing then
zero-mean random variabl¢$(x;) }{_; have the prior joint multivariate Gaussian distribution, i.e.

oo ] =2l(0) (4 win )]
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wherek = [K(X,X1), K(X,%2),..., K(X,%,)]". The conditional distribution of (x) given f is a
Gaussian too, denoted & f(x)|f,8%) with meanf T2~k and varianceX (x,x) — k"= ~'k. The
predictive distribution ofP( f(x)|D,8") can be computed as an integral o¥espace, which can be
written as

(X)|D,8°) /fP X)|f,6%)P(f|D,6%)df. (14)

The posterior distributior?( f|2,08%) can be approximated as a Gaussian by the MAP approach or
the EP approach (refer to Section 3). The predictive distribution (14 }tlen be simplified as a
Gaussiam\(( f (X); W, 02) with meanpy and variances2. In the MAP approach, we reach

b=k 2 yap and o2 = K(x,x) -k (Z+Aysp) k. (15)
While in the EP approach, we get
b=k (Z+N0HIm and o02=%K(xx)—k'(Z+N"1) 1k (16)
The predictive distribution over ordinal targstsis

P(yx[x, D,6%) = [P(y f(x),67)P(f(x)|D,0)df(x)
< byx Hx ) byxl—l-lx> .
N N

The predictive ordinal scale can be decided as arghfgx=i|x, D,0%).
I

5. Discussion

In the MAP approach, the mean of the predictive distribution depends dviAfieestimatef \yap,

which is unique and can be found by solving a convex programming prolideidence maximiza-

tion is useful if the Laplace approximation around the mode pbjpi gives a good summary of

the posterior distributior?( f|2). While in the approach of expectation propagation, the mean of
the predictive distribution depends on the approximate mean of the postistidution. When

the true shape aP(f|D) is far from a Gaussian centered on the mode, the EP approach can have
a great advantage over the Laplace approximation. However the ERttalg@annot guarantee
convergence, though it usually works well in practice.

The gradient-based optimization method usually requests evidence evaaiaéns of different
settings o before the minimum is found. For eaBhthe inversion of the matriX is required that
costs time aD(n%), wheren is the number of training samples. Recently, Gsaid Opper (2002)
proposed a fast training algorithm for Gaussian processes in whicheth&f $asis vectors are
determined on-line for sparse representation. Lawrence et al. (P00Bdsed a greedy selection
with criteria based on information-theoretic principles for sparse Gaugsiaesses (Seeger, 2003).
Tresp (2000) proposed the Bayesian committee machines to divide andecdacge data sets,
while using infinite mixtures of Gaussian Processes (Rasmussen anca@laaiir2002) is another
promising technique. These algorithms can be applied directly in the settingdiméloregression
for speedup.

Feature selection is an essential part in modelling. In Gaussian proctesasitomatic rele-
vance determination (ARD) method proposed by MacKay (1994) and(li@8a6) can be embedded
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into the covariance function (1) as follows:
13 G \6\2
Covf(x), f(x))] = K(x,X)) = exp| —3 ZKc(& = X)) 17)
c:

wherek. > 0 is the ARD parametér.The gradients with respect to the variab{ésk.} can also

be derived analytically for model adaptation. The optimal value of the ARBrpate. indicates

the relevance of the-th input feature to the target. The form of feature selection we use here
results in a type of feature weighting. Furthermore, the linear combinatioetefdgeneous kernels
with positive coefficients is still a valid covariance function. Lanckriet letf(2004) suggest to
learn the kernel matrix with semidefinite programming. In the Bayesian frankett@se positive
coefficients for kernels could be treated as hyperparameters, and @atiosing the evidence as a
criterion for optimization.

Note that binary classification is a special case of ordinal regressiorr witB, and the like-
lihood function (5) becomes thegrobit function whenr = 2. Both of theprobit function and the
logistic function can be used as the likelihood function in binary classificatitnle they have
different origins. Due to the dichotomous nature in the classes of multi-ctzdgifi, discriminant
functions are constructed for each class and then compete again dth#resoftmaxfunction to
determine the likelihood. The logistic function, as a special case a$dftenaxfunction, comes
from general classification problems.

In metric regression, warped Gaussian processes (Snelson et &), &30ime that there is
a nonlinear, monotonic, and continuous warping function relating the wix$eargets and some
latent variables in a Gaussian process. The warping function, whiclrigelbfrom the data, can be
thought of as a pre-processing transformation applied before modeliihg@wsaussian process. A
different (and very common) approach to dealing with this preprocessitogliscretizethe target
values inta different bins. These discrete values are clearly ordinal, and applyiiged regression
to these discrete values seems the natural choice. Interestingly, as thermiriscretization bins
r is increased, the ordinal regression model becomes very similar to thedv@guissian processes
model. In particular, by varying the thresholds in our ordinal regressiodel, it can approximate
any continuous warping function.

6. Numerical Experiments

We start this section with a simple synthetic data set to visualize the behaviosefdlgorithms,

and report the experimental results on sixteen benchmark data Be¢s we perform experiments

on a collaborative filtering problem using the “EachMovie” data, and oas&le score prediction
from gene microarray data related to prostate cancer. Shashua anq2@83) generalized the sup-
port vector formulation by finding multiple thresholds to define parallel discamtmyperplanes

for ordinal scales, and reported that the performance of the supgctdr approach is better than
that of the on-line algorithm (Crammer and Singer, 2002). The problemirsites large-margin
ranking algorithm of Herbrich et al. (2000) is a quadratic function of thming data size making
the algorithmic complexity(n*)—0(n®). This makes the experiments on large data sets computa-
tionally difficult. Thus, we decide to limit our comparisons to the support vegpproach (SVM)

4. These ARD parameters control the covariance length-scale of tesi@a process along each input dimension.
5. These data sets are publicly available at http://www.liacc.upfpiigo/Regression/DataSets.html.
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of Shashua and Levin (2003) and the two versions of our approaNMAP approach with Laplace
approximation (MAP) and the EP algorithm with variational methods (EP). tinoplementatiorf,
we used the routine L-BFGS-B (Byrd et al., 1995) as the gradient-lgstedization package, and
started from the initial values of hyperparameters to infer the optimal valuée iariterion of the
approximate evidence (11) for MAP or the variational lower bound (@BEP respectively. The
improved SMO algorithm (Keerthi et al., 2001) was adapted to implement the &ivbach (refer
to Chu and Keerthi (2005) for detailed description and extensive digm)$ and 5-fold cross vali-
dation was used to determine the optimal values of model parameters (thigdeeemetek and the
regularization facto€) involved in the problem formulations. The initial search was done or @ 7
coarse grid linearly spaced in the regifftog,(C,log;oK)| — 3 < log;;C < 3,—3 < log;ok < 3},
followed by a fine search on a89 uniform grid linearly spaced by 0.2 in th{#og;,C,l00;0K)
space. We have utilized two evaluation metrics which quantify the accurgesedictive ordinal
scales{y, ..., % } with respect to true targetys, ..., }:

e Mean absolute erroiis the average deviation of the prediction from the true target, i.e.
tl Si_1|% —Vil, in which we treat the ordinal scales as consecutive integers;

e Mean zero-one errogives an error of 1 to every incorrect prediction that is the fraction of
incorrect predictions.

6.1 Artificial Data

Figure 2 presents the behavior of the three algorithms using the Gaussi@h (8§ on a synthetic
2D data with three ordinal scales. In the support vector approach,ptivaad thresholds were
determined by the SMO algorithm and 5-fold cross validation was used toedheeptimal values
of the kernel parameter and the regularization factor. As for the Gauysiaess algorithms, model
adaptation (see Section 3) was used to determine the optimal values of tikeé ganmameter, the
noise level and the thresholds automatically. The figure shows that all thetlafgs are working
reasonably well on this task.

6.2 Benchmark Data

We collected nine benchmark data sets (Set | in Table 1) that were useefioc regression prob-
lems. The target values were discretized into ordinal quantities using kmggi binning. These
bins divide the range of target values into a given number of intervalathaif same length. The
resulting rank values are ordered, representing these intervals afigiheabmetric quantities. For
each data set, we generated two versions by discretizing the target vatufige and ten intervals
respectively. We randomly partitioned each data set into training/test spéifsea#ied in Table 1.
The partition was repeated 20 times independently. The Gaussian kémelqlised in these three
algorithms. The test results are recorded in Tables 2 and 3. The penfceroathe MAP and EP
approaches are closely matching. Our Gaussian process algorithmyieftebetter results than

6. The two versions of our proposed approach were implemented in AN&nd the source code is accessible at
http://www.gatsby.ucl.ac.uk/chuwei/code/gpor.tar.

7. In numerical experiments, the initial values of the hyperparameters usually chosen as* = 1, k = 1/d for
Gaussian kernel, the threshdld= —1 andA, = 2/r. We suggest to try several starting points in practice, and then
choose the best model by the objective functional.

8. The source code in ANSI C is available at http://www.gatsby.ucl.asahiwei/code/svorim.tar.
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The SVM Approach The MAP Approach The EP Approach

Lower Noise

Higher Noise

Figure 2: The performance of the three algorithms on a synthetic thr&eerainal regression
problem. The discriminant function values of the SVM approach, and tedigiive
mean values of the two Gaussian process approaches are preseriatbasgraphs in-
dexed by the two thresholds. The upper graphs are for the case ofrioige level, while
the lower graphs are for the case of higher noise level. The training seamplased are
presented in these graphs. The dots denote the training samples of riwekctosses
denote the training samples of rank 2 and the circles denote the training sariEak
3.

the support vector approach on the average value, especially whaantiieer of training samples
is small.

In the next experiment, we selected seven very large metric regressasads (Set 1l in Table
1). The input vectors were normalized to zero mean and unit variancdinat®-wise. The target
values of these data sets were discretized into 10 ordinal quantities usialgfiemuency binning.
For each data set, a small subset was randomly selected for training arestesl on the remaining
samples, as specified in Table 1. The partition was repeated 100 times iddefdgnTo show the
advantage of explicitly modelling the ordinal nature of the targets, we also getptbe standard
Gaussian process algorithm (Williams and Rasmussen, 1996) for metessegy (GPF)to tackle
these ordinal regression tasks, where the ordinal targets werdyn@aeated as continuous values
and the predictions for test cases were rounded to the nearest gdat@l The Gaussian kernel
(1) was used in the four algorithms. From the test results in Table 4, theabréigression algo-

9. In the GPR, the type-Il maximum likelihood was used for model selection
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Data Sets Attributes(Numeric,Nominal)  Training Instances  InstanfoesTest
Diabetes 2(2,0) 30 13
Pyrimidines 27(27,0) 50 24
Triazines 60(60,0) 100 86
Wisconsin Breast Cancey 32(32,0) 130 64
Set | Machine CPU 6(6,0) 150 59
Auto MPG 7(4,3) 200 192
Boston Housing 13(12,1) 300 206
Stocks Domain 9(9,0) 600 350
Abalone 8(7,1) 1000 3177
Bank Domains(1) 8(8,0) 50 8142
Bank Domains(2) 32(32,0) 75 8117
Computer Activity(1) 12(12,0) 100 8092
Setll  Computer Activity(2) 21(21,0) 125 8067
California Housing 8(8,0) 150 15490
Census Domains(1) 8(8,0) 175 16609
Census Domains(2) 16(16,0) 200 16584

Table 1: Data sets and their characteristics. “Attributes” state the numbenrical and nominal
attributes. “Training Instances” and “Instances for Test” specify the af training/test
partition. The partitions we generated and the test results on individu#tigres can be
accessed at http://www.gatsby.ucl.ac-ugfiuwei/ordinalregression.html.

Mean zero-one error Mean absolute error

Data SVM MAP EP SVM MAP EP

Diabetes |57.31:12.09% 54.23:13.78% 54.23-13.78%| 0.7462:0.1414 0.6615:0.1376 0.6654-0.1373
Pyrimidines| 41.46+8.49%  39.7%7.21% 36.46+6.47% | 0.4500:0.1136 0.42740.0906 0.3917-0.0745
Triazines | 54.19-1.48% 52.9%2.15% 52.62:-2.66% |0.6977-0.0259 0.6872:0.0229 0.6878:0.0295
Wisconsin | *70.78:3.73% 65.00£4.71% 65.16+4.65% | 1.0031:-0.0727 1.0102:0.0937 1.0141:0.0932
Machine 17.3H3.56% 16.53+3.56% 16.78+:3.88% | 0.1915+0.0423 0.1847-0.0404 0.1856+-0.0424
Auto MPG | *25.73:2.24% 23.78:1.85% 23.75+1.74% | 0.2596:0.0230 0.24110.0189 0.2411-0.0186
Boston 25.56+1.98% 24.882.02% 24.49+:1.85% | 0.2672:0.0190 0.26040.0206 0.2585:0.0200
Stocks 10.81:1.70% 11.99:2.34% 12.08-2.06% | 0.1081-0.0170 0.1199:0.0234 0.12080.0206
Abalone 21.58+0.32% 21.50+0.22% 21.56+-0.36% | 0.2293:0.0038 0.2322+0.0025 *0.233A-0.0072

Table 2: Test results of the three algorithms using a Gaussian kernel. rgeestaf these bench-
mark data sets were discretized by 5 equal-length bins. The results anethges over
20 trials, along with the standard deviation. We use the bold face to indicatasks mn
which the average value is the lowest in the results of the three algorithmssyitimls
* are used to indicate the cases in which the indicated entry is significantly tharséhe
winning entry; A p-value threshold of @1 in Wilcoxon rank sum test was used to decide
statistical significance.

rithms are clearly superior to the naive approach of applying standaricmegression. We also
observed that the performance of Gaussian process algorithms afeaidly better than that of
the support vector approach on six of the seven data sets. This vetifipglgement in the previous
experiment that our Gaussian process algorithms yield better perforrntacéhe support vector
approach on small data sets. Although the EP approach often yields lestitis of mean zero-one
error than the MAP approach on these tasks, we have not detectethtsiycally significant dif-
ference on their performance. In Table 4 we also report their nedagegithm of the likelihood in
prediction (NLL). The performance of the MAP and EP approacheslasely matching too with
no statistically significant difference.
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Mean zero-one error Mean absolute error

Data SVM MAP EP SVM MAP EP

Diabetes |*90.38:7.00% 83.46:5.73% 83.08t5.91% |2.4577-0.4369 2.1385:0.3317 2.1423t0.3314
Pyrimidines| 59.37#7.63% 55.428.01% 54.38:7.70% | 0.9187:0.1895 0.87710.1749 0.8292:0.1338
Triazines | *67.913.63% 63.72:4.34% 64.01£3.78% | 1.2308:0.0874 1.1994+0.0671 1.2012:0.0680
Wisconsin | *85.86£3.78% 78.52£3.58% 78.52£3.51% | 2.125Qt0.1500 2.13910.1797 2.14370.1790
Machine 32.63:3.84% 33.8143.91% 33.73:3.64% | 0.4398:0.0688 0.4746:0.0727 0.468&0.0763
Auto MPG | 44.01+2.30% 43.96:2.81% 43.88+:2.60% | 0.5081-0.0263 0.49980.0352 0.4979:0.0340
Boston 42.06£2.49% 41.532.77% 41.26:2.86% |0.49710.0305 0.4926:0.0330 0.4896+0.0346
Stocks 17.74:2.15% *19.90:1.72% *19.44+1.91%| 0.1804:0.0213 *0.2006+0.0166 *0.196G:0.0184
Abalone 42.840.86% 42.668:0.91% 42.274-0.46% | 0.5160:0.0087 0.51480.0075 0.5113+0.0053

Table 3: Test results of the three algorithms using a Gaussian kernel. rgeestaf these bench-
mark data sets were discretized by 10 equal-length bins. The results arethges over
20 trials, along with the standard deviation. We use the bold face to indicataghe m
which the average value is the lowest in the results of the three algorithmssyTitmls
* are used to indicate the cases in which the indicated entry is significantly tharséhe
winning entry; A p-value threshold of @1 in Wilcoxon rank sum test was used to decide
statistical significance.

Mean zero-one error NLL

Data GPR SVM MAP EP MAP EP

Bank(1) *59.43+2.80 % 49.0A42.69% 48.65+1.93% 48.35+ 1.91 %|1.14+ 0.07 1.14+ 0.07
Bank(2) *86.37+ 1.49 % *82.26+ 2.06 % 80.96+ 1.51 % 80.89+ 1.52 % |2.20+ 0.09 2.204 0.09
CompAct(1)| *65.52+ 2.31 % *59.87+ 2.25% 58.52+ 1.73 % 58.51+ 1.53 % | 1.65+ 0.16 1.64+ 0.14
CompAct(2)| *59.30+ 2.27 % *54.79+ 2.10 % 53.80+ 1.84 % 53.92+ 1.68 %|1.49+ 0.11 1.48+ 0.09
California | *76.13+ 1.27 % *70.63+ 1.40% 69.60+1.12% 69.58+ 1.11 % | 1.89+ 0.08 1.89+ 0.09
Census(1) |*78.06+ 0.81 % *74.69+ 0.94 % 73.71+ 0.77 % 73.71+ 0.77 %| 2.04+ 0.08 2.05+ 0.08
Census(2) |*78.02+ 0.85% *76.01+ 1.03 % 74.53+-0.81% 74.48+ 0.84 %|2.03+ 0.06 2.03+ 0.07

Table 4: Test results of the four algorithms using a Gaussian kernel. Tdetdaf these bench-
mark data sets were discretized by 10 equal-frequency bins. The rasulise average
over 100 trials, along with the standard deviation. “GPR” denotes the sthatiprithm
of Gaussian process metric regression that treats the ordinal scalestiasicus values.
“NLL” denotes the negative logarithm of the likelihood in prediction. We ugehibld face
to indicate the cases in which the average value is the lowest mean zero-anef ¢he
four algorithms. The symbolsare used to indicate the cases in which the indicated entry
is significantly worse than the winning entry; A p-value threshold .6fL0n Wilcoxon
rank sum test was used to decide statistical significance.

For these data sets, the overall training time of MAP and EP approachesibstantially less
than that of the SVM approach. This is because the MAP and EP apesaah tune the model
parameters by gradient descent that usually required evidencetevadiet tens of different settings
of 6, whereas k-fold cross validation for the SVM approach required atialus at 130 different
nodes off on the grid for every fold. For larger data sets, the SVM approach mayhatit an
advantage on training time due to the sparseness property in its computation.
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6.3 Collaborative Filtering

Collaborative filtering exploits correlations between ratings across agopuof users. The goal
is to predict a person’s rating on new items given the person’s pastsatimgimilar items and the
ratings of other people on all the items (including the new item). The ratingsrdeeeal, making
collaborative filtering an ordinal regression problem. We carried alinaf regression on a subset
of the EachMovie data (Compag, 200%) The rates given by the user with ID number “52647”
on 449 movies were used as the targets, in which the numbers of zere-&tdivare 40, 20, 57,
113, 145 and 74 respectively. We selected 1500 users who contrithedost ratings on these
449 movies as the input features. The ratings given by the 1500 useechmovie were used as
the input vector accordingly. In the 4491500 input matrix, about 40% elements were observed.
We randomly selected a subset with siZ0,100,...,300} of the 449 movies for training, and
then tested on the remaining movies. At each size, the random selectionwed oat 20 times
independently.

Pearson correlation coefficient is the most popular correlation medasédi¢o and Hofmann,
2004), which corresponds to a dot product between normalized raticigré. For instance, if
applied to the movies, we can define the so-catledores as

r(v,u) — H(v)

z(v,u) = o)

whereu indexes users; indexes movies, andv, u) is the rating on the movie given by the user
u. K(v) ando(v) are the movie-specific mean and standard deviation respectively. Thedatom
coefficient, defined as

K(W,V) = z z(v,u)z(V,u)

wherey,, denotes summing over all the users, was used as the covariance/kexctedrf in our
experiments for the three algorithms. As not all ratings are observed inghevactors, we con-
sider twoad hocstrategies to deal with missing values: mean imputation and weighted low-rank
approximation. In the first case, unobserved values are identified witln¢la@ value, that means
their corresponding-score is zero. In the second case, we applied the EM procedurgbeesc
by Srebro and Jaakkola (2003) to fill in the missing data with the estimate. In plé nmatrix,
observed elements were weighted by one and missing data were givent aexighThe low rank
was fixed at 2. In Figure 3, we present the test results of the two casiffeaent training data
size. Using mean imputation, SVM produced a bit more accurate results thesi@a processes
on mean absolute error. In the cases with low rank approximation as pesging, the performance
of the three algorithms are highly competitive, and more interestingly, wesasabout 0.08 im-
provement on mean absolute error for all the three algorithms. A seri@atsmiat on the missing
data could be an interesting research topic for future work.

6.4 Gene Expression Analysis

Singh et al. (2002) carried out microarray expression analysis o80L86énes to identify genes
that might anticipate the clinical behavior of prostate cancer. Fifty-two samgblprostate tumor
were investigated. For each sample, the Gleason score ranging from0% tzad given by the

10. The Compaq System Research Center ran the EachMovie semvit8 foonths. 72916 users entered a total of
2811983 numeric ratings on 1628 movies, i.e. abod¥®are rated by zero-to-five star.
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with Mean Imputation with Weighted Low-rank Approximation
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Figure 3: The test results of the three algorithms on the subset of EaddMata over 20 trials.

The grouped boxes represent the results of SVM (left), MAP (middld)E (right)
respectively at different training data size. The notched-boxes lirza® at the lower
guartile, median, and upper quartile values. The whiskers are lines exgefnaim each
end of the box to the most extreme data value withBl@QR(Interquartile Range) of the
box. Outliers are data with values beyond the ends of the whiskers, wigiclisplayed by
dots. The higher graphs are for the results of mean absolute error dodtregraphs are
for mean zero-one error. The cases of mean imputation are presentedéfi thraphs,
and the cases with weighted low-rank approximation as preprocessimyesented in
the right graphs.
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Figure 4: The test results of the three algorithms using a linear kernel gmdaktate cancer data of
selected genes. The horizonal axes are indexed grslcaje. The rungs in these boxes
indicate the mean values, and the heights of these vertical boxes indicataribdard
deviations over the 20 trials.
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pathologist reflecting the level of differentiation of the glands in the prostaer. Predicting the
Gleason score from the gene expression data is thus a typical ordjmessen problem. Since
only 6 samples had a score greater than 7, we merged them as the top leleg teadhree levels
{=6,=7,> 8} with 26, 20 and 6 samples respectively. We randomly partitioned the data into 2
folds for training and test and repeated this partitioning 20 times independéaithARD linear
kernel K (x;,Xj) = zg:l chfx? was used to evaluate feature relevance. These ARD parameters
{K¢} were optimized by evidence maximization. According to the optimal values of thBge
parameters, the genes were ranked from irrelevant to relevant. Wedhmaved the irrelevant
genes gradually based on the rank list. The gene number was redaoed2600 to 1. At each
number of selected genes, a linear kerfgk;, X;) = zgzlex? was used in the three algorithms for

a fair comparison. Figure 4 presents the test results of the three algorihdifférent numbers of
selected genes. We observed great and steady improvement usingpgbe afugenes selected by
the ARD technique. The best validation output is achieved around 4Gattqed features. In this
case, with only 26 training samples, the Bayesian approaches performbatier than the SVM,

and the EP approach is generally better than the MAP approach but #xedd€ is not statistically
significant.

7. Conclusion

Ordinal regression is an important supervised learning problem with grepef both metric re-
gression and classification. In this paper, we proposed a simple ydtmmygarametric Bayesian
approach to ordinal regression based on a generalization pfdbé likelihood function for Gaus-
sian processes. Two approximate inference procedures weredl@ridetail for evidence evalua-
tion and model adaptation. The approach intrinsically incorporates ARDréeaelection and pro-
vides probabilistic prediction. The existent fast algorithms for Gaussiarepses can be adapted
directly to tackle relatively large data sets. Experiments on benchmarkandodd data sets show
that the generalization performance is competitive and often better thaarsupptor methods.

Acknowledgments

The main part of this work was carried out at Institute for Pure and Appiathematics (IPAM) of

UCLA. We thank David L. Wild for stimulating this work and for many discussiong also thank
David J. C. MacKay for valuable comments. Wei Chu was supported by #tiel Institutes of
Health and its National Institute of General Medical Sciences divisionru@dent Number 1 P01
GM63208. Zoubin Ghahramani was partially supported from CMU by DARRder the CALO

project. The reviewers’ thoughtful comments are gratefully appreciated.

Appendix A. Gradient Formulae for Evidence Maximization

Evidence maximization is equivalent to finding the minimizer of the negative loganfithe evi-
dence which can be written in an explicit expression as follows

n

1 1
—InP(D|B) ~ .Zlﬁ(yi, fvap (X)) + 5 flapE Lfyap + 5 In|l +ZAmap|-
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Initialization | choose a favorite gradient-descent optimization package

select the starting poittfor the optimization package

Looping| while the optimization package requests evidence/gradiaiuation ab

1. find the MAP estimate by solving the convex programmindfam (9)
2. evaluate the negative logarithm of the evidence (18)eaMAP

3. calculate the gradients with respecbt(l8)—(18)

4. feed the evidence and gradients to the optimization geecka

Exit | Return the optima found by the optimization package

Table 5: The outline of our algorithm for model adaptation using the MAPagmbr with Laplace
approximation.

We usually collecfInk,Ino,bs,InA,, ... InA;_1} as the set of variables to tune. This definition of
tunable variables is helpful to convert the constrained optimization problenamunconstrained
optimization problem. The outline of our algorithm for model adaptation is destiibTable 5.

The derivatives of- In ?(D|0) with respect to these variables can be derived as follows:

0—In?P(D|6) _ 102] K _162 1
Tamk z”ace[("MAP“) ok "2 e 5T e
+ S trace| Ayhe (Ayke + Z)‘lza/\MAP ;
2 oK
J0—In Q)(@w) n af(yi, fMAp(Xj)) 1 1 0AmaP
— = —_— N N 2) I ———|;
gne 92 e T 27ace| Ahe (o + ) 12705 |
0—In?P(DI6) T ol(yi, fmar(x)) | 1 1 a1 _1<0wap | .
3b = i; 3by +strace ApiapNyap +2) 72 by |’
d0—In ?(@|9) . n aﬁ(y,, fMAp(Xi)) A 1 1 1 0Nvap
3N, _A.i; oD, + 5 trace AyiapNyap +2) 72 o, |

Note that at the MAP estimate 1 fap = — S, w . For more details, let us define

’f:fMAP
L BP0y
D(Z) —D(Z,)
and _ _ _ .
(2)PN[(2;0,1) - (%)PN(%;0.1)
D(Z) - P(z)
wherep runs from 0 to 37, = By T0) andz, = By - 10f<x' Theii-th entry of the diagonal matri&

is denoted ag\;j, which is deflned asin (7), i.e\j = > (vo) + 02vl. The detailed derivatives are
given in the following:

Vp:
f(xi)
o i _ 0N of
oK — 9fl ok”
3

* a?/(\ﬂi) = 25(2(v0)* +3vov1 + V2 — Vo).
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o WA LA L3 18511,

o Wi — 2N+ L (2vova+2(Vo)2vy — Vi + (V)2 +Vs) + %%
o % =AY A14+5)"15y,, whereyy is a column vector whoseth element isc% (Vo— VoV —
V2).
N LAY N of
® by = AT T of! dby-
o % =NA"YA 14+ 5)" 15y, wherey, is a column vector whoseth element is\;;.
—Y if yi>1;
0— Ll
. az(ygAfl(m)) = =2 ify=u
0  otherwise.
A oA of H . .
—ato) + ort A ity >1;
oNi i OfT i L —
® A — ¢i+aaAfT6Tl ifyi=1
oA Of H
ot on otherwise.
o 0i =5 = Z(s0— 2v0S1 — 2(Vo) S0 — 52— VaSo).-
. % = A"1(A1+5)"15y,, wherey, is a column vector whoskth element is defined as
| Niie L((vo)2+v1) if yi>1;
wh = 2 (Voso+51) if yi=1

0 otherwise.

Appendix B. Approximate Posterior Distribution by EP

The expectation propagation algorithm attempts to approxir@afe?) in form of a product of
Gaussian distribution®(f) = M, £(f(x))P(f) wheref(f(x)) = s exp(—3pi(f(x) —m)?). The
updating scheme is given as follows.

The initial states:
e individual meamrm =0Vi ;
¢ individual inverse variancg; = 0 Vi ;
e individual amplitudes = 1Vi ;
e posterior covariancg = (=1 +M)~1, wherel = diag(py, p2, ..., pn) ;
e posterior meam = 4Mm, wherem= [mg,mp,...,my]" .
Loopingi from 1 ton until there is no significant change {my, pi,s }{;:

o f(f(x)) is removed fronQ(f) to get a leave-one-out posterior distributiQn ( f) having
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— variance off (x): A" = s
— mean off (x): hi\i =h +)\i\i pi(hi —my) ;
— others withj #i: A)' = 1;; andh,' = h; .
o £(f(x))in Q(f) is updated by incorporating the messa®g;| f (x)) into Q\'(f):

— Zi = [PMIf)A(FO0)h A () = ©(21) — ©(22)

\i \i
wherez; — 2 andz = By-ah
! VA 02 VA 402
- Bi= dlogz _ 1 (217\[(21 10,1)—2M\((22,0, 1)>
T 20\ +0?) o(2)-0(Z)
A alogz 1 N (Z1;0,1)— N (2;0,1)
Yi = h\l \/)\i\iJrUz < P(Z)-D(2) ) (18)
= hpew— Ay
_ phew_ _ Ui
pl 1_}\i\|Ui .
- mper=h

- o=z e Lep(£ ).
e Note thatp®" > 0 all the time, becauseQ v; < \| and then\\'u. <1.

e if PV~ p;, skip this sample and this updating; otherwise updakem, s}, the posterior
meanh and covarianced as follows:

- 4"V= 74 — paal wherep = Tﬁ;‘l)ﬂ" anda; is thei-th column of4.
— h"=h+na; wheren = % andy; is defined as in (18).

As a byproduct, we can get the approximate evideA¢®|0) at the EP solution, which can be
written as
n det2( b (B)
¥ det (Z4M-1) 2
whereB = ¥;; &j (mipi) (Mjpj) — 3 pin'ﬁz-

Appendix C. Gradient Formulae for Variational Bound

At the equilibrium ofQ( f), the variational bound (8) can be analytically calculated as follows:

7(6) = 21/9\[ KM A0 InC( £ (x)))d F(x) — 51 +371

—Etrace(( +32M)” )—%mT(Z—i— n—l)—lz(z+r|—1)—1m+g .
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Note that(Z 4 M~1)~Im can be directly obtained b;} defined as in (18). The gradient 6f(8)
with respect to the variablg$nk,Ino,bs,InA,, ..., InA;_1} can be given in the following:

Olog®(f
%ﬁ?::K/}Xf) 92(f) 4¢
__K 402\ K po 1020 1020
= 2trace 2 6K>+2h z I —2 h+2trace > OKZ Aa
_ K -1 -10Z = - 102 g -1
= 2trace (M+%) aK>+2m (M14+3) aK(I'I +2)

D = o3y [AFO6); b, A) 2L g £ ()
by —f(x) exp| — (hi;byi)2>
. hio?+5; i 2 i 024 | 2(0°+44)
_Z{lgyi<r}f9\£<f(xi)v Z-Zi_q“by 700-2+ﬂ_;7,“) \/2"( /'41 |f(| df(X|)
exp| — Ot )

2(02+3;)

P(yil (%)) (Xi)’

G2 Fibh 5 T
+Z{l<yi§r}ff7\£<f(xi);h|0 +Aiby-1 024 ) m

02+_qi. ) 02+_q‘.i

2O ¥Ry ST (x); by, ) ST g £ )

hio2+ 4 by, 2 \/ (12 ) EXD(_ ;:H;?;))
Te} i by " 21(0“ 435 o7 i
= Z{lgyi<r} fN(f(Xi); 021 4; K Ggf%“ ) : (y,\f( 3) d f(Xi)

hi —by,
102+ Zii by _ i na2+ i 202+ 45
=5 (1eyery S N(F(x); DTt 02 ) VEOR ) i df(x),

02+ 02+ 4 P(yil T (%))

WO — A SIS A (), ) 22D g )
(hi—by;)

=N Z{lgyi<r}fN(f(Xi); hio®+ by, g2 ) v/ 2n( c2+ﬂl1. < 20+ >df(Xi)

0%+3; 0244 P(yilf(x%)

hio®+4iby 1 o24 \/21'[(i2+ﬂi-) EXp(f 2(02)«12“) )
4 Z{l<yi§r}ff7\[(f(xi); T Ay ’og-i%n) I£P(yi|f(Xi)) df(x),

wherey ;, .y <r) means summing over all the samples whose targets satisyy<r, and these one-

dimensional integrals can be approximated using Gaussian quadratuakewated by Romberg
integration at some appropriate accuracy.
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