
Journal of Machine Learning Research 6 (2005) 1751-1782  Submitted 2/05; Revised 9/05; Published 11/05 

© Georgios Sigletos, Georgios Paliouras, Constantine D. Spyropoulos and Michalis Hatzopoulos 

Combining Information Extraction Systems Using Voting 
and Stacked Generalization  

 

Georgios Sigletos SIGLETOS@IIT.DEMOKRITOS.GR

Georgios Paliouras PALIOURG@IIT.DEMOKRITOS.GR 

Constantine D. Spyropoulos COSTASS@IIT.DEMOKRITOS.GR

Institute of Informatics and Telecommunications  
National Centre for Scientific Research (NCSR) “Demokritos”  
Aghia Paraskeyh, 153 10, Athens, Greece  

Michalis Hatzopoulos MIKE@DI.UOA.GR

Department of Informatics and Telecommunications  
University of Athens 
Panepistimiopolis, 157 71, Athens, Greece 

Editor: William Cohen 

Abstract 
This article investigates the effectiveness of voting and stacked generalization -also known as 
stacking- in the context of information extraction (IE). A new stacking framework is proposed that 
accommodates well-known approaches for IE. The key idea is to perform cross-validation on the 
base-level data set, which consists of text documents annotated with relevant information, in order 
to create a meta-level data set that consists of feature vectors. A classifier is then trained using the 
new vectors. Therefore, base-level IE systems are combined with a common classifier at the meta-
level. Various voting schemes are presented for comparing against stacking in various IE domains. 
Well known IE systems are employed at the base-level, together with a variety of classifiers at the 
meta-level. Results show that both voting and stacking work better when relying on probabilistic 
estimates by the base-level systems. Voting proved to be effective in most domains in the 
experiments. Stacking, on the other hand, proved to be consistently effective over all domains, 
doing comparably or better than voting and always better than the best base-level systems. 
Particular emphasis is also given to explaining the results obtained by voting and stacking at the 
meta-level, with respect to the varying degree of similarity in the output of the base-level systems. 

Keywords: stacking, voting, information extraction, cross-validation 

1 Introduction 
One of the most interesting topics in supervised machine learning is learning how to combine the 
individual predictions of multiple classifiers. The motivation derives from the opportunity of 
obtaining higher prediction accuracy at meta-level, while treating classifiers as black boxes, i.e., 
using only their output, without considering the details of their implementation. Stacked 
generalization or stacking (Wolpert, 1992) is a common scheme that deals with the task of 
learning a meta-level classifier to combine the predictions of multiple base-level classifiers. The 
success of stacking arises from its ability to exploit the diversity in the predictions of base-level 
classifiers and thus predicting with higher accuracy at meta-level. In contrast, no learning takes 



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

place when voting on the predictions of multiple classifiers. Voting is typically used as a baseline 
against which the performance of stacking is compared.  

Research on voting and stacking has primarily focused on classification. Each training 
instance in the domain of interest is represented by a vector >< yxx n ,...1 , where n  is a set 
of attribute values or features, and  is the class value describing a particular event in the 
domain, which is to be recognized at runtime. In order to classify a new vector , the 
predictions of the base-level classifiers form a new feature vector, which is assigned the class 
value  either by the meta-level classifier or by voting. Cross-validation in the base-level set of 
feature vectors is required by stacking, in order to create the entire set of meta-level vectors by 
the predictions of the base-level classifiers, and thus train the meta-level classifier. 

xx ...1
y

>< nxx ...1

y

In this article we investigate the effectiveness of voting and stacking on the task of 
Information Extraction (IE). IE is a form of shallow text processing that involves the population 
of a predefined template with relevant fragments extracted from a text document. The 
proliferation of the Web and the other Internet services in the past few years intensified the need 
for developing systems that can effectively recognize relevant information in the enormous 
amount of text that is available online. A variety of systems have been developed in the context of 
IE from online text (e.g. Freitag and Kushmerick, 1999; Sonderland, 1999; Freitag, 2000; 
Ciravegna, 2001; Califf and Mooney, 2003). The key idea behind combining a set of IE systems 
through stacking is to learn a common meta-level classifier, such as a decision tree or a naive-
Bayes classifier, based on the output of the IE systems, towards higher extraction performance. 
On the other hand, a simpler approach is to vote on the predictions of different IE systems. 

In order to apply voting and stacking to IE, the base-level classifiers should be normally 
replaced by systems that model IE as a classification task. The main problem, however, is that IE 
is not naturally a classification task (Thompson et al., 1999). A typical IE system is trained using 
a set of sample documents, paired with templates that are filled with relevant text fragments from 
the documents. IE could be mapped to a common classification problem by classifying almost 
every possible unbroken sequence of tokens (usually up to a predefined maximum length) that 
can be found within a document, as relevant or not (Freitag, 2000). This way of modelling the IE 
task, however, results in an enormous increase in the number of candidate text fragments, where 
only the small number of annotated fragments is considered as positive examples, while all the 
other fragments are considered as negative examples during training. Table 1 shows the examples 
that are constructed from a hypothetical text fragment within a page describing laptop products. 
 

Text Fragment: …processor <br> <b> 256 MB SDRAM… 
Positive Examples: 256 MB 
Negative Examples: processor  

processor  <br>  
…. 
processor  <br> <b> 256 MB 
… 

256 
MB 
256 MB SDRAM 
MB SDRAM  
… 

Table 1. An indicative example of recognizing an instance of the field ram (highlighted in bold) from 
a page that describes a laptop product and the set of examples it generates. 

 
Although the size of the candidate text fragments can be somehow reduced by using various 
heuristics (Freitag, 2000), modelling IE in this manner, does not seem natural.  

Alternative approaches of modelling the IE task exist in the literature. Systems like BWI 
(Freitag and Kushmerick, 1999), (LP)2 (Ciravegna, 2001) and STALKER (Muslea et al., 2001), 
model IE as a boundary detection task. A boundary is the virtual space between two adjacent 
tokens. The task here is to recognize starting and ending token boundaries of relevant fragments 
within a document and then extract the enclosed content.  In Table 1, the boundary between 
“<b>” and “256” and the one between “MB” and “SDRAM” are the starting and ending index 
respectively, of the fragment “256 MB”. Some approaches (Freitag and McCallum, 1999, 2000; 
McCallum et al., 2000; Lafferty et al., 2001) model IE as the task of labelling the linear sequence 
of tokens that a text document is parsed into. Fragments consisting of (contiguous) tokens that 
 

1752



INFORMATION EXTRACTION USING VOTING AND STACKING 

have been marked as relevant for a field (e.g. “256“, “MB”) are extracted. A variety of other 
approaches (e.g. Sonderland, 1999; Califf and Mooney, 2003) induce matching rules that extract 
whole fragments from a text document at runtime and fill the corresponding slots in the template. 

This article initially introduces the idea of merging the templates filled by different IE 
systems into a single merged template, which facilitates the application of voting and stacking to 
IE. The merged template contains those text fragments that have been identified by at least one IE 
system, along with the individual predictions by the systems. Various voting schemes are then 
presented that rely either on the nominal or the probabilistic predictions of the IE systems that are 
available at the base-level. 

A new stacking framework is then introduced that combines a wide range of base-level IE 
systems with a common classifier at the meta-level. Only the output of the IE systems is 
combined, i.e., the filled templates, which are merged into a single template, independently of 
how the instances that populate the templates were identified. In the new framework, only the 
meta-level data set consists of feature vectors that are constructed by the predictions of the IE 
systems, while the base-level data set consists of text documents, paired with filled templates. In 
contrast, both base-level and meta-level data sets in stacking for classification consist of feature 
vectors. An extension of the stacking framework for IE is also proposed that is based on using 
probabilistic estimates of correctness in the predictions of the IE systems.  

Extensive experiments were conducted for comparing voting against stacking. Particular 
emphasis was given to analyzing the results obtained by voting and stacking with respect to how 
the base-level IE systems correlate in their output. Three well known IE systems were employed 
at the base-level, each drawn from a different learning paradigm: (LP)2, a sequential covering 
rule-induction algorithm, Hidden Markov Models (HMMs), a finite-state approach to IE, and 
Boosted Wrapper Induction (BWI) that introduces the application of boosting to IE. A diverse set 
of classifiers were comparatively evaluated at the meta-level. Experiments were conducted on 
five collections of pages from five different domains.  

The remainder of this article is structured as follows: Section 2 presents some background in 
the areas of voting, stacking and IE. Section 3 introduces the concept of the merged template and 
describes various voting schemes for IE. Section 4 describes the new stacking framework for IE. 
Section 5 describes the experimental design. Section 6 presents the results obtained by voting and 
stacking, and compares all IE systems at both base-level and meta-level. Section 7 explains the 
results obtained at the meta-level, with respect to the varying degree of correlation in the output 
of the base-level systems. Section 8 presents our conclusions, discussing potential extensions. 

2 Background 
Sections 2.1 to 2.3 provide background in the areas of voting, stacking and information extraction 
respectively. 

2.1  Voting 
The simplest way to combine the output of multiple classifiers is within a voting framework. Let 

 be the set of classifiers that are induced by training  different learning algorithms 
 on a data set  consisting of feature vectors. To classify a new instance at runtime, the 

classifiers  are queried for a class value and the class with the highest count is finally 
selected. This scheme is known as majority (or plurality) voting. Variations include weighted 
majority voting and voting using class probability distributions (Dietterich, 1997). In the former 
approach, each classifier’s vote is weighted by its accuracy, as measured by either using a holdout 
data set or the entire training data set by cross-validation. In the probabilistic approach, each 
classifier outputs a probability distribution vector over all relevant classes. For each class, the 
individual probability values are averaged (or summed) by all classifiers, and the class with the 
maximum value is finally selected.  

NCC ...1 N
NLL ...1 D

NCC ...1

Note that methods like boosting (Freund and Schapire, 1996) and bagging (Breiman, 1996) 
vote on a set  of classifiers that are generated by applying a single learning algorithm to 

 different versions of a given data set, rather than training  different algorithms. 
NCC ...1

N N
 

1753



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

2.2 Stacking 
Section 2.2.1 presents stacking, while Section 2.2.2 describes some related work. 
2.2.1 Definition 
Wolpert (1992) introduced a novel approach for combining multiple classifiers, known as stacked 
generalization or stacking. The key idea is to learn a meta-level (or level-1) classifier based on the 
output of base-level (or level-0) classifiers, estimated via cross-validation as follows: 

Define D  a data set consisting of feature vectors, also referred to as level-0 data, and  
a set of  different learning algorithms. During a -fold cross-validation process, 

NLL ...1

N J D  is 
randomly split into  disjoint parts  of almost equal size. At each th fold, , the 

 learning algorithms are applied to the training part  and the induced classifiers 
 are applied to the test part 

J JDD ...1 j Jj ..1=
NLL ...1 jDD \

)()...(1 jCjC N jD . The concatenated predictions of the induced 
classifiers on each feature vector i  in x jD , together with the original class value , form a 
new set 

)( ii xy
jMD  of meta-level vectors.  

At the end of the entire cross-validation process, the union =MD ∪ jMD , Jj ..1=  
constitutes the full meta-level data set, also referred to as level-1 data, which is used for applying 
a learning algorithm  and inducing the meta-level classifier . The learning algorithm  
that is employed at meta-level could be one of the  or a different one. Finally, the  
learning algorithms are applied to the entire data set 

ML MC ML
NLL ...1 NLL ...1

D  inducing the final base-level classifiers 
 to be used at runtime. In order to classify a new instance, the concatenated predictions of 

all base-level classifiers  form a meta-level vector that is assigned a class value by the 
meta-level classifier . Figure 1(a) illustrates the cross-validation methodology, while Figure 
1(b) illustrates the stacking framework at runtime. 

NCC ...1

NCC ...1

MC

 

jD  jDD \  

NLL ...1
 

Base-level data set D

 jMD  

Meta-level data set MD

)()...(1 jCjC N

Feature vectors 

NLL ...1
 

NCC ...1
 

 

New instance x  

ML MC
 

Class value y  

 
(a)            (b) 

Figure 1. (a) Illustration of the J-fold cross-validation process for creating the meta-level data set. 
(b) The stacking framework at runtime. 

 

2.2.2 Related Work 
Research on stacking concerns two major issues, initially described as black art by Wolpert 
(1992). The first is the choice of classifiers at both base-level and meta-level that will lead to the 
best empirical results. The second issue, which has generally received more attention in the 
literature, concerns the combination of the predictions of the base-level classifiers and their 
mapping to attributes for the features vectors at the meta-level. Typical attributes that are used at 
the meta-level are the class predictions of the  base-level classifiers.  N

Chan (1996) experimented with various representations including the class-attribute-
combiner scheme, where the class predictions of the base-level classifiers are appended with the 
attributes of the base-level vectors, together with the correct class for each vector. Chan (1996) 
 

1754



INFORMATION EXTRACTION USING VOTING AND STACKING 

also experimented with an arbiter scheme, where a meta-classifier is only trained on a subset of 
the base-level vectors, in which the base-level classifiers disagree in their predictions. A hybrid 
scheme was also evaluated, in which a meta-classifier is only trained on a subset of the meta-level 
data set that follows the class-attribute-combiner scheme, where the base-level classifiers 
disagree in their predictions. Experimental results showed that the class-attribute-combiner is the 
best scheme. A slight improvement in the accuracy was obtained at meta-level over the best base-
level results, but the differences were not measured as statistically significant.  

Ting and Witten (1999) introduced a variant of stacking where each base-level classifier 
predicts a probability distribution vector over all classes, instead of predicting a single nominal 
value. The individual vectors by the  classifiers are concatenated, thus resulting in 
attributes at meta-level, where  the number of relevant classes. Ting and Witten (1999), 
suggested also the use of multi-response linear regression (MLR) for meta-level learning that 
proved to be highly effective. MLR is an adaptation of linear regression (Breiman, 1996a) which 
transforms the classification problem into  different binary prediction problems: for each 
relevant class, a linear equation is constructed to predict one if the class value equals the class 
under consideration or zero otherwise. 

N QN *  
Q

Q

Seewald (2003) suggested a modification of the approach described by Ting and Witten 
(1999), where different sets of meta-level features should be used for each of the Q  binary 
prediction problems. In particular, only the probability values for the class under consideration 
should be used at meta-level, instead of concatenating the probability distributions of all 
classifiers, and thus reducing the number of meta-level attributes to . Experimental results 
showed an improvement over stacking with probability distributions.  

N

Džeroski and Ženko (2004) investigated the use of MLR in conjunction with class probability 
distributions augmented with an additional set of attributes that is based on the entropies of the 
class probability distributions and the maximum probability returned by each classifier. This 
scheme was found to perform better than using only probability distributions. 

Stacking typically outperforms voting. However, voting does not involve cross-validation and 
the training of a meta-level classifier, and thus it is computationally cheaper than stacking. 

2.3  Information Extraction 
Sections 2.3.1 and 2.3.2 provide background on the task of Information Extraction (IE), while 
Section 2.3.3 describes an existing framework for combining multiple IE systems. 
2.3.1 Definition 

 

)

Let  be a set of Q  extraction fields for a particular domain of interest, and  a text 
document annotated by the domain experts with instances of those fields. A field instance is a 
pair  where t  is a text fragment, with s and e be the boundaries of the fragment 
in a document’s token table and  the associated field. A boundary has been defined 
above as the virtual space between two adjacent tokens. Define 

}...{ 1 Qff d

>< fest ),,( , ,( es
∈f }...{ 1 Qff

T  a template that is filled with 
pairs . A field is typically a target-slot in template >< fest ),,( T , while  is a slot-filler. A 
field may also have multiple or no instantiations within a document. Table 2(a) shows a part of a 
Web page describing laptop products where the relevant text is highlighted in bold. Table 2(b) 
shows the hand-filled template for this page. 

),( est

The Information Extraction (IE) task can be defined as follows: given a new document  
find all possible instances for each relevant field within  and populate a template  This 
definition states that each field learning problem is considered in isolation, and thus modelled as a 
binary learning task: given a learning algorithm designed for IE, then for each relevant field 

, a target concept is learned that identifies relevant instances  within 
text. At runtime, all target concepts are applied separately to and used to populate .T  

,d
d .T

∈f }...{ 1 Qff >< fe),t(s,
d

An extended approach to IE is to study interactions among relevant fields, and thus 
grouping field instances into higher-level concepts, also referred to as multi-slot extraction 
(Sonderland, 1999). In this article we handle the simpler single-slot approach, which covers a 
wide range of IE tasks and motivated the development of a variety of learning algorithms (e.g. 
Freitag and Kushmerick, 1999; Freitag, 2000; Ciravegna, 2001; Califf and Mooney, 2003). 

1755



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

…TransPort ZX <br> <font size="1"> <b> 15" XGA TFT Display </b> <br> Intel <b> Pentium 
III 600 MHZ </b> 256k Mobile processor <br> <b> 256 MB SDRAM up to 1GB </b> <br> <b> 40 
GB hard drive </b> ( removable ) <br> … 

(a) 

 
T  Short description for field  f

),( est  es,  Field  f  
TransPort ZX 47, 49 model Name of the laptop’s model 

15'' 56, 58 screenSize Size of the laptop’s screen 
TFT 59, 60 screenType Type of laptop’s screen 

Intel<b>Pentium III 63, 67 procName Name of the laptop’s processor 
600 MHZ 67, 69 procSpeed Speed of the laptop’s processor 
256 MB 76, 78 ram The RAM capacity of the laptop 
40 GB 86, 88 HDcapacity The hard disk capacity of the laptop 

(b) 
Table 2. (a) Part of a Web page describing laptop products (b) The hand-filled template for this 

page. 
 

2.3.2 Related Work 
The IE task from free text has been the focus of the Message Understanding Conferences (e.g. 
DARPA 1995, 1996). On the other hand, the advent of the Web intensified the need for 
developing systems that help people to cope with the large amount of text that is available online. 
Systems that perform IE from online text, should generally meet the requirements of low cost and 
high flexibility in development, and adaptation to new domains. MUC-level systems fail to meet 
those criteria, in addition to the fact that the linguistic analysis performed for free text does not 
exploit the extra-linguistic information (e.g. HTML/XML tags, layout format) that is available in 
online text. Therefore, this type of system has not found wide applicability in the context of 
online sources. 

As a result, less linguistically intensive approaches have been developed for IE on the Web 
using wrappers, which are sets of highly accurate rules that extract a particular resource’s 
content. The manual development of wrappers (Chawathe et al., 1994) has proved to be a time-
consuming task, requiring a high-level of expertise. Machine-learning techniques that learn 
wrappers for IE, either using supervised learning (e.g. Kushmerick, 1997; Muslea et al., 2001; 
Cohen et al., 2002) or unsupervised learning (e.g. Crescenzi et al., 2001; Chang and Lui, 2001), 
have been designed to handle highly structured collections of Web pages, such as telephone 
directories and product catalogues. Those approaches, however, fail when the text type is less-
structured, which is also common on the Web. 

Recent effort on adaptive IE (Ciravegna, 2001; Ciravegna and Lavelli, 2003), motivates the 
development of IE systems that can handle different text types, from rigidly structured to almost 
free text -where common wrappers fail- including mixed types. For example, the algorithms 
presented in (Sonderland, 1999; Ciravegna, 2001; Califf and Mooney, 2003) learn IE rules that 
exploit shallow natural language knowledge and thus can be applied to less structured text. The 
BWI algorithm (Freitag and Kushmerick, 1999) relies on a method called boosting (Freund and 
Schapire, 1996) for improving the extraction performance of the learned IE rules, which allows 
the applicability of the algorithm to less structured text. Hidden Markov modelling (Rabiner, 
1989) is a powerful statistical learning technique that has found wide applicability in IE from both 
structured and unstructured text (Seymore et al., 1999; Freitag and McCallum, 1999, 2000).  

In this article we focus on adaptive IE systems and investigate how their performance can be 
further improved, by combining their output at meta-level. The presence of the token boundaries 
s  and  is essential, as we will show, for combining different IE systems. In some cases (e.g. e
 

1756



INFORMATION EXTRACTION USING VOTING AND STACKING 

Ciravegna, 2001), information about token boundaries is implicitly represented by inserting 
appropriate start and end XML tags within documents, i.e. >< f  and >< /f  tags for each 
relevant field . A template such as the one in Table 2(b) can then be easily 
constructed. Thus, we assume in the remaining of this article that we deal with templates that 
include information about token boundaries, as in Table 2(b), which is a realistic assumption, 
since such information is typically available. 

∈f }...{ 1 Qff

2.3.3 Multistrategy Learning 
Despite the growing interest in combining machine learning algorithms and the application to 
some natural language parsing tasks such as part-of-speech tagging (Halteren et al., 2001) and 
word-sense disambiguation (Florian et al., 2002), this topic has received little attention by the IE 
community. The only relevant work is described in (Freitag, 2000), where the IE task was 
modelled as a classification one, using a set of four base-level systems, which were then 
combined by multistrategy learning.  

The term multistrategy learning generally refers to the combination of multiple learning 
approaches under a single algorithm and was mainly used for combining inductive with analytical 
learning (Michalski and Tecuci, 1994). Domingos (1996) used the term empirical multistrategy 
learning for distinguishing the case where all learning components are inductive. The basic 
notion behind empirical multistrategy learning was to design a new complex algorithm that 
heuristically combines a set of learning components by requiring, however, implementation 
details of each individual component. For example, the RISE algorithm in (Domingos, 1996) 
unifies an instance-based learner with a rule-based learner under a new implementation, aiming to 
overcome the limitations of both approaches.  

Stacking combines a set of multiple learning components in a more loose fashion, by only 
learning to integrate their output at meta-level, and thus treating them as black boxes. Despite its 
simplicity, stacking offers the advantage of being highly extensible to more algorithms at both 
base-level and meta-level, regardless of their internal structure. On the other hand, voting is the 
simplest form of loosely integrating the output of multiple components.  

Freitag (2000) followed the voting paradigm in the context of IE, which he called 
“multistrategy learning for IE” and it is based on using probabilistic estimates produced by the IE 
systems. Specifically, for each relevant field ∈f }...{ 1 Qff , the confidence scores that are 
produced by the base-level systems are mapped into probabilistic estimates of correctness in the 
predictions of the systems. In case of more than one predictions of the field  for a fragment 

, a combined probability is estimated for 
f

),( est >< fe),t(s,  using (1).  

                                                       ∏ −−=
j

jC pP )1(1 ,                                                      (1) 

where CP  is the combined probabilistic estimate that the text fragment  belongs to the 
field , and  the probabilistic estimate that some IE system 

),( est
f jp jE  has predicted the field  for 
. Actually, 

f
),( est CP  measures the probability that at least one of those IE systems that have 

predicted the field  for , has predicted correctly, which equals the probability that not all 
predictions for  are wrong.  

f ),( est
f

Finally, the constraint of “one per document” (OPD) is imposed on some fields. This means 
that only one instance of OPD fields is allowed for each page. For example, a page in the domain 
of computer science (CS) courses should describe only one course, and thus should contain only 
one instance of the field course title. Therefore, if more are identified, then the one with the 
highest (combined) probability is selected, while all others are rejected. The example in Table 3 
illustrates the usefulness of the OPD constraint. 

Assuming in Table 3 that one hypothetical IE system predicts “256 MB” and “1 GB” as ram 
instances, while another system predicts only “256 MB” as ram. The combination of the two 
systems, under the OPD constraint, produces a single instance >< ram , MB""256 , the one that 
has the highest combined probability.  

 
1757



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

),( est  Probability by the 
first system 

Probability by the 
second system 

Combined 
probability 

256 MB 0.4 0.5 0.7 
1GB 0.6 - 0.6 

Table 3. Combining the predictions of two hypothetical IE systems for a “ram” instance. 
Supposing that the correct instance is >< ram , MB""256  

 
The OPD field constraint, though useful in certain cases, is restrictive for IE in general and does 
not hold for all relevant fields. For example, a Web page may describe more than one laptop 
products, and thus more than one ram instances may exist. The OPD constraint was also applied 
for fields that allow many instances per page, without significant loss of performance1. For 
example, a page may rarely describe more than one CS courses. This approach is still restrictive 
for IE, since a Web page very often describes more than one laptop products. 

Finally, converting confidence scores to probabilistic estimates takes place by validating the 
performance of each IE system on a hold-out set, or by cross-validation in the entire training data 
set and using a form of regression modelling which is described in more detail by Freitag (2000). 
The motivation behind mapping confidence scores to probabilistic estimates is that confidence 
scores are not always reliable, since incorrect matches may be assigned high scores. Thus voting 
on different IE systems using confidence scores may not always be reliable. The correlation 
among confidences and probabilities has been also investigated by Kauchak et al. (2004) in the 
context of the BWI algorithm for IE, and found to be weaker for more difficult IE tasks, e.g. from 
free-text domains.  

In the remainder of this article, the term “multistrategy learning” will be used to refer to the 
work in (Freitag, 2000). 

3 Voting for Information Extraction 
Section 3.1 presents an example of combining IE systems. The concept of the merged template is 
introduced, which is important for combining different IE systems either through voting or 
stacking. Various voting schemes for IE are then presented in Sections 3.2 and 3.3, against which 
the performance of stacking for IE will be compared. 

3.1 Example of Combining Different Systems – The Merged Template 
Let  be a set of  learning algorithms, designed for IE, which are given a corpus  of 
training documents, annotated with relevant field instances. The algorithms  typically 
generalize from the training corpus, towards a set of pattern-matching extraction rules. Define 

 the corresponding set of IE systems that exploit the acquired knowledge, to identify 
relevant instances in new documents. Each trained IE system consists of a set of target concepts 
that have been learned for the relevant fields. Finally, define  a set of templates for a 
document  populated by  respectively with relevant field instances.  

NLL ...1 N D
NLL ...1

NEE ...1

NTT ...1

,d NEE ...1

We suggest in this article that a merged template can be constructed from  as follows: 
all text fragments  identified by  in  are inserted to an initial pool. 
Duplicate fragments are removed: two fragments differ if either their start or end boundary 
differs. For the remaining distinct fragments, the fields predicted by  are collected and 
inserted together with the correct field in the template. If some IE system does not predict a field 
for a text fragment, then the corresponding cell in the merged template is empty. If a text 
fragment does not exist in the hand-filled template, then the corresponding cell in the last column 
is also empty. Table 4 shows an illustrative example of a merged template that has been 
constructed by the output  of two IE systems , for the page of Table 2(a). 

NTT ...1

),( est NEE ...1 NTT ...1

NEE ...1

21 ,TT 21 , EE
 
 

                                                 
1 This is a remark by Dayne Freitag, based on personal contact. 

 
1758



INFORMATION EXTRACTION USING VOTING AND STACKING 

es,  ),( est  Output  by 1E  Output  by 2E  Correct field 
47, 49 TransPort ZX model manuf model 
56, 58 15'' screenSize - screenSize 
59, 60 TFT screenType screenType screenType 
63, 66 Intel<b>Pentium - procName - 
63, 67 Intel<b>Pentium III procName - procName 
67, 69 600 MHz procSpeed procSpeed procSpeed 
76, 78 256 MB ram ram ram 
81, 83 1 GB ram HDcapacity - 
86, 88 40 GB - HDcapacity HDcapacity 

Table 4. Merged template, based on the output of two IE systems. Each entry corresponds to a text 
fragment that has been identified by at least one system. 

 
Examining Table 4, we note some disagreement in the predictions of the two systems. For two 
text fragments (“TransPort ZX”, “1GB”) the predicted fields by 1E  and 2E  differ. Comparing to 
the hand-filled template of Table 2(b), we conclude that “TransPort ZX” has been correctly 
identified as model only by 1E , while 2E  identified the same fragment as manuf (the 
manufacturer of the laptop). On the other hand, the fragment “1GB” does not exist in the hand-
filled template. Therefore, the fields predicted by the two systems for this fragment are false. 
Furthermore, some text fragments have been identified by only one of the two IE systems. The 
fragment “15''” has been identified only by 1E , while the fragment “40 GB” has been identified 
only by 2E . The fields predicted for both fragments are correct.  

Examining again Table 4, we wonder whether we can exploit, at some higher level, the 
disagreement in the predictions of the different IE systems, aiming to achieve superior extraction 
performance. The desirable result is to automatically fill the last column in the merged template 
of Table 4 with the correct fields. In other words, we would like to assign the correct field to each 
text fragment that has been identified by at least one base-level system. 

3.2 Majority Voting 
A simple idea for combining the predictions of different IE systems is to use majority voting: for 
each entry in the merged template, we count the predicted fields by the available systems and 
select the field with the highest count. In the case of a tie, a random selection is typically 
performed among even fields. 

Note that Table 4 contains missing values, reflecting the natural fact that some system may 
not have predicted a field for a text fragment that has been identified by another system. The 
significance of missing values has to be carefully considered. For example, if some system 
predicts an incorrect field  for a text fragment , while the remaining systems do not 
predict any field at all, then ignoring missing values during voting harms precision, since the 
incorrect field is returned. An alternative is to record a missing value as “false”, providing 
evidence that no field should be predicted for . If the value with the highest count is “false” 
then no field is assigned to . If, however,  is the correct field for , interpreting the 
missing predictions by the remaining systems as “false” values harms overall extraction 
performance, since the correct field is rejected.  

f ),( est

),( est
),( est f ),( est

Therefore, two different settings of majority voting are defined, depending on whether 
missing values are ignored or encoded as “false” values that indicate rejection of prediction. 

3.3 Voting Using Probabilities 
The voting with probabilities scheme that is presented in this section shares many features with 
multistrategy learning, as described in (Freitag, 2000) and was briefly outlined in Section 2.3.3. 
Both schemes share the same method for mapping confidence scores to probabilistic estimates 
and the same Equation (1) that estimates the combined probability of correctness for an instance 

. However, the two schemes differ in how they model the IE task. >< fest ),,(

 

Multistrategy learning considers each field in isolation during combination and relies on the 
OPD constraint for improving the extraction accuracy, as demonstrated by the example of Table 

1759



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

3. On the other hand, voting using probabilities takes place on a merged template, like the one in 
Table 4, while no OPD assumption is required for any relevant field. This allows the case of 
contradictory field predictions among different systems during combination, as demonstrated in 
Table 4, where the fragment “1GB” has been identified as ram by the first system and as 
HDcapacity by the second one. The field with the highest probability should be selected. 
Multistrategy learning for IE ignores contradictory field predictions.  

In Section 3.2 two different settings of majority voting were defined, depending on whether 
absence of prediction by some system for a text fragment, i.e. a missing value in the merged 
template, is ignored or encoded as “false” that indicates rejection of prediction. The problem here 
is that there is no probability for “false”. If we assume that “false” corresponds to probability 1, 
then voting will lead to spurious results. Thus, two different settings for voting using probabilities 
are defined as follows: 

In the first setting, missing values are ignored, similar to the first setting of majority voting. 
Given a fragment , the field  with the highest probabilistic estimate by those systems that 
have predicted a field for  is returned. In the second setting, however, a constraint is 
imposed on whether  should be accepted or not. If the probability that is attached to  is less 
than 0.5, then  is rejected. Otherwise,  is returned, as in the first setting. The motivation 
behind using this constraint, is that if  has been predicted with low degree of confidence by the 
base-level systems, then it should not be accepted. The value of 0.5 is the natural choice of a 
threshold for deciding whether  should be accepted or not.  

),( est f
),( est

f f
f f

f

f

4 Stacked Generalization for Information Extraction 
This section starts with the motivation for performing learning, rather than simply voting. Then a 
new stacking framework for IE is presented, along with an extension that relies on using 
probabilistic estimates on the output of the base-level systems. 

4.1 Motivation for Performing Learning 
Examining the merged template of Table 4, we wonder whether we can learn to predict the 
correct field, based on the fields predicted by the available systems, rather than simply voting. A 
simple motivation for preferring learning, rather than voting, is that the latter cannot handle 
situations where most of the systems make an error. For example, if a system correctly predicts 
ram for the hypothetical fragment “1,5 GB”, while the other systems erroneously predict 
HDcapacity, then voting chooses the latter value. Therefore, it would be desirable to perform 
learning in order to induce a rule of the form: if the first IE system predicts “ram” and the other 
systems predict “HDcapacity”, then the correct field is “ram”.  

In order to train a common classifier, a set of feature vectors should be provided as training 
data. The idea suggested in this article is to create a feature vector for every row entry of the 
merged template, i.e. for each text fragment that has been identified by at least one base-level 
system. Table 5 shows the new feature vectors created by the merged template of Table 4.  

 
Feature vectors es,  ),( est  

Output by 1E  Output by 2E Class 
47, 49 TransPort ZX model, manuf, model 
56, 58 15'' screenSize, ?, screenSize 
59, 60 TFT screenType,  screenType, screenType 
63, 66 Intel<b>Pentium ?, procName, false 
63, 67 Intel<b>Pentium III procName, ?, procName 
67, 69 600 MHz procSpeed, procSpeed, procSpeed 
76, 78 256 MB ram, ram, ram 
81, 83 1 GB ram, HDcapacity, false 
86, 88 40 GB ?, HDcapacity, HDcapacity 

Table 5.  Feature vectors created by the merged template of Table 4. 
 

 
1760



INFORMATION EXTRACTION USING VOTING AND STACKING 

Absence of prediction by an IE system is indicated by “?”. If a text fragment does not exist in the 
hand-filled template, the class attribute of the corresponding vector takes the value “false” that 
indicates rejection of prediction. At runtime, the class value is to be assigned by the classifier. 

Having specified the format of the feature vector, the remaining issue is to construct the full 
set of vectors for training the meta-level classifier using cross-validation, as described for the 
stacking framework in Section 2.2. However, in IE we deal with collections of text documents, 
annotated with relevant instances, rather than feature vectors. This disparity between base-level 
and meta-level data sets is handled by sampling from documents during cross-validation, rather 
than from feature vectors as in stacking for classification. 

4.2 Stacking Using Nominal Values 
The key idea behind stacking for IE, is to learn a meta-level classifier based on the output of base-
level systems via cross-validation as follows: 

At the jth fold, , of cross-validation, the  learning algorithms  are trained on 
the document set  and the induced IE systems  are applied to the test set 

Jj ..1= N NLL ...1

jDD \ )()...(1 jEjE N jD . 
For each document  in d jD , let  be the populated templates by  
respectively. A merged template 

NTT ...1 )()...(1 jEjE N

MT  is assembled from , as shown in Section 3.1. A new 
feature vector is produced for each entry in the merged template, which is added to the meta-level 
data set 

NTT ...1

jMD . At the end of the cross-validation process, the union =MD ∪ jMD  constitutes the 
full meta-level data set, which is used by a learning algorithm  to train the meta-level 
classifier . Finally, the  learning algorithms are applied to the entire data set  inducing 
the base-level systems  to be used at runtime.  

ML
MC N ,D

NEE ...1

Figure 2 presents an algorithmic description of the new stacking framework for IE. The 
vectors in the new meta-level data set MD  belong to 1+Q  classes, where Q  is the number of 
relevant fields in the domain of interest plus the value “false”. A vector classified as “false” 
indicates that the corresponding fragment  does not exist in the hand-filled template, and 
thus the available base-level systems should not have predicted a field for it (for example the 
fragment “1 GB” in Table 5). 

),( est

 
procedure stacking_for_IE ( D , , , J NLL ...1 ML ) begin 

JDD ...1  = partition of D  into  document collections of almost equal size J
for  = 1 to  do begin     j J
     jMD  = {} 
     for i  = 1 to  do  = the system obtained by training N )( jE i iL  on jDD \  

      foreach document  in d jD  do begin 
  for i  = 1 to  do  = the template, populated by applying  to  N iT )( jE i d

MT  = create_merged_template ( , )    d NTT ...1

  foreach entry, i.e., for each distinct , in ),( est MT  do begin 
                                      for i  = 1 to  do  = the field by  for  N ∈if }?"",,...{ 1 Qff )( jE i ),( est
                                      = the correct field for  },,...{ f 1 falseff Q∈ ),( est
                                     jMD = jMD  ∪ vector   >< fff N ,,...1

  end 
      end 
 end   // end of cross validation 
 MD  = ∪ jMD ,  Jj ...1=

MC  = meta-level classifier obtained by applying ML  on MD  
// Train the base-level IE systems  

 for  = 1 to  do i N iE  = the base-level system obtained by training iL  on D  
end 

Figure 2. The new stacking framework for information extraction. 
 

 
1761



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

The key difference among stacking for IE and common stacking is that cross-validation operates 
on text documents paired with hand-filled templates, instead of feature vectors labelled with class 
values. This removes the constraint of performing common classification at base-level, thus 
allowing the application of stacking to IE. The base-level algorithms  are designed for IE, 
while the learning algorithm 

NLL ...1

ML  that is applied at meta-level is designed for classification, and 
thus cannot be one of  as in stacking for classification. NLL ...1

The size of the meta-level data set is not a-priori known in stacking for IE, unlike common 
stacking where there is a one-to-one correspondence between base-level and meta-level vectors. 
Here, the size of the meta-level data set is determined by the output of the base-level systems, i.e. 
by the individual templates  that assemble a merged template, as shown in Figure 2. NTT ...1

The one-to-one correspondence between base-level and meta-level features vectors in 
common stacking, results in identical class values at both base-level and meta-level. In IE, 
however, a text fragment that is relevant to our task may not have been identified by any of the 
available base-level systems. In that case, there is no possibility of identifying that fragment at 
meta-level, since no feature vector is created and thus resulting in loss of information. This 
observation suggests that IE systems biased towards recall (percentage of the annotated field 
instances that were identified), should be generally preferred for combination, expecting to reduce 
the loss of information at meta-level.  

Moreover, a meta-level vector in common stacking for classification does not contain missing 
values, since each base-level classifier predicts a nominal class value or a probability distribution 
over the relevant classes. On the other hand, a meta-level vector in stacking for IE may contain 
missing values, as shown in Table 5, since some system may not have predicted a field for a 
fragment that has been identified by another system. In correspondence to majority voting, 
missing values in Table 5 can be handled by recording them as “false”, which indicates rejection 
of prediction. In that case, all attribute values, should share the same set of values 

, thus replacing the set  in Figure 2. },...{ 1 falseff Q }?"",,...{ 1 Qff
Another issue in stacking for IE is the choice of  in the -fold cross-validation process 

depicted in Figure 2. The choice of  usually depends on the size of the training data and the 
computational cost of training. The choice of also affects the difference in the number of 
documents for training the base-level systems and the meta-level classifiers. According to Figure 
2, the base-level systems  that will be used at runtime are retrained on the entire 
collection 

J J
J

J

NEE ...1

D  of training documents. On the other hand, the meta-level vectors on each jth fold are 
created by the predictions of the systems , as trained on a lower proportion of the 
training documents . The larger the value of , the smaller the size of  and therefore 
the smaller the difference between the size of the training data set  for  and 
the complete data set 

)()...(1 jEjE N

jDD \ J jD
jDD \ )()...(1 jEjE N

D .  
To illustrate this point, for a collection of 40 training documents, the final base-level systems 

 are trained on the full data set. If we assume a five-fold cross validation process, then on 
each fold 

NEE ...1

j , the  are trained on 32 documents. An alternative is to use a higher 
value for , suffering however a higher computational cost.  

)()...(1 jEjE N

J

4.3  Stacking at Runtime 
Given a new document d, the systems  are used to identify relevant field instances and fill 
the corresponding templates . A merged template is then created from . For each 
row entry in the merged template, i.e., for each distinct , a feature vector is created by the 
predicted fields of  for  (absence of prediction by an IE system is indicated by “?” 
or “false”). The new vectors are finally classified by the meta-level classifier  into 

NEE ...1

NTT ...1 NTT ...1

),( est
NEE ...1 ),( est

MC 1+Q  
predefined categories . If a vector is classified into one of the relevant fields 

 then the corresponding instance 
},...{ 1 falseff Q

Qff ...1 >< fe),t(s,  is inserted in the final template for  
Otherwise (“false” prediction) the entry is excluded from the final template. For example, if we 
assume that the class column in Table 5 has been filled by  then for the two vectors that 
have been classified as “false”, the corresponding entries will be excluded from the final 
template. At runtime, the stacking framework for IE is graphically depicted in Figure 3.  

.d

,MC

 
1762



INFORMATION EXTRACTION USING VOTING AND STACKING 

…

Feature 
vectors 

New 
document d  

1E  

2E  

NE  

1T

2T

NT

Merged 
template 

MC  

T  Final template 
 

Figure 3. The stacking framework for information extraction at runtime. 
 
According to Figure 3, the input to the systems is a new text document while the output is the 
corresponding filled template. In contrast, both input and output in the runtime stacking for 
classification architecture of Figure 1(b), consist of a single feature vector. 

4.4 Stacking Using Probabilities 
A straightforward extension of stacking with nominal values is to rely on the confidence scores 
by the base-level systems that have been converted into probabilistic estimates of correctness. 
The new framework is described as follows: 
• Instead of predicting one of the Q  relevant fields for each fragment , each system 

generates a confidence score  for the predicted field k . This is modelled by a -element 
vector that contains zero values, except for the kth position where  appears, i.e., 

. If a system does not predict a field, all elements are zero. 

),( est
kc f Q

kc
>< 0,...,...,0 kc

• Each vector is converted to a new one , where  is a probabilistic estimate 
that corresponds to k  and reflects the probability of correctness of the prediction. The 
conversion process is described in more detail in (Freitag, 2000).  

N

>< 0,...,...0 kp kp
c

• Finally, the output vectors by  for  form a single vector of  elements, 
appended by the correct field, according to the hand-filled template. 

EE ...1 ),( est QN *

Table 6 shows an illustrative example of the new feature vectors at the meta-level, using 
probabilistic estimates of correctness.  

 
Feature vectors using probabilistic estimates es,  ),( est  

Output by  
1E Output by  

2E Class  
47, 49 TransPort ZX 0, 0, 0.92, 0, 0, 0, 0, 0, 0, 0.34, 0, 0, 0, 0, 0, 0, model 
56, 58 15'' 0, 0, 0, 0, 0, 0, 0.83, 0, 0, 0, 0, 0, 0, 0, 0, 0, screenSize 
59, 60 TFT 0, 0, 0, 0, 0, 0, 0, 0.85, 0, 0, 0, 0, 0, 0, 0, 0.91, screenType 
63, 66 Intel<b>Pentium 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.61, 0, 0, 0, 0, false 
63, 67 Intel<b>Pentium III 0, 0, 0, 0.67, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, procName 
67, 69 600 MHz 0, 0, 0, 0, 0.82, 0, 0, 0, 0, 0, 0, 0, 0.79, 0, 0, 0, procSpeed 
76, 78 256 MB 0, 0, 0, 0, 0, 0.91, 0, 0, 0, 0, 0, 0, 0, 0.77, 0, 0, ram 
81, 83 1 GB 0, 0, 0, 0, 0, 0.55, 0, 0, 0.89, 0, 0, 0, 0, 0, 0, 0, false 
86, 88 40 GB 0, 0, 0, 0, 0, 0, 0, 0, 0.65, 0, 0, 0, 0, 0, 0, 0, HDcapacity 

Table 6. The new meta-level vectors using probabilistic estimates of correctness. 
 
The same vector representation used in Table 6 was also used in the extension of stacking for 
classification proposed in (Ting and Witten, 1999). The only difference is that class (or field) 
probability distributions, as they suggest, are not typically produced by IE systems. Given a text 
fragment , either a field  is predicted for  or no field is predicted at all. Thus, 
except for the vector elements that correspond to the predicted fields, all other values are set to 
zero, as shown in Table 6. 

),( est f ),( est

In stacking with probabilities, a missing value is indicated by a vector of which all elements 
take zero values. Missing values can be handled by augmenting the output of each of the  N

 
base-level systems with an additional attribute, indicating the probability for “false”. The total 

1763



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

number of meta-level attributes will be then )1( +QN . The probability value of the extra 
attribute will be complementary to the value of the non-zero element of the vector. For example, 
in the first row entry of Table 6, the value of the extra attribute for the system 1E  will be 0.08, 
while for each absent prediction the extra attribute takes the value “1”. The significance of 
handling the missing values in stacking is empirically evaluated by comparing the performance of 
the trained classifiers over the new vectors against the trained classifiers over the vectors with 
missing values. 

5 Experimental Setup 
 ive experiments i  real-world domains, using well-known 

5.1 Domains 
r re conducted using five collections of text documents from five different 

ages, describing laptop pr  
from

 job announcements from the 
aus

ents (Califf and Mooney, 
200

uring the training of the 
bas

                                                

We have performed extens n five
algorithms at both base-level and meta-level. The primary target was to determine whether 
stacking provides added value over the base-level systems and voting in the examined domains. 
Therefore, we comparatively evaluated all combination methods (voting and stacking) for IE, as 
described in Sections 3 and 4, while also comparing against the best base-level system for each 
domain of interest. Since the success of stacking relies on the disagreement in the output of the 
base-level components, we were particularly interested in how stacking behaves with respect to 
the diversity in the output of the base-level systems, and how that compares to voting.  

Expe iments we
domains. The first two collections consist of 101 Web pages describing computer science (CS) 
courses and 96 Web pages describing research projects respectively, and were constructed in the 
context of the WebKB project (Craven et al., 1998). Both collections were hand-filled for three 
and two extraction fields respectively: crsNumber, the official number of the course (for example, 
“CS 305”), crsTitle, the title of the course (for example, “Operating Systems”), crsInst, the name 
of the course instructor, projTitle, the title of the project (for example, “WebKB”) and 
projMember, the name of a project member.  

The third collection consists of 50 Web p oducts that were collected
 various vendor sites. A total of 19 fields were hand-filled, including the manufacturer of the 

laptop, model name, processor name, speed, ram, hard disk capacity, etc. This collection was 
constructed in the context of building a shopping comparison agent2  that visits various vendor 
sites, extracts laptop descriptions and presents the results to user. 

The last two collections consist of 300 pages describing
tin.jobs newsgroup at Austin and 485 pages describing seminar announcements from the 

Carnegie Mellon University, respectively. Both collections were obtained from RISE (1998) and 
have been widely used in information extraction research. A total of 17 fields were hand-filled for 
job announcements, including the title of the available position, the salary, the name of the 
company, the identifier code of the announcement, etc. Four fields were hand-filled for seminar 
announcements: stime, the starting time of the seminar, etime, the ending time of the seminar, 
speaker, the speaker’s name and location, the location of the seminar.  

Note that the available hand-filled templates for job announcem
3) do not contain information about the starting and ending token boundaries of the annotated 

instances, which is however essential for combining different IE systems. Therefore, the entire 
corpus was re-annotated, using the available hand-filled templates as a guide, so that the new 
templates include token boundary information, as the one in Table 2(b).  

Finally, the HTML tags in the three Web domains were not omitted d
e-level systems, but appropriately tokenized, including their attributes and values. For 

example, the stream <td valign="top"> corresponds to the subsequence “td_start_tag”, 
“attrib_valign”, “value_top” in the token table of a Web page.  

 
2 CROSSMARC, R&D project, IST-2000-25366, http://www.iit.demokritos.gr/skel/crossmarc 

 
1764



INFORMATION EXTRACTION USING VOTING AND STACKING 

5.2 Base-level Information Extraction Systems 
At the base-level we employed three systems that are well known in the literature for information 
extraction: the (LP)2 system, the BWI system and a HMM-based IE system. 

The Learning Pattern by Language Processing or (LP)2 system implements a sequential 
covering algorithm that learns symbolic pattern-matching rules for IE. For each interesting field, a 
set of start-rules and another one of end-rules are induced that identify the starting and ending 
boundaries respectively of the relevant instances. Shallow natural language knowledge is used 
during the induction process such as lexical information (e.g. capitalized, numerical), part-of-
speech tagging (for example, noun) and stemming information. Additional contextual and 
correction rules are learned that improve the performance of the previously induced rules. Each 
instance  that is recognized at runtime is assigned a confidence score 

, where  is the number of erroneous matches, as estimated during 
training, of the rules that matched , and  is the total number of matches by the 
rules. The lower this score, the higher the confidence attached to the instance. A detailed 
description of (LP)

>< fest ),,(
matchedwrongLS /= wrong

),( est matched

2 can be found in (Ciravegna and Lavelli, 2003). 
The Boosted Wrapper Induction or BWI system learns also symbolic starting and ending 

pattern-matching rules for each relevant field. Each rule is assigned a confidence score according 
to a boosting methodology, which is described in more detail in (Freitag and Kushmerick, 1999). 
The induced rules exploit lexical information (e.g. capitalized, numerical). Each instance 

 recognized at runtime is assigned the product of confidences of the start and end 
rules that match . The more rules match , the higher is the value of the score that is 
assigned to the instance. A comprehensive analysis of the performance of BWI in a variety of IE 
tasks can be found in (Kauchak et al., 2004). 

>< fest ),,(
),( est ),( est

Finally, our HMM-based IE is inspired by work described in (Freitag and McCallum 1999; 
Seymore et al., 1999), whereby a separate HMM is trained for each relevant field. The entire 
training page is probabilistically modelled by the HMM, by assuming that the first token of the 
page is emitted by the initial state of the model, then transitioning to the next state that emits the 
second token, etc. until the ending token of the page is emitted. Special prefix, suffix and target 
states model the immediate prefix, suffix and the internal structure of the relevant instances 
respectively. Inducing a HMM for each field involves the calculation of the state-transition and 
token-emission probabilities over all training pages, based on simple ratios of counts. The Viterbi 
algorithm is used at runtime to identify relevant instances and assign to them a confidence score. 
More details on how HMMs assign confidence scores for IE can be found in (Sigletos, 2005). An 
excellent tutorial on HMMs can be found in (Rabiner, 1989). 

5.3 Meta-level Algorithms for Classification 
At meta-level, we employ the following algorithms, implemented in the WEKA data mining 
platform (Witten and Frank 2000): 
• J48, the well known C4.5 (Quinlan, 1993) decision tree algorithm. 
• NaiveBayes, the well known Naïve Bayes classifier (John and Langley, 1995). 
• IB1, the 1-nearest-neighbor algorithm. 
• Multi-response linear regression (MLR), an adaptation of least-squares linear regression 

(Breiman, 1996a). 
• SMO, a fast implementation of Support Vector Machines (Platt, 1999).  
• LogitBoost, an implementation of the corresponding algorithm (Friedman et al., 1999), using 

decision stumps as weak-classifier. 
Most of these algorithms have already been evaluated as meta-level classifiers in recent studies 
for stacking (Ting and Witten, 1999; Seewald, 2003; Džeroski and Ženko, 2004). 

5.4 Evaluation Methodology and Metrics 
For the evaluation, cross-validation was used to obtain an unbiased estimate of performance over 
unseen data. For the domains of laptop products and job announcements, the corpus was 
randomly split into 5 equally populated parts. At each fold, a different part of pages was kept for 
 

1765



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

evaluation, and the pages in the remaining four parts were used in order to induce the base-level 
systems and the meta-level classifiers. Results on the test parts were averaged over all 5 folds. 
Notice that within the training part at each of the 5 folds, a separate 5-fold cross-validation 
procedure was used in order to create the meta-level set of feature vectors and thus train the 
classifiers, as described in Section 4.2.  

For the two WebKB domains and seminar announcements, a different evaluation 
methodology was followed that was also applied in (Freitag, 2000). Each corpus was randomly 
split into 2 parts of almost equal size. The first part was used to induce the base-level systems and 
the meta-level classifiers, while the second part was used for evaluation. An internal 3-fold cross-
validation process was followed in the training part in order to collect the meta-level set of feature 
vectors and then train the classifiers. The whole process was repeated 5 times, averaging the 
results at the end. Moreover, the constraint of “one instance per document” (OPD) was applied 
for the fields crsNumber and crsTitle in CS courses, for the field projTitle in research projects, 
and for all four fields in seminar announcements, towards an objective comparison against 
multistrategy learning for information extraction and the results presented in (Freitag, 2000). 
Therefore, whenever two or more instances of an OPD field were present within a page, only the 
instance with the highest score was selected. 

Three metrics were used for measuring the performance: precision (P), the percentage of the 
identified field instances that are correct, recall (R), the percentage of the annotated field 
instances (in the hand-filled templates) that were identified, and finally 1F , the harmonic mean 
of recall and precision defined as )/(21 PRRPF += . Our definition of recall and precision is 
equivalent to micro-average recall and micro-average precision (Sebastiani, 2002), formally 
defined as: 

       
∑

∑
=

=

+
=

+
= Q

I
II

Q

I
I

FPTP

TP
FPTP

TPP
1

1

)(
,              

∑
∑

=

=

+
=

+
= Q

I
II

Q

I
I

FNTP

TP
FNTP

TPR
1

1

)(
,           

where iTP  is the number of instances of the field  that have been correctly 
identified (true positive), 

},...{ 1 Qi fff ∈
iFP  is the number of  instances that have been incorrectly identified 

(false positive), and finally  is the number of  instances that were not identified (false 
negative). Choosing micro-average metrics allows for an objective overall comparison among 
different systems, by considering all target instances by all relevant fields. Statistical significance 
in the conducted comparisons was evaluated using the well-known paired t-test (Dietterich, 1998) 
with a significance level of 95%. 

if
iFN if

6 Results and Comparisons 
The results obtained by all base-level systems in the domains of interest are initially presented in 
this section, while also investigating whether any improvement in the best results for each domain 
is possible at meta-level. Then, the meta-level data is analyzed, in order to determine whether and 
how the predictions of the base-level systems are correlated. This study is intended to serve as a 
basis for a comparative evaluation of voting against stacking. Then all combination methods are 
comparatively evaluated, while also comparing against the best base-level results. More detailed 
analysis of the experimental results is provided in Section 7. 

6.1 Results of Base-level 
Table 7 shows the 1F  scores (%) obtained by the base-level systems in the domains of interest. 
Only the highest 1F  score for research projects was measured as statistically insignificant. 
Appendix B.1 shows the scores obtained in all three measures of performance. 
 

 CS courses Projects Laptops Jobs Seminars 
BWI 51.30 60.75 62.26 80.01 83.09 
HMM 59.39 61.64 63.81 75.71 79.20 
(LP)2 65.73 58.82 61.26 83.22 86.23 

Table 7.  Base-level 1F  scores (%) for the five domains. 
 

1766



INFORMATION EXTRACTION USING VOTING AND STACKING 

The simple choice is to select the best base-level system for each domain. On the other hand, a 
more desirable approach is to try to exploit the diversity in the output of all systems, hoping to 
improve the best base-level results. Note that there is no generally accepted measure for diversity, 
but a variety of measures exist in the literature (Kuncheva and Whitaker, 2003). Ali and Pazzani 
(1996) define the similarity between two classifiers, as the conditional probability that both 
classifiers make an error, given that either of them makes an error.  

Tables 8(a) to 8(e) are instances of the “contingency table” that was introduced by Freitag 
(2000) for measuring the similarity in the output of pairs of systems, and inspired by Ali and 
Pazzani’s measure. Each cell in a contingency table measures the conditional probability that the 
row system makes the correct prediction, given that the column system also predicts correctly. 
Tables 8(a) to 8(e) suggest that there is space for improving the best base-level system in each 
domain. For example, in CS courses we notice that only in 69% of the meta-level instances where 
HMMs yield a correct prediction, (LP)2 also predicts correctly. Thus, in the remaining 31%, 
where HMMs predict correctly, (LP)2 either predicts an incorrect field, or does not predict any 
field. Therefore, the performance of (LP)2, which is the best system for this domain, can be 
further improved. 

 
 BWI HMM (LP)2

BWI 1 0.46 0.44 
HMM 0.70 1 0.52 
(LP)2 0.89 0.69 1 

(a) Courses 
 

 BWI HMM (LP)2

BWI 1 0.82 0.79 
HMM 0.90 1 0.79 
(LP)2 0.69 0.62 1 

(b) Projects 

 BWI HMM (LP)2

BWI 1 0.73 0.78 
HMM 0.89 1 0.83 
(LP)2 0.87 0.76 1 

(c) Laptops 

 BWI HMM (LP)2

BWI 1 0.83 0.86 
HMM 0.91 1 0.85 
(LP)2 0.93 0.85 1 

(d) Jobs 

 BWI HMM (LP)2

BWI 1 0.87 0.83 
HMM 0.91 1 0.84 
(LP)2 0.95 0.92 1 

(e) Seminars 

Table 8.  Contingency tables, measuring the agreement in the predictions of the base-level 
systems. Each cell is the probability that the row system makes a correct prediction, given 
that the column system makes a correct prediction. 

6.2  Analysis of the Meta-level Instances 
Each meta-level instance corresponds to a text fragment  that has been identified by at least 
one base-level system, together with the predicted fields for  by the base-level systems, the 
associated probabilistic estimates, and finally the correct human-annotated field for . 
Figure 4 shows a partition of the meta-level instances in the testing corpus, according to whether 
all systems agree on the same field for a fragment  or not.  

),( est
),( est

),( est

),( est
The leftmost column for each domain in Figure 4 shows that there are regularities in the text 

documents that can be easily recognized by all available IE systems. For example, the fragment 
“TFT” is a typical instance of the field screen type in the domain of laptops that commonly 
appears in both training and testing corpus and thus easily detected by all systems.  

Observing the rightmost column for each domain in Figure 4, leads to the interesting 
conclusion that situations where at least two base-level systems predict different fields for a text 
fragment are not frequent. In order to explain that, one should note that the IE systems exploit 
both the target content and the surrounding context of the relevant instances, and thus are capable 
of disambiguating among field instances with similar content. For example, instances of the fields 
cdromSpeed and dvdspeed contain similar content, e.g. “24x”. A system that simply memorizes 
field instances verbatim predicts both fields for “24x”. Our base-level systems, on the other hand, 
are capable of examining surrounding tokens such as “cd” or “dvd”, and thus distinguish among 
the two fields. In some cases, however, those regularities in the context were difficult to find, 
either because they are less apparent, or due to limitations in the context that the base-level 
systems search for, thus resulting in contradictory fields. 
 

1767



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

ta
ge

 o
f m

et
a-

le
ve

l d
at

a

Courses Projects Laptops Jobs Seminars

Analyzing the diversity in the output 
of the base-level IE systems

Overall agreement in
the predicted fields

Partial agreement  in
the predicted fields,
plus missing value(s)

Disagreement  in the
predicted fields

 
Figure 4. Partitioning the meta-level instances for each domain into three disjoint sets, according to 

whether all systems agree on the same field for a text fragment (left column), or some 
system(s) predict the same field while the other(s) abstain from prediction (middle column), 
or there are at least two contradictory predictions (right column). 

 
For example, (LP)2 explores a window of w tokens to the left and  tokens to the right of the 
starting and ending boundaries of the annotated field instances, where the value of  is 
predefined. Also in HMMs, a predefined number of prefix and suffix states model the immediate 
prefix and suffix respectively of the annotated field instances. The largest rate of disagreement 
appears in seminars (9.9%). This is because the ending time (field etime) of a seminar was many 
times confused with the starting one (field stime), thus increasing the size of the rightmost column 
in Figure 4 for this domain. In CS courses and research projects, contradictory predictions do not 
exceed 0.5% of all meta-level data, in laptops they are 3.7%, while for jobs they are 5.5%. 

w
w

Since differences in the predicted fields for a text fragment are not frequent, the interesting 
question is what kind of disagreement can both voting and stacking exploit in pursuit of improved 
performance at meta-level? The answer lies in the middle column for each domain, which 
indicates that the majority of the meta-level instances derive from text fragments that have been 
assigned identical fields by some, but not all, system(s), while the remaining system(s) abstain 
from prediction. Since we deal with three systems, this corresponds to situations where either two 
systems predict the same field, plus a missing prediction by the third system or only one system 
predicts a field, plus two missing predictions. Therefore, we expect voting and stacking to exploit 
this kind of disagreement, leading to better results at meta-level. It is also interesting to observe 
the behaviour of stacking when the predictions by all systems are identical, according to the left 
column for each domain in Figure 4. 

Note finally that the partition of meta-level data as shown in Figure 4, will allow for a more 
comprehensive comparison of stacking against voting, while also exploring the various aspects of 
the behaviour of stacking and voting, with respect to the varying degree of correlation in the 
output of the base-level systems. On the other hand, Table 8 shows a quantitative analysis of the 
disagreement among pairs of different IE systems that helps in determining whether there is space 
for improving the best system for each domain. 

6.3 Results of Meta-level and Comparisons 

 

Let MVotM and MVotF be the two majority voting settings, as defined in Section 3.2. The former 
setting ignores missing field prediction by some system, while the latter setting records missing 
prediction as “false”. Let also PVotM and PVotF be the two corresponding settings of voting 
using probabilities, as defined in Section 3.3. In PVotM, missing predictions are ignored. In 
PVotF, if the highest probability for a field  is less than 0.5, then  is rejected. Table 9 shows 
the best 

f f
1F  scores obtained by all voting settings, stacking with nominal values, stacking with 

probabilities, and by the best base-level systems. Appendix A summarizes again all combination 
methods, along with a short description for each method. 

1768



INFORMATION EXTRACTION USING VOTING AND STACKING 

. Base MVotM MVotF PVotM PVotF Stacking  
Nominal 

Stacking 
 Probs 

Courses 65.73 65.59 60.29 65.65 70.64 63.92 71.93 
Projects 61.64 60.71 67.39 60.75 65.75 66.05 70.66 
Laptops 63.81 62.37 67.60 62.76 71.03 68.46 71.55 
Jobs 83.22 79.90 83.85 79.99 83.15 85.67 85.94 
Seminars 86.23 86.87 87.13 86.90 88.02 88.48 90.03 

Table 9. Best  1F  scores  (%) obtained by all combination methods (voting and stacking) and by the 
best base-level system for each domain of interest. For fair comparisons, the results of a 
single classifier (LogitBoost) were used by both stacking settings. 

 
Tables 10 to 12 compare all combination methods and the best base-level system, based on 
statistically significant wins against losses, in the five examined domains. Appendices B.2 to B.4 
show detailed numerical values for the three measures of performance by all combination 
methods in each domain of interest. Detailed results per field can be found in (Sigletos, 2005). 
 

 
Best 
Base MVotM MVotF PVotM PVotF Stacking 

Nominal 
Stacking 

Probs 
Best Base  5\0 0\5 5\0 2\2 0\5 0\5 
MVotM 0\5  0\5 0\1 0\5 0\5 0\5 
MVotF 5\0 5\0  5\0 5\0 2\0 3\1 
PVotM 0\5 1\0 0\5  0\5 0\5 0\5 
PVotF 2\2 5\0 0\5 5\0  0\5 0\5 
Stacking Nominal 5\0 5\0 0\2 5\0 5\0  0\3 
Stacking Probs 5\0 5\0 1\3 5\0 5\0 3\0  

Table 10. Statistically significant wins against losses in the five domains, based on precision, of the 
row system against the column one. 

 

 
Best 
Base MVotM MVotF PVotM PVotF Stacking 

Nominal 
Stacking 

Probs 
Best Base  0\5 4\0 0\5 0\4 2\2 2\3 
MVotM 5\0  5\0 0\1 5\0 5\0 5\0 
MVotF 0\4 0\5  0\5 0\5 0\4 0\4 
PVotM 5\0 1\0 5\0  5\0 5\0 5\0 
PVotF 4\0 0\5 5\0 0\5  4\0 4\0 
Stacking Nominal 2\2 0\5 4\0 0\5 0\4  0\3 
Stacking Probs 3\2 0\5 4\0 0\5 0\4 3\0  

Table 11. Statistically significant wins against losses in the five domains, based on recall, of the row 
system against the column one. 

 

 
Best 
Base MVotM MVotF PVotM PVotF Stacking 

Nominal 
Stacking 

Probs 
Best Base  2\0 1\2 1\0 0\4 0\2 0\5 
MVotM 0\2  1\3 0\1 0\5 0\3 0\5 
MVotF 2\1 3\1  3\1 1\3 0\3 0\5 
PVotM 0\1 1\0 1\3  0\5 0\3 0\5 
PVotF 4\0 5\0 3\1 5\0  2\2 0\3 
Stacking Nominal 2\0 3\0 3\0 3\0 2\2  0\4 
Stacking Probs 5\0 5\0 5\0 5\0 3\0 4\0  

Table 12. Statistically significant wins against losses in the five domains, based on 1F , of the row 
system against the column one. 

 
1769



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

6.4 Discussion 
We observe that stacking with probabilities obtains a higher 1F  score than the best base-level 
system for each domain. Precision is also improved (substantially for the domains of research 
projects and laptop products) in all five domains. Recall is improved in three domains but harmed 
in the remaining two. Stacking with simple nominal values, on the other hand, outperforms the 
best base-level 1F  score in only two of the five domains. Note that the large improvement 
obtained by stacking with nominal values in projects and laptops is not consistent across all folds 
during evaluation, and thus measured as statistically insignificant. Overall, stacking with 
probabilities outperforms simple stacking with nominal values. Only for job offers, the obtained 
improvement in 1F  against simple stacking was measured as statistically insignificant. Handling 
missing values in stacking did not significantly influence the results. 

Regarding voting, PVotF performs comparably or better than the best base-level system for 
each domain. Recall is improved by PVotF at meta-level in most domains. Precision is however 
improved only in two domains (projects and laptops). Among all voting settings, PVotF is best 
for courses, laptops and seminars, while MVotF is slightly better only for jobs. For projects, the 
improvement obtained by MVotF against PVotF was measured as statistically insignificant. 
Overall, PVotF is the best among all voting settings. 

By comparing voting against stacking, we observe that stacking with probabilities 
outperforms PVotF in all five domains, although the difference is statistically significant only in 
three domains. Unlike PVotF, stacking with probabilities is also consistently effective across all 
five domains, always outperforming the best base-level system for each domain. Moreover, 
stacking with probabilities always obtains more precise results than PVotF, at the cost of 
somewhat lower recall. Overall, stacking with probabilities achieves the best results among the 
combination methods that were evaluated. 

6.4.1 Best Classifiers at Meta-level 
An interesting result in the stacking with probabilities setting is that the highest 1F  scores in all 
domains were obtained by the same classifier: LogitBoost. Only for projects, the classifier j48 
obtained a higher, but statistically insignificant, 1F . On the other hand, LogitBoost using nominal 
values has not been consistently effective over all five domains. The best classifier using nominal 
values in CS courses was IB1, achieving however an insignificantly higher 1F  score than the best 
base-level system for this domain.  

Table 13 compares the six classifiers in stacking with probabilities, the setting that leads to 
the best meta-level results, based on statistically significant wins against losses, in the five 
examined domains. Appendix B.5 shows the 1F  scores obtained for the five domains by all 
classifiers in both simple stacking with nominal values and stacking with probabilities.  

 
 IB1 J48 LogitBoost MLR NaiveBayes SMO 
IB1  0\3 0\5 1\1 3\0 0\2 
j48 3\0  0\3 2\0 5\0 1\0 
LogitBoost 5\0 3\0  5\0 5\0 5\0 
MLR 1\1 0\2 0\5  3\1 0\2 
NaiveBayes 0\3 0\5 0\5 1\3  0\2 
SMO 2\0 0\1 0\5 2\0 2\0  

Table 13. Stacking with probabilities. Statistically significant wins against losses in the five domains, 
based on 1F , of the row classifier against the column one. 

 
Clearly a variety of other classifiers could also be evaluated at meta-level. The aim of our 
experiments was to demonstrate the effectiveness of utilizing a common classifier in the context 
of combining multiple IE systems. Most of the employed classifiers have been also evaluated in 
recent studies for stacking, with MLR to be a state-of-the art approach (Ting and Witten, 1999; 
Seewald, 2003; Džeroski and Ženko, 2004). MLR did not prove to be that effective in our 
experiments for IE as in the cited studies for common classification. Nevertheless, all meta-level 
 

1770



INFORMATION EXTRACTION USING VOTING AND STACKING 

classifiers in the cited studies, including MLR, have access to full probability distributions over all 
relevant classes, produced by the base-level classifiers. Such distributions are not typical for IE 
systems.  

On the other hand, Table 13 shows that boosting simple decision stumps, through LogitBoost, 
was particularly effective at meta-level. Only for projects and seminars, the difference among 
LogitBoost and j48 was measured as statistically insignificant. 

6.4.2 Majority Voting 
Tables 10 and 11 show that MVotM improves recall but hurts precision, as compared to the best 
base-level system for each domain, while MVotF improves precision but hurts recall. This 
contradicting behaviour is mainly due to situations where only one system predicts a field  for 
a text fragment, while the remaining two systems abstain. In such cases, if  is not the correct 
field for the fragment, this harms precision for MVotM, which always accepts . If  is the 
correct field, then this harms recall for MVotF, which always returns “false”, which is the value 
with the highest count. Recall is harmed the most in CS courses by MVotF, thus also harming 

f
f

f f

1F , 
as it is shown in Appendix B.2, which is due to the fact that single predictions are mostly correct 
for this domain. 

Note that since contradictory field predictions for a text fragment are not frequent, according 
to Figure 4, MVotM does not actually behave like voting. In the overwhelming majority of meta-
level data, only one field  participates in the vote counting process. The more systems predict 

 the higher the count is for , which is then returned. However, if  is not the correct field, 
then there is no way to reject it, since missing predictions are ignored and thus precision is 
harmed. Nevertheless, the recall obtained by MVotM approximates the maximum recall that can 
be obtained at meta-level for each domain, since each base-level system also contributes its 
uniquely identified correct instances. On the other hand, MVotF does behave more like voting, 
since each missing prediction for a fragment is encoded with the value “false”, which then 
participates in the vote counting.  

f
f f f

The overall conclusion is that neither majority voting setting has been consistently effective, 
based on 1F , over all five domains. MVotF achieves a higher 1F  score at meta-level that is 
statistically significant only for projects and seminars, while MVotM does not significantly 
improve the best base-level 1F  score in any of the five domains. The large improvement that 
MVotF obtains for laptops is not consistent over all folds during evaluation, and thus measured as 
statistically insignificant. In addition, we would like to learn when a field  is correct, instead of 
accepting  by MVotM, if it has the highest count, or rejecting  by MVotF , if the value with 
the highest count is “false”. Stacking using probabilities achieves this goal, outperforming both 
settings of majority voting in the five examined domains. 

f
f f

6.4.3 Voting Using Probabilities 
Tables 9 to 12 show that the performance of PVotM is similar to MVotM. Since the overwhelming 
majority of meta-level instances contain no contradictory field predictions for a text fragment, 
according to Figure 4, the additional use of probabilities has not proved particularly useful for 
PVotM. The higher the number of votes for , the higher is the combined probabilistic estimate 
for the field. Only for laptops, the slight improvement in 

f
1F  by PVotM is statistically significant. 

As a result, PVotM approximates, slightly better than MVotM, the maximum recall that can be 
obtained at meta-level for each domain. 

Note that PVotF performs an additional test to the field  that is returned by PVotM, by 
examining whether or not the probability associated with  is greater than 0.5, and thus accepts 
or rejects . This leads to more precise results for PVotF, as compared to PVotM, suffering a 
lower recall. The improvement in precision is however substantial and leads to higher 

f
f

f
1F  score 

for PVotF, since most incorrect predictions are associated with a probability that is less than 0.5. 
Moreover, if the value with the highest count is “false”, i.e. two systems abstain from prediction, 
PVotF examines the probability of the field  with the next highest count, i.e. the prediction of 
the remaining system. This explains both the higher recall and lower precision for PVotF, against 

f

 
1771



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

MVotF that always returns “false” in this case. Although PVotF does significantly better than 
MVotF in three domains, the decrease in precision by PVotF is higher than the increase in recall 
for the remaining two (projects and jobs), thus resulting in a comparable or better 1F  score for 
MVotF. This is due to more situations for the two domains where single predictions are both 
incorrect and assigned a high probability, and thus correctly rejected by MVotF, while incorrectly 
accepted by PVotF. 

Although the calibrated probabilities of correctness are more meaningful and consistent than 
confidence scores, choosing 0.5 as a threshold below which to reject predictions may not always 
be an optimal choice, as showed in Figure 5 for CS courses.  

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

Probability 

P
er

fo
rm

an
ce

Precision, if instances with probability
below the given threshold were
dropped

Recall, if instances with probability
below the given threshold were
dropped

F1, the harmonic mean of precision
and recall

 
Figure 5. Precision, recall and 1F  by PVotF for the domain of CS courses, regarding the threshold 

below which, the predicted instances are removed. 
 
The performance of PVotF for a probability threshold zero equals that of PVotM, where no 
prediction is rejected. Increasing the threshold, below which predictions are rejected, a tradeoff 
between recall and precision is observed, reflecting the natural fact that a rejected prediction may 
be either a correct one, thus harming both precision and recall, or incorrect and thus improving 
precision. Nevertheless, incorrect predictions are mostly rejected as threshold increases, since 
most correct predictions are assigned a high probability. 

As already mentioned in Section 2.3.3, the mapping of confidences to probabilities takes 
place by validating the performance of each base-level system on a hold-out set or by cross-
validation. This only approximates the true probability distribution in the predictions of an IE 
system over the space of all possible relevant pages. As a result, the optimal threshold below 
which to reject predictions may vary for different collections of pages. In Figure 5, despite the 
fact that both precision and recall are almost equally balanced at threshold 0.5, the optimal 1F  
score (73.5%) is achieved at threshold 0.7. For jobs, the optimal 1F  score (84.08%) is also 
achieved at threshold 0.7. All differences were measured as statistically significant. For research 
projects, seminars and laptops, the best 1F  score remains at threshold 0.5. 

However, instead of optimizing the threshold empirically, e.g. in a jack-knifing procedure, it 
is much more interesting to try to learn whether or not to accept a prediction. In other words, we 
would like to learn the correlation among the probabilistic estimates, returned by the individual 
base-level systems, towards better meta-level results. Stacking using probabilities achieves this 
goal in most domains by outperforming PVotF, while obtaining more precise results even when 
both settings perform comparably. 

6.4.4 Multistrategy Learning for Information Extraction 

 

Table 14 compares the 1F  scores obtained by the multistrategy learning setting, as described in 
Section 2.3.3, against the best obtained scores at the base-level, voting using probabilities, and the 
results presented in (Freitag, 2000). Results are only presented for the domains of CS courses, 
research projects and seminars, since these domains were used by Freitag (2000).  

1772



INFORMATION EXTRACTION USING VOTING AND STACKING 

 Best Base PVotM PVotF Multistrategy Multistrategy 
(Freitag, 2000) 

crsNumber 94.46 95.72 95.92 94.91 88.9 
crsTitle 70.05 73.50 72.34 73.29 62.0 
crsInst 48.21 50.81 57.76 50.81 49.8 
projMember 65.00 63.16 68.94 63.09 45.5 
projTitle 39.66 34.26 32.88 35.65 34.1 
stime 99.09 99.51 99.51 99.42 99.3 
etime 97.62 89.09 96.68 67.15 94.3 
speaker 73.41 75.88 75.40 75.58 66.2 
location 77.43 81.82 81.83 81.82 79.7 

Table 14.  Best per field 1F  scores (%) by base-level, voting and multistrategy learning for the 
domains of CS courses, research projects and seminar announcements. 

 
Our results for multistrategy perform comparably or better for most fields against the ones in 
(Freitag, 2000), which is partially due to the higher performance of our systems. Multistrategy 
learning and PVotM behave similarly for all fields but for etime. Instances of etime are many 
times confused with instances of stime by our IE systems, thus resulting in contradictory field 
predictions. Multistrategy, however, considers each field in isolation and thus fails to distinguish 
among the two fields. Voting handles better field ambiguities, by selecting the one with the 
highest probability, thus leading in significantly higher 1F  score than multistrategy for 
ambiguous fields. In some cases the highest probability does not correspond to a correct 
prediction, which justifies why the 1F  for etime is not improved monotonically at meta-level. 

Contradictory field predictions do not occur frequently in most fields, and thus PVotM mostly 
handles each field in isolation, as multistrategy does by default. In such cases, and just like 
PVotM, the success of multistrategy strongly depends on how the incorrect predictions by all 
base-level systems correlate. The more incorrect instances each system uniquely identifies, the 
higher the decrease in precision is, since missing predictions are ignored and there is no correct 
field to contradict the incorrect one during voting. This may lead to a worse 1F  score, compared 
to the best base-level system, as in research projects. Overall, PVotF is the best of the voting 
settings that were evaluated in this article. 

7 Explaining the Results 
In Section 6.2, we partitioned the meta-level instances according to how the base-level systems 
correlate in their output. In this section we compare stacking against voting with respect to this 
diversity analysis. The aim is to provide useful insight into the behaviour of voting and stacking 
by comparatively studying their performance, based on the varying degree of disagreement in the 
output of the base-level systems. In the interest of conducting a fair analysis, the results of a 
single classifier (LogitBoost) are used for stacking. 

7.1 Analyzing Cases of Complete Agreement in the Output of the Base-level Systems 
Figure 6 compares all combination methods, based on the number of correctly classified meta-
level instances, when all base-level systems agree. These instances correspond to the left column 
in Figure 4 for each domain. Recall that each meta-level instance can be classified into one of the 
values , where  the relevant fields and false a special value indicating 
that the text fragment, which corresponds to the meta-level instance, is irrelevant, and thus none 
of the base-level systems should have predicted a field for it.  

},...{ 1 falseff Q }...{ 1 Qff

Stacking with probabilities performs slightly better than all other combination methods, while 
PVotF follows. In other words, stacking proved to be slightly more useful even when the 
predictions by the base-level systems are identical. Note that since all three systems agree on the 
same field, all voting settings except PVotF return the same value. Only PVotF has the additional 
option of rejecting a prediction by all systems, if the combined estimate is less than a given 
threshold, which has proven slightly useful only for projects and laptops. 

 
1773



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

7600
7700
7800
7900
8000
8100
8200
8300
8400 Total

MVotM

MVotF

PVotM

PVotF

Stacking nominal

Stacking probs

 
Figure 6.  Comparing all combination methods, when all three base-level systems agree on the 

same field. Sum of correctly classified meta-level instances over all five domains. 
 
Comparing the total number of meta-level instances where all three base-level systems agree 
(leftmost column in Figure 6) and the results obtained by all combination methods, we conclude 
that the returned field is not always correct. This was mostly observed in the Web domains and it 
is partly due to errors during annotation, and mainly due to captured regularities in the text that 
are not always reliable. For example, “TFT” may be the type of a separate screen product that is 
described in the same page with a laptop. Similarly for projects, some faculty or student names 
are former project members, and thus have not been annotated by the human expert. In such 
cases, stacking with probabilities learned to reject, i.e. classify as “false”, some of those erroneous 
predictions. We did not expect to do much better without encoding other features in the meta-
level vectors.  

The last observation indicates a limitation of our base-level systems which is not unknown in 
the literature. The limitation is that the IE systems parse a document as a linear sequence of 
tokens and thus ignore hierarchical structure available within an HTML or XML document, e.g. 
through using the document object model (DOM). Therefore, our IE systems only capture 
regularities in text that concern sequences of tokens within the target content and surrounding 
content of the relevant instances and thus fail to generalize over hierarchical information. For 
example, we would like to exploit HTML information to separate laptops from other products that 
are described within the same page. 

There exist approaches in the literature that exploit HTML or XML structure in the context of 
IE, but they mostly suffer from the need of extensive manual effort and/or the lack of adaptability 
to different structure formats. For example, STALKER (Muslea et al., 2001) learns patterns that 
match certain sequences of tokens/wildcards, separated by irrelevant intermediate text. This 
however requires the manual construction and use of an “embedded-catalog” (EC) tree for Web 
pages that share the same structure in their content, and thus separate trees have to be manually 
constructed for different structure formats.  

Davulcu et al. (2002) exploit DOM-based information in conjunction with a hand-crafted 
ontology for IE from Web pages with different structure. Incorporating combination methods for 
IE with their techniques is an issue to be investigated. For example, the hand-crafted patterns for 
the item-identifiers within the ontology could be replaced by more complex patterns induced by 
combining a set of IE systems, and thus reduce the effort required for engineering the ontology. 
Initial efforts towards incorporating machine learning into ontology engineering already exist 
(Valarakos et al., 2004).  

7.2 Analyzing Cases of Partial Agreement in the Output of the Base-level Systems 

 

Figure 7 compares all combination methods based on the number of correctly classified meta-
level instances, when some base-level system(s) agree on the same field, while the remaining 
one(s) abstain from prediction. These instances correspond to the middle column for each domain 
in Figure 4. In order to analyze the results into greater depth, Figure 7 presents separately the 

1774



INFORMATION EXTRACTION USING VOTING AND STACKING 

results, based on whether a single base-level system predicts a field, or exactly two out of the 
three systems agree on the same field. 

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

Single prediction Two predictions

Total

MVotM

MVotF

PVotM

PVotF

Stacking nominal

Stacking probs

 
Figure 7. Comparing all combination methods, when either a single or exactly two base-level 

systems agree on the same field (set of columns on the left and right respectively). Sum of 
correctly classified meta-level instances over all five domains. 

 
Figure 7 shows the superiority of stacking with probabilities in both situations. Handling missing 
values does not significantly influence the results. The left part in Figure 7 also confirms the 
complementary behaviour of MVotM/PVotM with MVotF. When only one system predicts a field 
for a text fragment, then the column size of MVotM/PVotM equals the number of cases where the 
predicted field is correct. The size of MVotF equals the number of cases where the predicted field 
is incorrect, and thus “false” is returned. The large size of the MVotF column in the left part of 
Figure 7 indicates that single-field predictions are more probably incorrect. The left part of Figure 
7 shows that stacking with probabilities learns more than simple stacking with nominal values 
does and goes beyond what MVotM/PVotM and MVotF straightforwardly deduce in a 
contradicting manner, by obtaining a higher accuracy than all settings. 

When two predictions agree on the same field and the third one is missing, all voting settings, 
except PVotF, obviously return the same field, as also shown in the right part of Figure 7. 
Stacking with nominal values and PVotF perform slightly better than the other voting settings. On 
the other hand, stacking with probabilities again learns something more than simple stacking does 
and goes beyond what all voting settings straightforwardly deduce. 

7.3 Analyzing Cases of Disagreement in the Output of the Base-level Systems 
Figure 8 compares all combination methods, based on the number of correctly classified meta-
level instances, when at least two base-level systems contradict in their field predictions. These 
nstances correspond to the right column in Figure 4 for each domain.  i 

700

750

800

850

900

950

1000

1050 Total

MVotM

MVotF

PVotM

PVotF

Stacking nominal

Stacking probs

 
Figure 8.  Comparing all combination methods when the base-level systems disagree. Sum of 

correctly classified meta-level instances over all five domains.  
 

1775



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

Figure 8 confirms the superiority of stacking with probabilities. Figures 6 to 8 indicate that there 
is enough room for further improving the results. On the other hand, the presented results are very 
positive, considering the exploitation at meta-level of simple nominal values and probabilities of 
correctness in the output of the base-level systems. 

7.4 Comparing by Meta-level Classification Accuracy 
Figures 6 to 8 compare voting and stacking using the number of correctly classified meta-level 
instances, summed over all domains, with respect to the different degree of agreement in the 
output of the base-level systems. Classification accuracy can then be defined as the fraction of 
meta-level instances that have been correctly classified. Table 15 compares again all combination 
methods, using classification accuracy as a measure of performance when estimating the 
statistically significant wins against losses.  

 

 MVotM MVotF PVotM PVotF Stacking 
Nominal 

Stacking 
Probs 

MVotM  0\4 0\1 0\5 0\5 0\5 
MVotF 4\0  4\0 2\0 0\3 0\5 
PVotM 1\0 0\4  0\5 0\5 0\5 
PVotF 5\0 0\2 5\0  0\3 0\5 
Stacking Nominal 5\0 3\0 5\0 3\0  0\4 
Stacking Probs 5\0 5\0 5\0 5\0 4\0  

Table 15.  Statistically significant wins against losses, based on classification accuracy, in the five 
domains, of the row IE system against the column one.  

 
Table 15 shows the clear superiority of stacking with probabilities over all voting settings. This is 
in contrast to Table 12, which shows that PVotF performs comparably to stacking with 
probabilities in two of the five examined domains. Moreover, MVotF seems to be the best voting 
setting, which also contradicts Table 12, where PVotF is the best setting. Those contradicting 
conclusions are due to the different metrics that are employed in the two tables. Table 12 shows 
statistically significant wins against losses, based on the micro-average 1F  that is measured over 
the relevant fields  for each domain. On the other hand, the classification accuracy that 
is used in Table 15 is defined over all possible values  that a meta-level instance 
can be classified into, including the false value. Actually, classification accuracy is identical to 
micro-average precision over all classes  for a domain of interest. 

}...{ 1 Qff
},...{ 1 falseff Q

},...{ 1 falseff Q

Classification accuracy is typically used for comparing different classifiers over all class 
values. In IE, however, the class value false has a special interpretation, since no such field is 
annotated by the human expert. Similarly none of the employed systems at the base-level predict 
the value false for a text fragment. The value false is, however, an option for the meta-level 
classifier, indicating that at least one of the base-level systems has incorrectly predicted a field for 
an irrelevant text fragment. However, the evaluation takes place by comparing the relevant 
instances in the hand-filled templates and the corresponding templates filled by the IE systems, at 
either base or meta-level. Therefore, the evaluation metrics precision, recall and 1F , are 
naturally defined over the relevant domain fields  ignoring false. }...{ 1 Qff

7.5 Stacking Pairs of Information Extraction Systems 
Experiments were also conducted on stacking and voting of pairs of base-level systems, trying to 
investigate whether combining all three systems provides added value over combining pairs of 
systems. Table 16 compares stacking with probabilities (again using the same classifier, 
LogitBoost, for fair comparisons) for all possible combinations of base-level systems. The 
comparison is based on statistically significant wins against losses, based on 1F , in the five 
examined domains. Voting on pairs of base-level systems did not provide any statistically 
significant added value over stacking in the domains of interest. Therefore, the results of voting 
on pairs are omitted here. 
 

1776



INFORMATION EXTRACTION USING VOTING AND STACKING 

 BWI +HMM BWI+(LP)2 HMM+(LP)2 BWI+HMM+(LP)2

BWI +HMM  0\4 0\5 0\5 
BWI+(LP)2 4\0  0\4 0\5 
HMM+(LP)2 5\0 4\0  0\4 
BWI+HMM+(LP)2 5\0 5\0 4\0  

Table 16. Statistically significant wins against losses, based on 1F , in the five examined domains, 
of stacking with probabilities the row base-level systems, against stacking the column ones. 

 
In one domain (CS courses), stacking HMMs with (LP)2 results in a statistically insignificant 
difference in 1F  against stacking all three systems. This concludes that the contribution of BWI 
to the performance of stacking is not significant for this domain. Moreover, stacking HMMs with 
(LP)2 proves better than stacking BWI with (LP)2, which is not always justified by the 
performance of the individual base-level systems. For example, BWI obtains a higher 1F  than 
HMMs in jobs and seminars. Table 8 explains this behaviour, by observing a higher degree of 
correlation among (LP)2, which is the best system for jobs and seminars, and BWI, than the 
corresponding one among (LP)2 and HMMs.  

The results of Appendix B.1 show that BWI suffers from lower recall in most domains, as 
compared to HMMs and (LP)2. A general guideline for choosing which base-level systems to 
stack would be therefore to prefer systems biased towards recall, rather than precision, since 
stacking always obtains more precise results at meta-level. Higher recall suggests higher chance 
of covering instances that have not been identified by other systems, and thus leading to a higher 
degree of disagreement, in favour of stacking. For example, HMMs obtain higher recall, yet 
lower precision, than BWI in all five domains. Nevertheless, stacking HMMs with (LP)2 is the 
best pair-wise combination scheme, according to Table 16. In Section 4.2, the choice of systems 
biased towards recall is also suggested, since higher recall leads to higher chance of minimizing 
the number of cases where relevant text fragments have not been identified by any base-level 
system and thus cannot be also identified at the meta-level. 

The only exception to the above rule of thumb for high-recall base-level systems is in the 
domain of research projects, where (LP)2 obtains a significantly lower recall than HMMs, but 
stacking BWI with (LP)2 performs better than stacking BWI with HMMs. Table 8 explains again 
this behaviour, by observing a higher degree of correlation among HMMs and BWI, than the 
corresponding one among (LP)2 and BWI. 

8 Concluding Remarks 
Though effective in improving the performance of multiple learning algorithms, typically voting 
and stacking restrict their applicability to common classification. This article extended the 
applicability of voting and stacking to information extraction (IE), and demonstrated their 
effectiveness using a variety of different algorithms and domains. The disagreement in the output 
of the IE systems that were employed at base-level has been successfully exploited by voting and 
stacking, leading to higher extraction performance at meta-level. 

Experimental results have also shown that voting and stacking work best when using the 
confidence scores by the individual base-level systems that have been converted into probabilistic 
estimates of correctness. Voting using probabilities and setting a threshold, below which meta-
level instances are rejected, proved particularly effective in most domains by outperforming the 
best base-level systems. Stacking using probabilities, on the other hand, proved consistently 
effective over all domains of interest, doing comparably or significantly better than voting. 
Precision was always improved by stacking at meta-level, as compared to the best base-level 
systems, while recall was improved in most domains. Whenever voting and stacking were doing 
comparably, stacking still obtained more precise results. 

Since IE has been transformed into a common classification task at the meta-level, there are 
many opportunities for further improving the extraction performance. The experimental results 
that were presented for stacking in this article are encouraging, considering also the simplicity of 

 
1777



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

the features in the meta-level vectors that represent only the output of the base-level systems. 
Additional information could be exploited by stacking towards better results that further justify 
the additional computational cost over voting. In the domain of laptop products, for example, 
instances of “processor speed” appear typically after “processor name” instances, while instances 
of “ram” usually follow. Exploring such dependencies among extraction fields, or possibly other 
sources of information, could lead to useful extra features within the meta-level vectors to be 
exploited by the classifiers. The combination of different classifiers at a higher meta-level could 
also be examined. 

A different stacking strategy could be applied by considering each field in isolation during 
combination, as proposed in (Freitag, 2000). In that case, a separate cross-validation process 
would take place in the base-level data set for each relevant field, and the problem would be 
transformed into a binary-learning task at the meta-level. Such a strategy would also deal with a 
limitation of cross-validation procedures over text documents that concerns stratification. In 
common classification over feature vectors, a similar distribution of classes is maintained in each 
fold. In IE, however, typically there is a different distribution of fields in each document and thus 
it is hard to approximate the same distribution of the fields in each fold. The penalty of stacking 
separately each field is that we cannot take advantage of the cases of contradictory field 
predictions in the output of the base-level systems. 

Creating feature vectors is just one method of handling the meta-level data. Alternative 
methods can be investigated. An interesting extension is to appropriately encode the information 
available at the meta-level as special tags, which can be either embedded within the text or used 
as additional token features. This would allow the training of common IE systems also at the 
meta-level, since the meta-level data set would again consist of the same set of annotated text 
documents, including the additional meta-level information embodied within the text. This would 
also be aligned with Wolpert’s two major features of stacking: that data sets at both base-level 
and meta-level are of equal size, while a learning algorithm which is applied at the base-level can 
also be applied at the meta-level. 

This article contributes to the direction of realizing the high potential of combination methods 
in the context of accurately identifying relevant information within the abundant of online text, 
aiming at a framework that can be easily adapted to new domains. 

Acknowledgements 
The first author was partially supported by a research scholarship from the Institute of Informatics 
and Telecommunications of NCSR “Demokritos”, Athens, Greece. The authors are grateful to 
Fabio Ciravegna for offering (LP)2 and to Dayne Freitag for offering the two annotated WebKB 
data sets and seminar announcements. Many thanks to the editor and the anonymous reviewers 
for their useful comments that helped improving the article. 
 

Appendix A: Summary of the Combination Methods for Information Extraction 

Combination method Short description Described in section 
MVotM Majority voting. Missing values are ignored 3.2 

MVotF Majority voting. Missing values are encoded as special 
“false” values, indicating rejection of prediction 3.2 

PVotM Voting with probabilities. Missing values are ignored 3.3 

PVotF Voting with probabilities. A threshold is set (typically 
0.5), for accepting/rejecting predictions 3.3 

Stacking Nominal Stacking using simple nominal values 4.2, 4.3 
Stacking Probs Stacking using probability values 4.4 

 
1778



INFORMATION EXTRACTION USING VOTING AND STACKING 

Appendix B: Results of Base-level and Meta-level for the Five Domains of Interest 

B.1 Results of Base-level 
CS courses Research projects Laptop products % Precision Recall F1 Precision Recall F1 Precision Recall F1 

BWI 74.55 39.10 51.30 60.05 61.47 60.75 74.99 53.23 62.26 
HMM 60.50 58.29 59.39 56.24 68.18 61.64 62.29 65.42 63.81 
(LP)2 71.39 60.90 65.73 63.31 54.92 58.82 63.24 59.41 61.26 

 
Job announcements Seminar announcements % Precision Recall F1 Precision Recall F1 

BWI 89.42 72.39 80.01 93.26 74.92 83.09 
HMM 72.42 79.31 75.71 78.34 80.09 79.20 
(LP)2 87.70 79.18 83.22 91.39 81.63 86.23 

B.2 Results of Majority Voting 
Precision Recall F1 

% Best 
Base MVotM MVotF Best 

Base MVotM MVotF Best 
Base MVotM MVotF

Courses 71.39 58.68 82.05 60.90 74.35 47.65 65.73 65.59 60.29 
Projects 56.24 49.17 68.88 68.18 79.32 65.96 61.64 60.71 67.39 
Laptops 62.29 52.89 80.41 65.42 76.00 59.05 63.81 62.37 67.60 
Jobs 87.70 71.29 93.06 79.18 90.88 76.31 83.22 79.90 83.85 
Seminars 91.39 86.93 97.55 81.63 86.82 78.72 86.23 86.87 87.13 

B.3 Results of Voting Using Probabilities 
Precision Recall F1 

% Best 
Base PVotM PVotF Best 

Base PVotM PVotF Best 
Base PVotM PVotF 

Courses 71.39 58.78 70.16 60.90 74.35 71.12 65.73 65.65 70.64 
Projects 56.24 49.20 63.31 68.18 79.37 68.38 61.64 60.75 65.75 
Laptops 62.29 53.21 72.86 65.42 76.47 69.30 63.81 62.76 71.03 
Jobs 87.70 71.37 80.08 79.18 90.98 86.45 83.22 79.99 83.15 
Seminars 91.39 86.99 90.69 81.63 86.82 85.50 86.23 86.90 88.02 

B.4 Results of Stacking Using a Single Classifier 
Precision Recall F1 

% Best 
Base 

Stacking 
Nominal 

Stacking 
Probs 

Best 
Base 

Stacking 
Nominal

Stacking 
Probs 

Best 
Base 

Stacking 
Nominal 

Stacking 
Probs 

Courses 71.39 81.32 79.03 60.90 52.66 66.01 65.73 63.92 71.93 
Projects 56.24 68.84 78.21 68.18 63.59 64.45 61.64 66.05 70.66 
Laptops 62.29 79.52 84.49 65.42 60.10 62.04 63.81 68.46 71.55 
Jobs 87.70 89.89 90.27 79.18 81.82 82.00 83.22 85.67 85.94 
Seminars 91.39 92.56 94.69 81.63 84.74 85.80 86.23 88.48 90.03 

B.5 Results of All Classifiers in Stacking 
Comparison of classifiers is based on 1F . For readability, LB=LogitBoost, NB=NaiveBayes 

Stacking with nominal values Stacking with probabilities % IB1 j48 LB MLR NB SMO IB1 j48 LB MLR NB SMO
Courses 66.03 50.79 63.92 54.62 60.11 56.76 70.23 70.24 71.93 70.38 65.16 70.41
Projects 61.18 55.36 66.05 60.89 60.99 55.98 66.77 71.41 70.66 62.17 65.63 62.65
Laptops 64.43 62.56 68.46 66.23 67.29 66.65 69.49 70.66 71.55 70.00 61.36 71.02
Jobs 80.58 83.93 85.67 84.61 81.77 84.52 83.88 85.22 85.94 84.95 77.23 84.75
Seminars 87.34 87.63 88.48 88.22 87.06 88.09 88.45 89.66 90.03 88.78 88.49 88.82

 
1779



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

References 

Ali, K.M., Pazzani, M.J., Error reduction through learning multiple descriptions. Machine 
Learning, 24, 173-202, 1996. 

Breiman, L., Bagging Predictors, Machine Learning, 24(2), 123-140, 1996. 

Breiman, L., Stacked Regressions, Machine Learning, 24, 41-48, 1996a. 

Califf, M.E., Mooney, R.J., Bottom-up Relational Learning of Pattern Matching Rules for 
Information Extraction, Journal of Machine Learning Research (JMLR), 4, 177-210, 2003. 

Chan, P., An Extensive Meta-Learning Approach for Scalable and Accurate Inductive Learning, 
PhD Thesis, Columbia University, 1996. 

Chang, C.H., Lui, S.C., IEPAD : Information Extraction based on Pattern Discovery, In 
Proceedings of the Tenth International WWW conference, 509-516, New York, USA, 2001. 

Chawathe, S., Molina, H-C., Hammer, J., Ireland, K., Papakonstantinou, Y., Ullman, J., Widom, 
J., The TSIMMIS Project: Integration of Heterogeneous Information Sources, In Proceedings 
of the Tenth Meeting of Information Processing Society of Japan (IPSJ), 7-18, 1994. 

Ciravegna, F., Adaptive Information Extraction from Text by Rule Induction and Generalization, 
In Proceedings of the Seventeenth IJCAI Conference. Seattle, 1251-1256, 2001. 

Ciravegna, F., Lavelli, A., LearningPinochio: Adaptive Information Extraction for Real World 
Applications, Natural Language Engineering, 1(1), 1-21, 2003. 

Cohen, W., Hurst, M., Jensen, L.S., A Flexible Learning System for Wrapping Tables and Lists in 
HTML Documents, In Proceedings of the Eleventh International WWW conference, Hawaii, 
USA, 2002. 

Craven, M., DiPasquo, D., Freitag, D., McCallum, A.K., Mitchell, T., Nigam, K., Slattery, S., 
Learning to extract symbolic knowledge from the World Wide Web, In Proceedings of the 
Fifteenth National Conference on Artificial Intelligence (AAAI-98), 509-516, 1998. 

Crescenzi, V., Mecca, G., Merialdo, P., RoadRunner: Towards automatic data extraction from 
large Web sites, In Proceedings of the Twenty-seventh International Conference on Very 
Large Data Bases (VLDB), 109-118, Rome, Italy, 2001. 

Davulcu, H., Mukherjee, S., Ramakrishman, I.V., Extraction Techniques for Mining Services 
from Web Sources, IEEE International Conference on Data Mining (ICDM), 601-604, 2002. 

Defense Advanced Research Projects Agency (DARPA), Proceedings of the Sixth Message 
Understanding Conferences (MUC-6), Morgan Kaufmann, 1995. 

Defense Advanced Research Projects Agency (DARPA), Proceedings of the Seventh Message 
Understanding Conferences (MUC-7), Morgan Kaufmann, 1996. 

Dietterich, T.G., Machine Learning research: Four current directions. AI Magazine, 18(4), 97-
136, 1997. 

Dietterich, T.G., Approximate Statistical Tests for Comparing Supervised Machine Learning 
Algorithms, Neural Computing, 10(7), 1895-1924, 1998. 

Domingos, P., Unifying instance-based and rule-based induction, Machine Learning, 24(2), 141-
168, 1996. 

Džeroski, S., Ženko, B., Is Combining Classifiers Better than Selecting the Best One? Machine 
Learning, 54(3), 255-273, 2004. 

Florian, R., Cucerzan, S., Schafer, C., Yarowsky, D., Combining Classifiers for Word Sense 
Disambiguation, Natural Language Engineering, 1(1), 1-14, 2002. 

 
1780



INFORMATION EXTRACTION USING VOTING AND STACKING 

Freitag, D., Machine Learning for Information Extraction in Informal Domains, Machine 
Learning, 39, 169-202, 2000. 

Freitag, D., Kushmerick, N., Boosted Wrapper Induction, In Proceedings of the Sixteenth 
National  conference on Artificial Intelligence (AAAI-99), 59-66, 1999.  

Freitag, D., McCallum, A.K., Information extraction with HMMs and shrinkage, AAAI-99 
workshop on machine learning for information extraction, 1999. 

Freitag, D., McCallum, A.K., Information extraction with HMM structures learned by stochastic 
optimization, In Proceedings of the Seventeenth National conference on Artificial Intelligence 
(AAAI-00), 584-589, 2000. 

Freund, Y., Schapire, R., Experiments with a new boosting algorithm, In Proceedings of the 
Thirteenth International Conference on Machine Learning (ICML), 148-156, Bari, Italy, 1996. 

Friedman, J., Hastie, T., Tibshirani, R., Additive Logistic Regression: a Statistical View Of 
Boosting, Technical Report, Stanford University, 1999. 

Halteren, H., Zavrel J., Daelemans, W., Improving Accuracy in Word Class Tagging through 
Combination of Machine Learning Systems, Computational Linguistics, 27(2), 199-230, 2001. 

John, G.H., Langley, P., Estimating Continuous Distributions in Bayesian Classifiers, In 
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence (UAI), 338-
345, Morgan Kaufmann, 1995. 

Kauchak, D., Smarr, J., Elkan, C., Sources of Success for Boosted Wrapper Induction, Journal of 
Machine Learning Research (JMLR), 5, 499-527, 2004. 

Kuncheva, L.I., Whitaker, C.J., Measures of Diversity in Classifier Ensembles and their 
Relationship with the Ensemble Accuracy, Machine Learning, 51, 181-207, 2003. 

Kushmerick, N., Wrapper Induction for Information Extraction, PhD Thesis, University of 
Washington, 1997. 

Lafferty, J., McCallum, A.K., Pereira, F., Conditional random fields: Probabilistic models for 
segmenting and labeling sequence data, In Proceedings of the Eighteenth International 
Conference on Machine Learning (ICML), 282-289, Williamstown, MA, USA, 2001. 

McCallum, A.K., Freitag, D., Pereira, F., Maximum entropy markov models for information 
extraction and segmentation, In Proceedings of the Seventeenth International Conference on 
Machine Learning (ICML), 591-598, Stanford University, CA, USA, 2000. 

Michalski, R., Tecuci, G., Machine learning: A multistrategy approach, Morgan Kaufmann, 1994. 

Muslea, I., Minton, S., Knoblock, C., Hierarchical Wrapper Induction for Semistructured 
Information Sources, Journal Of Autonomous Agents and Multi-Agent Systems, 4, 93-114, 
2001. 

Platt, J., Fast Training of Support Vector Machines using Sequential Minimal Optimization, 
Advances in Kernel Methods - Support Vector Learning, 185-208, MIT Press, 1999.  

Quinlan, R.J., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993. 

Rabiner, L., A tutorial on hidden Markov models and selected applications in speech recognition, 
In Proceedings of the IEEE 77-2, 257-286, 1989. 

RISE, A repository of online information sources used in information extraction tasks, URL: 
http://www.isi.edu/info-agents/RISE, 1998. 

Sebastiani, F., Machine Learning for Automated Text Categorization, ACM Computing Surveys 
(CSUR), 34 (1), 1-47, 2002. 

 
1781



SIGLETOS, PALIOURAS, SPYROPOULOS AND HATZOPOULOS 

Seewald, A., Towards understanding stacking, PhD Thesis, Department of Informatics, Technical 
University of Wien, Austria, 2003. 

Seymore, K., McCallum, A.K., Rosenfeld, R., Learning hidden Markov model structure for 
Information Extraction, Journal of Intelligent Information Systems (JIIS), 8(1), 5-28, 1999. 

Sigletos, G., Voting and stacking for information extraction: Extended results, Technical Report 
DEMO 2005/3, NCSR Demokritos, 2005. 

Sonderland, S., Learning Information Extraction Rules for Semi-structured and Free Text, 
Machine Learning, 34-(1/3), 233-272, 1999. 

Ting, K., Witten, M., Issues in stacked generalization, Journal of Artificial Intelligence Research 
(JAIR), 10, 271-289, 1999. 

Thompson, C.A., Califf, M.E., Mooney, R.J., Active Learning for Natural Language Parsing and 
Information Extraction, In Proceedings of the Sixteenth International Machine Learning 
Conference (ICML), 406-414, Bled, Slovenia, 1999. 

Valarakos, A., Paliouras, G., Karkaletsis, V., Vouros G., Enhancing Ontological Knowledge 
through Ontology Population and Enrichment, In Proceedings of the Fourteenth International 
Conference on Knowledge Engineering and Knowledge Management (EKAW), LNAI-3257, 
144-156, Springer, 2004. 

Witten, I., Frank, E., Data Mining: Practical Machine Learning Tools and Techniques with Java 
Implementations, Morgan Kaufmann, 2000. 

Wolpert, D., Stacked Generalization, Neural Networks, 5(2), 241-260, 1992. 

 
1782


	1 Introduction 
	2 Background 
	2.1  Voting 
	2.2 Stacking 
	Section 2.2.1 presents stacking, while Section 2.2.2 describes some related work. 
	2.2.1 Definition 
	2.2.2 Related Work 

	2.3  Information Extraction 
	Sections 2.3.1 and 2.3.2 provide background on the task of Information Extraction (IE), while Section 2.3.3 describes an existing framework for combining multiple IE systems. 
	2.3.1 Definition 
	2.3.2 Related Work 
	2.3.3 Multistrategy Learning 

	3 Voting for Information Extraction 
	3.1 Example of Combining Different Systems – The Merged Template 
	3.2 Majority Voting 
	3.3 Voting Using Probabilities 

	4 Stacked Generalization for Information Extraction 
	4.1 Motivation for Performing Learning 
	4.2 Stacking Using Nominal Values 
	4.3  Stacking at Runtime 
	4.4 Stacking Using Probabilities 

	5 Experimental Setup 
	5.1 Domains 
	5.2 Base-level Information Extraction Systems 
	5.3 Meta-level Algorithms for Classification 
	5.4 Evaluation Methodology and Metrics 

	6 Results and Comparisons 
	6.1 Results of Base-level 
	6.2  Analysis of the Meta-level Instances 
	6.3 Results of Meta-level and Comparisons 
	6.4 Discussion 
	6.4.1 Best Classifiers at Meta-level 
	6.4.2 Majority Voting 
	6.4.3 Voting Using Probabilities 
	6.4.4 Multistrategy Learning for Information Extraction 


	7 Explaining the Results 
	7.1 Analyzing Cases of Complete Agreement in the Output of the Base-level Systems 
	7.2 Analyzing Cases of Partial Agreement in the Output of the Base-level Systems 
	7.3 Analyzing Cases of Disagreement in the Output of the Base-level Systems 
	7.4 Comparing by Meta-level Classification Accuracy 
	7.5 Stacking Pairs of Information Extraction Systems 

	8 Concluding Remarks 
	Acknowledgements 
	References 


