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Legańes (Madrid), 28911, Spain

Editors: Kristin P. Bennett and Emilio Parrado-Hernández

Abstract

The fields of machine learning and mathematical programmingare increasingly intertwined. Op-
timization problems lie at the heart of most machine learning approaches. The Special Topic on
Machine Learning and Large Scale Optimization examines this interplay. Machine learning re-
searchers have embraced the advances in mathematical programming allowing new types of models
to be pursued. The special topic includes models using quadratic, linear, second-order cone, semi-
definite, and semi-infinite programs. We observe that the qualities of good optimization algorithms
from the machine learning and optimization perspectives can be quite different. Mathematical pro-
gramming puts a premium on accuracy, speed, and robustness.Since generalization is the bottom
line in machine learning and training is normally done off-line, accuracy and small speed im-
provements are of little concern in machine learning. Machine learning prefers simpler algorithms
that work in reasonable computational time for specific classes of problems. Reducing machine
learning problems to well-explored mathematical programming classes with robust general pur-
pose optimization codes allows machine learning researchers to rapidly develop new techniques.
In turn, machine learning presents new challenges to mathematical programming. The special issue
include papers from two primary themes: novel machine learning models and novel optimization
approaches for existing models. Many papers blend both themes, making small changes in the
underlying core mathematical program that enable the develop of effective new algorithms.

Keywords: machine learning, mathematical programming, convex optimization

1. Introduction

The special topic on “Large Scale Optimization and Machine Learning” focuses on the core op-
timization problems underlying machine learning algorithms. We seek to examine the interaction
of state-of-the-art machine learning and mathematical programming, soliciting papers that either
enhanced the scalability and efficiency of existing machine learning models or that promoted new
uses of mathematical programming in machine learning. The special topic was anoff-shoot of the
PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning)Network of Excel-
lence Workshop on “Machine Learning, SVMs and Large Scale Optimization”, held in Thurnau,
Germany from March 16 to 18, 2005.
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Optimization lies at the heart of machine learning. Most machine learning problems reduce
to optimization problems. Consider the machine learning analyst in action solving aproblem for
some set of data. The modeler formulates the problem by selecting an appropriate family of models
and massages the data into a format amenable to modeling. Then the model is typicallytrained by
solving a core optimization problem that optimizes the variables or parameters ofthe model with
respect to the selected loss function and possibly some regularization function. In the process of
model selection and validation, the core optimization problem may be solved many times. The
research area of mathematical programming intersects with machine learning through these core
optimization problems. On one hand, mathematical programming theory supplies a definition of
what constitutes an optimal solution – the optimality conditions. On the other hand, mathematical
programming algorithms equip machine learning researchers with tools for training large families
of models.

In general, a mathematical program is a problem of the form

mins f (s)
subject to g(s) ≤ 0

h(s) = 0
s∈ Ω

. (1)

The variabless∈ Ω are determined so as to minimize the objective functionf possibly subject to in-
equalityg(s)≤ 0 and equality constraintsh(s) = 0. Examples of the setΩ include then-dimensional
real numbers,n-dimensional integers, and the set of positive semi-definite matrices. Convexity plays
a key role in mathematical programming. Convex programs minimize convex optimization func-
tions subject to convex constraints ensuring that every local minimum is always a global minimum.
In general, convex problems are much more tractable algorithmically and theoretically. The com-
plexity of nonconvex problems can grow enormously. General nonconvex programs are NP-hard.
However, local solutions of such problems may be quite useful in machine learning problems, e.g.
(Dempster et al., 1977; Bennett and Mangasarian, 1993; Bradley et al.,1997; Bradley and Man-
gasarian, 1998). Global optimization addresses the issue of nonconvexoptimization. Integer or
discrete optimization considers nonconvex problems with integer constraints.

A taxonomy of mathematical programs exists based on the types of objectives and constraints.
There are now many flavors of mathematical programs: linear, quadratic, semi-definite, semi-
infinite, integer, nonlinear, goal, geometric, fractional, etc. For example, linear programs have a
linear objective and linear constraints. A more complete description of these problems can be ob-
tained from the mathematical programming glossary (www.cudenver.edu/∼hgreenbe/glossary/) and
the NEOS optimization guide (www-fp.mcs.anl.gov/otc/Guide/). Each flavor of mathematical pro-
gram is a different research area in itself with extensive theory and algorithms. Very brief descrip-
tions of the mathematical programs used in this special issue can be found in theAppendix. Good
sources for theory and algorithms concerning nonlinear programming are(Nocedal and Wright,
1999), (Bertsekas, 2004), and (Bazaraa et al., 2006). An introduction to convex optimization in-
cluding semi-definite programming can be found in (Boyd and Vandenberghe, 2004). Semi-infinite
programming theory and algorithms are covered in (Goberna and López, 1998). Information about
integer programming can be found in (Nemhauser and Wolsey, 1999).

We observe that the relationship between available mathematical programming models and ma-
chine learning models has been increasingly coupled. The adaptation of mathematical program-
ming models and algorithms has helped machine learning research advance. Researchers in neural
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networks went from backpropagation in (Rummelhart et al., 1986) to exploring the use of various
unconstrained nonlinear programming techniques such as discussed in (Bishop, 1996). The fact that
backpropagation worked well in turn stimulated mathematical programmers to work on stochastic
gradient descent to better understand its properties, as in (Mangasarian and Solodov, 1994). With
the advent of kernel methods (Cortes and Vapnik, 1995), mathematical programming terms such as
quadratic program, Lagrange multipliers and duality are now very familiar to well-versed machine
learning students. Machine learning researchers are designing novelmodels and methods to ex-
ploit more branches of the mathematical programming tree with a special emphasison constrained
convex optimization. The special topic reflects the diversity of mathematical programming models
being employed in machine learning. We see how recent advances in mathematical programming
have allowed rich new sets of machine learning models to be explored without initial worries about
the underlying algorithm. In turn, machine learning has motivated advances inmathematical pro-
gramming: the optimization problems arising from large scale machine learning anddata mining
far exceed the size of the problem typically reported in the mathematical programming literature.

This special topic investigates two majors themes in the interplay of machine learning (ML) and
mathematical programming (MP).

The first theme contains the extension of well-known optimization methods to new learning
models and paradigms. A wide range of convex programming methods is used tocreate novel mod-
els for problems such as uncertain and missing data, and hypothesis selection. Also, methods are
developed for introducing constraints into the learning model in order to incorporate domain knowl-
edge into graphical models and to enforce nonnegativity and sparsity in dimensionality reduction
methods.

The second theme collects works aimed at solving existing machine learning models more effi-
ciently. As data set size grows, off-the-shelf optimization algorithms become inadequate. Methods
that exploit the properties of learning problems can outperform generic mathematical program-
ming algorithms. Many of the included papers deal with well-known convex optimization problems
present in ML tools such as the quadratic and linear programs at the core of the ubiquitous support
vector machines (SVM) in either primal or dual forms. Tree re-weighted belief propagation is used
to solve LP relaxations of large scale real-world belief nets. We see that thekey to top perfor-
mance is creating algorithms that exploit the structure of the problem and pay careful attention to
algorithmic and numeric issues.

Many of the papers cross boundaries of both themes. They make small changes in the underlying
models that enable the development of powerful new algorithms. Novel methods are developed for
multi-kernel, ranking, graph-based clustering, and structured learning. The resulting algorithms
decompose the problem into convex subproblems that can be more readily solved.

To summarize, in this special issue we see novel approaches to machine learning models that
require solution of continuous optimization problems including: unconstrained, quadratic, linear,
second-order cone, semi-definite, and semi-infinite convex programs. We first examine the inter-
play of machine learning and mathematical programming to understand the desirable properties
of optimization methods used for training a machine learning model. We observe that the desir-
able properties of an optimization algorithm from a machine learning perspective can differ quite
markedly from those typically seen in mathematical programming papers. Then we will examine
the papers within and across the two themes and discuss how they contribute tothe state of the art.
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2. Interplay of Optimization and Machine Learning

The interplay of optimization and machine learning is complicated by the fact that machine learning
mixes modeling and methods. In that respect, ML is much like operations research (OR). Mathe-
matical programming/optimization is historically a subfield of OR. OR is concerned with modeling
a system. Mathematical programming is concerned with analyzing and solving themodel. Both
OR and ML analysts address real world problems by formulating a model, deriving the core opti-
mization problem, and using mathematical programming to solve it. According to (Radin, 1998) an
OR analyst must trade off tractability – “the degree to which the model admits convenient analysis”
and validity – “the degree to which inferences drawn from the model hold for real systems”. So at
a high level the OR and ML analysts face the same validity and tractability dilemmas and it is not
surprising that both can exploit the same optimization toolbox.

In ML, generalization is the most essential property used to validate a novelapproach. For a
practical ML problem, the ML analyst might pick one or more families of learningmodels and
an appropriate training loss/regularization function, and then search foran appropriate model that
performs well according to some estimate of the generalization error based on the given training
data. This search typically involves some combination of data preprocessing, optimization, and
heuristics. Yet every stage of the process can introduce errors that can degrade the quality of the
resulting inductive functions. We highlight three sources of such errors. The first source of error
is the fact that the underlying true function and error distribution are unknown, thus any choice of
data representation, model family and loss functions may not be suitable for the problem and thus
introduce inappropriate bias. The second source of error stems from the fact that only a finite amount
of (possibly noisy) data is available. Thus even if we pick appropriate lossfunctions, models, and
out-of-sample estimates, the method may still yield inappropriate results. The thirdsource of error
stems from the difficulty of the search problem that underlies the given modeling problem. Reducing
the problem to a convex optimization by appropriate choices of loss and constraints or relaxations
can greatly help the search problem. Note that in many cases the ML models aremade convex by an
appropriate definition of the system boundaries that treats parameters as fixed. For example, ridge
regression for a fixed ridge parameter is a convex unconstrained quadratic program. The generalized
cross-validation method (Golub and von Matt, 1997) treats the ridge parameter as within the system
boundary, and thus requires the solution of a nonconvex problem.

Consider tractability of a given model expressed as an optimization problem. Both ML and MP
seek algorithms that efficiently compute “appropriate” solutions. The issuesthat make an algorithm
more efficient – complexity, memory usage, etc. – are the same for both communities. But there
is a large gap between what are considered an appropriate solutions in thetwo communities. In
MP, “appropriate” solutions are the ones that solve the model with a high degree of accuracy as
measured by the optimality conditions. As in ML, MP has large suites of benchmark problems.
A benchmark study, typically would address both the speed of the algorithms as measured, for
example, by performance profiles (Dolan and Moré, 2002). The quality of the solution would be
measured by the objective value, a measure of the violation of the constraints, and a measure of
the violations of the Karush-Kuhn-Tucker optimality conditions. Note that all of these metrics of
solution quality are rarely reported in the ML literature. In MP, great care may be taken to make
sure that solutions of equivalent accuracy are compared (see for example (Dolan and Moré, 2002)).

In ML, appropriateness is a much harder question due to the sources of modeling errors de-
scribed above. A typical benchmarking study reports generalization errors and possibly compu-
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tation times. Little or no attention is paid to how well the underlying optimization problem was
solved by any of the metrics typically used in mathematical programming. Convergence tolerances
are rarely reported and if they are, they typically are quite large (10−2 to 10−6) relative to those
seen in optimization papers. In machine learning the optimization problems being solved are only
rough approximations of the real problem of finding a model that generalizes well. The ML modeler
may change the problem formulation and algorithms, as long as generalization isnot compromised.
The papers in section 6 of this special topic illustrate how minor model reformulations can lead to
significant improvements in algorithms. In general, it does not make much senseto require a ML
model to converge to a high accuracy solution. When early stopping is usedas a form of regular-
ization, then the algorithm may never need to reach the solution. In this specialtopic (Keerthi et al.,
2006) and (Taskar et al., 2006b) develop algorithms relying on early stopping and find that they offer
advantages over alternative parametric approaches. Thus the desirable goal of a machine learning
algorithm is to find a somewhat accurate solution efficiently. An optimization algorithm that has
a poor asymptotic convergence rate may work quite well for ML. Ill-conditioning of the objective
is typically viewed as a negative aspect of a model in MP, but ill-conditioning of the loss function
and the resulting slow convergence of gradient methods may prevent overfitting. Thus not only is
“good” optimization not necessary, but “bad” optimization algorithms can leadto better machine
learning models.

In the ML community, Occam’s razor appears to apply to algorithms as well; simpleralgorithms
are considered to be better. MP seeks robust optimization algorithms that findvery accurate solu-
tions to a broad class of functions with a premium for decreases in both theoretical complexity and
empirical computation time. The emphasis is on solving the same size problems faster. This leads to
complex algorithms. The effort to implement a simplex method for linear programmingmatching a
state-of-art commercial solver such as CPLEX would be immense. The ML analyst’s computational
needs are different. An algorithm that solves the problem with good generalization in a reasonable
amount of time is a good algorithm. Incremental speed increases are not so interesting. Simplicity
of the algorithms is considered to be a significant plus. Scalability becomes a bigger issue as data set
sizes grow. A general purpose solver is usually not the most scalable choice because it was designed
to robustly solve a wide range of problems to high accuracy. However, theML optimization can be
tailored to exploit the structure of the optimization model. Robustness and ill-conditioning are not
big issues since the algorithm need only be effective for a narrow class of functions and constraints
and high accuracy solutions are frequently unnecessary.

To summarize, desirable properties of an optimization algorithm from the ML perspective are

• good generalization,

• scalability to large problems,

• good performance in practice in terms of execution times and memory requirements,

• simple and easy implementation of algorithm,

• exploitation of problem structure

• fast convergence to an approximate solution of model,

• robustness and numerical stability for class of machine learning models attempted,

• theoretically known convergence and complexity.
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3. New Machine Learning Models Using Existing Optimization Methods

The special topic papers include novel machine learning models based on existing primarily convex
programs such as linear, second order cone, and semi-definite programming. The reader unfamiliar
with the basic convex programs can see their definitions in the Appendix. In these papers, the
authors develop novel modeling approaches to uncertainty, hypothesis selection, incorporation of
domain constraints, and graph clustering, and they use off-the-shelf optimization packages to solve
the models.

3.1 Dealing with Uncertainty Using Second Order Cone Programming

The paper “Second Order Cone Programming Approaches for Handling Missing and Uncertain
Data” (Shivaswamy et al., 2006) presents an extension to SVM that deals with situations where the
observations are not complete or present uncertainty. The SVM Quadratic Program (QP) problem is
cast into a more convenient Second Order Cone Program (SOCP) and uncertainty is represented as
probabilistic constraints (SVM slack variables turn out to be random variables). They also come up
with an interesting geometrical interpretation of their method as every data pointbeing the center of
an ellipsoid and the points within this ellipsoid being assigned to the class of the center. The study
is extended to multiclass classification and regression.

3.2 Convex Models for Hypothesis Selection

Two papers address hypothesis selection. (Zhang et al., 2006) looks at pruning an ensemble of
classifiers constructed from a pool of already trained classifiers. Thegoal is to make the performance
of the smaller group equivalent to that of the whole pool, thus saving storage and computational
resources. Traditionally, this selection process has been carried out using heuristics or by using
greedy search. In (Bergkvist et al., 2006), the goal is to identify a smallsubset of hypotheses that
exclude the true targets with a given error probability.

The first paper, “Ensemble Pruning Via Semi-Definite Programming” (Zhanget al., 2006),
presents an optimization for pruning classification ensembles. The selection of the classifiers is
based on a trade-off between their individual accuracies and the disparity of their predictions. This
trade-off determines a quadratic integer program, i.e. a QP where the variables have to be integer
numbers. The authors in (Zhang et al., 2006) propose a chain of transformations of the quadratic
integer program towards a convex semi-definite program (SDP). Experimental results show that this
approach beats the state-of-the-art greedy search methods. In addition, the scheme forms the basis
of a powerful framework for sharing classifiers in a distributed learningenvironment, which enables
the attack of large scale problems.

In the second paper, “Linear Programs for Hypotheses Selection in Probabilistic Inference Mod-
els”, Bergkvist et al. (2006) introduce an LP for hypothesis selection inprobabilistic inference prob-
lems motivated by a protein structure prediction problem. The model optimizes the expected weight
of excluded hypotheses for a given error probability bound. The dual variables of the LP represent
worst-case distributions of the hypotheses. The authors employ generic off-the-shelf LP optimizers
but hypothesize that more efficient algorithms which exploit the problem structure may exist.

4. Models with Side Constraints

The next two papers look at traditional machine learning models with additionalconstraints.
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Niculescu et al. (2006), in “Bayesian Network Learning with Parameter Constraints”, use con-
straints to incorporate domain knowledge into Bayesian networks. The paper examines the cases
for parameter sharing and conjugate constrained Dirichlet priors. Theyemploy existing optimiza-
tion algorithms to solve the resulting models. Addition of constraints improves generalization.
Real-world results are presented for hidden process models applied to fMRI brain imaging. They
formally prove that introducing constraints reduces variance.

Non-negative matrix factorisation (NMF) is a very attractive feature selection technique because
it favors sparsity and data representations based on parts of the problem. However, it also poses a
difficult nonconvex problem that is commonly solved via gradient descent.The paper “Learning
Sparse Representations by Non-Negative Matrix Factorization and SCOP” (Heiler and Schn̈orr,
2006) presents an iterative algorithm to perform a sparse non-negative matrix factorization. They
exploit the biconvex nature of Euclidean NMF and the reverse-convex structure of the corresponding
sparsity constraints to derive an efficient optimization algorithm. This way, thestrongly non-convex
NMF is solved through the iterative application of a series of convex SOCP problems.

4.1 SDP Methods for Graph Clustering

The paper “Fast SDP Relaxations of Graph Cut Clustering, Transduction, and Other Combinatorial
Problems” (De Bie and Cristianini, 2006) proposes an SDP relaxation to the normalized cut prob-
lem. The normalized cut problem arises when one wishes to partition a data setwhere similarity
relationships among instances are defined. The mathematical formulation of thisproblem leads
to an intractable combinatorial optimization problem. Spectral relaxation has been used to avoid
this intractability. In spectral relaxation, the combinatorial optimization is cast onto a more simple
eigendecomposition problem that gives the subsets of data. The new approach in (De Bie and Cris-
tianini, 2006) consists of an SDP relaxation of the combinatorial problem thatturns out to be tighter
than the spectral one, although at the expenses of a larger computationalburden. Moreover, they
also present a scheme to develop a cascade of SDP relaxations that allowscontrol of the trade-off
between computational cost and accuracy. This study is extended to applications in semi-supervised
learning.

5. Refining the Classics: Improvements in Algorithms for Widely Ssed Models

Widely used methods such as SVM and Bayesian networks have well-accepted core optimization
problems and algorithms. The demand for the ability to learn with massive amounts of data is
increasing. The immediate answer to this demand from the optimization and machine learning
communities is to try to come up with more efficient implementations of these solid and reliable
optimization methods.

5.1 Optimization Approaches for Dual SVMs

The SVM formulations for classification, regression, ranking, and novelty detection require the
solutions of large dense QPs or LPs. These QP and LP problems were initiallysolved by general-
purpose solvers. Now the demand for more scalable and easier to implement algorithms makes
novel algorithms for SVMs an active and dynamic research area.

The primary challenges in solving the LP and QP arises from the linear inequality constraints. If
the set of constraints that are active, i.e. satisfied at equality, are knownthen the problems reduce to
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the solution of a set of linear equations. The inactive constraints have no effect on the final solution
since they are satisfied as strict inequalities. Thus identification of the activeconstraints, or active
set, represents a key step in LP and QP algorithms. One of the most common ways of solving these
large QPs and LPs is to use some active set strategy. An active set strategy estimates the active set,
solves the problem with respect to the estimated active set, uses the result to update the active set
by adding and dropping constraints, and then repeats until an optimal solution is found. In SVMs,
active set methods have a clear machine learning interpretation. For examplein SVM classification,
the active set in the primal corresponds to data points that are on the margin or in error. In the dual
SVM formulation, there is a Lagrangian multiplier associated with each point. In the dual, the active
set is determined by whether each Lagrangian multiplier is at bound or not.

The paper “An Efficient Implementation of an Active Set Method for SVMs”(Scheinberg, 2006)
adapts “traditional” active set methods to the special structure of SVMs. Traditional active set
methods were not thought to be tractable for large scale SVMs, but the paper concludes that they
are competitive with popular methods such as SVMlight (Joachims, 1999). SVMlight is an example
of a restricted active set method in which only a few variables are allowed to vary at each iteration.
The restricted active set method in SVMLight decomposes the QP into subproblems, each identified
by a group of variables that form an active set. Only the variables in the active set will be updated
through the solution of the subproblem. These subproblems are solved untilall the optimality
conditions are met. These methods have the disadvantage of slow convergence when close to the
optimal solution. The full active set in this paper avoids this problem. When full active sets are used,
there is a corresponding speedup in the convergence of the optimization method. The paper provides
a careful discussion of the details necessary for efficient implementation,active set selection, and
warm starts (very valuable for cross-validation). The computational results find that the full active
set method performs faster that SVMlight. This difference is most marked for higher accuracy
solutions. The full active set method offers a speed scalability tradeoff,it performs faster that SVM-
Light but may reach memory limitations sooner since it requires storage of a matrix of the size of
the active set.

Reduced active set methods are taken to the extreme result in the popular sequential minimal
optimization (SMO) method (Platt, 1999). In SMO, all variables except for a subset of two samples
are fixed at each iteration. With the many subsets, the variable selection methodbecomes a key as-
pect in the convergence speed of the algorithm. The paper “Maximum-Gain Working Set Selection
for SVMs” (Glasmachers and Igel, 2006) describes a new strategy to select the working set based
on a greedy maximization of the progress in each single iteration. The algorithmuses precalculated
information, which means no increment of the computational burden. The experiments show sig-
nificant run time reductions over the broadly used SMO-based LIBSVM (Fan et al., 2005), so that
full sets can be used, with a corresponding speedup in the convergence of the optimization method.

The paper “Parallel Software for Training Large Scale Support Vector Machines on Multipro-
cessor Systems” (Zanni et al., 2006) develops a multiprocessor solver for the standard SVM QP.
Recent work in MP is used to develop a parallel gradient-projection-based decomposition technique
for handling subproblems of moderate size. The subproblems and gradient calculations are done
in parallel. Convergence results prove the algorithm converges to an optimal solution of the origi-
nal QP. In practice, thanks to a large working set size, the algorithm converges in a few iterations.
Details on how to fully exploit multiprocessors using strategies such as parallel kernel caching are
provided. Results are reported for SVMs trained on millions of data points.
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The paper “Incremental Support Vector Learning: Analysis, Implementation and Applications”
(Laskov et al., 2006) aims at the software implementation of an efficient incremental learning algo-
rithm for SVMs. The authors examine incremental SVM learning in two scenarios: active learning
and limited resource learning. They propose a new storage strategy, simultaneously column-wise
and row-wise, combined with a smarter organization of the computations for theminor iteration in
terms of gaxpy-type matrix-vector products. This algorithm drops the training time of an incremen-
tal SVM by a factor of 5 to 20.

5.2 Optimization Approaches for Primal SVMs

In SVMs and other kernel methods, the computational cost of predicting a novel instance is directly
related to the number of nonzero components or support vectors in the prediction function. Thus
methods with a reduced number of support vectors are needed. One approach to doing this is to
optimize the SVM in the primal form while directing invoking the representer theorem to allow
generalization of kernels. In these direct or primal methods, the predictionfunction is assumed to
consist of a linear combination of basis functions formed by the kernel. Prior work has established
that sparse and reduced sparse or reduced complexity SVM functions can be achieved by either
introducing one-norm regularization or by introducing early stopping strategies.

With respect to greedy construction methods, the paper “Building SupportVector Machines with
Reduced Classifier Complexity” (Keerthi et al., 2006) contains a very efficient algorithm to develop
a compact support vector machine. The efficiency of the method relies on both a primal method
approach to the optimization and a cheap and accurate selection criterion forkernel basis functions.
The experimental work presents a wide and systematic comparison with state-of-the-art column
generation methods. This comparison points out the excellent capabilities of the algorithm in terms
of compression in the number of basis functions, as well as a classification accuracy comparable to
that of the full SVM.

Primal or direct kernel SVM models formulated with absolute value type lossesand one-norm
regularization produce LP core optimization problems. The one-norm enforces sparsity with the
degree of sparsity controllable by a tradeoff parameter. Robust general purpose LP optimization
tools that exploit advanced numerical analysis are available that can reliably and accurately solve
massive problems. But these codes have several drawbacks from machine learning perspective: they
are expensive to buy, they are complicated to implement, they do not exploit problem structure, and
finally they are designed to find highly accurate solutions while in machine learning this may not be
necessary. Thus alternative efficient and easy to implement LP algorithms for LP SVM type models
are sorely needed.

The paper “Exact 1-Norm Support Vector Machines Via Unconstrained Convex Differentiable
Minimization” (Mangasarian, 2006) introduces a Newton method for exactly solving the 1-norm
SVM problem. It shows that the general LP problem can be recast as anunconstrained undiffer-
entiable piecewise quadratic function using a dual exterior penalty function. Unlike prior penalty
formulations like (Fung and Mangasarian, 2004), the penalty parameter is finite. The author in-
troduces a generalized Newton method for solving the revised problem. Theresulting algorithm
outperforms CPLEX, a widely used commercial LP package.
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5.3 LP Relaxations for Belief Propagation

The paper “Linear Programming Relaxations and Belief Propagation – An Empirical Study” (Yanover
et al., 2006) introduces a very efficient method to find the most probable configuration of a graphical
model by relaxing the corresponding integer program to a LP. The bad news is that the resulting LP
has a large number of constraints and variables and it cannot be solved on desktop machines using
commercial LP solvers. Fortunately the Tree-Reweighted Belief Propagation (TRBP) algorithm can
be used to solve the LP. Results show that the special purpose TRBP LP solver outperforms CPLEX
and can be used to solve large scale problems that are not tractable with CPLEX. The CPLEX model
represents the graph as a matrix while TRBP directly represents the graph.

6. New Algorithms Starting from Reformulated Models

The special issue also illustrates how small reformulations of the model can yieldmuch better
algorithms. In the final four papers, we see how existing formulations are reformulated to admit
new types of algorithms. In (Sonnenburg et al., 2006) and (Shalev-Shwartz and Singer, 2006),
the revised formulations and novel algorithms can more effectively exploit special structure thus
reducing the problem to a series of familiar, more easily solved problems.

6.1 Large Scale Multi-Kernel Learning Via Semi-Infinite Programming

The success of a kernel method is highly dependent on the choice of kernel. The multi-kernel learn-
ing (MKL) strategy is to consider a suite of kernels and let the algorithm decide on the choice of ker-
nel. The paper “Large Scale Multiple Kernel Learning” (Sonnenburg et al., 2006) proposes a novel
semi-infinite linear program (SILP) for the problem of learning with multiple kernels. Semi-infinite
linear programs have a finite number of variables, a linear objective, and an infinite number of linear
constraints. For SVM classification, the SILP solution is also optimal for the MKL quadratically
constrained quadratic program in (Bach et al., 2004). The SILP is solved using a column generation
method which alternates between solving a restricted master problem and an LP. The restricted mas-
ter problem is solved using the corresponding off-the-shelf single kernel learning algorithms for the
given loss. The LP is solved by a generic LP solver. The algorithm is veryeffective at seeking an
approximate solution to the SILP. The authors show how the method can be extended to a variety of
loss functions. Discussion of valuable details and variations of the algorithmneeded for large scale
problems are provided. Large scale results are achieved using parallelalgorithms. They provide
results for problems with up to 10 million data points and 20 kernels.

6.2 Better Ranking by Exploiting Structure

General purpose optimizers frontiers can be pushed forward in particular cases by exploiting prob-
lem structure. Often optimization problems can be cast onto simpler ones provided that the objective
function follow certain structure. This is the case in the paper “Efficient Learning of Label Rank-
ing by Soft Projection onto Polyhedra” (Shalev-Shwartz and Singer, 2006). The authors develop a
fast and frugal algorithm for learning rankings by comparing the predicted graph with the feedback
graph resulting in a QP with linear constraints. The algorithm decomposes the problem into a series
of soft projections that can be efficiently solved using an iterative algorithm. The algorithm covers a
large class of ranking and classification problems including multiclass and basic SVMs. It reduces
to SOR in the classification case (Mangasarian and Musicant, 1999).
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6.3 Max Margin Methods for Structured Output

Two of the papers tackled maximum margin methods for outputs defined on graphs by reformulating
the problem and developing algorithms that could exploit the special structure. The first looks at
hierarchical classification and the second looks at methods for more general structured data.

Maximum margin classification methods have focused on binary output problems. These meth-
ods have succesfully adapted to multicategory classification by analyzing theproblem as a collection
of binary problems (Rifkin and Klautau, 2004). However, emerging scenarios where the output is
modeled by a vector demand a more careful analysis since their binarization involves (i) an expo-
nential number of subproblems and (ii) the loss of the information encoded in the structured output.
In this sense, (Taskar et al., 2006a) proposes an interesting combinationof graphical models and
maximum margin classifiers where the former allows use of the structured output information and
the latter provides a reliable classification technology. Tractability from the optimization point of
view is achieved through the grouping of the variables of the optimization problem into marginals
defined by the graphical model.

The paper “Kernel-Based Learning of Hierarchical Multilabel Classification Models” (Rousu
et al., 2006) provides a more efficient framework for scenarios wherethe vector output describes
a hierarchical relationship. Their formulation requires the solution of a large scale quadratic pro-
gram. This method’s efficiency relies on a decomposition of the core probleminto single variable
subproblems and the use of a gradient-based approach. Moreover, the optimization is enhanced by
a dynamic program that computes the best update directions in the feasible set.

The paper “Structured Prediction, Dual Extragradient and Bregman Projections” (Taskar et al.,
2006b) proposes simple scalable maximimum margin algorithms for structured output models in-
cluding Markov networks and combinatorial models. The problem is to take training data of in-
stances labeled with desired structured outputs and a parametric scoring function and learn the pa-
rameters so that the highest scoring outputs match as closely as possible the desired outputs. Prior
maximum margin approaches produced QP models (Taskar et al., 2005). Bythinking of the prob-
lem one level up as a convex concave saddle point model, the authors cancapitalize on the recent
advances in optimization on extragradient methods (Nesterov, 2003). Theextragradient approach
produces a simple algorithm consisting of a gradient and projection step. For the class of models
considered, the projection requires solution of dynamic program or network flow models for which
very efficient algorithms exist. The method is regularized by early stopping.Interestingly the path
of the extragradient algorithm corresponds closely to the parametric solution path of the regularized
margin methods in their experiments. This demonstrates the interplay of the optimization algorithm
and regularization: the path of the optimization algorithm is part of the regularization and there is
no need to accurately solve the model.

7. Conclusion

Research in ML and research in MP have become increasingly coupled. ML researchers are making
fuller use of the branches of the MP modeling tree. In this issue we see MP researchers using
convex optimization methods including linear, nonlinear, saddle point, semi-infinite, second order
cone, and semi-definite programming models. The availability of general MP models, along with
robust general purpose solvers, provide tools for ML researchers to explore new ML problems. The
resulting ML models challenge the capacity of general purpose solvers resulting in the development
of novel special purpose algorithms that exploit problem structure. These special purpose solvers
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do not necessarily possess the traits associated with good optimization algorithms. Tractability and
scalability are valued in both ML and MP communities. Typically, MP demands that algorithms find
high accuracy solutions and that they be robustness across wide classes of problems. In contrast,
ML algorithm need to find good solutions to narrow classes of problems with special structure.
Models may be reformulated to allow better algorithms provided that generalization is improved
or at least not compromised. High accuracy is not required because ofthe inherent inaccuracies
in the machine learning models and the fact that inaccurate solutions are deliberately sought as a
form of regularization, for example as in early stopping. Also, ML puts moreof a premium on
algorithms that are easily implemented and understood at the expense of performance/complexity
improvements that are typically studied in mathematical programming. In this specialtopic large
scale problems were successfully tackled by methods that exploited both the novel MP models
and their special structure and state-of-the-art MP methods. The special issue illustrates the many
forms of convex programs that can be used in ML. But we expect the interplay of MP and ML will
increase as more branches of the MP tree are incorporated into ML and thedemands of large scale
ML models exceed the capacity of existing solvers.
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Appendix: Standard Convex Programs

This section reviews the basic convex optimization mathematical programming modelsused in this
special issue.

Quadratic Programming
Quadratic programming is used extensively in machine learning and statistics. The use of the least
squares loss function in methods such as ridge regression and the 2-norm regularization in most
support vector machine models both lead to quadratic programming models. A quadratic program
(QP) has a quadratic objective with linear constraints.

Based on (Nocedal and Wright, 1999), we provide a brief review of quadratic programming and
the reader can see (Nocedal and Wright, 1999) for more details. The general quadratic program can
be stated as

mins
1
2s′Qs+c′s

subject to ais≤ bi i ∈ I
a js= b j j ∈ ε

(2)

where the HessianQ is an×n symmetric matrix, I andε are finite sets of indices andai , i ∈ I ∪ ε
aren×1 vectors. IfQ is positive semi-definite, i.e.s′Qs≥ 0 for anys, then the problem is convex.
For convex QP, any local solution is also a global solution. A QP can always be solved or shown to
be infeasible in a finite number of iterations. The following necessary and sufficient Karush-Kuhn-
Tucker (KKT) optimality conditions of QP are formed with the use of Lagrangian multipliersαi for
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the inequality constraints andβ j for the equality constraints:

Primal Feasibility ai
′s≤ bi i ∈ I

a j
′s= b j j ∈ ε

Dual Feasibility Qs+∑i∈I aiαi +∑ j∈ε a jβ j = 0
αi ≥ 0 i ∈ I

Complementarity αi(ai
′s−b j) = 0 i ∈ I

(3)

Note that if there are no inequality constraints (I= /0), then a KKT point can be found by simply
solving a system of linear equations.

Problems with inequality constraints represent more of a challenge. Two families of QP methods
prevail: interior point methods and active-set methods. We focus on the latter since active set
algorithms are a key component of this special topic. The optimal active set isthe set of constraints
satisfied as equalities at the optimal solutions. Active set methods work by making educated guesses
as to the active set and solving the resulting equality constrained QP. If the guesses are wrong, the
method uses gradient and Lagrangian multiplier information to determine constraints to add to or
subtract from the active set.

Classical SVMs and the many subsequent variations require the solution ofa QP problem.

Linear Programming
Linear programming optimizes a linear function subject to linear constraints. Since linear functions
and constraints are convex, an LP is always a convex program. Linearprogramming can be thought
of as a special case of the QP with the HessianQ equal to 0. The general linear program can be
stated as

mins c′s
subject to ais≤ bi i ∈ I

a js= b j j ∈ ε
(4)

Interior point methods and simplex methods (active set methods) are both widely used within gen-
eral purpose LP solvers.

Second-Order Cone Programming
The second-order cone program (SOCP) problems have a linear objective, second-order cone con-
straints, and possibly additional linear constraints:

mins c′s
subject to ||Ris+di ||2 ≤ ais+bi i ∈ C

a js= b j j ∈ ε
(5)

whereRi ∈ Rni×n anddi ∈ Rni . Consult (Boyd and Vandenberghe, 2004) Chapter 4 for an intro-
duction to SOCPs and their application to learning type problems. SOCPs are most often solved
using interior point algorithms. See (Mittelmann, 2003) for a benchmark of general purpose SOCP
algorithms.

Semidefinite Programming
Semidefinite programs (SDPs) are the generalization of linear programs to matrices. In standard

1277



BENNETT AND PARRADO-HERNÁNDEZ

form an SDP minimizes a linear function of a matrix subject to linear equality constraints and a
matrix nonnegativity constraint:

minS 〈C,S〉
subject to 〈A i ,S〉 = bi i ∈ I

S� 0
(6)

whereS, C, andA i are inRn×n andbi ∈ R. HereS� 0 meansS must be positive semidefinite
and〈C,S〉 = trace(CS). SDPs are most commonly solved via interior programming methods. A
comparison of SDP codes can be found in (Mittelmann, 2003).

Semi-infinite Programming
Semi-infinite linear programs (SILPs) are linear programs with infinitely many constraints. A SILP
minimizes a linear objective subject to an infinite number of linear constraints:

mins
1
2c′s

subject to as≤ 0 a∈ A
bs= 0 b ∈ B

(7)

whereA andB are sets (possibly infinite) ofn vectors. Reviews of semi-infinite programming can
be found in (Hettich and Kortanek, 1993) and (Reemtsen and Ruckmann, 1998), while the book
(Goberna and Ĺopez, 1998) gives extensive coverage of the topic.
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