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Abstract
We give a review of various aspects of boosting, clarifying the issues through a few simple results,
and relate our work and that of others to the minimax paradigmof statistics. We consider the
population version of the boosting algorithm and prove its convergence to the Bayes classifier
as a corollary of a general result about Gauss-Southwell optimization in Hilbert space. We then
investigate the algorithmic convergence of the sample version, and give bounds to the time until
perfect separation of the sample. We conclude by some results on the statistical optimality of the
L2 boosting.
Keywords: classification, Gauss-Southwell algorithm, AdaBoost, cross-validation, non-parametric
convergence rate

1. Introduction

We consider a standard classification problem: Let(X,Y),(X1,Y1), . . . , (Xn,Yn) be an i.i.d. sample,
whereYi ∈ {−1,1} andXi ∈ X . The goal is to find a good classification rule,X →{−1,1}.

The AdaBoost algorithm was originally defined, Schapire (1990), Freund (1995), and Freund
and Schapire (1996) as an algorithm to construct a good classifier by a “weighted majority vote” of
simple classifiers. To be more exact, letH be a set of simple classifiers. The AdaBoost classifier
is given by sgn

(
∑M

m=1 λmhm(x)
)
, whereλm ∈ R, hm ∈ H , are found sequentially by the following

algorithm:

0. Letc1 = c2 = · · ·= cn = 1, and setm= 1.

1. Findhm = argminh∈H ∑n
i=1cih(Xi)Yi . Set

λm =
1
2

log
(∑n

i=1ci +∑n
i=1cihm(Xi)Yi

∑n
i=1ci−∑n

i=1cihm(Xi)Yi

)
=

1
2

log
(∑hm(Xi)=Yi

ci

∑hm(Xi)6=Yi
ci

)
.
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2. Setci ← ci exp
(
−λmhm(Xi)Yi

)
, andm←m+1, If m≤M, return to step 1.

M is unspecified and can be arbitrarily large.
The success of these methods on many data sets and their “resistance to overfitting”—the test

set error continues to decrease even after all the training set observations were classified correctly,
has led to intensive investigation to which this paper contributes.

Let F∞ be the linear span ofH . That is,

F∞ =
∞

[

k=1

Fk, whereFk =
{ k

∑
j=1

λ jh j : λ j ∈ R, h j ∈ H , 1≤ j ≤ k
}

.

A number of workers have noted, Breiman (1998,1999), Friedman, Hastieand Tibshirani (2000),
Mason, Bartlett, Baxter and Frean (2000), and Schapire and Singer (1999), that the AdaBoost clas-
sifier can be viewed as sgn

(
F(X)

)
, whereF is found by a greedy algorithm minimizing

n−1
n

∑
i=1

exp
(
−YiF(Xi)

)

overF∞.
¿From this point of view, the algorithm appeared to be justifiable, since as was noted in Breiman

(1999) and Friedman, Hastie, and Tibshirani (2000), the corresponding expressionEexp
(
−YF(X)

)
,

obtained by replacing the sum by expectation, is minimized by

F(X) =
1
2

log
(

P(Y = 1|X)/P(Y =−1|X)
)
,

provided the linear spanF∞ is dense in the spaceF of all functions in a suitable way. However, it
was also noted that the empirical optimization problem necessarily led to rules which would classify
every training set observation correctly and hence not approach the Bayes rule whatever ben, except
in very special cases. Jiang (2003) established that, for observation centered stumps, the algorithm
converged to nearest neighbor classification, a good but rarely optimalrule.

In another direction, the class of objective functionsW(·) that can be considered was extended
by Friedman, Hastie, and Tibshirani (2000) to otherW, in particular,W(t) = log(1+e−2t), whose
empirical version they identified with logistic regression in statistics, andW(t) = −2t + t2, which
they referred to as “L2 Boosting” and has been studied, under the name “matching pursuit”, in
the signal processing community. For all these objective functions, the population optimization of
EW

(
YF(X)

)
overF leads to a solution such that sgnF(X) is the Bayes rule. Friedman et al. also

introduced consideration of other algorithms for the empirical optimization problem. Lugosi and
Vayatis (2004) added regularization, changing the function whose expectation (both empirically and
in the population) is to be minimized fromW

(
YF(X)

)
to Wn

(
YF(X)

)
whereWn→W asn→ ∞.

Bühlmann and Yu (2003) consideredL2 boosting starting from very smooth functions. We shall
elaborate on this later.

We consider the behavior of the algorithm as applied to the sample(Y1,X1), . . . ,(Yn,Xn), as well
to the “population”, that is when means are replaced by expectations and sums by probabilities. The
structure of, and the differences between, the population and sample versions of the optimization
problem has been explored in various ways by Jiang (2003), Zhang and Yu (2003), B̈uhlmann
(2003), Bartlett, Jordan, and McAuliffe (2003), Bickel and Ritov (2003).

Our goal in this paper is
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1. To clarify the issues through a few simple results.

2. To relate our work and that of B̈uhlmann (2003), B̈uhlmann and Yu (2003), Lugosi and Vay-
atis (2004), Zhang (2004), Zhang and Yu (2003) and Bartlett, Jordan, and McAuliffe (2003) to
the minimax results of Mammen and Tsybakov (1999), Baraud (2001) and Tsybakov (2001).

In Section 2 we will discuss the population version of the basic boosting algorithms and show
how their convergence and that of more general greedy algorithms can be derived from a general-
ization of Theorem 3 of Mallat and Zhang (1993) with a simple proof. The result can, we believe,
also be derived from the even more general theorem of Zhang and Yu (2003), but our method is
simpler and the results are transparent.

In Section 3 we show how Bayes consistency of various sample algorithms when suitably
stopped or of sample algorithms based on minimization of a regularizedW follow readily from
population convergence of the algorithms and indicate how test bed validationcan be used to do
this in a way leading to optimal rates (in Section 4).

In Section 5 we address the issue of bounding the time to perfect separationof the different
boosting algorithm (including the standard AdaBoost).

Finally in Section 6 we show how minimax rate results for estimatingE(Y|X) may be attained
for a “sieve” version of theL2 boosting algorithm, and relate these to results of Baraud (2001),
Lugosi and Vayatis (2004), B̈uhlmann and Yu (2003), Barron, Birgé, Massart(1999) and Bartlett,
Jordan and McAuliffe (2003). We also discuss the relation of these results to classification theory.

2. Boosting “Population” Theorem

We begin with a general theorem on Gauss-Southwell optimization in vector space. It is, in part,
a generalization of Theorem 1 of Mallat and Zhang (1993) with a simpler proof. A second part
relates to procedures in which the step size is regularized cf. Zhang and Yu (2003) and Bartlett et
al. (2003). We make the boosting connection after its statement.

Let w be a real, bounded from below, convex function on a vector spaceH. Let H = H ′ ∪
(−H ′), whereH ′ is a subset ofH whose members are linearly independent, with linear spanF∞ =
{∑k

m=1 λmhm : λ j ∈R, h j ∈ H , 1≤ j ≤ k, 1≤ k < ∞}. We assume thatF∞ is dense inH, at least in
the sense that{w( f ) : f ∈ F∞} is dense in the image ofw. We define two relaxed Gauss-Southwell
“algorithms”.

Algorithm I: Forα ∈ (0,1], and givenf1 ∈H, find inductively f2, f3, . . . , . . . by, fm+1 = fm+λmhm,
λm∈ R, hm∈ H and

w( fm+λmhm)≤ α min
λ∈R, h∈H

w( fm+λh)+(1−α)w( fm) . (1)

Generalize Algorithm I to :

Algorithm II: Like Algorithm I, but replace (1) by

w( fm+λmh)+ γλ2
m≤ α min

λ∈R, h∈H
(w( fm+λh)+ γλ2)+(1−α)w( fm) .

There are not algorithms in the usual sense since they do not specify a unique sequence of iter-
ations but our theorems will apply to any sequence generated in this way. Technically, this scheme
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is used in the proof of Theorem 3. The standard boosting algorithms theoretically correspond to
α = 1, although in practice, since numerical minimization is used,α may equal 1 only approxi-
mately. Our generalization makes for a simple proof and covers the possibility that the minimum
of w( fm + λh) over H and R is not assumed, or multiply assumed. Letω0 = inf f∈F∞ w( f ) >
−∞. Let w′( f ;h) the linear operator of the Gataux derivative atf ∈ F∞ in the directionh ∈ F∞:
w′( f ;h) = ∂w( f +λh)/∂λ

∣∣
λ=0, and letw′′( f ;h) be the second derivative ofw at f in the directionh:

w′′( f ,h)≡ ∂2w( f +λh)/∂λ2
∣∣
λ=0 (both derivative are assumed to exist). We consider the following

conditions.

GS1. For anyc1 andc2 such thatω0 < c1 < c2 < ∞,

0 < inf {w′′( f ,h) : c1 < w( f ) < c2, h∈ H }
≤ sup{w′′( f ,h) : w( f ) < c2, h∈ H }< ∞.

GS2. For anyc2 < ∞,

sup{w′′( f ,h) : w( f ) < c2, h∈ H }< ∞ .

Theorem 1 Under AssumptionGS1, any sequence of functions generated according to Algorithm
I satisfies:

w( fm)≤ ω0 +cm

and if cm > 0:

w( fm)−w( fm+1)≥ ξ(w( fm)) > 0

where the sequence cm→ 0 and the functionξ(·) depend only onα, the initial points of the iterates,
andH . The same conclusion holds under ConditionGS2for any sequence fm generated according
to algorithm II.

The proof can be found in Appendix A.
Remark:

1. Condition GS2 of Theorem 1 guarantees that∑∞
m=1 λ2

m < ∞. It can be replaced by any other
condition that guarantees the same, for example, limiting the step size, replacingthe penalty
by other penalties, etc.

2. It will be clear from the proof in Appendix A that ifw′′ is bounded away from 0 and∞ then
cm is of order(logm)−

1
2 so that we, in fact, have an approximation rate – but it is so slow as

to be essentially useless. On the other hand, with strong conditions such as orthonormality of
the elements ofH , andH a classical approximation class such as trigonometric functions we
expect, withL2 boosting, to obtain rates such asm−1/2 or better.

Let (X,Y)∼P, X ∈ X ,Y∈ {−1,1}. LetH ⊂{h : X → [−1,1]} be a symmetric set of functions.
In particular,H can, but need not, be a set of classifiers such as trees with

H =−H . (2)
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Given a loss functionW : R→R
+, we consider a greedy sequential procedure for finding a function

F that minimizesEW
(
YF(X)

)
. That is, givenF0 ∈ H fixed, we define form≥ 0:

λm(h) = argmin
λ∈R

EW
(
Y

(
Fm(X)+λh(X)

))

hm = argmin
h∈H

EW
(
Y

(
Fm(X)+λm(h)h(X)

))

Fm+1 = Fm+λm(hm)hm.

Assume, wlog (without loss of generality), by shifting and rescaling, thatW(0) =−W′(0) = 1.
Note that by Bartlett et al. (2003),W′(0) < 0 is necessary and sufficient for population consistency
defined below. We can suppose again wlog in view of (2), thatλm≥ 0. DefineFk andF∞ as in
Section 1 and letF ≡ F̄∞ be the closure ofF∞ in convergence in probability:

F ≡
{

F : ∃Fm∈ Fm, Fm(X)
p−→F(X)

}

F∞ ≡ argmin
F∈F

EW
(
YF(X)

)

If sgnF∞ is the Bayes rule for 0-1 loss, we say thatF∞ is population consistent for classification,
“calibrated” in the Bartlett et al. terminology. Let

p(X) ≡ P(Y = 1|X)

W̃(x,d) ≡ p(x)W
(
d
)
+

(
1− p(x)

)
W

(
−d

)
.

W̃(F) ≡ W̃(X,F(X))

By the assumptions belowF∞ is the unique function such that̃W′(F∞) = 0 with probability 1, where
W̃′(F) = W̃′(X,F(X)) andW̃′(x,d) = ∂W(x,d)/∂d. DefineW̃′′ similarly.

Here are some conditions.

P1. P[p(X) = 0 or 1] = 0.

P2. W is twice differentiable and convex onR.

P3. H is closed and compact in the weak topology.F is the set of all measurable functions onX .

P4. W̃′′(F) is bounded above and below on{F : c1 < W̃(F) < c2} for all c1,c2 such that

inf
F∈F

EW̃(F) < c1 < c2 < EW̃(F0).

P5. F∞ ∈ L2(P).

Note that P1 and P2 imply that̃W(x,d)→ ∞ as |d| → ∞, which ensures thatF∞ is finite almost
anywhere. Condition P1, which says that no point can be classified with absolute certainty, is only
needed technically to ensure thatW̃(x,d)→ ∞ as|d| → ∞, even ifW itself is monotone. It is not
needed forL2 boosting.

Conditions P2 and P4 ensure that along the optimizing pathW behaves locally likeW0(t) =
−2t+t2 corresponding toL2 boosting. They are more stringent than we would like and, in particular,
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rule outW such as the “hinge” appearing in SVM. More elaborate arguments such as those of Zhang
and Yu (2003) and Bartlett et al. (2003) can give somewhat better results.

The functions commonly appearing in boosting such as,W1(t) = e−t , W2(t) =−2t + t2, W3(t) =
− log(1+ e−2t) satisfy condition P4 if P1 also holds. This is obvious forW2. ForW1 andW3, it is
clear that P4 holds, if P1 does, since otherwiseEW̃

(
YFm(X)

)
→ ∞. The conclusions of Theorem

2 continue to hold ifh ∈ H =⇒ |h| ≥ δ > 0 since then beloww′′(F ;h) = Eh2(X)W̃
(
F(X)

)
≥

δ2EW̃(F(X)) and P4 follows. Note that if|h| 6≡ 1 theλ optimization step requires multiplyingλ2

by Eh2(x).
We have,

Theorem 2 If H is a set of classifiers,(h2≡ 1) and AssumptionsP2– P5hold, then

Fm(X)
P−→F∞(X) ,

and the misclassification error, P
(
YFm(X)≤ 0

)
→ P[YF∞(X)≤ 0], the Bayes risk.

Proof Identify w(F) = EW
(
YF(X)

)
= EW̃

(
F(X)

)
. Then,

w′′(F,h) = Eh2(X)W̃′′
(
F(X)

)
= EW̃′′

(
F(X)

)

and (P4) can be identified with condition GS1 of Theorem 1. Thus,

EW̃
(
Fm(X)

)
→ EW̃(F∞(X)) .

Since,

EW̃
(
Fm(X)

)
−EW̃

(
F∞(X)

)
= E

(
(F∞−Fm)2

Z 1

0
W̃′′

(
(1−λ)(X)F∞(X)+λFm(X)

)
λdλ

)
→ 0 ,

the conclusion of Theorem 2 follows from (P4). The second assertion isimmediate.

3. Consistency of the Boosting Algorithm

In this section we study the Bayes consistency properties of the sample versions of the boosting
algorithms we considered in Section 2. In particular, we shall

(i) Show that under mild additional conditions, there will exist a random sequencemn→∞ such

thatF̂mn

P−→F∞, whereF̂m is defined below as themth sample iterate, and moreover, that such
a sequence can be determined using the data.

(ii) Comment on the relationship of this result to optimization for penalized versions ofW. The
difference is that the penalty forcesm< ∞ to be optimal while with us, cross-validation (or a
test bed sample) determines the stopping point. We shall see that the same dichotomy applies
later, when we “boost” using the method of sieves for nonparametric regression studied by
Barron, Birge and Massart (1999) and Baraud (2001).
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3.1 The Golden Chain Argument

Here is a very general framework. This section is largely based on Bickel and Ritov (2003).
Let Θ1⊂Θ2⊂ . . . be a sequence of sets contained in a separable metric space,Θ = ∪Θm where

denotes closure. LetΠm : Θm→ 2Θm+1 be a sequence of point to set mappings. LetK be a target
function, andϑ∞ = argminϑ∈Θ K(ϑ). Finally, let K̂n be a sample based approximation ofK. We
assume:

G1. K : Θ→ R is strictly convex, with a unique minimizerϑ∞.

Our result is applicable to loosely defined algorithms. In particular we want tobe able to con-
sider the result of the algorithm applied to the data as if it were generated by arandom algorithm
applied to the population. We need therefore, the following definitions. LetS (ϑ0,α) be the set of
all sequences̄ϑm∈Θm, m= 0,1, . . . with ϑ̄0 = ϑ0 and satisfying:

ϑ̄m+1 ∈Πm(ϑ̄m)

K(ϑ̄m+1)≤ α inf
ϑ∈Πm(ϑ̄m)

K(ϑ)+(1−α)K(ϑ̄m).

The resemblance to Gauss-Southwell Algorithm I and the boosting procedures is not accidental.
Suppose the following uniform convergence criterion is satisifed:

G2. If {ϑ̄m} ∈ S (ϑ0,α) with any initial ϑ0, thenK(ϑ̄m)−K(ϑ̄m+1) ≥ ξ
(
K(ϑ̄m)−K(ϑ∞)

)
, for

ξ(·) > 0 strictly increasing, andK(ϑ̄m)−K(ϑ∞)≤ cm wherecm→ 0 uniformly overS (ϑ0,α).

In boosting, givenP, Θ = {F(X),F ∈ F̃ } with a metric of convergence in probability,Θm =
{∑m

j=1 λ jh j ,h j ∈ H }, Πm(F) = Π(F) = {F +λh,λ ∈ R,h∈ H }, andK(F) = EW
(
YF(X)

)
. Con-

dition G2, follows from the conclusion of Theorem 1.
Now supposêKn(·) is a sequence of random functions onΘ, empirical entities that resemble the

populationK. Let Ŝn(ϑ0,α′) be the set of all sequencesϑ̂0,n, ϑ̂1,n . . . , such that̂ϑ0,n = ϑ0, and

ϑ̂m+1,n ∈Πm(ϑ̂m,n)

K̂n(ϑ̂m+1,n)≤ α′min{K̂n(ϑ) : ϑ ∈Πm(ϑ̂m,n)}+(1−α′)K̂n(ϑ̂m,n).

We assume

G3. K̂n is convex, and for all integerm, sup{|K̂n(ϑ)−K(ϑ)| : ϑ ∈ Am} a.s.−→ 0 asn→ ∞, for a
sequenceAm⊂Θm such thatP(ϑ̂m,n ∈ Am)→ 1.

In boosting,K̂n(F) = n−1 ∑n
i=1W

(
YiF(Xi)

)
, K(F) = Ep

(
YF(X)

)

The sequence{ϑ̄m} is the golden chain we try to follow using the obscure information in the
sample.

We now state and prove,

Theorem 3 If assumptionsG1– G3hold, andα′ ∈ (0,1], then for any sequence{ϑ̂m,n} ∈ Ŝ (ϑ0,α′),
there exists a subsequence{m̂n} such that K(ϑ̂m̂n,n)

p−→ K(ϑ∞).
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Proof
Fix ϑ0 andα, α < α′. Let Mn→ ∞ be some sequence, and let ˆmn = argminm≤Mn

K(ϑ̂m,n). We

need to prove thatK(ϑ̂m̂n,n)
p−→ K(ϑ∞). We will prove this by contradiction. Suppose otherwise:

inf
m≤Mn

K(ϑ̂m,n)−K(ϑ∞)≥ c1 > 0, n∈ N (3)

whereN is unbounded with positive probability. Letεm,n≡ supϑ∈Am
|K(ϑ)− K̂n(ϑ)|. For any fixed

m, εm,n
a.s.−→ 0 by G3. Let

mn = argmax
{

m′ ≤Mn : ∀m≤m′, εm−1,n +2εm,n < (α′−α)ξ(c1) & ϑ̂m,n ∈ Am

}
.

Clearly,mn
p−→ ∞, and for anym≤mn, assuming (3):

K(ϑ̂m,n)≤ K̂n(ϑ̂m,n)+ εm,n

≤ α′ inf
ϑ∈Πm−1ϑ̂m−1

K̂n(ϑ)+(1−α′)K̂n(ϑ̂m−1,n)+ εm,n

≤ α′ inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α′)K(ϑ̂m−1,n)+ εm−1,n +2εm,n

= α inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α)K(ϑ̂m−1,n)

− (α′−α)
(
K(ϑ̂m−1,n)− inf

ϑ∈Πm−1ϑ̂m−1

K(ϑ)
)
+ εm−1,n +2εm,n

≤ α inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α)K(ϑ̂m−1,n)

− (α′−α)ξ
(

K(ϑ̂m,n)−K(ϑ∞)
)

+ εm−1,n +2εm,n

≤ α inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α)K(ϑ̂m−1,n)

− (α′−α)ξ
(

c1

)
+ εm−1,n +2εm,n

≤ α inf
ϑ∈Πm−1ϑ̂m−1

K(ϑ)+(1−α)K(ϑ̂m−1,n) for all m≤mn .

Thus, there is a sequence{ϑ̄(n)
1 , ϑ̄(n)

2 , . . .} ∈ S (ϑ0,α), such that̄ϑ(n)
m = ϑ̂m,n, m≤mn. Hence, by

Assumption G2,K(ϑmn,n)≤ K(ϑ∞)+cmn, where{cm} is independent ofn, andcm→ 0. Therefore,
sincemn→ ∞, K(ϑ̂mn,n)→ K(ϑ∞), contradicting (3).

In fact we have proved that sequencesmn can be chosen in the following way involvingK.

Corollary 4 Let Mn be any sequence tending to∞. Let m̃n = argmin{K(ϑ̂m,n) : 1≤ m≤ Mn}.
Then, underG1– G3, ϑ̂m̃n

P−→ϑ∞.

To find ϑ̂m̂n,n which are totally determined by the data determiningK̂n, we need to add some in-
formation about the speed of convergence ofK̂n to K on the “sample” iterates. Specifically, suppose
we can determine, in advance,M∗n→ ∞, εn→ 0 such that,

P[sup{|K̂n(ϑ̂m,n)−K(ϑ̂m,n)| : 1≤m≤M∗n} ≥ εn]≤ εn .
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Thenm̂n = argmin{K̂n(ϑ̂m,n) : 1≤m≤M∗n} yields an appropriatêϑm̂n sequence. We consider this
in Section 4. Before that we return to the application of the result of this section to boosting.

3.2 Back to Boosting

We return to boosting, where we considerΘm = {∑m
j=1 λ jh j : λ j ∈ R,h j ∈ H }, and thereforeΠm≡

Π, Π(ϑ) = {ϑ+λh,λ ∈R,h∈ H }. To simplify notation, for any functiona(X,Y), let Pna(X,Y) =
n−1 ∑n

i=1a(Xi ,Yi) andPa(X,Y) = Ea(X,Y). Finally, we identifyϑ̂m,n = ∑m
j=1 λ̂ j ĥ j = ∑m

j=1 λ̂ j,nĥ j,n.
We assume further

GA1. W(·) is of bounded variation on finite intervals.

GA2. H has finiteL1 bracketing entropy.

GA3. There are finitea1,a2, . . . such that supn ∑m
j=1 |λ̂ j,n| ≤ am with probability 1.

Theorem 5 Suppose the conclusion of Theorem 1 and ConditionsGA1–GA3 are satisfied, then
conditionsG2, G3are satisfied.

Proof Condition G2 follows from Theorem 1. It remains to prove the uniform convergence in
Condition G3. However, GA2 and GA3 imply thatF ≡ {F : F = ∑m

j=1 λ jh j ,h j ∈ H , |λ j | ≤M} has
finite L1 bracketing entropy. SinceW can be written as the difference of two monotone functions
{W(YF) : F ∈ F } inherits this property. The result follows from Bickel and Millar (1991), Propo-
sition 2.1.

4. Test Bed Stopping

Again we face the issue of data dependent and in some way optimal selection of m̂n. We claim
that this can be achieved over a wide range of possible rates of convergence ofEW

(
F̂m̂n(YX)

)
to

EW
(
F∞(YX)

)
by using a test bed sample to pick the estimator. The following general result plays a

key role.
Let B = Bn→ ∞, and let(X,Y),(X1,Y1), . . . ,(Xn+B,Yn+B) be i.i.d. P, X ∈ X , |Y| ≤ 1. Let

ϑ̂m : X → R, 1≤m≤mn be data dependent functions which depend only on(X1,Y1), . . . ,(Xn,Yn)
which are predictors ofY. Forg,g1,g2 : X ×R→ R, givenP, define

〈g1,g2〉∗ ≡
1
Bn

Bn

∑
b=1

g1(Xb+n,Yb+n)g2(Xb+n,Yb+n)

〈g1,g2〉P ≡ P
(
g1(X,Y)g2(X,Y)

)
=

Z

g1(x,y)g2(x,y)dP(x,y)

‖g‖2∗ ≡ 〈g1,g2〉∗
‖g‖2P ≡ 〈g1,g2〉P

Let,
τ = argmin{‖Y− ϑ̂m(X)‖2∗ : 1≤m≤Mn}
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andϑ̂τ be the selected predictor. Similarly, let

O = argmin{‖Y− ϑ̂m(X)‖2P : 1≤m≤Mn}

andϑ̂O be the corresponding predictor.
That is,ϑ̂O (X,Y) is the predictor an “oracle” knowingP and(Xi ,Yi), 1≤ i ≤ n would pick from

ϑ̂1, . . . , ϑ̂Mn to minimize squared error loss. LetϑO (X)≡ EP(Y|X), the Bayes predictor. LetP be a
set of probabilities andrn≡ sup{EP‖ϑ̂O −ϑO ‖2P : P∈ P }.

The following result is due to Gÿorfi et al. (2002) (Theorem 7.1), although there it is stated in
the form of an oracle inequality. We need the following condition:

C. Bnrn/ logMn→ ∞.

Theorem 6 (Györfi et al.) Suppose conditionC is satisfied, and|Y| ≤ 1, ‖ϑ̂m‖∞ ≤ 1. Then,

sup{
∣∣EP(Y− ϑ̂τ)

2−EP(Y− ϑ̂O )2
∣∣ : P∈ P }= o(rn).

ConditionC very simply asks that the test sample sizeBn be large only: (i) In terms ofrn, the
minimax rate of convergence; (ii) In terms of the logarithm of the number of procedures being
studied. If |Y| ≤ 1, there is no loss in requiring‖ϑ̂m‖∞ ≤ 1, since we could also replacêϑm by
its truncation at±1, minimizing theL2 cross validated test set risk. Along similar lines, using
sgn(ϑ̂m) is equivalent to cross validating the probability of misclassification for these rules, since if
ϑ̂m,Y ∈ {−1,1}, E(Y− ϑ̂m)2 = 4P(ϑ̂m 6= Y).

As we shall see in Section 6, typicallyrn = n−1+δ, andMn is at most polynomial inn. If n/Bn

is slowly varying, we can check that the conditions hold. Essentially we can only not deal withrn

of ordern−1 logn.

5. Algorithmic Speed of Convergence

We consider now the time it takes the sample algorithm to convergence. The fact that the algorithm
converges follows from Theorem 1. We show in this section that in fact thealgorithm perfectly
separates the data (perfect separationis achieved whenYiFm(xi) > 0 for all i = 1, . . . ,n) after no
more thanc1n2 steps. Perfect separation is equivalent to empirical misclassification error 0.

The randomness considered in this section comes only from theYi , while the design points are
considered fixed. We denote them, therefore, by lower casex1, . . . ,xn. We consider the following
assumptions:

O1. W has regular growth in the sense thatW′′ < κ(W +1) for someκ < ∞. Assume, wlog, that
W(0) =−W′(0) = 1.

O2. Supposex1, . . . ,xn are all different Then the points can be finitely isolated byH in the sense
that there isk and positiveα1, . . . ,αk such that for everyi there areh1, . . . ,hk ∈ H such that
∑k

j=1 α jh j(xs) = 1 if s = i, and 0 otherwise. Assume further, as usual, that ifh ∈ H then
h2≡ 1 and−h∈ H .

Condition O1 is satisfied by all the loss functions mentioned in the introduction. Condition O2
is satisfied, for example by stumps, trees, and anyH whose span includes indicators of small sets
with arbitrary location. In particular, ifxi ∈R, x1 < x2 < · · ·< xn, andH = {sgn(·−x),x∈R}, we
can then takeα1 = α2 = 1, h1(·) = sgn

(
·− (xi−1 +xi)/2

)
, andh2(·) =−sgn

(
·− (xi +xi+1)/2

)
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Theorem 7 Suppose assumptionsO1andO2are satisfied and the algorithm starts with F0(0) = 0.
If YiFm(xi) < 0 for at least one i, then

1
n

n

∑
i=1

W
(
YiFm(xi)

)
− 1

n

n

∑
i=1

W
(
YiFm+1(xi)

)
≥ 1

2κ
(
n∑k

j=1 α j
)2 .

Hence, the boosting algorithm perfectly separates the data after at most2κ(n∑k
j=1 |α j |)2 steps.

Proof Let, for i such thatYiFm(xi) < 0,

fm(λ;h) = n−1
n

∑
s=1

W
(
Yi

(
Fm(xs)+λh(xs)

))
,

and f ′m(0;h) = d fm(λ;h)/dλ
∣∣
λ=0. Considerh1, . . . ,hk as in assumption O2. Replaceh j by −h j if

necessary to ensure thatYi ∑k
j=1 α jh j(xs) = δsi. Then

k

∑
j=1

α j f ′m(0;h j) = n−1
k

∑
j=1

α j

n

∑
s=1

W′
(
YiFm(xs)

)
Yih j(xs)

= n−1W′
(
YiFm(xi)

)
.

Hence

inf
h∈H

f ′m(0;h)≤ 1

n∑k
j=1 α j

min
i

W′(YiFm(xi))≤
W′(0)

n∑k
j=1 α j

=
−1

n∑k
j=1 α j

, (4)

sinceYiFm(xi) < 0 for at least onei.
Let h̄ be the minimizer off ′m(0,h). Note that in particularf ′m(0;h̄) < 0. The functionfm(·; h̄) is

convex, hence it is decreasing in some neighborhood of 0. Denote byλ̄ its minimizer. Consider the
Taylor expansion:

fm(λ̄; h̄) = fm(0;h̄)+ λ̄ f ′m(0;h̄)+
λ̄2

2n

n

∑
s=1

W′′
(
Yi

(
Fm(xs)+ λ̃(λ)h̄(xs)

))

= fm(0;h̄)+ inf
λ

{
λ f ′m(0;h̄)+

λ2

2n

n

∑
s=1

W′′
(
Yi

(
Fm(xs)+ λ̃(λ)h̄(xs)

))}

wherẽλ(λ) lies between 0 and̄λ. By condition 01,

inf
λ

{
λ f ′m(0;h̄)+

λ2

2n

n

∑
s=1

W′′
(
Yi

(
Fm(xs)+ λ̃(λ)h̄(xs)

))}

≤ inf
λ
{λ f ′m(0;h̄)+

λ2κ
4n

n

∑
s=1

W
(
Yi

(
Fm(xs)+ λ̃(λ)h̄(xs)

))
+

λ2κ
4

}

≤ inf
λ
{λ f ′m(0;h̄)+

λ2κ
2
}

(5)
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because1
n ∑n

s=1W(Yi(Fm(xs) + λ̃(λ)h̄(xs)) ≤ 1
n ∑n

s=1W(YiFm(xs)) ≤W(0) = 1 sinceλ̄ minimizes

fm(λ; h̄) on [0, λ̄], λ̃ is an intermediate point, andF0 ≡ 0. Combining (4) and (5) and the mini-
mizing property of̄h,

fm(λ̄; h̄)≤ fm(0;h̄)−
(

f ′m(0;h̄)
)2

2κ

≤ fm(0;h̄)− 1

2κ(n∑k
j=1 α j)2

.

The second statement of the theorem follows because the initial value ofn−1 ∑n
i=1W

(
YiF0(xi)

)
is

1, and the value would fall below 0 after at mostm = 2κ(n∑k
j=1 α j)

2 steps in which at least one
observation is not classified correctly. Since the value is necessarily positive, we conclude that all
observations would be classified correctly before themth step.

6. Achieving Rates with Sieve Boosting

We propose a regularization ofL2 boosting which we view as being in the spirit of the original
proposal, but, unlike it, can be shown for, suitableH , to achieve minimax rates for estimation
of E(Y|X) under quadratic loss forP for which E(Y|X) is assumed to belong to a compact set
of functions such as a ball in Besov space ifX ∈ R or to appropriate such subsets of spaces of
smooth functions inX ∈ R

d—see, for example, the classesF of Györfi et al. (2003). In fact,
they are adaptive in the sense of Donoho et al (1995) for scales of such spaces. We note that
Bühlmann and Yu (2003) have introduced a version ofL2 boosting which achieves minimax rates
for Sobolev classes onR adaptively already. However, their construction is in a different spirit
than that of most boosting papers. They start out withH consisting of one extremely smooth and
complex function and show that boosting reduces bias (roughness of thefunction) while necessarily
increasing variance. Early stopping is still necessary and they show it can achieve minimax rates.

It follows, using a result of Yang (1999) that our rule is adaptive minimax for classification loss
for some of the classes we have mentioned as well. Unfortunately, as pointedout by Tsybakov
(2001), the sets{x : |FB(x)| ≤ ε} can behave very badly asε ↓ 0, no matter how smoothFB, the
misclassification Bayes rule, is, so that these results are not as indicative as we would like them
to be. In a recent paper, Bartlett, Jordan, and McAuliffe (2003) considered minimization of the
W empirical riskn−1 ∑n

i=1W(YiF(Xi)), for fairly general convexW, over sets of the formF =
{F = ∑m

j=1 α jh j , h j ∈ H , ∑m
j=1 |α j | ≤ αn, (for some representation ofF)}. They obtained oracle

inequalities relatingEW(YF̂(X)) for F̂j the empirical minimizer overF j to the empiricalW risk
minimum. They then proceeded to show using conditions related to Tsybakov’s(A1) above how to
relate the misclassification regret ofF̂ j , given by〈P[YF̂j(X) < 0]−P[YFB(X) < 0]〉 to 〈EpW(YF̂j)−
EpW(YF∗B)〉, theW regret whereF∗B is the Bayes rule forW. Using these results (Theorems 3 and
10) they were able to establish oracle inequalities forF̂j under misclassification loss. Manor, Meir,
and Zhang (2004) considered the same problem, but focused their analysis mainly onL2 boosting.
They obtained an oracle inequality similar to that of Bartlett et al. regularizing by permitting step
sizes which are only a fractionβ < 1 of the step size declared optimal by Gauss-Southwell. They
went further by obtaining near minimax results on suitable sets.
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We also limit our results toL2 boosting, although we believe this limitation is primarily due to
the lack of minimax theorems for prediction when other losses thanL2 are considered. We use yet a
different regularization method in what follows. We show in Theorem 8 ourvariant ofL2 boosting
achieves minimax rates for estimatingE(Y|X) in a wide class of situations. Boosting up to a simple
data-determined cutoff in each sieve level of a model, and then cross-validating to choose between
sieve levels, we can obtain results equivalent to those in which full optimizationusing penalties are
used, such as Theorem 2.1 of Baraud (2000) and results of Baron, Birgé, Massart (1999). Then,
in Theorem 9, we show, using inequalities related to ones of Tsybakov (2001), Zhang (2004) and
Bartlett et al. (2003), that the rules we propose are also minimax for 0–1 loss in suitable spaces.

6.1 The Rule

Our regularization requires thatH ≡ H (∞) = ∪m≥1H (m) whereH (m) are finite sets with certain
properties. For instance, ifH consists of the stumps in[0,1],H = {Fy(·) : Fy(x) = sgn(x−y), x,y∈
[0,1]} we can takeH (m) = {Fy(·) : y a dyadic number of orderk, y = j

2k , 0≤ j ≤ 2k}. Essentially,

we construct a sieve approximatingH . Let F (m) be the linear span ofH (m). Evidently F =

∪m≥1F (m). Let |H (m)| ≡Dm. Then, dim(F (m)) = Dm. We now describe our proposed regularization
of L2 boosting.

We use the following notation of Section 4, and begin with a glossary and conditions. Let
(X1,Y1), . . . ,(Xn,Yn),(X,Y) i.i.d. with

(X,Y) ∼ P << µ, P∈ P , X ≡ (X1, . . . ,Xn), Y ≡ (Y1, . . . ,Yn) .

Y ∈ {−1,1}
‖ f‖2µ ≡

Z

f 2 dµ

‖ f‖2n ≡ 1
n

n

∑
i=1

f 2(Xi ,Yi)

‖ f‖∞ = sup
x,y
| f (x,y)|

FP(X) ≡ EP(Y|X)

F̂m(X) = argmin{‖t(X)−Y‖2n : t ∈ F (m)}
Fm(X) = argmin{‖t(X)−Y‖2P : t ∈ F (m)}

EX ≡ Conditional expectation givenX1, . . . ,Xn

Note that we will often suppressX,Y in v(X,Y,X,Y) and drop subscript toP.
Let F̂m,k, thekth iterate inFm, be defined as follows

F̂1,0 ≡ F0

F̂m+1,0 = F̂m,k̂(m)

F̂m,k+1 = F̂m,k + λ̂m,kĥm,km

where

(λ̂m,k, ĥm,k) ≡ argmin
λ∈R,h∈H (m)

{−2λPn(Y− F̂m,k)h+λ2Pn(h
2)}

k̂(m) = First k such that̂λ2
m,k ≤ ∆m,n,
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where∆m,n are constants. Let
F̃m = H(F̂m,k̂(m))

where

H(x) =

{
x if |x| ≤ 1

sgn(x) if |x|> 1
(6)

Note that we have suppressed dependence onn here, indicating it only by the “hats”. Let,

m̂= argmin{‖Y− F̃m(x)‖∗ : m≤Mn}

where

‖ f‖2∗ =
1
B

n+B

∑
i=n+1

f 2(Xi ,Yi), and we takeB = Bn =
n

logn
.

The rule we propose is:̂δ = sgn( ˆ̂F), where

ˆ̂F ≡ H(Fm̂,k̂(m̂)) . (7)

Note: We show at the end of the Appendix (Proof of Lemma 10) that for waveletH we take at most
Cnlogn steps total in this algorithm.

6.2 Conditions and Results

We useC as a generic constant throughout, possibly changing from line to line but not depending
on m, n, or P. Lemma 6.3 and the condition we give are essentially due to Baraud (2001). Let µ be
a sigma finite measure onH and‖ f‖µ be theL2(µ) norm.

R1. If H (m) = {hm,1, . . . ,hm,Dm} and fm, j ≡ hm, j/‖hm, j‖µ, then{ fm, j}, j ≥ 1 is an orthonormal
basis ofF (m) in L2(µ) such that:

(i) ‖ fm, j‖∞ ≤C∞D
1
2
m for all j, where‖ f‖∞ = sup

x
| f (x)| .

(ii) There exists anL such that for allm, j, j ′,
fm, j fm, j ′ = 0 if | j− j ′| ≥ L.

R2. There existsε = ε(P) > 0 such that,ε≤ dP
dµ ≤ ε−1 for all P∈ P .

R3. supP∈P ‖FP−Fm‖2P≤CD−β
m for all m, β > 1.

R4. Mn≤ DMn ≤ n
(logn))p for somep > 1.

Condition R1 is needed to conclude that we can bound the behavior of theL∞ norm onF (m) by
that of theL2 norm forµ. Condition R2 simply ensures that we can do so forP∈ P as well. The
membersfm, j of the basis ofF (m) must have compact support. It is well known that ifHm consists
of scaled wavelets (in any dimension) then R1 holds. Clearly, if sayµ is Lebesgue measure on an
hypercube then to satisfy R2P can consist only of densities bounded from above and away from
0. Condition R3 gives the minimum approximation error incurred by using an estimateF based
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onF (m), and thus limits our choice ofH . Finally, R4 links the oracle error for these sequences of
procedures to the number of candidate procedures.

Let
rn(P) = inf{EP‖F̂m−FP‖2P : 1≤m≤Mn}, rn≡ sup

P∈P
rn(P).

Thus,rn is the minimax regret for an oracle knowingP but restricted toF̂m. We use the notation
an≍ bn for a shortcut foran = O(bn) andbn = O(an), We have

Theorem 8 Suppose thatP andF satisfyR1–R4 and thatH is a VC class. If∆m,n = O(Dm/n),
then,

sup
P

EP‖ ˆ̂F(X)−FP(X)‖2P≍ rn . (8)

Thus, ˆ̂F given by (7) is rate minimax.

Theorem 9 Suppose the assumptions of Theorem 8 hold andP0 = P ∩{P : P
(
|FP(X)| ≤ t

)
≤ ctα},

α≥ 0. Let∆n(F,P) be the Bayes classification regret for P,

∆n(F,P)≡ P
(
YF(X) < 0

)
−P

(
YFP(X) < 0

)
. (9)

Then,

sup
P0

∆n(
ˆ̂F,P)≍ r

α+1
α+2
n . (10)

The conditionP[|FP(x)| ≤ t]≤ ctα, someα≥ 0, t sufficiently small appears in Proposition 1 of
Tsybakov (2001) as sufficient for his condition (A1) which is studied byboth Bartlett et al. (2003)
and Mammen and Tsybakov (1999).

The proof of Theorem 9 uses 2 lemmas of interest which we now state. Theirproofs are in the
Appendix.

We study the algorithm onFm. For any positive definite matrixΣ define the condition num-
ber γ(Σ) ≡ λmax(Σ)

λmin(Σ) , whereλmax, λmin are the largest and smallest eigenvalues ofΣ. Let Gm(P) =

‖Ep fm,i(X) fm, j(X)‖ be theDm×Dm Gram matrix of the basis{ fm,1, . . . , fm,Dm}.

Lemma 10 UnderR1 andR2,

a) γ(Gm(P))≤ ε−2, whereε is as inR2.

b) Let Gm(Pn) be the empirical Gram matrix̂γm≡ γ(Gm(Pn)). Then, if in addition toR1 and
R2, H is a VC class, P[γ(Ĝm) ≥ C1] ≤ C2exp{−C3n/L2Dm} for all m≤ Mn for such that
Dm≤ n/(logn)p for p > 1.

c) If H is a VC class, P[‖F̂m,k̂(m)− F̂m‖k ≤CDm
n ] = 1−O(1

n) The C and 0 terms are determed
solely by the constants appearing in the R conditions.

Lemma 11 SupposeR1, R2, andR4hold. Then,

EP(F̃m−FP)2≤C{EP(Fm−FP)2 +
Dm

n
+EP(F̃m− F̂m)2}.

This “oracle inequality” is key for what follows.
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Proof of Theorem 9

P
(
YF(x) < 0

)
=

1
2

EP

(
1(F(X) > 0)

(
1−FP(X)

))
+

1
2

EP

(
1(F(X) < 0)

(
1+FP(X)

))
.

Hence for allε > 0,

∆n(F,P) = EP

(
1
(
F(X) < 0,FP(X) > 0

)
FP(X)−1

(
F(X) > 0,FP(X) < 0

)
FP(X)

)

= EP

(
|FP(X)|1(FP(X)F(X) < 0)

)

≤ EP

(∣∣F(X)−FP(X)
∣∣1(FPF(X) < 0, |FP(X)|> ε)

)
+ εP

(
|FP(X)| ≤ ε

)

≤ 1
ε

EP
(
F(X)−FP(X)

)2
+cεα+1

by assumption. The theorem follows.

6.3 Discussion

1) If X ∈ R andH (m) consists of stumps with the discontinuity at a dyadic rationalj/2m, then
F (m) is the linear space of Haar wavelets of orderm. This is also true ifHm is the space
of differences of two such dyadic stumps. More generally, ifH consists of suitably scaled
wavelets, so that|h| ≤ 1, based on the dyadic rationals of orderm, themF (m) is the linear
space spanned by the first 2m elements of the wavelet series. A slight extension of results
of Baraud (2001) yields that if we run the algorithm to the limitk = ∞ for eachm rather
than stopping as we indicate, the resultingF̂m obey the oracle inequality of Lemma 11 with
∆m,n = 0.

Suppose thatX ∈ R andF∞ ranges over a ball in an approximation space such as Sobolev
or, more generally, Besov. Then, ifF (m) has the appropriate approximation properties, e.g.,
wavelets as smooth as the functions in the specified space, it follows from Baraud (2001) that
we can use penalties not dependent on the data to pickF̂m̂ such that,

max
F̂

EP

(
F̂m̂(X)−EP(Y|X)

)2
≍min

F̂
max

{
EP

(
F̂(X)−EP(Y|X)

)2
: EP(Y|X) ∈ F

}

≍ n−1+εΩ(n)

whereΩ(n) is slowly varying and 0< ε < 1. HereF̂ ranges over all estimators based only
on the data and not onP. The same type of result has been established for more specialized
models withX ∈ R

d by Baron, Birǵe, Massart (1999), and others, see Györfi et al. (2003).

The resulting minimax risk,

min
F̂

max{EP
(
F̂(X)−EP(Y|X)

)2
: EP(Y|X) ∈ F }

is always of ordern−1+εΩ(n) whereΩ(n) is typically constant and 0< ε < 1.

What we show in Theorem 8 is that if, rather than optimizing all the way for each m, we stop
in a natural fashion and cross validate as we have indicated, then we can achieve the optimal
order as well.
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2) “Stumps” unfortunately do not satisfy condition R1 withµ Lebesgue measure. Their Gram
matrices are too close to being singular. But differences of stumps work.

3) It follows from the results of Yang (1999) that the rate of Theorem 9 for α = 0, that is, if
P0 = P , is best possible for Sobolev balls and the other spaces we have mentioned.

Tsybakov implicitly defines a class ofFP for which he is able to specify classification minimax
rates. Specifically letX ∈ [0,1]d and letb(x1, . . . ,xd−1) be a function having continuous
partial derivatives up to orderℓ. Let pb,x(·) be the Taylor polynomial or orderℓ obtained
from expandingb at x. Then, he definesΣ(l ,L) to be the class of all suchb for which,
|b(y)−pb,x(y)| ≤ L|y−x|ℓ for all x,y∈ [0,1]d−1. Evidently ifb has bounded partial derivatives
of orderℓ+1, b∈ Σ(ℓ,L), for someL. Now let

P ℓ = {P : FP(x) = xd−b(x1, . . . ,xd−1),

P[|FP(x)| ≤ t]≤Ct, for all 0≤ t ≤ 1,b∈ Σ(ℓ,L)}

Tsybakov following Mammen and Tsybakov (1999) shows that the classification minimax
regret forP (Theorem 2 of Tsybakov (2001) forK = 2) is 2ℓ

3ℓ+(d−1) . On the other hand, if we
assume thatY = FP(x)+ ε whereε is independent ofX, bounded andE(ε) = 0, then theL2

minimax regret rate is 2ℓ/(2ℓ+(d−1)) – see Birǵe and Massart (1999) Sections 4.1.1 and
Theorem 9. Our theorem 9 now yields a classification minimax regret rate of

2
3
· 2ℓ

2ℓ+(d−1)
=

2ℓ

3ℓ+ 3
2(d−1)

which is slightly worse than what can be achieved using Tsybakov’s not as readily computable
procedures. However, note that asℓ→ ∞ so thatFP and the boundary become arbitrarily
smooth,L2 boosting approaches the best possible rate forP ℓ of 2

3. Similar remarks can be
made about 0< α≤ 1.

7. Conclusions

In this paper we presented different mathematical aspects of boosting. Weconsider the obser-
vations as an i.i.d. sample from a population (i.e., a distribution). The boosting algorithm is a
Gauss-Southwell minimization of a classification loss function (which typically dominates the 0-1
misclassification loss). We show that the output of the boosting algorithm follows the theoretical
path as if it were applied to the true distribution of the population. Since early stopping is possible
as argued, the algorithm, supplied with an appropriate stopping rule, is consistent.

However, there are no simple rate results other than those of Bühlmann and Yu (2003), which
we discuss, for the convergence of the boosting classifier to the Bayes classifier. We showed that
rate results can be obtained when the boosting algorithm is modified to a cautiousversion, in which
at each step the boosting is done only over a small set of permitted directions.
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Appendix A. Proof of Theorem 1:

Let w0 = inf f∈F∞ w( f ). Let f ∗k = ∑mαkmhkm, hk,m∈H , ∑m|αkm|< ∞, k= 0,1,2, . . . be any member
of F∞ such that (i) f ∗0 = f0; (ii) w( f ∗k )ց w0 is strictly decreasing sequence; (iii) The following
condition is satisfied:

w( f ∗k )≥ αw0 +(1−α)w( f ∗k−1)+(1−α)(νk−1−νk), (11)

whereνk ց 0 is a strictly decreasing real sequence. The construction of the sequence { f ∗k } is
possible since, by assumption,F∞ is dense in the image ofw(·). That is, we can start with the
sequence{w( f ∗k )}, and then look for suitable{ f ∗k }. Here is a possible construction. Letc andη
be suitable small number. Letγ = (1−α)(1+2η)/(1−η), νk = cηγk/(1− γ). Select nowf ∗k such
w0+c(1−η)γk≤w( f ∗k )≤w0+c(1+η)γk. (η should be small enough such thatγ < 1 andc should
selected such thatw( f ∗1 ) < w( f0).) Our argument rests on the following,

Lemma 12 There is a sequence mk→ ∞ such that w( fm) ≤ w( f ∗k )+ νk for m≥ mk, k = 1,2, . . . ,
and mk ≤ ζk(mk−1) < ∞, whereζk(·) is a monotone non-decreasing functions which depends only
on the sequences{νk} and{ f ∗k }.

Proof of Lemma 12:
We will use the following notation. Forf ∈ F∞ let ‖ f‖∗ = inf{∑ |γi |, f = ∑γihi , hi ∈ H }.
Recall that by definitionw( f0) = w( f ∗0 ). Our argument proceeds as follows, We will inductively

definemk satisfying the conclusion of the lemma, and make, ifεk,m≡ w( fm)−w( f ∗k ),

εk,m≤ ck,m≡max
{

νk,

√
512B

α2βk

w( f ∗k−1)−w0
(

log
(

1+
8(w( f ∗k−1)−w0)

αβk(τk+ρkmk−1)
(m−mk−1 +1)

))1/2

}
,

(12)

where

βk = inf {w′′( f ;h) : w0 +νk ≤ w( f )≤ w( f0), h∈ H }

B = sup{w′′( f ;h) : w( f )≤ w( fo), h∈ H }< ∞.

(13)

and

τk = 2‖ f0− f ∗k ‖2∗
ρk =

16
αβk

(
w( f0)−w0

)
.

(14)

Having definedmk we establish (12) as part of our induction hypothesis formk−1 < m≤ mk. We
begin by choosingm= m1 = 1 so that (12) holds form= M−1 = 1. We do do this by choosing
ν0 > 0, sufficiently small. Having established the induction form≤mk−1 we definemk as follows.
Write now the RHS of (12) asg(mk−1), where

g(ν)≡max
{

νk,

√
512B

α2βk

w( f ∗k−1)−w0
(

log
(

1+
8(w( f ∗k−1)−w0)

αβk(τk+ρkν (m−ν+1)
))1/2

}
,
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We can now pickζk(ν)≡max
{

ν+1,min{m : g(ν)≤ νk}
}

, and definemk = ζk(νk−1).
Note that{βk}, {τk}, {ρk}, andB depend only the sequences{ f ∗k } and{νk}. We now proceed

to establish (12). formk−1 < m≤mk. Note first that sinceεk,m as a function ofm is non-increasing,
(12) holds trivially form′ > m if εk,m≤ 0. By induction (12) holds form≤mk−1, and my hold for
somem> mk−1. Recall that the definition of the algorithm relates the actual gain at themth to the
maximal gain achieved in this step given the previous steps, see its definition (1). Suppose

inf
λ

w( fm+λhm)≤ w0 +νk. (15)

Then

w( fm+1)≤ α inf
λ

w( fm+λhm)+(1−α)w( fm), by (1)

≤ α(w0 +νk)+(1−α)w( fm), by (15)

≤ α(w0 +νk)+(1−α)
(
w( f ∗k−1)+νk−1

)
, by the outer induction, sincem≥mk−1

≤ α(w0 +νk)+
(
w( f ∗k )−αw0 +(1−α)νk

)
, by (11)

= w( f ∗k )+νk,

so thatεk,m+1 ≤ νk. Therefore,m′k is not larger thanm+ 1, that isεk,m′ ≤ νk for m′ > m then (12)
holds trivially for m′ > m, and hence, by the second induction assumption for allm. We have
established (12) save formsuch that,

inf
λ

w( fm+λhm) > w0 +νk andεk,m≥ 0. (16)

We now deal with this case.
Note first that by convexity,

|w′( fm; fm− f ∗k )| ≥ w( fm)−w( f ∗k )≡ εk,m. (17)

We obtain from (17) and the linearity of the derivative that, iffm− f ∗k = ∑γi h̃i ∈ F∞,

εk,m≤
∣∣∣∣∑−γiw

′( fm; h̃i)

∣∣∣∣≤ sup
h∈H
|w′( fm;h)|∑ |γi | .

Hence

sup
h∈H
|w′( fm;h)| ≥ εk,m

‖ fm− f ∗k ‖∗
. (18)

Now, if fm+1 = fm+λmhm then,

w( fm+λmhm) = w( fm)+λmw′( fm;hm)+
1
2

λ2
mw′′( f̃m;hm), λ ∈ [0,λm]. (19)

where f̃m = fm+ λ̃mhm and 0≤ λ̃m≤ λm. By convexity, for 0≤ λ≤ λm,

w( fm+λhm) = w( fm(1− λ
λm

)+
λ

λm
fm+1)≤max{w( fm),w( fm+1)}= w( fm)≤ w( f1).
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We obtain from Assumption GS1 thatw′′( f̃m;h) ∈ (βk,B) given in (13). But then we conclude from
(19) that,

w( fm+λmhm)≥ w( fm)+ inf
λ∈R

(
λw′( fm;hm)+

1
2

λ2βk
)

= w( fm)− |w
′( fm;hm)|2

2βk
.

(20)

Note thatw( fm+λh) = w( fm)+λw′( fm,h)+λ2w′′( fm+λ′h,h)/2 for someλ′ ∈ [0,λ], and ifw( fm+
λh) is close to infλ,hw( fm+λ,h) then by convexity,w( fm+λ′h)≤w( fm)≤w( f0). We obtain from
the upper bound onw′′ we obtain:

w( fm+λmhm)≤ α inf
λ∈R,h∈H

w( fm+λh)+(1−α)w( fm), by definition,

≤ α inf
λ∈R,h∈H

(w( fm)+λw′( fm;h)+
1
2

λ2B)+(1−α)w( fm)

= w( fm)− αsuph∈H |w′( fm;h)|2
2B

,

(21)

by minimizing overλ. Hence combining (20) and (21) we obtain,

|w′( fm;hm)| ≥ α sup
h∈H
|w′( fm;h)|

√
βk

B
(22)

By (21) for the LHS and convexity for the RHS:

αsuph∈H |w′( fm;h)|2
2B

≤ w( fm)−w( fm+1)≤−λmw′( fm;hm)

Hence

|λm| ≥
αsuph∈H |w′( fm;h)|

2B
.

Applying (18) we obtain:

|λm| ≥
α
2B

εk,m

lk,m
, (23)

wherelk.m≡ ‖ fm− f ∗k ‖∗.
Let λ0

m be the minimal point ofw( fm+λhm). Taylor expansion around that point and using the
lower bound on the curvature:

w( fm+λhm)≥ w( fm+λ0
mhm)+

1
2

βk(λ−λ0
m)2 (24)

Hence

λ0
m

2≤ 2
βk

(
w( fm)−w( fm+λ0

mhm)
)

≤ 2
αβk

(
w( fm)−w( fm+1)

)
,

(25)
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where the RHS follows (1). Similarly

(λm−λ0
m)2≤ 2

βk

(
w( fm+1)−w( fm+λ0

mhm)
)

≤ 2(1−α)

αβk

(
w( fm)−w( fm+1)

) (26)

Combining (25) and (26):

λ2
m≤

8
αβk

(
w( fm)−w( fm+1)

)
. (27)

Sinceεk,m≥ 0 by assumption (16), we conclude from (27) that,

m

∑
i=mk−1

λ2
i ≤

8
αβk

(w( f ∗k−1)−w0). (28)

However, by definition,

lk,m+1≤ lk,m+ |λm|

≤ lk +
m

∑
i=mk−1

|λi |

≤ lk +(m+1−mk−1)
1/2

( m

∑
i=mk−1

λ2
i

)1/2

(29)

by Cauchy-Schwarz, where, similarly,

lk = lk,mk−1 = ‖ fmk−1− f ∗k ‖∗
≤ ‖ f0− f ∗k ‖∗+‖ fmk−1− f0‖∗

≤ ‖ f0− f ∗k ‖∗+
mk−1−1

∑
m=0

|λm|

≤ ‖ f0− f ∗k ‖∗+m1/2
k−1

√√√√
mk−1−1

∑
m=0

λ2
m

≤ ‖ f0− f ∗k ‖∗+
√

8mk−1

αβk

√
w( f0)−w( fmk−1), by (27)

≤ ‖ f0− f ∗k ‖∗+
√

8mk−1

αβk

√
w( f0)−w0

≤
√

τk +ρkmk−1, as defined in (14).

(30)
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Together, (23), (28), and (29) yield:

8
αβk

(w( f ∗k−1)−w0)≥
m

∑
i=mk−1

λ2
i

≥ α2

4B2

m

∑
i=mk−1

ε2
k,i

l2
k,i

≥ α2

4B2

m

∑
i=mk−1

ε2
k,i

(lk +(8(w( f ∗k−1)−w0)/αβk)1/2(i−mk−1)1/2)2

(31)

Further, sinceεk,m are decreasing by construction and positive by assumption (16), we cansimplify
the sum on the RHS of (31):

m

∑
i=mk−1

ε2
k,i

(lk +(8(w( f ∗k−1)−w0)/αβk)1/2(i−mk−1)1/2)2

≥
ε2

k,m

2

m−mk−1

∑
i=0

1

l2
k +8i(w( f ∗k−1)−w0)/αβk

.

(32)

Using the inequality,

m−mk−1

∑
i=0

1
a+bi

≥
Z m−mk−1+1

0

1
a+bt

dt =
1
b

log
(

1+
b
a
(m−mk−1 +1)

)

on the RHS of (32), we obtain from (31) and (32) that (12) holds, for the case (16). This establishes
(16) for allk andm.

Proof of Theorem 1: Since the lemma established the existence of monotoneζk’s, it followed
from the definition of these function thatw( fm)≤w( f ∗k(m)) wherek(m) = sup{k : ζ(k)( f ∗0 )≤m} and

ζ(k) = ζk ◦ · · · ◦ ζ1 is thekth iterate of theζs. Sinceζ(k)( f ∗0 ) < ∞ for all k, we have established the
uniform rate of convergence and can define the sequence{cm}, wherecm = w( f ∗k(m))−w0.

We now prove the uniform step improvement claim of the theorem and identify asuitable func-
tion ξ(·). From (26) and (23) ifεk,m≥ 0

w( fm)−w( fm+1)≥
αβk

2
λ2

m≥
αβk

2

(
α
2B

εk,m

lk,m

)2

, (33)

Boundlk,m similarly to (30) by

lk,m≤ lk,1 +m1/2
( m

∑
i=1

λ2
i

)2
≤ lk,1 +

√
8m
αβk

(w( f0)−w0). (34)

Let m∗(v) = inf{m′ : cm′ ≤ v−w0}, which is well defined sincecm→ 0. Thus, any realization of the
algorithm will cross thev line on or before step numberm∗(v). In particular,m≤ m∗

(
w( fm)

)
for
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anym and any realization of the algorithm. We obtain therefore by plugging-in (34) in(33), using
them∗ as a bound onmand the identity(a+b)2≤ 2a2 +2b2 that:

w( fm)−w( fm+1)≥
α3βk

16B2

w( fm)−w( f ∗k )

l2
k,1 +8m∗

(
w( fm)

)(
w( f0)−wo

)
/αβk

,

as long asεk,m≥ 0. Taking the maximum of the RHS over the permitted range, yields a candidate
for theξ function:

ξ(w)≡ sup
k: w( f ∗k )≤w

{α3βk

16B2

w−w( f ∗k )

l2
k,1 +m∗

(
w

)(
w( f0)−wo

)
/αβk

}
.

This proves the theorem under GS1. Under GS2, the only inequality which we need to replace
is (20) since nowβk = 0 is possible. However the definition of Algorithm 2 ensures that we have a
coefficient of at leastγ on λ2 in (20). The theorem is proved.

Appendix B. Proof of Lemmas 10 and 11 and Theorem 8

Proof of Lemma 10Since by (R2)

λmax(Gm(P)) = sup
‖x‖=1

x′Gm(P)x

= sup
‖x‖=1

∑∑xix j

Z

fm,i fm,ddP

= sup
‖x‖=1

Z

(∑xi fm,i)
2dP

≤ ε−1 sup
‖x‖=1

Z

(∑xi fm,i)
2dµ= ε−1

λmax(Gm(P))≥ ε, similarly.

(35)

Part a) follows.
For any symmetric matrixM define its operator norm‖ · ‖T by λmax(M). For simplicity let

Gm = Gm(P) andĜm = Gm(Pn). Recall that for any symmetric matricesA and andM:

|λmax(A)−λmax(M)| ≤ ‖A−M‖T
|λmin(A)−λmin(M)| ≤ ‖A−M‖T .

Now,

P

[ ∣∣∣∣∣
λmax

(
Ĝm

)

λmin
(
Ĝm

) − λmax
(
Gm

)

λmin
(
Gm

)
∣∣∣∣∣≥ t

)

≤ P
(
‖Ĝm−Gm‖T >

ε
2

)
+P

(
‖Ĝm−Gm‖T ≥ t/(

1
ε

+
2
ε3)

) (36)
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Recall that for a banded matrixM of with band of width 2L,

‖M‖2T = sup
‖x‖=1

‖Mx‖2

= sup
‖x‖=1

∑
a

(
∑
b

Mabxb
)2

≤ sup
‖x‖=1

∑
a

∑
|b−a|<L

x2
bM2

∞

≤ 2LM2
∞ sup
‖x‖=1

∑
a

x2
a = 2LM2

∞,

where‖M‖∞ ≡maxa,b |Mab|. Since bothĜm andGm(P) are banded of widthd, say,

‖Ĝm−Gm‖T ≤ 2Lmax
{∣∣∣1

n

n

∑
i=1

(
fm,a fm,b)(Xi)−EP fm,a fm,b(Xi)

)∣∣∣ : |a−b|< L
}

. (37)

If H is a VC class, we can conclude from (35)–(37) that,

P[γ(Ĝm)≥C1]≤C2exp{−C3n/L2Dm} (38)

since by R1 (i),‖ fm‖∞ ≤C∞D
1
2
m. The constantsε, C1, C2 andC3 depend on the constants of the R

conditions only. This is a consequence of Theorem 2.14.16 p. 246 of vander Vaart and Wellner
(1996). This complete the proof of part b).

By a standard result for the Gauss-Southwell method, Luenberger (1984), page 229:

‖F̂m,k+1− F̂m‖2n≤
(

1− 1
γ̂mDm

)
‖F̂m,k− F̂m‖2n (39)

Hence

‖F̂m,k− F̂m‖2n−‖F̂m,k+1− F̂m‖2n≥
1

γ̂mDm
‖F̂m,k− F̂m‖2n

Thus, if
1
n
≥ ‖F̂m,k− F̂m‖2n−‖F̂m,k+1− F̂m‖2n

we obtain
‖F̂m,k− F̂m‖2n≤ Dmγ̂m/n. (40)

¿From (40) part (c) follows.

Note: Since

‖F̂m,k−1− F̂m‖2n−‖F̂m,k− F̂m‖2n ≥ C
n

(39) implies that
(

1− 1
γ̂mDm

)k̂(m)

≥ 1
n
.

Therefore:
k̂(m)≤ lognγ̂mDm .

If, for instance, as with waveletsDm = 2m,m≤ log2n we take at mostCnlogn steps total.
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Lemma 13 :
If Ex denotes conditional expectation give n X1, . . . ,Xn, underR1and F≡ Fp,

Ex‖F̂m−Fm‖2n≤C(
Dm

n
+‖Fm−F‖2P) (41)

This is a standard type of result – see Barron, Birgé, Massart (1999). We include the proof for
completeness. Note that,

‖F̂m(X)−Y‖2n =
1
n

YT(I −P)Y

whereY ≡ (Y1, . . . ,Yn)
T and P is the projection matrix of dimension Dm onto the L space spanned

by
(
h j(X1), . . . ,h j(Xn)

)
, 1≤ j ≤ Dm. Then,(I −P)v = 0 for all v ∈ L. Hence,

EX‖F̂m(X)−Y‖2n =
1
n

EX
(
Y−Fm(X)

)T
(I −P)

(
Y−Fm(X)

)

whereFm(X) =
(
Fm(X1), . . . ,Fm(Xn)

)T
is the projection of(F(X1), . . . ,F(Xn))

T onto L. Note also
that,

‖F̂m−Fm‖2n = ‖Y−Fm(X)‖2n−‖Y− F̂m(X)‖2n
whereF̂(X) = (F̂m(X1), . . . , F̂m(Xn))

T . Hence,

EX‖F̂m−Fm‖2n = 1
nEX(Y−Fm(X))TP(Y−Fm(X))

= 1
nEX(Y−F(X))TP(Y−F(X))+ 2

nEX(Fm−F)TP(Y−Fm(X))

= 1
nEX trace[P(Y−F(X))(Y−F(X))]

+2
nEX(Fm−F)TP(Fm−F)(X)

But

EX trace[P(Y−F(X)))(Y−F(X))T ] =
1
n

n

∑
i=1

Var(Yi |Xi)pii (X)≤max
i

Var(Yi |Xi)
Dm

n

since
n

∑
i=1

pii (X) = traceP = Dm

Also, since P is a projection matrix

(Fm−F)TP(Fm−F)(X)≤ ‖Fm−F‖2n

and (41) follows.

Proof of Lemma 11:
Take∆m,n = 0. Letρ̃m = sup

{
‖t(X)‖P
‖t(X)‖n : t ∈ Fm

}
. By Proposition 5.2 of Baraud (2001), ifρ0 > h−1

0 ,

P[ρ̃m > ρ0]≤ D2
mexp{−(h0−ρ−1

0 )2

4h1
cn logn}
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wherecn = n
CDm logn. Hereh0,h1C are generic constants. Baraud gives a proof for the caseVar(Y|X)=

constant, but this is immaterial since only functions ofX
˜

are involved inρ̃m. Therefore,

EP(F̂m−FP)21(ρm≤ ρ0)

≤ 2ρ2
0EP{En(F̂m−Fm)2 +En(Fm−FP)2}

≤ C(
Dm

n
+‖Fm−FP‖2) (42)

On the other hand,
EP(F̂m−FP)21(ρm > ρ0)≤ 2P[ρm > ρ0]

= CD2
mexp{−ACn logn} (43)

Combining (42) and (43) we obtain Lemma 11 for∆m,n = 0, F̂m = F̃m. Putting inF̃m we add a term
CEP(F̂m− F̃m)2. We now apply Lemma 10 c) and the argument we used to obtain (42) and (43).

Proof of Theorem 8: Note that we are limited to rates of convergence which are slower thann−
1
2 .

This comes from the combination of R1(i) and bounding the operator by thel∞ norm of the Gram
matrix. It is not clear how either of these conditions can be relaxed.

We need only check that if the{F̃m} are theθm of Theorem 6 then the conditions of that theorem
are satisfied. By construction,‖F̃m‖∞ ≤ 1, Bn = n

logn. By Lemma 11 and (R3),

rn≤C1
Dm

n
+C2D−B

m (44)

and the right hand side of (44) is bounded byn−( β
β+1).
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P. Bühlmann and B. Yu. Boosting theL2 loss: regression and classification.J. of Amer. Statist.
Assoc., 98:324–339, 2003

D. Donoho, I.M. Johnstone, G. Kerkyacharian, and D. Picard. Wavelet shrinkage: asymptopia (with
discussion).J. Roy. Statist. Soc. Ser. B57:371–394, 1995.

J. H. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression:a statistical view of
boosting (with discussion).Ann. Statist.28:337–407, 2000.

Y. Freund. Boosting a weak learning algorithm by majority.Information and Computation121:256–
285, 1995.

Y, Freund and R. E. Schapire. Experiments with a new boosting algorithm.Machine Learning:
Proc. 13th International Conference, 148–156. Morgan Kauffman, San Francisco, 1996.
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