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Abstract
We study some stability properties of algorithms which minimize (or almost-minimize) empirical
error over Donsker classes of functions. We show that, as the number n of samples grows, the L2-
diameter of the set of almost-minimizers of empirical error with tolerance ξ(n) = o(n− 1

2 ) converges
to zero in probability. Hence, even in the case of multiple minimizers of expected error, as n
increases it becomes less and less likely that adding a sample (or a number of samples) to the
training set will result in a large jump to a new hypothesis. Moreover, under some assumptions
on the entropy of the class, along with an assumption of Komlos-Major-Tusnady type, we derive
a power rate of decay for the diameter of almost-minimizers. This rate, through an application
of a uniform ratio limit inequality, is shown to govern the closeness of the expected errors of the
almost-minimizers. In fact, under the above assumptions, the expected errors of almost-minimizers
become closer with a rate strictly faster than n−1/2.
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1. Introduction

The empirical risk minimization (ERM) algorithm has been studied in learning theory to a great
extent. Vapnik and Chervonenkis (1971, 1991) showed necessary and sufficient conditions for its
consistency. In recent developments, Bartlett and Mendelson (2006); Bartlett et al. (2004); Koltchin-
skii (2006) proved sharp bounds on the performance of ERM. Tools from empirical process theory
have been successfully applied, and, in particular, it has been shown that the localized Rademacher
averages play an important role in studying the behavior of the ERM algorithm.

In this paper we are not directly concerned with rates of performance of ERM. Rather, we prove
some properties of ERM algorithms, which, to our knowledge, do not appear in the literature. The
analysis of this paper has been motivated by the study of algorithmic stability: the behavior of a
learning algorithm with respect to perturbations of the training set. Algorithmic stability has been
studied in the recent years as an alternative to the classical (complexity-oriented) approach to de-
riving generalization bounds (Bousquet and Elisseeff, 2002; Kutin and Niyogi, 2002; Mukherjee
et al., 2006; Poggio et al., 2004; Rakhlin et al., 2005). Motivation for studying algorithmic stability
comes, in part, from the work of Devroye and Wagner (1979). Their results indicate that for any al-
gorithm, the performance of the leave-one-out estimator of expected error is bounded by L1-stability
of the algorithm, that is, by the average L1 distance between hypotheses on similar samples. This
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result can be used to derive bounds on the performance of the leave-one-out estimate for algorithms
such as k-Nearest Neighbors. It is important to note that no class of finite complexity is searched
by algorithms like k-NN, and so the classical approach of using complexity of the hypothesis space
fails.

Further important results were proved by Bousquet and Elisseeff (2002), where a large family
of algorithms (Tikhonov regularization based methods) has been shown to possess a strong L∞
stability with respect to changes of single samples of the training set, and exponential bounds have
been proved for the generalization error in terms of empirical error. Tikhonov regularization based
algorithms minimize the empirical error plus a stabilizer, and are closely related to ERM. Though
ERM is not, in general, L∞-stable, it is L1-stable over certain classes of functions, as one of the
results of this paper shows. To the best of our knowledge, the outcomes of the present paper do not
follow directly from results available in the machine learning literature. In fact we had to turn to
empirical process theory for the mathematical tools necessary for studying stability of ERM.

Various assumptions on the function class, over which ERM is performed, have been considered
recently to obtain fast rates on the performance of ERM. The importance of having a unique best
function in the class has been shown by Lee et al. (1998): the difficult learning problems seem to be
the ones where two minimizers of the expected error exist and are far apart. Although the present
paper does not address the question of performance rates, it does shed some light on the behavior of
ERM when two (or more) minimizers of expected error exist. Our results imply that, under a certain
weak condition on the class, as the expected performance of empirical minimizers approaches the
best in the class with the addition of new samples, a jump to a different part of the function class
becomes less and less likely.

Since ERM minimizes empirical error instead of expected error, it is reasonable to require that
the two quantities become close uniformly over the class, as the number of examples grows. Hence,
ERM is a sound strategy only if the function class is uniform Glivenko-Cantelli, that is, it satisfies
the uniform law of large numbers. In this paper we focus our attention on a more restricted family
of function classes: Donsker classes (see for example, Dudley, 1999). These are classes satisfying
not only the law of large numbers, but also a version of the central limit theorem. Though a more
restricted family of classes, Donsker classes are still quite general. In particular, uniform Donsker
and uniform Glivenko-Cantelli properties are equivalent in the case of binary-valued functions (and
also equivalent to finiteness of VC dimension). The central limit theorem for Donsker classes states
a form of convergence of the empirical process to a Gaussian process with a specific covariance
structure (see for example, Dudley, 1999; van der Vaart and Wellner, 1996). This structure is used
in the proof of the main result of the paper to control the correlation of the empirical errors of ERM
minimizers on similar samples.

The paper is organized as follows. In Section 2 we introduce the notation and background
results. Section 3 presents the main result of the paper, which is proved in the appendix using tools
from empirical process theory. In Section 4, we show L1-stability of ERM over Donsker classes as
an application of the main result of Section 3. In Section 5 we show an improvement (in terms of
the rates) of the main result under a suitable Komlos-Major-Tusnady condition and an assumption
on entropy growth. Section 6 combines the results of Sections 4 and 5 and uses a uniform ratio limit
theorem to obtain fast rates of decay on the deviations of expected errors of almost-ERM solutions,
thus establishing strong expected error stability of ERM (see Mukherjee et al., 2006). Section 7 is
a final summary of the results of the paper. Most of the proofs are postponed to the Appendix.
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2. Notation and Background Results

Let (Z,A) be a measurable space. Let P be a probability measure on (Z,A) and Z1, . . . ,Zn be
independent copies of Z with distribution P. Let F be a class of functions from Z to R. In the
setting of learning theory, samples Z are input-output pairs (X ,Y ) and for f ∈ F , f (Z) measures
how well the relationship between X and Y is captured by f . The goal is to minimize P f = E f (Z)
where information about the unknown P is given only through the finite sample S = (Z1, . . . ,Zn).
Define the empirical measure as Pn = 1

n ∑n
i=1 δZi .

Definition 1 Given a sample S,

fS := argmin
f∈F

Pn f = argmin
f∈F

1
n

n

∑
i=1

f (Zi)

is a minimizer of the empirical risk (empirical error), if the minimum exists.

Since an exact minimizer of the empirical risk might not exist, as well as for algorithmic reasons,
we consider the set of almost-minimizers of empirical risk.

Definition 2 Given ξ ≥ 0 and S, define the set of almost empirical minimizers

M ξ
S = { f ∈ F : Pn f − inf

g∈F
Png ≤ ξ}

and define its diameter as
diamM ξ

S = sup
f ,g∈M ξ

S

‖ f −g‖ .

The ‖·‖ in the above definition is the seminorm on F induced by symmetric bilinear product

〈

f , f ′
〉

= P
(

( f −P f )
(

f ′−P f ′
))

,

hence ‖ f‖ is the standard deviation of f relative to P.
This is a natural measure of distance between functions, as will become apparent later, because

of the central role of the covariance structure of Brownian bridges in our proofs. The results obtained
for the seminorm ‖·‖ will be easily extended to the L2(P) norm, thanks to the close relation of these
two notions of distance.

Definition 3 The empirical process νn indexed by F is defined as the map

f 7→ νn( f ) =
√

n(Pn −P) f =
1√
n

n

∑
i=1

( f (Zi)−P f ).

Definition 4 A class F is called P-Donsker if

νn ν

in `∞(F ), where the limit ν is a tight Borel measurable element in `∞(F ) and ” ” denotes weak
convergence, as defined on p. 17 of van der Vaart and Wellner (1996).
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In fact, it follows that the limit process ν must be a zero-mean Gaussian process with covariance
function Eν( f )ν( f ′) = 〈 f , f ′〉 (i.e., a Brownian bridge).

Various Donsker theorems provide sufficient conditions for a class being P-Donsker. Here we
mention a few known results (see van der Vaart and Wellner 1996, Equation 2.1.7 and van de Geer
2000, Theorem 6.3) in terms of entropy and entropy with bracketing, which we define below (see
van der Vaart and Wellner, 1996).

Definition 5 The covering number N (ε,F ,‖ · ‖) is the minimal number of balls {g : ‖g− f‖ < ε}
of radius ε needed to cover the set F . The centers of the balls need not belong to F , but they should
have finite norms. The entropy is the logarithm of the covering number.

Definition 6 Given two functions l and u, the bracket [l,u] is the set of all functions f with l ≤ f ≤
u. An ε-bracket is a bracket [l,u] with ‖u− l‖ < ε. The bracketing number N[](ε,F ,‖ · ‖) is the
minimum number of ε-brackets needed to cover F . The upper and lower bounds u and l need not
belong to F but are assumed to have finite norms. The entropy with bracketing is the logarithm of
the bracketing number.

Definition 7 An envelope function of a class F is any function x 7→ F(x) such that | f (x)| ≤ F(x)
for every x and f ∈ F .

Proposition 8 If the envelope F of F is square integrable and
Z ∞

0
sup

Q

√

logN (ε‖F‖Q,2 ,F ,L2(Q))dε < ∞,

then F is P-Donsker for every P, that is, F is a universal Donsker class. Here the supremum is
taken over all finitely discrete probability measures, and the L2(Q)-norm is defined as ‖ f‖Q,2 =
(

R | f |2
)1/2

.

Proposition 9 If
R ∞

0

√

logN[](ε,F ,L2(P))dε < ∞, then F is P-Donsker.

From the learning theory perspective, however, the most interesting theorems are probably those
relating the Donsker property to the VC-dimension. For example, if F is a {0,1}-valued class,
then F is universal Donsker if and only if its VC dimension is finite (Theorem 10.1.4 of Dudley
(1999) provides a more general result involving Pollard’s entropy condition). As a corollary of their
Proposition 3.1, Giné and Zinn (1991) show that under the Pollard’s entropy condition, the {0,1}-
valued class F is in fact uniform Donsker. Finally, Rudelson and Vershynin extended these results
to the real-valued case: a class F is uniform Donsker if the square root of its scale-sensitive VC
dimension is integrable.

3. Main Result

We now state the main result of this paper.

Theorem 10 Let F be a P-Donsker class. For any sequence ξ(n) = o(n−1/2),

diamM ξ(n)
S

P∗
−→ 0.
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The outer probability P∗ above is due to measurability issues. Definitions and results on various
types of convergence, as well as ways to deal with measurability issues arising in the proofs, are
based on the rigorous book of van der Vaart and Wellner (1996).

The following corollary, whose proof is given in Appendix A, extends the above result to L2

(and thus L1) diameters.

Corollary 11 The result of Theorem 10 holds if the diameter is defined with respect to the L2(P)
norm.

It is easy to verify that the dependence ξ(n) = o(n−1/2) of the tolerance, assumed in Theorem
10, is not improvable. In fact a simple example can show that if ξ(n) � n−1/2 the set of ξ(n)-almost
minimizers may not shrink in probability.

Example 1 Consider Z = {x1,x2} with x1 6= x2, and P = 1
2(δx1 + δx2). Moreover let F be the set

of functions { f1, f2}, with

fi(x) =

{

0 if x = xi,
1 otherwise.

Then it is clear that, given the finite sample S = (Z1, . . . ,Zn), M ξ
S = F (and hence diamM ξ(n)

S = 1)
whenever Pn f1 −Pn f2 = 2

n |q−Eq| ≤ ξ(n), where q is the binomial random variable

q = #{i|Zi = x1}.

Now since the variance of q is n
4 , it is clear that

∀C > 0 Pr
{

|q−Eq| ≤Cn
1
2

}

= Ω(1),

which shows that, if ξ(n) � n−1/2, with probability bounded away from zero, diamM ξ(n)
S = 1.

The above example is very basic, yet provides important intuition. A class can contain two quite
different functions with the smallest expectation, but it is unlikely that they both almost-minimize
the empirical error to within o(n−1/2). In fact, the above example suggests that the fluctuations of
the difference in empirical performance of two functions is of the order n−1/2. The extension of
this result to more general function classes with possibly infinite number of expected minima is the
main goal of Theorem 10.

Before diving into the proof of Theorem 10, let us state a few notions of stochastic convergence.

Definition 12 (Definition 1.9.1 in van der Vaart and Wellner (1996)) Let (Z,A ,P) be a proba-
bility space. Let Zn,Z : Z 7→ D be arbitrary maps and (D,d) be a metric space.

• Zn converges in outer probability to Z if d(Zn,Z)∗ → 0 in probability; this means that

P(d(Zn,Z)∗ > ε) = P∗(d(Zn,Z) > ε) → 0, for every ε > 0, and is denoted by Zn
P∗
−→ 0.

• Zn converges almost uniformly to Z if, for every ε > 0, there exists a measurable set A with
P(A) ≥ 1− ε and d(Zn,Z) → 0 uniformly on A; this is denoted Zn

au−→ Z.

The proof of Theorem 10 relies on the almost sure representation theorem (van der Vaart and
Wellner, 1996, Theorem 1.10.4). Here we state the theorem applied to νn and ν.
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Proposition 13 Suppose F is P-Donsker. Let νn : Zn 7→ `∞(F ) be the empirical process. There
exist a probability space (Z ′,A ′,P′) and maps ν′,ν′

n : Z′ 7→ `∞(F ) such that

1. ν′
n

au→ ν′,

2. E
∗ f (ν′

n) = E
∗ f (νn) for every bounded f : `∞(F ) 7→ R for all n.

Lemma 14 is the main preliminary result used in the proof of Theorem 10 (and Theorem 17 in
Section 5). We postpone its proof to Appendix A.

Lemma 14 Let νn : Zn 7→ `∞(F ) be the empirical process. Fix n and assume that there exist a
probability space (Z ′,A ′,P′) and a map ν′

n : Z′ 7→ `∞(F ) such that E
∗ f (ν′

n) = E
∗ f (νn) for every

bounded f : `∞(F ) 7→ R. Let ν′ be a P-Brownian bridge defined on (Z ′,A ′,P′). Fix C > 0, ε =
min(C3/128,C/4) and suppose δ ≥ ξ

√
n for a given ξ > 0. Then, if F is P-Donsker, the following

inequality holds

Pr∗
(

diamM ξ
S > C

)

≤ N (ε,F ,‖·‖)2

(

128δ
C3 +Pr∗

(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

))

.

We are now ready to prove the main result of this section.
Proof [Theorem 10] Lemma 1.9.3 in van der Vaart and Wellner (1996) shows that when the limiting
process is Borel measurable, almost uniform convergence implies convergence in outer probability.
Therefore, the first implication of Proposition 13 states that for any δ > 0

Pr∗
(

sup
F

|ν′
n −ν′| > δ

)

→ 0.

By Lemma 14,

Pr∗
(

diamM ξ(n)
S > C

)

≤ N (ε,F ,‖·‖)2

(

128δ
C3 +Pr∗

(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

))

for any C > 0, ε = min(C3/128,C/4), and any δ ≥ ξ(n)
√

n. Since ξ(n) = o(n−1/2), δ can be chosen

arbitrarily small, and so Pr∗
(

diamM ξ(n)
S > C

)

→ 0.

4. Stability of almost-ERM

The main result of this section, Corollary 15, shows L2-stability of almost-ERM on Donsker classes.
It implies that, in probability, the L2 (and thus L1) distance between almost-minimizers on similar
training sets (with o(

√
n) changes) goes to zero when n tends to infinity.

This result provides a partial answer to the questions raised in the machine learning literature
by Kutin and Niyogi (2002); Mukherjee et al. (2006): is it true that when one point is added to the
training set, the ERM algorithm is less and less likely to jump to a far (in the L1 sense) hypothesis?
In fact, since binary-valued function classes are uniform Donsker if and only if the VC dimension is
finite, Corollary 15 proves that almost-ERM over binary VC classes possesses L1-stability. For the

2570



STABILITY PROPERTIES OF EMPIRICAL RISK MINIMIZATION OVER DONSKER CLASSES

real-valued classes, uniform Glivenko-Cantelli property is weaker than uniform Donsker property,
and therefore it remains unclear if almost-ERM over uGC but not uniform Donsker classes is stable
in the L1 sense.

Use of L1-stability goes back to Devroye and Wagner (1979), who showed that this stability
is sufficient to bound the difference between the leave-one-out error and the expected error of a
learning algorithm. In particular, Devroye and Wagner show that nearest-neighbor rules possess
L1-stability (see also Devroye et al., 1996). Our Corollary 15 implies L1-stability of ERM (or
almost-ERM) algorithms on Donsker classes.

In the following [n] denotes the set {1,2, . . . ,n} and A4B is the symmetric difference of sets A
and B.

Corollary 15 Assume F is P-Donsker and uniformly bounded with envelope F ≡ 1. For I ⊂ N,

define S(I) = (Zi)i∈I . Let In ⊂ N such that Mn := |In 4 [n]| = o(n1/2). Suppose fn ∈ M ξ(n)
S([n]) and

f ′n ∈ M ξ′(n)
S(In)

for some ξ(n) = o(n−1/2) and ξ′(n) = o(n−1/2) . Then

∥

∥ fn − f ′n
∥

∥

P∗
−→ 0.

The norm ‖·‖ can be replaced by L2(P) or L1(P) norm.

Proof It is enough to show that f ′n ∈ M ξ′′(n)
S([n]) for some ξ′′(n) = o(n−1/2) and result follows from

Theorem 10.

1
n ∑

i∈[n]

f ′n(Zi) ≤
Mn

n
+

1
n ∑

i∈In

f ′n(Zi)

≤ Mn

n
+

|In|
n

(

ξ′(n)+ inf
g∈F

1
|In| ∑

i∈In

g(Zi)

)

≤ Mn

n
+

|In|
n

ξ′(n)+
1
n ∑

i∈In

fn(Zi)

≤ 2
Mn

n
+

|In|
n

ξ′(n)+
1
n ∑

i∈[n]

fn(Zi)

≤ 2
Mn

n
+

|In|
n

ξ′(n)+ξ(n)+ inf
g∈F

1
n ∑

i∈[n]

g(Zi).

Define

ξ′′(n) := 2
Mn

n
+

|In|
n

ξ′(n)+ξ(n).

Because Mn = o(n
1
2 ), it follows that ξ′′(n) = o(n−1/2). Corollary 11 implies convergence in L2(P),

and, therefore, in L1(P) norm.

5. Rates of Decay of diamM ξ(n)
S

The statement of Lemma 14 reveals that the rate of the decay of the diameter diamM ξ(n)
S is related

to the rate at which Pr∗
(

supF |ν−νn| ≥ δ
)

→ 0 for a fixed δ. A number of papers studied this
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rate of convergence, and here we refer to the notion of Komlos-Major-Tusnady class (KMT class),
as defined by Koltchinskii (1994). Let ν′

n : Zn 7→ `∞(F ) be the empirical process defined on the
probability space (Z ′,A ′,P′).

Definition 16 F is called a Komlos-Major-Tusnady class with respect to P and with the rate of
convergence τn (F ∈ KMT (P;τn)) if F is P-pregaussian and for each n ≥ 1 there is a version ν(n)

of a P-Brownian bridge defined on (Z ′,A ′,P′) such that for all t > 0,

Pr∗
(

sup
F

|ν(n)−ν′
n| ≥ τn(t +K logn)

)

≤ Λe−θt

where K > 0, Λ > 0 and θ > 0 are constants, depending only on F .

Sufficient conditions for a class to be KMT (P;n−α) have been investigated in the literature;
some results of this type can be found in Koltchinskii (1994); Rio (1993) and Dudley (2002), Section
9.5(B).

The following theorem shows that for KMT classes fulfilling a suitable entropy condition, it is
possible to give explicit rates of decay for the diameter of ERM almost-minimizers.

Theorem 17 Assume F is P-Donsker and F ∈ KMT (P;n−α) for some α > 0. Assume

N (ε,F ,‖·‖) ≤
(

A
ε
)V

for some constants A,V > 0. Let ξ(n)
√

n = o(n−η), η > 0. Then

nγdiamM ξ(n)
S

P∗
−→ 0

for any γ < 1
3(2V+1) min(α,η).

Proof The result of Lemma 14 is stated for a fixed n. We now choose C, ξ, and δ depending on n
as follows. Let C(n) = Bn−γ, where γ < 1

3(2V+1) min(α,η) and B > 0 is an arbitrary constant. Let

ξ = ξ(n). Let δ(n) = n−β, where β = 1
2(min(α,η)+ 3(2V + 1)γ). When β is defined this way, we

have

min(α,γ) > β > 3(2V +1)γ

because γ < 1
3(2V+1) min(α,η) by assumption. In particular, β < η and, hence, eventually δ(n) >

ξ(n)
√

(n) = o(n−η).
Since C(n) decays to zero and ε(n) = min(C(n)3/128,C(n)/4), eventually ε(n) = C(n)3/128 =

n−3γB3/128.
Since F ∈ KMT (P;n−α),

Pr∗
(

sup
F

|ν(n)−νn| ≥ n−α(t +K logn)

)

≤ Λe−θt

for any t > 0, choosing t = nαδ(n)/2−K logn we obtain

Pr∗
(

sup
F

|ν(n)−νn| ≥ δ(n)/2

)

≤ Λe−θ(nα−β/2−K logn).
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Lemma 14 then implies

Pr∗
(

diamM ξ(n)
S > C(n)

)

≤ N (ε,F ,‖·‖)2

(

128δ
C(n)3 +Pr∗

(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

))

≤
(

128A
B3 n3γ

)2V 128
B3 n−βn3γ +

(

128A
B3 n3γ

)2V

Λe−θ(nα−β/2−K logn)

=

(

128A
B3

)2V 128
B3 n3γ(2V+1)−β +Λ

(

128A
B3

)2V

nkθ+6γV e−
θ
2 nα−β

.

Since α > β > 3γ(2V +1), both terms above go to zero, that is,

Pr∗
(

nγdiamM ξ(n)
S > B

)

→ 0 for any B > 0.

The entropy condition in Theorem 17 is clearly verified by VC-subgraph classes of dimension
V . In fact, since L2 norm dominates ‖·‖ seminorm, upper bounds on L2 covering numbers of VC-
subgraph classes induce analogous bounds on ‖·‖ covering numbers. Corollary 18 is a an application
of Theorem 17 to this important family of classes. It follows in a straight-forward way from the
remark above.

Corollary 18 Assume F is a VC-subgraph class with VC-dimension V , and for some α > 0 F ∈
KMT (P,n−α). Let ξ(n)

√
n = o(n−η), η > 0. Then

nγdiamM ξ(n)
S

P∗
−→ 0

for any γ < 1
3(2V+1) min(α,η).

6. Expected Error Stability of almost-ERM

In the previous section, we proved bounds on the rate of decay of the diameter of almost-minimizers.
In this section, we show that given such a bound, as well as some additional conditions on the class,
the differences between expected errors of almost-minimizers decay faster than n−1/2. This implies
a form of strong expected error stability for ERM.

The proof of Theorem 20 relies on the following ratio inequality of Pollard (1995).

Proposition 19 Let G be a uniformly bounded function class with the envelope function G ≡ 2.
Assume N (γ,G) = supQ N (2γ,G ,L1(Q)) < ∞ for 0 < γ ≤ 1 and Q ranging over all discrete prob-
ability measures. Then

Pr∗
(

sup
f∈G

|Pn f −P f |
ε(Pn| f |+P| f |)+5γ

> 26

)

≤ 32N (γ,G)exp(−nεγ).

The next theorem gives explicit rates for expected error stability of ERM over VC-subgraph
classes fulfilling a KMT type condition.
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Theorem 20 If F is a VC-subgraph class with VC-dimension V , F ∈ KMT (P;n−α) and
√

nξ(n) =

o(n−η), then for any κ < min
(

1
6(2V+1) min(α,η),1/2

)

n1/2+κ sup
f , f ′∈M ξ(n)

S

|P( f − f ′)| P∗
−→ 0.

7. Conclusions

We presented some new results establishing stability properties of ERM over certain classes of
functions. This study was motivated by the question, raised by some recent papers, of L1-stability
of ERM under perturbations of a single sample (Mukherjee et al., 2006; Kutin and Niyogi, 2002;
Rakhlin et al., 2005). We gave a partially positive answer to this question, proving that, in fact,
ERM over Donsker classes fulfills L2-stability (and hence also L1-stability) under perturbations of
o(n

1
2 ) among the n samples of the training set. This property follows directly from the main result

of the paper which shows decay (in probability) of the diameter of the set of solutions of almost-
ERM with tolerance function ξ(n) = o(n−

1
2 ). We stress that for classification problems (i.e., for

binary-valued functions) no generality is lost in assuming the Donsker property, since for ERM to
be a sound algorithm, the equivalent Glivenko-Cantelli property has to be assumed anyway. On the
other hand, in the real-valued case many complexity-based characterizations of Donsker property
are available in the literature.

In the perspective of possible algorithmic applications, we analyzed some additional assump-
tions implying uniform rates on the decay of the L1 diameter of almost-minimizers. It turned out
that an explicit rate of this type can be given for VC-subgraph classes satisfying a suitable Komlos-
Major-Tusnady type condition. For this condition, many independent characterizations are known.

Finally, using a suitable ratio inequality we showed how L1-stability results can induce strong
forms of expected error stability, providing a further insight into the behavior of the Empirical Risk
Minimization algorithm.

Results of this paper can be used to analyze stability of a class of clustering algorithms by
casting them in the empirical risk minimization framework (see Rakhlin and Caponnetto, 2006).

Algorithmic implications of our results would require further investigation. For example, in the
context of on-line learning, when a point is added to the training set, with high probability one would
only have to search for empirical minimizers in a small L1-ball around the current hypothesis, which
might be a tractable problem. Moreover, L1-stability might have consequences for computational
complexity of ERM. While it has been shown that ERM is NP-hard even for simple function classes
(see for example, Ben-David et al., 2003), our results could allow more optimistic average-case
analysis.
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Appendix A.

In this appendix we derive some results presented in Section 3. In particular, Lemma 14, which was
used in the proof of Theorem 10, and Corollary 11. Let us start with some technical Lemmas.

Lemma 21 Let f0, f1 ∈ F , ‖ f0 − f1‖ ≥ C/2, ‖ f1‖ ≤ ‖ f0‖. Let h : F → R be defined as h( f ′) =
〈 f ′, f0〉
‖ f0‖2 . Then for any ε ≤ C3

128

inf
B( f0,ε)

h− sup
B( f1,ε)

h ≥ C2

16
.

Proof

∆ := inf
B( f0,ε)

h− sup
B( f1,ε)

h

= h( f0)−h( f1)+ inf{h( f ′− f0)+h( f1 − f ′′)| f ′ ∈ B( f0,ε), f ′′ ∈ B( f1,ε)}

≥ h( f0)−h( f1)−
2ε
‖ f0‖

≥ h( f0)−h( f1)−
8ε
C

,

since ‖ f0‖ ≥C/4.
Finally

2〈 f0 − f1, f0〉 = ‖ f0 − f1‖2 −‖ f1‖2 +‖ f0‖2 ≥ ‖ f0 − f1‖2 ≥ C2

4
,

then

h( f0)−h( f1) ≥
C2

8‖ f0‖2 ≥ C2

8
,

which proves that

∆ ≥ C2

8
− 8ε

C
≥ C2

16
.
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The following Lemma is an adaptation of Lemma 2.3 of Kim and Pollard (1990).

Lemma 22 Let f0, f1,h be defined as in Lemma 21. Suppose ε ≤ C3

128 . Let νµ be a Gaussian process
on F with mean µ and covariance cov(νµ( f ),νµ( f ′)) = 〈 f , f ′〉.

Then for all δ > 0

Pr∗
(

| sup
B( f0,ε)

νµ − sup
B( f1,ε)

νµ| ≤ δ

)

≤ 64δ
C3 .

Proof Define the Gaussian process Y (·) = νµ(·)−h(·)νµ( f0). Since cov(Y ( f ′),νµ( f0)) = 〈 f ′, f0〉−
h( f ′)‖ f0‖2 = 0, νµ( f0) and Y (·) are independent.

We now reason conditionally with respect to Y (·). Define

Γi(z) = sup
B( fi,ε)

{Y (·)+h(·)z} with i = 0,1.

Notice that

Pr∗
(

| sup
B( f0,ε)

νµ − sup
B( f1,ε)

νµ| ≤ δ|Y
)

= Pr∗ (|Γ0(νµ( f0))−Γ1(νµ( f0))| ≤ δ) .

Moreover Γ0 and Γ1 are convex and

inf∂−Γ0 − sup∂+Γ1 ≥ inf
B( f0,ε)

h− sup
B( f1,ε)

h ≥ C2

16
,

by Lemma 21. Then Γ0 = Γ1 in a single point z0 and

Pr∗ (|Γ0(νµ( f0))−Γ1(νµ( f0))| ≤ δ) ≤ Pr∗ (νµ( f0) ∈ [z0 −∆,z0 +∆]) ,

with ∆ = 16δ/C2.
Furthermore,

Pr∗ (νµ( f0) ∈ [z0 −∆,z0 +∆]) ≤ 32δ
C2
√

2πvar(νµ( f0))
,

and var(νµ( f0)) = ‖ f0‖2 ≥C2/16, which completes the proof.

The reasoning in the proof of the next lemma goes as follows. We consider a finite cover of F .
Pick any two almost-minimizers which are far apart. They belong to two covering balls with centers
far apart. Because the two almost-minimizers belong to these balls, the infima of the empirical
risks over these two balls are close. This is translated into the event that the suprema of the shifted
empirical process over these two balls are close. By looking at the Gaussian limit process, we are
able to exploit the covariance structure to show that the suprema of the Gaussian process over balls
with centers far apart are unlikely to be close.
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Proof [Lemma 14]

Consider the ε-covering { fi|i = 1, . . . ,N (ε,F ,‖·‖)}. Such a covering exists because F is totally

bounded in ‖·‖ norm (see page 89, van der Vaart and Wellner, 1996). For any f , f ′ ∈ M ξ
S s.t.

‖ f − f ′‖ > C, there exist k and l such that ‖ f − fk‖ ≤ ε ≤ C/4, ‖ f ′− fl‖ ≤ ε ≤ C/4. By triangle
inequality it follows that ‖ fk − fl‖ ≥C/2.

Moreover

inf
F

Pn ≤ inf
B( fk,ε)

Pn ≤ Pn f ≤ inf
F

Pn +ξ

and

inf
F

Pn ≤ inf
B( fl ,ε)

Pn ≤ Pn f ′ ≤ inf
F

Pn +ξ.

Therefore,

∣

∣

∣

∣

inf
B( fk,ε)

Pn − inf
B( fl ,ε)

Pn

∣

∣

∣

∣

≤ ξ.

The last relation can be restated in terms of the empirical process νn:

∣

∣

∣

∣

∣

sup
B( fk,ε)

{−νn −
√

nP}− sup
B( fl ,ε)

{−νn −
√

nP}
∣

∣

∣

∣

∣

≤ ξ
√

n ≤ δ.

Pr∗
(

diamM ξ
S > C

)

= Pr∗
(

∃ f , f ′ ∈ M ξ
S ,
∥

∥ f − f ′
∥

∥> C
)

≤

Pr∗
(

∃l,k s.t. ‖ fk − fl‖ ≥C/2,

∣

∣

∣

∣

∣

sup
B( fk,ε)

{−νn −
√

nP}− sup
B( fl ,ε)

{−νn −
√

nP}
∣

∣

∣

∣

∣

≤ δ

)

.

By union bound

Pr∗
(

diamM ξ
S > C

)

≤
N (ε,F ,‖·‖)

∑
k,l=1

‖ fk− fl‖≥C/2

Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−νn −
√

nP}− sup
B( fl ,ε)

{−νn −
√

nP}
∣

∣

∣

∣

∣

≤ δ

)

.
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We now want to bound the terms in the sum above. Assuming without loss of generality that
‖ fk‖ ≥ ‖ fl‖, we obtain

Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−νn −
√

nP}− sup
B( fl ,ε)

{−νn −
√

nP}
∣

∣

∣

∣

∣

≤ δ

)

= Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−ν′
n −

√
nP}− sup

B( fl ,ε)
{−ν′

n −
√

nP}
∣

∣

∣

∣

∣

≤ δ

)

= Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−ν′−
√

nP+ν′−ν′
n}− sup

B( fl ,ε)
{−ν′−

√
nP+ν′−ν′

n}
∣

∣

∣

∣

∣

≤ δ

)

≤ Pr∗
(∣

∣

∣

∣

∣

| sup
B( fk,ε)

{−ν′−
√

nP}− sup
B( fl ,ε)

{−ν′−
√

nP}|−2sup
F

∣

∣ν′
n −ν′∣

∣

∣

∣

∣

∣

∣

≤ δ

)

≤ Pr∗
(

2sup
F

∣

∣ν′
n −ν′∣

∣≥ δ ∨
∣

∣

∣

∣

∣

sup
B( fk,ε)

{−ν′−
√

nP}− sup
B( fl ,ε)

{−ν′−
√

nP}
∣

∣

∣

∣

∣

≤ 2δ

)

≤ Pr∗
(∣

∣

∣

∣

∣

sup
B( fk,ε)

{−ν′−
√

nP}− sup
B( fl ,ε)

{−ν′−
√

nP}
∣

∣

∣

∣

∣

≤ 2δ

)

+Pr∗
(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

)

≤ 128δ
C3 +Pr∗

(

sup
F

∣

∣ν′
n −ν′∣

∣≥ δ/2

)

,

where the first inequality results from a union bound argument while the second one results
from Lemma 22 noticing that −ν′−√

nP is a Gaussian process with covariance 〈 f , f ′〉 and mean
−√

nP, and since by construction ε ≤C3/128.
Finally, the claimed result follows from the two last relations.

We now prove, Corollary 11, the extension of Theorem 10 to L2 diameters. The proof relies on
the observation that a P-Donsker class is also Glivenko-Cantelli.
Proof [Corollary 11] Note that

∥

∥ f − f ′
∥

∥

2
L2

=
∥

∥ f − f ′
∥

∥

2
+
(

P( f − f ′)
)2

.

The expected errors of almost-minimizers over a Glivenko-Cantelli (and therefore over Donsker)
class are close because empirical averages uniformly converge to the expectations.

Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∥

∥ f − f ′
∥

∥

L2
> C

)

≤ Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∣

∣P f −P f ′
∣

∣> C/
√

2
)

+Pr∗
(

diamM ξ(n)
S > C/

√
2
)

.

The first term can be bounded as

Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∣

∣P f −P f ′
∣

∣> C/
√

2
)

≤ Pr∗
(

∃ f , f ′ ∈ F ,
∣

∣Pn f −Pn f ′
∣

∣≤ ξ(n),
∣

∣P f −P f ′
∣

∣> C/
√

2
)

≤ Pr∗
(

sup
f , f ′∈F

|(Pn −P)( f − f ′)| > |C/
√

2−ξ(n)|
)
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which goes to 0 because the class { f − f ′| f , f ′ ∈ F } is Glivenko-Cantelli. The second term goes to
0 by Theorem 10.

Appendix B.

In this appendix we report the proof of Theorem 20 stated in Section 6. We first need to derive a
preliminary lemma.

Lemma 23 Let F be P-Donsker class with envelope function G ≡ 1. Assume N (γ,F ) =
supQ N (γ,F ,L1(Q)) < ∞ for 0 < γ ≤ 1 and Q ranging over all discrete probability measures. Let

M ξ(n)
S be defined as above with ξ(n) = o(n−1/2) and assume that for some sequence of positive

numbers λ(n) = o(n1/2)

λ(n) sup
f , f ′∈M ξ(n)

S

P| f − f ′| P∗
−→ 0. (1)

Suppose further that for some 1/2 < ρ < 1

λ(n)2ρ−1 − logN (
1
2

n−1/2λ(n)ρ−1,F ) → +∞. (2)

Then

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

|P( f − f ′)| ≤
√

nξ(n)+131λ(n)ρ−1



→ 0.

Proof Define G = { f − f ′ : f , f ′ ∈F } and G ′ = {| f − f ′| : f , f ′ ∈F }. By Example 2.10.7 of van der
Vaart and Wellner (1996), G = (F )+ (−F ) and G ′ = |G | ⊆ (G ∧ 0)∨ (−G ∧ 0) are Donsker as
well. Moreover, N (2γ,G)≤ N (γ,F )2 and the envelope of G is G ≡ 2. Applying Proposition 19 to
the class G , we obtain

Pr∗
(

sup
f , f ′∈F

|Pn( f − f ′)−P( f − f ′)|
ε(Pn| f − f ′|+P| f − f ′|)+5γ

> 26

)

≤ 32N (γ/2,F )2 exp(−nεγ).

The inequality therefore holds if the sup is taken over a smaller (random) subclass M ξ(n)
S .

Pr∗



 sup
f , f ′∈M ξ(n)

S

|P( f − f ′)|−ξ(n)

ε(Pn| f − f ′|+P| f − f ′|)+5γ
> 26



≤ 32N (γ/2,F )2 exp(−nεγ).

Since supx
A(x)
B(x) ≥ supx

A(x)
supx B(x) =

supx A(x)
supx B(x) ,

Pr∗



 sup
f , f ′∈M ξ(n)

S

(

|P( f − f ′)|−ξ(n)
)

> 26 sup
f , f ′∈M ξ(n)

S

(

ε(Pn| f − f ′|+P| f − f ′|)+5γ
)



 (3)

≤ 32N (γ/2,F )2 exp(−nεγ).
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By assumption,

λ(n) sup
f , f ′∈M ξ(n)

S

P| f − f ′| P∗
−→ 0.

Because G ′ is Donsker and λ(n) = o(n1/2),

λ(n) sup
f , f ′∈M ξ(n)

S

∣

∣Pn| f − f ′|−P| f − f ′|
∣

∣

P∗
−→ 0.

Thus,

λ(n) sup
f , f ′∈M ξ(n)

S

Pn| f − f ′|+P| f − f ′| P∗
−→ 0.

Letting ε = ε(n) := n−1/2λ(n)ρ, this implies that for any δ > 0, there exist Nδ such that for all
n > Nδ,

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

26ε(n)
(

Pn| f − f ′|+P| f − f ′|
)

> λ(n)ρ−1



< δ.

Now, choose γ = γ(n) := n−1/2λ(n)ρ−1 (note that since ρ < 1, eventually 0 < γ(n) < 1), the last
inequality can be rewritten in the following form

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

26
(

ε(n)
(

Pn| f − f ′|+P| f − f ′|
)

+5γ(n)
)

> 131λ(n)ρ−1



< δ.

Combining the relation above with Equation 3,

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

|P( f − f ′)| ≤
√

nξ(n)+131λ(n)ρ−1





≥ 1−32N
(

1
2

n−1/2λ(n)ρ−1,F
)2

exp(−λ(n)2ρ−1)−δ.

The result follows by the assumption on the entropy and by arbitrariness of δ.

We are now ready to prove Theorem 20.
Proof [Theorem 20] By Corollary 18,

nγdiamM ξ(n)
S

P∗
−→ 0

for any γ < min
(

1
3(2V+1) min(α,η),1/2

)

. Let λ(n) = nγ and note that λ(n) = o(
√

n), which is a

condition in Lemma 23. First, we show that a power decay of the ‖·‖ diameter implies the same rate
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of decay of the L1 diameter, hence verifying condition (1) in Lemma 23. Proof of this fact is very
similar to the proof of Corollary 11, except that C is replaced by Cλ(n)−1.

Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∥

∥ f − f ′
∥

∥

L2
> Cλ(n)−1

)

≤ Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∣

∣P f −P f ′
∣

∣> Cλ(n)−1/
√

2
)

+Pr∗
(

diamM ξ(n)
S > Cλ(n)−1/

√
2
)

.

The second term goes to zero since λ(n)diamM ξ(n)
S

P∗
−→ 0. Moreover, since λ(n) = o(

√
n) and G is

Donsker, the first term can be bounded as

Pr∗
(

∃ f , f ′ ∈ M ξ(n)
S s.t.

∣

∣P f −P f ′
∣

∣> Cλ(n)−1/
√

2
)

≤ Pr∗
(

∃ f , f ′ ∈ F ,
∣

∣Pn f −Pn f ′
∣

∣≤ ξ(n),
∣

∣P f −P f ′
∣

∣> Cλ(n)−1/
√

2
)

≤ Pr∗
(

sup
f , f ′∈F

|P( f − f ′)−Pn( f − f ′)| >
∣

∣

∣

∣

C√
2

λ(n)−1 −ξ(n)

∣

∣

∣

∣

)

= Pr∗
(

λ(n) sup
g∈G

|Pg−Png| >
∣

∣

∣

∣

C√
2
−ξ(n)λ(n)

∣

∣

∣

∣

)

→ 0,

proving condition (1) in Lemma 23.
We now verify condition (2) in Lemma 23. Since F is a VC-subgraph class of dimension V , its

entropy numbers logN (ε,F ) behave like V log A
ε (A is a constant), that is

logN
(

1
2

n−1/2λ(n)ρ−1,F
)

≤ const +
1
2

V logn+(1−ρ)V logλ(n).

Condition (2) of Lemma 23 will therefore hold whenever λ(n) grows faster than (logn)
1

2ρ−1 , for any
1 > ρ > 1

2 . In our problem, λ(n) grows polynomially, so condition (2) is satisfied for any fixed
1 > ρ > 1/2.

Hence, by Lemma 23

Pr∗





√
n sup

f , f ′∈M ξ(n)
S

|P( f − f ′)| ≤
√

nξ(n)+131nγ(ρ−1)



→ 0.

Choose any 0 < κ < γ/2 and multiply both sides of the inequality by nκ. We obtain

Pr∗



nκ√n sup
f , f ′∈M ξ(n)

S

|P( f − f ′)| ≤
√

nξ(n)nκ +131nγ(ρ−1)+κ



→ 0.

Now fix a ρ such that 1/2 < ρ < 1−κ/γ. Because 0 < κ < γ/2, there is always such a choice of
ρ. Furthermore, 1 > ρ > 1/2 so that the above convergence holds. Our choice of ρ implies that
γ(ρ−1)+κ < 0 and so nγ(ρ−1)+κ → 0. Since κ < γ/2 < η,

√
nξ(n)nκ → 0. Hence,

n1/2+κ sup
f , f ′∈M ξ(n)

S

|P( f − f ′)| P∗
−→ 0
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for any κ < min
(

1
6(2V+1) min(α,η),1/2

)

.
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