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Abstract

The rise of convex programming has changed the face of many research fields in recent
years, machine learning being one of the ones that benefitted the most. A very recent de-
velopement, the relaxation of combinatorial problems to semi-definite programs (SDP), has
gained considerable attention over the last decade (Helmberg, 2000; De Bie and Cristianini,
2004a). Although SDP problems can be solved in polynomial time, for many relaxations
the exponent in the polynomial complexity bounds is too high for scaling to large problem
sizes. This has hampered their uptake as a powerful new tool in machine learning.

In this paper, we present a new and fast SDP relaxation of the normalized graph cut
problem, and investigate its usefulness in unsupervised and semi-supervised learning. In
particular, this provides a convex algorithm for transduction, as well as approaches to
clustering. We further propose a whole cascade of fast relaxations that all hold the middle
between older spectral relaxations and the new SDP relaxation, allowing one to trade off
computational cost versus relaxation accuracy. Finally, we discuss how the methodology
developed in this paper can be applied to other combinatorial problems in machine learning,
and we treat the max-cut problem as an example.

Keywords: convex transduction, normalized graph cut, semi-definite programming, semi-
supervised learning, relaxation, combinatorial optimization, max-cut

1. Introduction

Let us assume a data sample S containing n points is given. Between every pair of samples
(x4,%;), an affinity measure A(i,j) = a(x;,x;) is defined, making up an affinity matriz A.
We assume the function a is symmetric and positive, however, no positive definiteness of A
will be necessary, probably making the application domain larger than that of kernel based
methods as discussed in e.g. Chapelle et al. (2003); De Bie and Cristianini (2004a).
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Graph cut clustering Informally speaking, in this paper we are seeking to divide these
data points into two coherent sets, denoted by P and AV, such that PUN = Sand PN =
(). In the fully unsupervised-learning scenario, no prior information is given as to which
class the points belong to. A number of approaches to bipartitioning sets of data, known
as graph cut clustering approaches, make use of an edge-weighted graph, where the nodes
in the graph represent the data points and the edges between them are weighted with the
affinities between the data points. Bipartitioning the data set then corresponds to cutting
the graph in two parts. Intuitively, the fewer high affinity edges are cut, the better the
division into two coherent and mutually different parts will be. In Section 1.1 we recall a
few graph cut cost functions that have been proposed in literature.

Graph cut transduction Besides this clustering scenario, we also consider the trans-
duction scenario, where part of the class labels is specified. Transduction has received much
attention in the past years as a promising middle ground between supervised and unsuper-
vised learning, but major computational obstacles have so far prevented it from becoming
a standard piece in the toolbox of practitioners, despite the fact that many natural learning
situations directly translate into a transduction problem. In graph cut approaches, the
problem of transduction can naturally be approached by restricting the search for a low
cost graph cut to graph cuts that do not violate the label information.

Even more generally, one can consider the case where labels are not exactly specified,
but where equivalence or inequivalence constraints (Shental et al., 2004) are given instead,
specifying equality or non-equality of the labels respectively.

1.1 Cut, Average Cut and Normalized Cut Cost Functions

Several graph cut cost functions have been proposed in literature in the context of clustering,
among which the cut cost, the average cut cost (ACut) and the normalized cut cost (NCut)
(Shi and Malik, 2000).

The Cut cost is computationally the easiest to handle in a transduction setting (see
Blum and Chawla, 2001), however as clearly motivated in Joachims (2003), it often leads
to degenerate results with one of both clusters extremely small. This problem could largely
be solved by using the ACut or NCut cost functions, of which the ACut cost seems to be
more vulnerable to outliers (atypical data points, meaning that they have low affinity to the
rest of the sample). However, both optimizing the ACut and NCut costs are NP-complete
problems (Shi and Malik, 2000).

To get around this, spectral relaxations of the ACut and NCut optimization problems
have been proposed in a clustering (Shi and Malik, 2000; Ng et al., 2002; Cristianini et al.,
2002) and more recently also in a transduction setting (Kamvar et al., 2003; Joachims,
2003; De Bie et al., 2004). Xing and Jordan (2003) also proposed an interesting SDP
relaxation for the NCut optimization problem in a multiclass clustering setting, however,
the computational cost to solve this relaxation turns out to be too high to cluster data sets
of more than about 150 data points, which makes it impractical in real situations.
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1.2 Paper Outline

We should emphasize that we are not as much interested in making claims concerning the
usefulness of the normalized graph cut for (constrained) clustering problems. A statistical
study of the NCut cost function is still lacking, such that claims are necessarily data-
dependent, and hence conflicting opinions exist. Instead, we mainly focus on the algorithmic
problem involved in the optimization of the normalized graph cut as an interesting object
of study on itself, because of its direct applicability to machine learning algorithms design.
Furthermore, we will show how the methodologies presented in the context of the NCut
optimization problem have a wider applicability, and can be of use to approximately solve
other combinatorial problems as well. Our results are structured as follows.

e In Section 2 we recapitulate the well known spectral relaxation of the NCut problem
to an eigenvalue problem. Subsequently, a first main result of this paper is presented,
which is an efficiently solvable SDP relaxation of the NCut optimization problem.
Lastly, this section contains a methodology to construct a cascade of SDP relaxations,
all tighter than the spectral relaxation and looser than the SDP relaxation, and with
a computational cost in between the cost of both extremes.

e In Section 3 we introduce the so-called subspace trick, and show two of its applications.
In Section 3.1 we observe how it enables one to efficiently impose equivalence and
inequivalence constraints between the labels on the solution of the relaxations. Hence,
also transduction problems with the NCut cost can be tackled efficiently. Section 3.2
contains a second application of the subspace trick, consisting of a further speed-up
of the relaxations derived in Section 2.

e Lastly, in Section 4 we illustrate how the relaxation cascade and the subspace trick
can be applied to speed up relaxations of other combinatorial problems as well, by
applying it to the max-cut problem.

We conclude with empirical results for the normalized cut and for the max-cut problems.

2. Relaxations of the Normalized Graph Cut Problem

The NCut cost function for a partitioning of the sample § into a positive P and a negative
N set is given by (as originally denoted in Shi and Malik (2000)):

cut(P,N) cut(N, P) 1 1
+ assoc

assoc(P,S) = assoc(N,S) (P,S) + assoc(N,S)

where cut(P,N) = cut(N,P) = Diiep.jixyen Al ) s the cut between sets P and
N, and assoc(P,S) = Zz‘:xiep,j:xjes A (i, j) the association between sets P and the full
sample S. (Note that in fact cut(P,N) = assoc(P,N).) Intuitively, it is clear that
the second factor cut(P,N) defines how well the two clusters separate. The first factor

) -cut(P,N), (1)

(assoclz(P, 3) + assocl( N S)) measures how well the clusters are balanced. This specific mea-

sure of imbalancedness can be seen to improve robustness against atypical data points:!

1. This property seems even more important in the relaxations of NCut based methods: the variables then
have even more freedom, often making the methods more vulnerable to outliers.
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such outliers have a small cut cost with the other data points, making it beneficial to sepa-
rate them out into a cluster of their own, which would lead to a useless result in our 2-class
setting. However, they also have a small association with the rest of the sample S, which on
the other hand increases the cost function. In other words, the NCut cost function promotes
partitions that are balanced in the sense that both clusters are roughly equally ‘coherent’,
while at the same time ‘distant’ from each other. It is this feature that makes it preferable
over the ACut cost function.?

To optimize this cost function, we reformulate it into algebraic terms using the unknown
label vector y € {—1,1}", the affinity matrix A, the degree vector d = A1 and associated
matrix D = diag(d), and shorthand notations s; = assoc(P,S) and s_ = assoc(N,S).

Observe that cut(P,N) = O%WA(I_TW = 1 (—y'Ay + A1) = 1y'(D — A)y. Fur-
d’(1 —y). Then we

thermore, s4 = assoc(P,S) = $1’A(1+y) = 3d'(1 +y) and s_ = %
can write the combinatorial optimization problem as:
1/1 1
min - < + > -y (D —-A)y
Y,5+,5— 4 8—‘,— S_

st.  ye{-1,1}",
sy =3d(1+y) dy =54 —s_
s-=3d(1-y) d1=s; +s_=s,

where we introduced the additional symbol s for the constant s = s, +s_ = d'1 = 1'D1.
In this new notation, the optimization problem becomes:

ymin y'(D - Ay (2)
st.  ye{-1,1}",
dy =35, —s_,
Sy +s_=s.

Unfortunately, the resulting optimization problem is known to be NP-complete. There-
fore, we approach the problem by relaxing it to more tractable optimization problems. This
is the subject of what follows below.

As a guide for the reader, the main notation is summarized in Table 1. We would like
to note that we suppress matrix symmetricity constraints where these can be understood
from the context.

2.1 A Spectral Relaxation

We now provide a short derivation of the spectral relaxation of the NCut optimization
problem as first given in Shi and Malik (2000). Let us introduce the variable y defined as:

~ S Sy —S—
S
S4S5_ S

o
N 4s. s s )V

2. Note however that when a k-nearest neighbor affinity matrix is used, as in Kamvar et al. (2003), every
sample has the same affinity with the remainder of the data set, such that the ACut and the NCut costs
become equivalent.
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Table 1: Notation summary. Note that some equalities should be replaced by approximate
equalities depending on the context. Throughout the paper, label matrices are
understood to be symmetric and any symmetricity constraints are suppressed for
conciseness.
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and rewrite the optimization problem in terms of this variable by accordingly substituting
4s+s_ v+ 15+75- s+ S_ .

y =
ming ;. o ~'(D Ay
5.t { \/T ﬁ} (3)
Sy —|— s_ =s.

Proposition 1 The constraints of optimization problem (3) imply that the D-weighted 2-
norm of y is constant and equal to y'Dy = 1.

o d1’ 1d’
yDy = i y’ <I—>D(I—)y
4545 s s

Proof

Hence we can add the (redundant) constraint y’Dy = 1 to the optimization problem without
altering the result. The spectral relaxation is obtained by doing so, and subsequently
dropping the combinatorial constraint on y. The result is:

ming y'(D - A)y
Spectral st. yDy =1, (4)
d'y =0,
which is solved by taking the (generalized) eigenvector y corresponding to the second small-

est generalized eigenvalue oy of the generalized eigenvalue problem (D — A)v = cDv. Note
that the smallest generalized eigenvalue is 01 = 0, corresponding to the eigenvector %1.

2.2 An SDP Relaxation

We start from formulation (2), and introduce the notation I' = yy’. Then, we can write
the equivalent optimization problem:

minrvs+7s— 4S+5 <F D A)

st. T'=yy,
y€ {_17 1}n7 (5)
(T, dd') = (51 — s_)% = (54 +5_)% — dsys_,
Sy +s_=s, 54 >0, s >0.

Note that these constraints imply that (I =)I" = 0 and diag(T') = 1 (where A > B means
that A — B is positive semi-definite). Hence we can relax the constraint set by adding these
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two redundant constraints (we suppress the symmetricity constraint on I" from the notation

for conciseness), and dropping I' = yy’ and y € {—1,1}". (While this is a tight relaxation,

tighter relaxations are possible at higher computational cost, see Helmberg (2000).) If we
. _ 4sis_ .

further use the notation p = —5—, we get:

minr %
st. T

r

By once again reparameterizing with T = ) and g = 1/p, we obtain:

Note that <f‘, ds—g") > 0 such that the constraint (f, dg—%"> = ¢ — 1 implies the inequality
constraint ¢ > 1. Hence it does not need to be mentioned explicitly. The result is an
optimization problem with a linear objective, n + 1 linear equality constraints, and a PSD
constraint on a matrix of size n that is linear in the parameters. Hence, we have reshaped

the relaxed problem into a standard SDP formulation.

The Lagrange dual We will now derive the dual of this optimization problem, as it will
be helpful in the theoretical understanding of the optimization problem as well as for its
implementation. To this end we use a symmetric matrix 2 € R**"  a vector A € " and
a scalar p as Lagrange multipliers (also called dual variables in the sequel). Then we can
write the Lagrangian as:

~ ~D-A _ = ~ dd’
[’(Fv q,=, )‘nu) = <F7 S > - <I‘a ‘:> - X <d1ag(r) - q]-) —H <(q - 1) - <I" S2>>
~D-A dd’
= (0= — —E-diagN) +pn—) +q(M'A = p) + 1

and the primal optimization problem is equivalent with:

opt

primal

= min | max L’(f‘,q,E,)\,u)
Tq |E=0Au

Indeed, either the primal constraints are fulfilled and then the inner maximization reduces
to the primal objective, or the maximum over the dual constraints is unbounded:

~ T D-A
max E(I‘,q,E,)\,u)—{ (=57

EX0,A\u

if the primal constraints are fulfilled, and
oo otherwise.
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Thus, in order to minimize this maximum, the primal variables T and q will be such that
the constraints are met.

The so-called dual optimization problem is obtained by interchanging the maximization
and minimization in this optimization problem:

OPtqual = __S%)a;\(
:‘7 2 7ILL

min ,C(f, ¢, E, 0| .
Ly

A very useful relation between the primal and dual optima (on its own already warranting
the study of the dual problem) is known as weak duality, and says that the dual maximum
is a lower bound for the primal minimum (see e.g. Boyd and Vandenberghe (2004)). Le.:

Optprimal > Optdual :

Let us further focus on the dual optimization problem. The inner minimization can be
explicitly solved. Indeed, it is easy to see that it is equal to u if the following conditions
hold:

D-A dd’
—= - d1ag()\) + MST ==

'AX—p = 0,

and unbounded from below otherwise. Following a similar reasoning as above, this implies
that these equalities will hold at the optimum. Hence, we obtain as a dual optimization
problem:

MaXg Xy M
st. E>0,
E = B=A — diag(A) + n9,

1A= p.

The matrix 2 is easily eliminated from these constraints, which gives us the final formula-
tion. We state both the primal and the dual:

ming (T, D=A)
¢ Tro, AL
clus S.t. - Y clus ’ — . ’
PSlDPt - DSlDPt s.t. DA diag(X) + Mdg =0,
diag(T") = q1, A=y °

Importantly, this relaxation contains only n 4+ 1 dual variables. It is thanks to this
feature that this relaxation leads to a much more efficient algorithm than the one presented
in Xing and Jordan (2003). But we postpone a detailed computational study until Section
2.4.

2.3 A Cascade of Relaxations Tighter Than Spectral and Looser Than SDP

Still, in many cases the SDP relaxation is too complex, while the spectral relaxation is
computationally feasible but too loose. Whereas numerous efforts have been made in lit-
erature to further tighten SDP relaxations of (other) combinatorial problems by adding in

1416



FAST SDP RELAXATIONS OF GRAPH CUT CLUSTERING

additional constraints and using so-called lifting techniques (see e.g. Anjos and Wolkowicz
(2002)), contributions to further relax the SDP problem without considerably degrading
the solution and while gaining on the computational side, have remained limited. Here we
present a set of such relaxations, and we will show that they hold the middle between the
SDP relaxation and the spectral relaxation, both in terms of computational complexity and
in terms of accuracy.

The basic observation to be made is the fact that the constraint diag(f) = ¢1 implies:

W'diag(f‘) =qW'1,

for W € R™"*™ (which we choc§.e to be of full column rank, so with 1 < m < n). Hence, we
can relax the constraint diag(I') = ¢1 to this weaker constraint. The resulting primal and
dual optimization problems are:

ming (AI‘, D;A> maxy [,
Pclust s.t. I‘ t 07 Dclust s.t. D_A dlag(WA)
m-SDP Wldiag( ) o q-W/]-’ m-SDP +Mdd >_ 0
<F dd’ ddly — ¢ — 1. =1WA.

The attractive feature of the relaxation cascade is the fact that the number of dual
parameters is only m + 1, as opposed to n 4+ 1 for the basic SDP relaxation. Hence, for
smaller m, the optimization can be carried out more efficiently.

In general, it is clear that a relaxation is tighter than another if the column space of
the matrix W used in the first one contains the full column space of W of the second. In
particular, for d = n the original SDP relaxation is obtained. At the other extreme, for
m =1, let us take W = d. Then essentially the spectral relaxation is obtained.

Theorem 2 The SDP relaxation from the cascade with m =1 and W = d is (essentially)
equivalent to the spectral relazation.

Proof Let us write I = VMV’ with M € R a symmetric matrix and with the
eigenvectors v of the spectral relaxation (D — A)v = ¢Dv as the columns of V|, in order
of increasing eigenvalue o, and normalized such that V'DV = I. lL.e., the first column of
V(1) = \[, and the second column V(:,2) =y is the relaxed label vector obtained using

the spectral relaxation. Then we have that V/(D — A)V = X, a diagonal matrix with
the generalized eigenvalues in ascending order on the diagonal, i.e. ¥(1,1) = o7 = 0 and

clust

31(2,2) = 09. Using this reparameterization we can rewrite P&t with W =d as:

minpg 4 <Af‘, D-A) — (M, Z)

s 7S

st. T=0&M =0,

d'diag(VMV') = (D, VMV’) = (I, M) = ¢gs = ¢d'1,
(VMV, 8} — (0, VYY) Z 1N 1) — g1,
or in summary:
minn,, (M, %)
s.t. M >0,
<I7M> = g5, (7)
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where we made use of the fact that d'V = 1'DV = /sV(;,1))DV = (/s 0 --- 0 ).
We can eliminate ¢ from these constraints, and obtain:
minyg (M, %)
s.t. M >0, (8)
(I, M) =M(1,1) + s.

This optimization problem can be solved by inspection: its optimal solution is given by
putting M(1,1) = s(q¢ — 1) for any ¢ > 1, M(2,2) = s, and M(1,2) = M(2,1) = f for any
f € [—svq—1,5y/q—1] (to ensure that M = 0). All other entries of M should be equal
to 0. This means that

T = sV(,2)V(2) +s(g—DV(EDVED + FV(2)1 + F1V(:,2),
= syy +(qg— 111 + fy1' + f1y’.

The value of the optimum is equal to 3.(2,2) = 09, the smallest nonzero generalized eigen-
value. The value of I is essentially equivalent to the vector y from the spectral relaxation. H

This result shows that, while the actual choice of how to choose the matrix W in the
relaxation cascade is basically free, for interpretability it is reasonable that d is within
its column space (as only then all relaxations in the cascade are tighter than the spectral
relaxation). Well-motivated choices for W' exist, and we will construct one in Section 4.

2.4 Discussion

So far we have introduced a cascade of relaxations of the normalized cut problem, the
loosest of which is equivalent to the spectral relaxation. For each SDP relaxation we have
derived a dual version, the optimum of which is a lower bound for the primal optimum
(weak duality).

In this section we go further into the duality aspects of the SDP problems. In particular,
we investigate whether strong duality holds, which would imply that the primal and the
dual optima are equal to each other. Additionally, this allows us to get a better insight in
the relation between the spectral relaxation and the cascade of SDP relaxations.

2.4.1 STRONG DUALITY

Let us investigate whether the dual optimum optg,, is equal to the primal optimum
OPtprimal;, instead of merely a lower bound as guaranteed by the weak duality. If the pri-
mal and dual optima are equal to each other, one says that strong duality holds. Slater’s
condition gives a sufficient condition for strong duality to hold.

Lemma 3 (Slater’s condition) Strong duality holds if the primal problem is convex and
the primal constraints are strictly feasible. Then the primal and dual optima are equal to
each other.

Hereby, strict feasibility means that a matrix r-o along with a value for ¢ satisfying
the equality constraints can be found. As SDP problems are convex, the first condition is
certainly fulfilled. That the primal constraints in our SDP relaxations are strictly feasible
can be seen by construction: choose I' =¢I > 0 and ¢ =1/(1 — ds/—zd). Hence:
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Proposition 4 The primal optimization problems PEu% and PUSt . are strictly feasible.
Le. the Slater condition is fulfilled, and the primal and dual optima are equal to each other:

op tdual = op tprimal‘

If the dual constraints are also strictly feasible, duality theory teaches us that the primal
optimum is achieved for a finite value of the variables (see e.g. Helmberg (2000)). However,
the following remark answers negatively to this presupposition:

Remark 5 The dual optimization problems D and DY . are not strictly feasible.

Indeed, 1’ (# — diag(\) —i—uds—g/) 1 = 0 for all p and X\ satisfying the constraint p =

1\, and 1’ <¥ — diag(WA) +ud8—‘21,> 1 = 0 for all p and X\ satisfying the constraint
= 1WN. This means that the PSD constrained matriz is never strictly positive definite.
Correspondingly, the primal optimum is not achieved for a finite value of the variables.

In particular, note that if ' is a feasible point of optimization problem PZust or of PSSt
then also I' + 211’ with 2 > 0 is a feasible point with the same value of the objective.
The consequence is that the optimum will be achieved for matrix T with an infinitely large
constant component, and hence with ¢ infinitely large. Indeed, increasing ¢ never increases
the objective for a fixed value of T as the Remark above shows. This also means that the
minimum over T can only be smaller for ¢ larger, such that the minimum over both ¢ and
T is obtained for q unboundedly large. What does this mean? A more in-depth study of

the relation between the spectral and SDP relaxations makes things clear.

2.4.2 How MucH TIGHTER ARE THE SDP RELAXATIONS?

We have already shown in Theorem 2 that the SDP relaxation from the cascade with W = d
is equivalent to the spectral relaxation. Here we prove an even stronger theorem that relates
the solution of the basic SDP relaxation, which is the tightest of all, to the spectral one. Our
insights gained in the previous section are of help here: the fact that the primal optimum is
attained for g approaching infinity will be crucial in the proof. We sketch the proof, which
follows a similar reasoning as in the proof of Theorem 2, in Appendix.

Theorem 6 Also the solution of the basic SDP relaxation Pgus is essentially equivalent
to the spectral relaxation. More specifically, the solution is given by:

~

I = syy +(¢— 111" +ml’ + 1m/,
with ¢ — oo, and m such that dz'ag(f‘) = ¢l and m’'d = 0.

This result is essentially equivalent with the result from the spectral relaxation, if we ignore
the infinitely large constant matrix, and the two rank 2 matrix m’l + 1’'m that merely
makes the diagonal of the label matrix equal to a constant. A very similar theorem holds
for the relaxations from the cascade PSSy ..

So, does this mean that none of the SDP relaxations is tighter than the spectral relax-
ation? Certainly not: the constraint set is clearly much tighter, as is obvious by looking
at the relaxation cascade where constraints on the diagonal of T can explicitly be added
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or omitted. However, all constraints except for the ones that are also present in the spec-
tral relaxation are inactive. If additional constraints are imposed on the problem, some of
the inactive constraints may become active, such that the tightness of the SDP relaxations
starts paying off.

2.4.3 ADDITIONAL CONSTRAINTS ON THE SDP PROBLEMS

A first approach is to introduce an upper bound on ¢ as an additional constraint. Stated
in terms of the original variables, this implies that the imbalance 45825_ is upper bounded,
which makes sense as this number should be finite for the unrelaxed optimum as well.
(If desired, it is easy to compute the maximal value of 45125, that can be achieved in
any bipartitioning of the graph, and this value can be used as a certain upper bound).
Interestingly, introducing such an upper bound on ¢ does not affect the correctness of
Theorem 2. However, Theorem 6 ceases to hold if ¢ is upper bounded, which was indeed
the goal.

Perhaps a more elegant approach is based on the transductive version of the NCut
relaxation, which we will present in detail in Section 3.1. The transductive version optimizes
the same objective while respecting some given labels, and has at most the same number of
variables and constraints as in the unconstrained NCut SDP relaxation. However, the dual is
automatically strictly feasible as long as at least two data points are labeled differently. We
can use this fact as follows. Instead of upper bounding ¢, one can pick two data points and
specify their classes to be different from each other and subsequently solve the transductive
NCut SDP relaxation from Section 3.1. It makes sense to pick the two most dissimilar
points for this. If needed, the transductive NCut SDP relaxation can be solved for several
pairs of data points, up to at most n — 1 (which, if well chosen, is sufficient to guarantee
that at least one of the pairwise inequivalence constraints was correct), although much less
than n — 1 pairs will usually be sufficient to guarantee that with high probability one of the
pairwise constraints was correct. Then one proceeds with the solution that achieved the
smallest normalized cut value.

2.4.4 COMPLEXITY ANALYSIS

We are now ready to study the computational complexity to solve the derived SDP relax-
ations. The worst-case computational complexity of a pair of primal-dual strictly feasible
SDP problems is known to be polynomial, which is achieved by publicly available software
tools such as SeDuMi (Sturm, 1999).3

In particular for the basic SDP relaxation Pgus, with (#vars) = O(n) variables (in the
dual SDP) and an SDP constraint of size (size SDP) = O(n) the worst case complexity
(based on a theoretical analysis of SDP problems without exploiting structure, see Van-
denberghe and Boyd (1996)) is given by O((#vars)?(size SDP)?®) = O(n*?), hence the
complexity of our basic SDP relaxation with an additional upper bound on ¢ (for dual
strict feasibility).

For the SDP cascade P¢"st . it is important to note that the number of dual variables
is now only O(m), reducing the worst case complexity down to O(m?n?%). Hence, m is a

3. Other software tools that are in practice often faster exist, notably SDPLR, which we used for the
large-scale experiments (Burer and Monteiro, 2003, 2005).
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parameter trading off the tightness of the relaxation with the computational complexity,
and can be adapted according to the available computing resources.

2.4.5 ESTIMATING THE LABEL VECTOR

In the context of the max-cut problem, several techniques have been proposed in literature
to construct a good binary label vector based on a label matrix as found by the max-cut
SDP relaxation (see e.g. Helmberg (2000) for an overview). Those techniques can be used
here as well, and in this paper we use the randomized rounding technique.

2.4.6 BOUNDS ON THE UNRELAXED MINIMUM

Let us briefly discuss how the solution of the unrelaxed NCut optimization problem relates
to the solution of any of the relaxations. First, since the feasible region is enlarged in
the relaxed optimization problem, the relaxed minimum provides a lower bound for the
minimum of the unrelaxed NCut problem.

On the other hand, the cost of any binary label vector provides an upper bound on the
minimal cost over all label vectors. Hence, also the label vector as found by the randomized
rounding technique will provide such an upper bound. In summary, each of our SDP
relaxations allows us to both upper bound and lower bound the minimal NCut cost.

3. The Subspace Trick

In this section we discuss a simple trick that allows one to impose equivalence and inequiv-
alence constraints on the labels in a very natural way. Furthermore, the very same trick
leads to a fast approximation of the relaxed NCut optimization problem.

The idea is to reparameterize the label matrix r by I = RMR/ , with M symmetric
and R a fixed, specified matrix. In this way, we restrict the row and column space of the
label matrix T to the columns of R.

3.1 Imposing Label Constraints: Transduction and Learning with
Side-Information

We first discuss the use of the subspace trick in the transduction scenario, and subsequently
extend it to the general semi-supervised learning setting. Here we will use a label constraint
matriz L for the matrix R.

The approach of using such label constraint matrices has been used previously by De
Bie et al. (2004) to derive a spectral relaxation of label-constrained normalized cut cost
problems. In the experimental section, we will compare this spectral transduction method
with the here derived SDP relaxations.

3.1.1 TRANSDUCTION

By parameterizing T as T = LML’ , it is straightforward to enforce label constraints in
order to achieve a transductive version. Let us assume without loss of generality that the
rows and columns of A are sorted such that the labeled (training) points occur first, with
labels given by the label vector y;, and the unlabeled (test) points thereafter. Then we
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define the label constraint matriz as:

[yt O
L_<0 I)'

Le., the first column of the matrix L consists of the given label vector y;, and zeros at
positions corresponding to the niest test points. The rest of the first block row contains
zeros, and the lower right block is an identity matrix of size ntest. Then the label constraints
can be imposed by observing that any valid T must satisfy:

M(1, Dyry; YiM(2 : Ngest, 1)/ >
M(2 * Ntest 1)y1/5 M(Z : Mtesty 2 ntest) '

Indeed, rows (columns) corresponding to oppositely labeled training points then automati-
cally are each other’s opposite, and rows (columns) corresponding to same-labeled training
points are equal to each other.

Using this parameterization we can easily derive the transductive NCut relaxation whose
solution will by construction respect the constraints on the training labels:

szML’z(

minn, (M, L’%L) maxy , i,
Ptrans st. M t 07 Dtrans s.t. SL,¥L — dlag()\)
PP diag(M) = ¢1, SPP +pl/ 9L - 0,
(M, L/99'L) = g — 1. p=1A

s

clust

Note that this is computationally even easier to solve than the unconstrained PgSy since
the number of dual variables is niest + 2, which decreases with an increasing number of
labeled data points.

3.1.2 GENERAL EQUIVALENCE AND INEQUIVALENCE CONSTRAINTS

By using a different label constraint matrix, more general equivalence and inequivalence
constraints can be imposed (Shental et al., 2004). An equivalence constraint between a pair
of data points specifies that they belong to the same class. By extension, one can define an
equivalence constraint for a set of points. On the other hand, an inequivalence constraint
specifies two data points to belong to opposite classes. It is clear that the transduction
scenario is a special case of the scenario where equivalence and inequivalence constraints
are given. This large flexibility can be dealt with by using a label constraint matrix of the
following form:

1, O 0 0 0 0

~1,, O 0 0 0 0

0 1, 0 0 0 0

0o -1, 0 0 0 0

L=| o 0 1, , O 0 0
0 0 1, 0 0 0

0 0 0 1y, O 0

0 0 0 0 1., 0

0 0 0 0 0 1,
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Hereby, the ith row of Li corresponds to the ith data point, in so that samples corresponding
to one block row of size s; are given to belong to the same class by an equivalence constraint
(without loss of generality we assume that the samples are organized in this order in the
affinity matrix A). Inequivalence constraints are encoded by the first 2p block rows: for all
k < 2p, samples from block row k are given to belong to a different class as samples from
block row k 4+ 1. For the last ¢ — 2p blocks no inequivalence constraints are given. These
blocks will often contain only a single row, meaning that for the corresponding data point
no equivalence nor inequivalence constraints are specified.

3.2 Approximating the SDP Relaxation for Speed-Up

Besides for imposing label constraints, the subspace trick can also be used to achieve a
further speed-up of the SDP relaxations developed in the previous section. We discuss two
different approaches. It is important to stress that both are approximations, and hence no
genuine relaxations of the NCut problem anymore.

3.2.1 USING A COARSE PRE-CLUSTERING

The semi-supervised learning methodology lends itself to speed up the SDP relaxation itself.
A useful approach would be to perform a coarse pre-clustering of the data. The equivalence
constraints found by the pre-clustering can then be used as constraints in the constrained
SDP relaxation of the NCut problem.

3.2.2 USING THE SPECTRAL RELAXATION

Assuming that the spectral relaxation performs reasonably well, we know that the optimal
label vector will be close to the generalized eigenvector y belonging to the smallest nonzero
eigenvalue o9, plus some constant vector (which is essentially the generalized eigenvector
belonging to the smallest eigenvalue o7 = 0). In fact, it is likely that the optimal label
vector is close to the space spanned by the eigenvectors corresponding to the d smallest
generalized eigenvalues of (D — A)v = oDv. We store these eigenvectors in the columns
of the matrix V(:,1 : d) € ®"*?¢. Then, we can approximate (the optimal value of) T by
T~ V(1:dMV(:1:d).

Since the label vector will only approximately lie in the column space of V(:,1: d), the
equality constraint W'diag(V(:,;1 : )MV (:,1 : d)') = ¢W’'1 will be infeasible in general.
Hence we relax this constraint to an inequality constraint:

W'diag(V(:;,1: d)MV(:,1:d)") > ¢qW'1.

The resulting approximated relaxation then becomes:

minMﬂ <M, E(l:;l,l:d)>’
paver s.t. M >0,
sbp W'diag(V(:,1: d)MV(;,1:d)) > qW'1,

(M, V(;,1:d)dd'V(;,1:d)) =q— 1.
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maxy ,  H,
st 2LALD ;1 q) diag(WA)V(:, 1 : d)
Dgpe +uV(,1:d) V(10 d) = 0,
w=1TWA,
A>0.

Note that the number of dual variables is equal to m + 1, and the size of the dual PSD
constraint is d. Hence, the computational complexity is now reduced to O(m?2d?5 + dn?),
where the second term arises from the computation of the generalized eigenvectors V cor-
responding to the d smallest eigenvalues.

4. Implications Beyond the Normalized Cut

The methodology, developed in this paper in the context of (constrained) NCut biparti-
tioning, can be used for other combinatorial problems as well. For example, the extension
of the developed techniques towards the ACut cost function is straightforward. We briefly
discuss the applicability to another example, namely the well-known max-cut problem. For
this problem we will also discuss a specific choice of W in the cascade of SDP relaxations.

4.1 The Max-Cut Problem

The SDP-relaxed max-cut problem is given by (Goemans and Williamson, 1995; Helmberg,
2000):

maxr 1(I'D—A)

i 1A
Pmax-cut s.t. F — O, Dmax-cut { mlnA ) .
dia_g(I‘) _1 st. —3(D—A)+diag(A) = 0.

where again I' &~ yy’ is the label matrix, with y € {—1,1}". Just as for the NCut op-
timization problem, we can relax the constraints on the diagonal to the m constraints
W'diag(T') = W'1 with W € ™. For W = 1 (for m = 1), the well-known spectral
relaxation of max-cut is obtained:
1
4
where the dominant eigenvector is an approximation for the maximal cut.

Also the subspace trick can readily be applied here, to give rise to label-constrained max-
cut relaxations, or to approximations of the max-cut relaxation to control the computational
burden. Here, let us define the matrix V as containing the eigenvectors of the above
eigenvalue problem in order of decreasing eigenvalue. Then, the approximated max-cut
relaxation becomes:

(D—-A)v=ov,

maxy  3(0,D — A)

Pmax-cut appr s.t. M t 0’
W/diag(V(:,1: d)MV(;,1:d)) < W'L.
miny  1'A,
Dmax-cut appr s.t. _%(D —_ A) + dla,g(WA) t 07
A>0.

1424



FAST SDP RELAXATIONS OF GRAPH CUT CLUSTERING

A good W for max-cut The matrix W can essentially be chosen freely, as long as
1 is within its column space, in order to maintain the interpretation that for m = 1 the
spectral relaxation results, and to ensure that for m > 1 the relaxation is stricter than for
m = 1. In particular, we propose to design W as follows. First, a partition of the data
points in m subsets is made. Then, each subset of the partition corresponds to a column
of W, and the row-entries in each column that are within the corresponding subset are
set equal to 1, the others are kept to 0. The result is that the constraints on the diagonal
W'diag(V(:,1 : d)AV(:,1 : d)) < W'L are effectively constraints on sums of subsets of
diagonal elements. Clearly, W1 = 1 so 1 is in W’s column space, as desired. In order
to make these constraints as strong as possible, we use the heuristic to put points with
a large value in the result of the spectral relaxation in the same subset of the partition.
More specifically, we sort the entries of the relaxed label vector from the spectral relaxation,
and construct the partition such that the m subsets are (roughly) equally large and such
that data points in the same subset occur consecutively in this sorted ordering. This is the
approach we use in the empirical results section.

5. Empirical Results

In this section we empirically evaluate the basic SDP relaxation of the NCut problem and
its use for transduction. Next, we investigate the cascade of relaxations for the max-cut
problem, and the subspace trick to speed up the calculations.

5.1 NCut Clustering and Transduction

In all experiments for NCut clustering and transduction, we use the randomized rounding
technique (with 100 random projections) to derive a crisp label vector from the label matrix
f‘, and K-means on the relaxed label vector y obtained from the spectral relaxation. All
optimization problems related to the NCut cost function are implemented using the SeDuMi
SDP solver (Sturm, 1999).

5.1.1 A FEw Toy PROBLEMS

The results obtained by using the basic SDP relaxation for a few 2-dimensional clustering
problems are summarized in Figure 1. A Gaussian kernel is used with kernel width equal
to the average over all data points of the distance to their closest neighbor. In all these
cases the resulting label matrix turned out to be indistinguishable from a perfect 1 / -1
label matrix.

5.1.2 CLUSTERING AND TRANSDUCTION ON TEXT

We use the data from De Bie and Cristianini (2004b) to evaluate the clustering and trans-
duction performance of the basic SDP relaxation of the NCut optimization problem. The
data set contains 195 articles of the Swiss constitution, each translated in 4 languages (En-
glish, French, German and Italian). The articles are grouped into so-called ‘Titles’, which
are topics in the constitution. We use a 20-nearest neighbor affinity matrix A (meaning
that two documents have affinity 1 if they are in the set of 20 nearest neighbors of each
other, 0.5 if one is in the set of 20 nearest neighbors of the other but not vice versa, and 0
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Figure 1: The labeling obtained by the SDP relaxation on 4 toy problems. All results are

balanced, except for the last one.
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otherwise). The distance used is the cosine distance on the bag of words representation of
the documents (computed after stemming and stop word removal), i.e. 1 minus the cosine
between both bag of words vectors.

We consider two reasonable divisions of the data as target clusterings. The first division
clusters all articles in English with those in French, and those in German with those in
Italian. The second clustering is by topic (independent of the language): it clusters those
articles in the largest ‘Title’ together in one cluster, and the articles in all other ‘Titles’ in
the other cluster. Clearly, considering we are using a bag of words kernel, the distinction
by language is more natural. However, since there are 4 languages, several bipartitionings
are likely to be more or less as natural.

Figures 2 contain the relaxed minimal cost for the transductive spectral relaxation (De
Bie et al., 2004) and for the transductive SDP relaxation developed in this paper, as well
as the costs corresponding to the label vectors derived from them, as a function of the
fraction of data points labeled. The left graph reports the results for the (easy) clustering
by language, the right one for the (harder) clustering by topic. Both graphs confirm that the
lower bound on the true (unrelaxed) minimum, provided by the SDP relaxation minimum,
is consistently (and significantly) tighter than the one provided by the spectral relaxation.
Furthermore, the cost of the label vector derived from the spectral relaxation is consistently
and significantly larger than the cost of the SDP derived solution. The leftmost points in
the figures correspond to the unsupervised case (for the SDP relaxation we used the second
approach explained in Section 2.4.3). Note that these unsupervised optima are considerably
smaller than the value of the NCut for the true label vector, which is given by the rightmost
points in both figures (100% of the data points labeled). This is especially true for the harder
problem that ignores languages and clusters based on topic, which is not a surprise. In other
words, both target clusterings correspond to a considerably larger cost than the optimal
clustering. This result supports the conclusion of Xing and Jordan (2003) that the NCut
cost function is not always a good cost function to use for clustering.

On the other hand, even a limited amount of label information seems to guide the
prediction to the correct target clustering, even (although to a lesser extent) for the more
unnatural clustering by topic. Consider Figure 3, where the test set accuracies for both
transduction experiments are shown, again as a function of the fraction of labeled data
points. On the left, the performance for the clustering by language is seen to steeply improve
for a very small number of labeled data points, to saturate at a level above 0.95. On the
right, we see that for the harder less natural division the improvement is less dramatic,
and needs more label information, which is to be expected. Interesting to note is that for
the easier problem (left figure), the spectral relaxation and the SDP relaxation perform
exactly equally, while the SDP problem responds significantly better to label information
than the spectral relaxation for the harder problem (right figure). This is evidence for the
fact that in a transductive regime, the NCut cost function may be a good one indeed, and
it is beneficial to approximate it as well as possible.

5.2 Max-Cut

We use the max-cut problem to conduct an in-depth analysis of the computational conse-
quences of the relaxation cascade and of the subspace trick. We make use of a number of
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Figure 2: The costs for the best solution over 100 random roundings based on the SDP solu-
tion T (full bold line), and by performing K-means on the generalized eigenvector
y of the spectral relaxation (full faint line). This is done in the transductive sce-
nario where the fraction of points labeled is given by the horizontal axis. Hence,
the leftmost points in the graph are for the completely unsupervised scenario, and
the rightmost points are equal to the cost of the target solution. The dotted lines
show the lower bounds provided by the optima of both relaxed problems (bold
for the SDP and faint for the spectral relaxation). The plot shows averages (and
standard deviations) over 5 random selections of the training set. The left figure
is for the clustering by language, the right is for the (harder) clustering by topic.
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Figure 3: The test set accuracies for the best solution over 100 random roundings based on
the SDP solution (bold), and by performing K-means on the generalized eigen-
vector of the spectral relaxation (faint). Again the horizontal axis represents the
fraction of data points labeled. Averages and standard deviations over 5 random
selections of the training set are shown. The left figure is for the clustering by
language, the right one is for the clustering by topic.
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G V| |E| | density

1 800 | 19176 6.00
22 | 2000 | 19990 1.47
58 | 5000 | 29570 0.24
64 | 7000 | 41459 0.17
67 | 10000 | 20000 0.04
81 | 20000 | 40000 0.02

Table 2: The benchmark graphs from the Gset collection. The first column is the identifier
of the graph, the second the number of vertices in the graph, the third the number
of edges, and the last column shows the edge-density of the graph.

publicly available benchmark data sets from the so-called Gset collection (Helmberg and
Rendl, 2000). For a summary of the graphs we used, see Table 2. For these graphs, Fig-
ure 4, shows the results of a computational analysis of the relaxation cascade and of the
subspace trick as outlined in Section 4.1. In all experiments, a crisp label vector is de-
rived from a relaxed vector (obtained using the spectral relaxation) by simple thresholding
around 0, and from a relaxed label matrix by using the randomized rounding technique ex-
plained in Section 2.4.5 with 100 random projections (for the SDP relaxations). Motivated
by the large size of some of the graphs in the Gset collection, we use the highly effective
SDP solver SDPLR (Burer and Monteiro, 2003, 2005) called from within MATLAB in all
max-cut experiments on which we report here.

For the relaxation cascade, there is only one parameter to study the effect of: the number
of constraints m on the trace of the label matrix. We varied this parameter over all values
1,2,4,8,16, 32,64, 128,256 and n, where for m = 1, the algorithm reduces to the spectral
relaxation, and for m = n the well-known SDP relaxation is obtained. In Figures 4, the
value of the cut for each of these values of m is plotted as a function of the computation time
(full line with cross markers). Average times and cuts over 10 simulations are shown, to
account for the randomness of the rounding procedure and effect on the running time of the
random initialization of the optimization procedure. Apparently, already a relatively small
value for m and correspondingly small increase in computation time results in a significant
increase of the cut found. Still, for the two largest graphs in the benchmark, our Pentium
2GHz with 1Mb RAM was unable to solve any of the SDP formulations, for memory reasons,
and only one cross is plotted for m = 1, the spectral relaxation.

The small dots in the figures give an idea of the effect of the subspace trick, for subspace
dimensionality d equal to d = 2,4, 8,16, 32, in combination with the values for m (except
for 1 and n) used as above in the relaxation cascade. l.e., there are 5 x 8 = 40 dots in
each plot. Clearly the subspace trick allows one to achieve a generally higher cut value at
a significantly reduced computational cost. Using the subspace approximation, it is also
possible to find a better cut than the one found using the spectral relaxation for the two
most challenging problems below in the figure.

Even though the cascade of relaxations empirically appears less efficient in obtaining
good approximations to the relaxed optimum, a major disadvantage of the subspace trick is
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Figure 4: These plots show the value of the cut as a function of the running time for
various parameter settings, each figure for another benchmark graph from the
Gset collection: G1, G22, Gb8, G64, G67 and G81. Note the logarithmic
scale on the time axis. The crosses correspond to the relaxation cascade, with
m = 1,2,4,...,256,n. The small dots correspond to the use of the subspace
trick for the same values of m and for various dimensionality d of the subspace:
d = 2,4,8,16,32. For the last two graphs G67 abd G81, the relaxation cascade
requires too much memory to solve on a Pentium 2GHz with 1Gb Ram and is
therefore omitted (except for d = 1, the spectral relaxation).
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Figure 5: The upper bound on the cut as provided by the SDP relaxations (upper curves),
along with the actual cut found (lower curves), for the benchmark graphs G1,
G22, G58 and G64.

that it is an approximation and not a genuine relaxation. The result is that the application
of the subspace trick makes the relaxed optimum useless to bound the value of the true
optimum.? So let us now investigate to what extent the cascade of relaxations is helpful in
obtaining a bound on the unrelaxed optimum in those cases where computing the full SDP
relaxation is too time consuming. Figure 5 contains the value of the max-cut relaxations
as a function of the number of constraints m on the diagonal of the label matrix, as well as
the actual value of the cut found. One can see that the SDP upper bound on the maximum
indeed decreases (that is, tightens) for increasing m. At the same time, for larger m the
objective value (the cut cost) for the found label vector increases. Interestingly, it increases
(and the upper bound decreases) rather steeply in the beginning and then flattens off,
suggesting that a relatively low value for m may often be sufficient in practical cases.

4. Such bounds are of use for example when a Branch&Bound method is employed to find the exact optimum
of the combinatorial problem.

1431



DE BIE AND CRISTIANINI

6. Conclusions

We proposed a new cascade of SDP relaxations of the NP-complete normalized graph cut
optimization problem. On both extremes of the cascade are the well-know spectral relax-
ation and a newly proposed SDP relaxation. The proposed relaxations directly translate
into efficient machine learning algorithms for unsupervised and semi-supervised learning.

The availability of a series of relaxations with different computational complexity and
tightness allows one to trade off the computational cost versus accuracy. Furthermore,
we introduced the ‘subspace trick’, which is a simple technique that makes it possible
to efficiently impose label constraints on the result of the relaxed optimization problem.
Besides this, the subspace trick provides ways to obtain approximate formulations of the
relaxed optimization problems with a further reduced computational cost. We believe that
an interesting aspect of the paper is the fact that the techniques presented may prove useful
in relaxations of other combinatorial problems as well, as witnessed by their application to
the max-cut problem.

The application of these efficient approximations to machine learning algorithms might
have the potential to finally fulfill the promise of SDP as a powerful new addition to the
machine-learning toolbox.

We reported encouraging empirical results for the use of the NCut cost function and more
in particular of its newly proposed SDP relaxation for clustering and for semi-supervised
learning. Furthermore, we illustrated the use of the cascade of relaxations and of the
subspace trick on the max-cut problem.

An interesting research direction opened in this paper is the question which are good
and and efficiently computable choices for the matrix W, both for the relaxation cascade
and for the subspace approximation that is based on it. An answer to this question may
have broad implications in the field of combinatorial optimization and relaxation theory.

An alternative avenue that can be followed to increase the scalability of SDP relaxations
can be found in Lang (2004). It is based on the exploiting the ideas behind the SDPLR
method (Burer and Monteiro, 2003), and works by explicitly restricting the rank of the
label matrix. Further research should clarify potential relations and synergies between
their method and the approaches developed in this paper.
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Appendix A. Proof of Theorem 6

While this theorem would be easy to prove by plugging in the result provided in the theorem
statement, for the sake of clarity we give here a prove that derives the result rather than
posing it.

Proof Let us use the same notation as in the proof of Theorem 2. Then we can rewrite
Pgust (in the same line as for Theorem 2):

minpg,q <M7§>
st. M >0,

diag(VMV') = ¢1,
1 _
sM(1,1) = ¢ — 1.
We can eliminate ¢ from these constraints by substituting ¢ =1 + %M(l7 1), and obtain:
miny; (M, %}
st. M >0,
diag(VMV’) =1 (1+ 1M(1,1)).

Let us decompose the left hand side of the last constraint in the following way:
diag(V(:, )M(1,1)V(:,1)") + 2diag(V(:, 1)M(1,2 : n)V(:,2 : n)')
+diag(V (5,2 : n)M(2:n,2:n)V(:,2:n))

_ 1%1\4(1, 1) + 2diag(V(;, DM(L,2 : n)V(:,2 : n))
+diag(V (5,2 : n)M(2:n,2 : n)V(:,2:n)").
We also rewrite the PSD constraint by using the Schur complement lemma as:

M(1,:2:n)M(1,2:n)
M0 & M@2in2:n) - i ZiIMUL20)

M(1,1)
Besides, as ¥(1,1) = 0 and X is diagonal, we can write
> X(2:n,2:
M, 2y = (M@ 20, ZEI2E0),)
s s

Then the optimization problem PZus becomes:

minpng (M(2:n,2:n), M)
st. M(2:n,2:n) > M(17121;/7[L()}\7/I1()1,2:n)”
2diag(V (5, 1)M(1,2: n)V(:,2: n)") + diag(V (5,2 : n)M(2:n,2: n)V(;,2: n)) = 1.

We can see that the variable M(1,1) only occurs in the first constraint, and that this
constraint becomes less stringent for M(1,1) — oo (note that this corresponds to ¢ —
00, which should not be a surprise), such that the minimum will be achieved for M(1, 1)
unboundedly large. So let us already take the limit for M(1, 1) to infinity, which gives:
miny (M(2:n,2:n), w)
st. M(2:n,2:n) >0,
2diag(V(:,2: n)M(2 : n, )V (:, 1)) + diag(V(;,2: n)M(2 : n,2 : n) V(5,2 : n)") = 1.
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The dual of this optimization problem, using Lagrange multipliers A for the equality
constraint on the diagonal and the symmetric matrix = for the PSD constraint, is given by:

maxy g 1Y

st. E=3(2:n,2:n)—V(;,2:n)diag(A\)V(:,2:n),
=0,
V(:,2:n)A=0,
or equivalently:
maxy 1A
st. X(2:n,2:n)—V(;,2:n)diag(A)V(;,2:n) = 0,
V(:2:n)A=0.

From the equality constraint we can immediately see that A o d, such that V(:,2 :
n)'diag(A)V(;,2 : n) < V(;,2 : n))DV(:;,2 : n) = I. Therefrom we can see that A = oad
and hence E = 3(2 : n,2 : n) — ool at the optimum (where o3 is used to denote 3(2,2),
the smallest generalized eigenvalue of the spectral relaxation that is different from 0). The
optimum itself is equal to 1’\ = 9.

To determine the value of the primal variables at the optimum, let us now have a look
at the Karush Kuhn Tucker (KKT) condition corresponding to the PSD constraint:

M(2:n,2:n),B)=(M(2:n,2:n),2(2:n,2:n)—02I) = 0

The implies that M(i,7) = 0 for all i > 2 and j > 2 except for i = j = 2. The exact value
of M(2,2) can be derived from the second KKT condition:

(2diag(V (5,2 : n)M(2 : n, 1)V (:, 1)) + diag(V(:, 2 : n)M(2: 0,2 : n) V(5,2 : 1)) — 1)' A
2 3 . “n ‘n ‘n . .n/ _ ,U

= <\/§V(.,2.n)M(2.n,1)+d1ag(V(.,2. IM(2:n,2:n)V(:,2:n)) 1> od
0

From this follows that (D, V(:,2 : n)M(2:n,2 : n)V(;,2:n)) = (I, M(2:n,2:n)) = s.
Thus, we obtain that M(2,2) = s.

The value of M(1,2 : n) can straightforwardly be determined based on the equality
constraints in the primal problem. The final solution is thus given by: M(1,1) = s(¢—1) =
00, M(2,2) = s and M(2 : n,1) as determined by the equality constraints of the primal
problem. If we define m € R" as m = ﬁV(:ﬂ :n)M(2 : n,1) (satisfying m’d = 0), we
can state this result conveniently in terms of the original variables:

I' = sV(:52)V(52) + (¢g—1)11 + m1’ + 1m/,
= syy +(¢g— 111 + m1’ + 1m’.

with ¢ — oo. [ |
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