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Abstract 
 
This paper describes an application of one-class support vector machine (SVM) novelty detection 
for detecting seizures in humans.  Our technique maps intracranial electroencephalogram (EEG) 
time series into corresponding novelty sequences by classifying short-time, energy-based statistics 
computed from one-second windows of data.  We train a classifier on epochs of interictal (normal) 
EEG.  During ictal (seizure) epochs of EEG, seizure activity induces distributional changes in 
feature space that increase the empirical outlier fraction.  A hypothesis test determines when the 
parameter change differs significantly from its nominal value, signaling a seizure detection event.  
Outputs are gated in a “one-shot” manner using persistence to reduce the false alarm rate of the 
system.  The detector was validated using leave-one-out cross-validation (LOO-CV) on a sample 
of 41 interictal and 29 ictal epochs, and achieved 97.1% sensitivity, a mean detection latency of     
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-7.58 seconds, and an asymptotic false positive rate (FPR) of 1.56 false positives per hour (Fp/hr).  
These results are better than those obtained from a novelty detection technique based on 
Mahalanobis distance outlier detection, and comparable to the performance of a supervised 
learning technique used in experimental implantable devices (Echauz et al., 2001).  The novelty 
detection paradigm overcomes three significant limitations of competing methods: the need to 
collect seizure data, precisely mark seizure onset and offset times, and perform patient-specific 
parameter tuning for detector training. 
 
Keywords: seizure detection, novelty detection, one-class SVM, epilepsy, unsupervised learning 

1 Introduction 
Epilepsy, a neurological disorder in which patients suffer from recurring seizures, affects 
approximately 1% of the world population.  In the United States, 200,000 new cases are reported 
annually.  There are more than 30 distinct classes of seizure.  Their manifestations range from 
subtle, abnormal sensations to unpredictable changes in awareness, to immediate loss of 
consciousness and convulsions.  In spite of available dietary, drug, and surgical treatment options, 
more than 25% of individuals with epilepsy have seizures that are uncontrollable (Kandel, 
Schwartz & Jessel, 1991).  Daily life for these patients is greatly impaired—education, 
employment, and even transportation can become difficult endeavors.  Many new therapies for 
medically resistant epilepsy are being investigated.  Among the most promising are implantable 
devices that deliver local therapy, such as direct electrical stimulation or chemical infusions, to 
affected regions of the brain.  These treatments rely on robust algorithms for seizure detection to 
perform effectively. 

Over the past 30 years seizure detection technology has matured.  Despite impressive 
advances, all reported approaches suffer from one or more of the following limitations:  
 

• Accurate detection requires careful, patient-specific tuning 
• Seizure detections do not occur “early enough” (i.e., interventions are more likely 

to be effective if therapy is administered with minimal delay following onset) 
• A priori localization of the seizure focus is required 
• Usefulness for poorly localized epilepsies is limited 
• Seizure data (which is expensive to collect) is required for training 

 
Techniques for overcoming some or all of these limitations hold promise for more precise 

and widely applicable methods to control or eliminate seizures.  This paper presents one 
technique for improving the state of the art in seizure detection by reformulating the task as a 
time-series novelty detection problem.  While seizure detection is traditionally considered a 
supervised learning problem (e.g., binary classification), an unsupervised approach allows for 
uniform treatment of seizure detection and prediction, and offers four key advantages for 
implementation.  First, there is no need to perform supervised, patient-specific tuning during 
training. Second, the assumption that seizures are electrographically homogeneous—often 
required for classifier training due to very small data sets—is relaxed.  Third, there is no need to 
collect seizure data for training.  Such data collection is typically expensive (seizures occur 
infrequently, and patients must be continually monitored until an event is observed), and often 
invasive (e.g., craniotomy or burr hole for electrode implantation).  Finally, there is no need to 
precisely mark seizure intervals.  This practical issue is often overlooked, but is critical for 
training and validation: while expert markers usually agree on the presence of a seizure, there is 
considerable variability in marking its onset and offset. 

Other researchers have investigated novelty detection for event detection from time series, for 
instance by directly extending the Incremental SVM algorithm (Tax & Laskov, 2003), or 
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modeling novelty region-of-support evolution to detect change-points (Desobry & Davy, 2003).  
In contrast to these approaches, we robustly detect empirical changes in the novelty parameter 
itself, and use these change-points to segment the (EEG) time series.  For “properly chosen” 
features, novelties correspond well with the ictal events of interest, and our EEG time series are 
successfully segmented in a one-class-from-many manner. 

2 Background 
In this section, we present a brief review of seizure-related terminology, the seizure detection 
literature, and the one-class SVM. 

2.1 Seizure-Related Terminology 
Seizure analysis refers collectively to algorithms for seizure detection, seizure prediction, and 
automatic focus channel identification. These analyses are primarily performed on the EEG.  In 
this study, analyses were carried out on the intracranial EEG (IEEG), which has considerably 
better spatial resolution, higher signal-to-noise ratio, and greater bandwidth than scalp EEG.  
When multiple channels are considered, the electrode location that exhibits the earliest evidence 
of seizure activity is labeled the focus channel.  It is convenient to describe segments of the EEG 
signals by their temporal proximity to seizure activity.  The ictal period refers to the time during 
which a seizure occurs.  The interictal period is the time between successive seizures.  The 
unequivocal electrographic onset (UEO) is defined as the earliest time that a seizure occurrence 
is evident to an epileptologist viewing an EEG without prior knowledge that a seizure follows; 
the unequivocal clinical onset (UCO) is the earliest time that a seizure occurrence is apparent by 
visually observing a patient.  Seizure onset in this paper is synonymous with UEO.  It is worth 
noting that the UEO almost always precedes the UCO by several seconds, and that many 
previously published papers defined “seizure onset” as the UCO. 

2.2 Seizure Detection 
Early attempts to detect seizures began in the 1970s (Viglione, Ordon & Risch, 1970; Liss, 1973) 
and primarily considered scalp EEG recordings to detect the clinical (and less frequently) 
electrographic onset of seizures.  In 1990, Gotman reported a technique for automated seizure 
detection that achieved 76% detection accuracy at 1 Fp/hr for 293 seizures recorded from 49 
patients (Gotman, 1990).  In 1993, it was shown that the short-time mean Teager energy could be 
used to detect seizures from electrocorticograms (Zaveri, Williams & Sackellares, 1993).  Their 
detector achieved 100% detection accuracy on an 11-seizure database.  In 1995, Qu and Gotman 
presented an early seizure warning system trained on template EEG activity that achieved 100% 
detection accuracy at a mean detection latency of 9.35 seconds and false alarm rate of 0.2 Fp/hr 
(Qu & Gotman, 1995).  Similar results were also reported using time- and frequency-domain 
features classified by a k-nearest neighbor classifier (Qu & Gotman, 1997).  In 1998, Osorio et al. 
claimed 100% detection sensitivity with a mean detection latency of 2.1 seconds using a wavelet-
based measure called seizure intensity.  They analyzed a database of 125 patients, but the same 
data were used for training and validation (Osorio, Frei & Wilkinson, 1998).  The algorithm was 
more extensively analyzed in 2002 using offline electrocorticogram recordings; again, 100% 
sensitivity was reported, with detection latencies ranging from 1.8 – 31.1 seconds (Osorio et al., 
2002). 

Several successful attempts at seizure detection using artificial neural network classifiers 
have been reported since 1996 (Khorasani & Weng, 1996; Webber et al., 1996; Gabor, 1998; 
Esteller, 2000).  Evaluation of 31 distinct features (Esteller, 2000) showed that fractal dimension, 
wavelet packet energy, and mean Teager energy were especially promising for seizure detection.  
In 2001, Esteller reported a detector based on the line length feature that achieved a mean 
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detection latency of 4.1 seconds at a false alarm rate of 0.051 Fp/hr (Esteller et al., 2001).  A total 
of 111 seizures (many subclinical) were used for validation.  NeuroPace, Inc., subsequently 
reported a similar detector based upon this work that achieved 97% sensitivity at a mean 
detection latency of 5.01 seconds (Echauz et al., 2001).  This detector was evaluated on 1265 
hours of IEEG data, but was tuned heuristically in a patient-specific manner.  The NeuroPace 
detector claims represent the state of the art in seizure detection performance.  More complete 
reviews of the seizure detection and prediction literature are available elsewhere (Litt & Echauz, 
2002; Gardner, 2004). 

2.3 Novelty Detection 
Traditional classification architectures rely on empirical risk minimization algorithms to specify 
“good” models for a classification decision function; as such, they are prone to over- or 
underfitting.  In addition, their performance tends to be highly sensitive to parameter tuning and 
researcher skill.  Statistical learning theory poses a structural risk minimization (SRM) criterion 
that balances the trade-off between good empirical performance (i.e., classification accuracy on 
training data) and good generalization ability (i.e., classification accuracy on unseen data).  One 
popular application of SRM is the SVM, first presented in 1992 (Boser, Guyon & Vapnik, 1992).  
The basic idea behind the SVM is to find a hyperplane in a feature space that “optimally” 
separates two classes.  Many other linear learning machines have been considered for this task, 
but the SVM yields a unique solution that can be shown to minimize the expected risk of 
misclassifying unseen examples (Vapnik, 1999).  Training algorithms involve the solution of a 
well-known optimization problem, constrained quadratic programming, that is computationally 
efficient and yields global solutions.  Several excellent tutorials provide historical context and 
details on the SVM (Burges, 1998; Bennett & Campbell, 2000; Müller et al., 2001). 

In 1998, Schölkopf et al. introduced an extension to SVMs to estimate the support of a 
distribution (Schölkopf et al., 1999).  Their motivation was to solve a simplified version of the 
density estimation problem, e.g., finding a minimum volume quantile estimator that is “simple.”  
The solution they arrived at, the one-class SVM, was introduced for novelty detection.   
 
Definition 1 (Novelty Detection). Given a set of independent identically distributed (iid) training 

samples, 1, , N
nx x X∈ ⊆L R , drawn from a probability distribution in feature space, P , the 

goal of novelty detection is to determine the “simplest” subset, S , of the feature space such that 
the probability that an unseen test point, x′ , drawn from P  lies outside of S  is bounded by an a 
priori specified value, ( ]1,0∈υ .  
 

In the one-class formulation, data are first mapped into a feature space using an appropriate 
kernel function and then maximally separated from the origin using a hyperplane.  The 
hyperplane parameters are determined by solving a quadratic programming problem, similar to 
the basic SVM case: 
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where w  and ρ  are hyperplane parameters, Φ  is the map from input space to feature space, ν  is 
the asymptotic fraction of outliers (novelties) allowed, l is the number of training instances, and 
ξ is a slack variable.  For solutions to this problem, w  and ρ , the decision function 
 
 ( ) ( )( )ρ−Φ⋅= xwxf sgn  (3) 

 
specifies labels for examples, e.g., -1 for novelty instances.  Figure 1 shows the geometry of the 
one-class SVM in feature space. 
 

  
Figure 1: Geometry of the ν-SVM in feature space. Note the hyperplane and associated 

parameters, ρ  and w  , and the slack-variable, ξ , penalizing misclassifications. 
 
 

Basic properties of the one-class SVM were proven in the initial paper (Scholkopf et al., 
1999).  The most important result is the interpretation of ν  as both the asymptotic fraction of 
data labeled as outliers, and the fraction of support vectors returned by the algorithm.  
Implementation of the one-class SVM algorithm requires the following specifications: kernel 
function, kernel parameters, outlier fraction, and separating point in feature space.  As with the 
basic SVM, there is no automatic method for specifying one-class SVM model parameters, but 
the interpretation of ν  eases this task to some degree: the choice of outlier fraction should 
incorporate prior knowledge about the frequency of novelty occurrences (for example, a typical 
value for patient seizure frequency).  Additionally, smaller values of ν  increase the 
computational efficiency of the algorithm.  The choice of origin as the separation point is 
arbitrary and affects the decision boundary returned by the algorithm.  Other work (e.g., Hayton 
et al., 2001; Manevitz & Yousef, 2001) has addressed separation point selection given partial 
knowledge of outlier classes. 

3 Methodology 
In this section, we describe and discuss the experimental methods for detecting seizures under a 
novelty detection framework.  A block diagram of this system is shown in Figure 2. 
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Figure 2: The seizure analysis architecture.  IEEG time series data is block-processed in stages 
to produce the final output sequence, [ ]z n , indicating the presence/absence of ictal 

activity. 
 
 

3.1 Human Data Preparation  
The data analyzed were selected from intracranial EEG recordings of epilepsy patients implanted 
as part of standard evaluation for epilepsy surgery.  Patients diagnosed with mesial temporal lobe 
epilepsy were observed in a hospital for 3 to 14 days.  Between 20 and 36 electrodes were 
surgically placed either on the brain (grids or strips of electrodes), or in the brain substance (depth 
electrodes), and simultaneous IEEG and video were recorded.  The IEEG data were amplified, 
bandpass-filtered (cutoffs at 0.1 Hz and 100 Hz), and digitized at 200 samples/second, 12 bits-
per-sample resolution.  Five consecutive patients with seizures arising from the temporal lobe(s) 
were selected for review, and the corresponding data were expertly and independently marked by 
two certified epileptologists to indicate UEO and UCO times.  Collectively, these five patient 
records contain over 200 hours of data.  Further details on this database are available elsewhere 
(D’Alessandro, 2001; Gardner, 2004). 

Ictal epochs were selected from the focus channel for each temporal lobe seizure that a 
patient exhibited.  Two patients exhibited some seizures with extra-temporal focal regions: those 
events were excluded from further analysis.  Ictal epochs were extracted in a consistent manner 
such that the UEO occurred at a 10-minute offset within the epoch, allowing for analysis of both 
pre-ictal and post-ictal regimes.  Interictal epochs from each patient were randomly selected.  All 
epochs were expertly reviewed to ensure the absence of recording artifacts.  The final data set 
consisted of 29 ictal- and 41 interictal epochs, each of 15-minute duration. 
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3.2 Feature Extraction 
Many features have been proposed for seizure analysis (Esteller, 2000; D’Alessandro, 2001; 
Esteller et al., 2001).  We selected a feature vector, q , composed of three energy-based statistics 
that have proven especially effective for seizure detection: mean curve length, CL ; mean energy, 
E ; and mean Teager energy, TE , 
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where [ ]x m  is an EEG time series, and N is the window length.  We applied logarithmic scaling 

for feature normalization.  Features were extracted using a block processing approach.  In block 
processing, the data are windowed, a feature vector is computed, and the window is advanced in 
time.  The selection of window length is an important issue (Esteller, 2000).  Values typically 
range between 0.25 and 5 seconds; we used 1-second windows with 0.5-second overlap. 

3.3 One-Class SVM 
Feature extraction was performed on interictal epochs to generate feature vectors for training.  A 
one-class SVM classifier was implemented using LIBSVM, a freely-available library of SVM 
tools available from http://www.csie.ntu.edu.tw/~cjlin/libsvm.  A Gaussian radial basis function 
( 1.0γ = ) was selected as the kernel function, and 0.1ν =  was chosen consistent with the 
estimated fraction of ictal data.  The resulting classifier model was stored for subsequent use in 
testing. 

3.4 Parameter Estimation 
For a stationary process, the one-class SVM novelty parameter, ν , asymptotically equals the 
outlier fraction.  We exploit this property by training on features which strongly discriminate 
interictal from ictal EEG: features are stationary during interictal periods, but change markedly 
during periods of seizure activity, causing significant changes in the empirical outlier fraction. 

We modeled classifier outputs, { }1, 1y∈ + − , as (iid) Bernoulli random variables where 

( ) ( )1P novelty P y ν= = − = .  We assumed that 0ν ν=  for interictal EEG, and 1 0ν ν ν= >  for 

ictal EEG.  At each output sample, we computed the maximum likelihood estimate of the outlier 
fraction, ν̂ , as 
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where negn  is the number of negative output occurrences in the n  most recent samples of y .  

Note that the sequence length, n , affects the adaptation rate of the system.  We then used this 
estimate to compute a seizure event indicator variable, 
 

 [ ] ( )ˆsgnz k Cν= −  (8) 

 
where 1z = +  if a seizure is indicated or 1z = −  otherwise, and [ ]0,1C ∈  is a threshold 

parameter.  Thresholding is equivalent to a standard hypothesis test of 0 0:H ν ν=  vs. 1 1:H ν ν=  

where the null hypothesis is rejected if ˆ Cν > .  For nominal values of 20n =  and 0 0.1ν = , we 

retained the null hypothesis (that is, we declared a frame to be interictal) if we observed fewer 
than five novelty outputs ( 0.8C = ).  Under the iid assumption, this rule has a 4.33% chance of 
falsely rejecting the null hypothesis (i.e., producing a false positive).  The chance of committing a 
Type II error (i.e., producing a false negative) depends on the unknown value 1ν .  We calculated 

this error rate for several plausible values of 1ν  in Section 4.2. 

3.5 Persistence (Detector Refractory Period) 
During early experiments we observed that the detector tended to generate novelty events (i.e., 
“fire”) in bursts, with increasing frequency near seizure onset.  This behavior may indicate the 
presence of preictal states, periods of EEG activity that are likely to transition from interictal to 
ictal state.  The bursty behavior can be problematic for performance assessment as multiple 
detections of a single seizure, or multiple false positive declarations may occur during a short 
interval of time.  To address this problem, a refractory parameter, RT , was introduced to the 

detection system.  The refractory parameter specifies an interval during which the detector, if 
triggered, maintains its state and ignores subsequent triggers.  In this sense it behaves like a “one-
shot” device familiar from digital circuits.  The use of this refractory rule is termed persistence. 

Persistence offers an improvement to the basic system beyond false positive rate 
improvement:  it allows for the characterization of the detector over a range of detection time 
horizons.  As persistence decreases, one expects the false positive rate to increase and the 
detection latency to approach zero seconds.  Conversely, as persistence increases, one expects the 
false positive rate to decrease, asymptotically approaching a value determined jointly by the 
novelty parameters of the system (some fraction of the data will always be novel) and the actual 
novelty rate due to epileptiform activity.  Figure 3 illustrates the use of persistence.  We 
heuristically set the detector persistence to 180RT =  seconds for our experiments. 
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Figure 3: Examples of persistence for improving detector false alarm performance.  (Top) Ictal 
epoch showing seizure activity (red, diagonal hatching).  (Bottom) Interictal epoch.  
When persistence is applied, detections (arrows) are treated as a single event (dashed 
green line).   

 
 

3.6 Performance Metrics 
The detector was evaluated using LOO-CV and identical model parameters for each patient.  
Training was only performed using interictal epochs, however, testing was performed on each 

ictal segment, in addition to the withheld interictal epoch.  This scheme yields ( ),1BLC N  

interictal- and ( ),1BL SZC N N× ictal statistics per patient, where ,BL SZN N are the patient-specific 

number of interictal and ictal epochs, respectively.  From these statistics we estimate three key 
performance metrics:  sensitivity, false positive rate, and mean detection latency. 

The detector’s sensitivity (9) and false positive rate (10) measure its classification accuracy: 
  

 
TP

S
TP FN

=
+

 (9) 

 

 
FP

FPR
T

=  (10) 

 
where TP, FN, and FP  are the number of block true positives, block false negatives, and block 
false positives; and T  is the duration (in hours) of the data analyzed.  A block true positive 
occurs when the detector output, after applying persistence, correctly identifies an interval 
containing a seizure onset (c.f., Figure 4).  Block false negatives and false positives occur when 
the detector incorrectly labels interictal and ictal intervals, respectively. 
 

TR 
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Figure 4: Temporal relationships considered in detector evaluation:  intervals representing 
detected novelty (blue, vertical hatching) and ictal activity (red, diagonal hatching).  
(i), (ii)   Two examples of block true positives (e.g., the novelty output interval 
overlaps ictal activity).  The detection latency, τ , is also shown.  An early-detection 
results in negative latency.  (iii)  A false positive detector error.  (iv)  A false negative 
detector error.  (v)  A true negative.  (vi)  An example of a degenerate case (multiple 
detection) producing both a true positive and a false positive event. 

 
 

Mean detection latency (11) measures detector responsiveness: 
 

 
1

1 N

i
iNτµ τ
=

= ∑  (11) 

 
where iτ  is the detection latency of each detected seizure.  A negative latency indicates seizure 

event detection prior to the expert-labeled onset time. 

τ

τ
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3.7 Benchmark Novelty Detection 
To provide a reference for the relative performance of our algorithm, and the general application 
of unsupervised learning to the seizure detection problem, we implemented a simple benchmark 
novelty detection algorithm. 

During training, feature vectors, q , were extracted from IEEG time series (c.f. 3.2) and used 

to estimate the covariance matrix, Σ , and mean, µ , of the training data.  We subsequently 
computed the Mahalanobis distances 
 

 ( ) ( ) ( )1T

MD q q qµ µ−= − Σ −  (12) 

 
between each sample in the training data set and the centroid of the training set.  An outlier 
threshold, K , was selected as the ν quantile of the Mahalanobis distances.  As with the one-class 
SVM, we set 0.1ν = . 

During testing, feature vectors were thresholded to produce a frame-wise novelty sequence, 
y , 
 

 [ ] ( )
( )

1,

1,
M n

M n

D q K
y n

D q K

+ <= − ≥
 (13) 

 
as a replacement for the SVM classifier output.  This sequence was processed in the same manner 
as before (c.f. 3.4) to generate detections. 

4 Results 
In this section we present the results of both seizure detection approaches.  Details on the effects 
of varying the one-class SVM model parameters—ν ,γ , p , N , and T — and results from a 
genetic algorithm optimization are given in Gardner (2004). 

4.1 Performance 
Detection statistics from our LOO-CV analysis are presented in Table 1.  Columns show patient 
id, the number of epochs analyzed for interictal (NBL) and ictal data (NSZ), the fraction of false 
positive detections on interictal (FPBL) and ictal (FPSZ) trials, the fraction of seizure epochs 
producing false positives (MFP), the fraction of false negative detections (FN), and the mean 
detection latency (τ ).  The bottom row of the table shows aggregate statistics weighted by the 
number of seizures or number of baselines. 
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One-class Novelty Benchmark Novelty 
Patient NBL NSZ 

FPBL FPSZ MFP FN τ  FPBL FPSZ MFP FN τ  
1 6 5 0.00 0.10 0.20 0 2.07 0.17 0.13 0.20 0 4.60 

2 9 7 0.22 0.43 0.57 0 -13.6 0.33 1.03c 0.71 0 -9.51 

3 10 6 0.40a 0.13 0.17 0 6.57 0.40a 0.17 0.17 0 7.08 

4 10 6 1.00 0.48 0.17 0.12 -6.57 1.00 0.48 1.00 0.17 -2.08 

5 6 5 0.00 0.03 0.20 0 -27.0b 0.33 0.17 0.20 0 -24.9b 

 41 29 0.39 0.28 0.28 0.029 -7.58 0.49 0.47 0.45 0.041 -4.76 

 
aAll false positives occurred on a single ictal epoch. 
bSeveral seizure onsets were originally mislabeled by as much as 110 
seconds.  Results in this table are calculated from the corrected markings. 
cNote that multiple false positive events per epoch can produce fractional 
values greater than one. 

 
Table 1: Summary of detection statistics.  Bottom row of table summarizes aggregate 

statistics.  
 
 

We estimate the FPR over interictal EEG from the data in Table 1 by dividing FPBL  by the 
epoch duration (0.25 hours), yielding 1.56 Fp/hr for the one-class technique, and 1.96 Fp/hr for 
the benchmark technique.  Since ictal events are rare, and the aggregate false positive rate on ictal 
segments is lower than the corresponding rate on interictal segments, we take the interictal FPR 
as an asymptotic measure of the overall FPR. 

We reviewed the results for those patients (2, 4, and 5) with negative mean detection 
latencies.  For each of these patients we found that the distribution of detection latencies was 
skewed, and a fraction (less than one-third) of the models detected seizures early.  The median 
detection latencies for these patients, which might give a more balanced view of performance, 
ranged between 1.5 and 9.8 seconds for both models; the one-class delays were always less than 
the benchmarked values. 

The SVM seizure detector achieved 97.1% sensitivity and a mean detection latency of -7.58 
seconds at an estimated 1.56 Fp/hr.  Representative IEEG time series, novelty sequences, and 
estimated outlier fractions for interictal- and ictal epochs are shown in Figures 5 and 6.  As 
expected, the outlier fraction remained near its (small) nominal value except during periods of 
seizure activity.  Onsets were detected quickly, and the entire seizure event—not just the onset—
was correctly identified as novel.  The near-zero false negative rate (FNR) of the detector was 
surprising because the data used for training originated from unknown states of consciousness 
(e.g., sleep or wake).  Typically, seizure detection performance is drastically affected by patient 
state-of-consciousness; evaluation on larger data sets with concomitant sleep staging information 
will provide a better estimate of the true FNR. 
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Figure 5: A typical interictal epoch.  (Top) IEEG signal, (Middle) frame-wise output of the 

novelty detector, z , (Bottom) estimated outlier fraction (dashed line is 0.8).  The 
mean of ν in this figure is 0.063. 
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Figure 6: A typical ictal epoch.  (Top) IEEG signal.  The earliest electrographic change is 
visible as the beginning of the pinched region prior to the high-amplitude seizure 
onset.  The UEO occurs at time zero, (Middle) frame-wise output of the novelty 
detector, z , (Bottom) estimated outlier fraction and 0.8 threshold.  The detector has a 
latency of about 3 seconds in this example. 

 
 

The SVM detector’s mean detection latency outperformed all previously reported seizure 
detection algorithms.  It should be noted, however, that this result is attributable to the large 
fraction of seizures (27%) that were detected early.  This finding suggests the presence of two 
subclasses of seizures: those that are merely detectable, and those that may be predictable.  These 
classes of seizures appear to be patient-dependent. 

A direct comparison to other published detection algorithms is generally not meaningful due 
to the disparity of data sets that each research group operates on.  However, NeuroPace (Echauz 
et al., 2001) previously evaluated their supervised algorithm on the same data set.  While they did 
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mean detection latency of 5.01 seconds at 97% sensitivity and 0.013 Fp/hr—support the use of 
our approach. 

The benchmark seizure detector achieved 95.8% sensitivity and a mean detection latency of   
-4.76 seconds at 1.96 Fp/hr.  Both techniques are surprisingly effective at seizure detection, but 
the one-class SVM method performed consistently better, especially with respect to false positive 
rate. To gain insight into the relative performance difference between the two approaches, we 
examined the feature space for a single patient.  Figure 7 shows the marginal distributions of 
features for both interictal and ictal data.  It is clear from this figure that the feature distributions 
are highly skewed and possibly bimodal.  An obvious explanation for the discrepancy in 
performance is that the normality assumption of the benchmark detector is severely violated, and 
the non-parametric estimation of the one-class SVM is better for modeling the data.  The fact that 
the one-class SVM performs better, albeit on a limited number of patients, suggests that it tends 
to exclude vectors in feature space that appear more commonly when seizures occur as compared 
to the benchmark approach.  Additionally, we examined the regions-of-support for this patient 
produced by each algorithm (Figure 8). 

 
 

 

Figure 7: Representative marginals of the feature vector—E (solid blue), TE (dashed red), CL 
(dotted green)—for patient 5 corresponding to interictal (top) and ictal (bottom) 
frames. 
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Figure 8: Representative isosurfaces in interictal feature space produced by each method.  
(Top-left) 1S , the 0.1ν =  enclosing surface for the one-class SVM; (Top-right) 2S , 

the 0.1ν =  enclosing surface for the benchmark method; (Bottom-left) 1 2\S S , the 

volume unique to the one-class SVM; (Bottom-right) 2 1\S S , the volume unique to 

the benchmark method. 
 
 

Both approaches, SVM and Mahalanobis, find regions, 1S  and 2S , in feature space that 

include 90% of the observations from interictal data.  It is interesting to note that, although the 
overlap of the regions, 1 2S S∩ , must contain at least 80% of the training samples, 25.2% of the 

volume of 1S  and 37.5% of the volume of 2S  are non-intersecting.  The minimum-volume 

property of the one-class SVM is also evident—1S , is 84.4% of the volume of the benchmark 

technique—and may be a contributing factor to its increased performance over the Mahalanobis 
method. 
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4.2 Detector Output Analysis 
We analyzed a sample of 850 interictal detector outputs and confirmed that the empirical outlier 
fraction equaled its nominal value, 0.10.  We also investigated the performance of the detector 
output under the hypothesis 1 1 0:H ν ν ν= > , assuming iid outputs.  Illustratively, we considered 

1 0.3ν =  and 1 0.5ν =  for the probabilities of a novelty occurrence during ictal epochs.  Results in 

Table 1 show that the probability of falsely retaining the null hypothesis is small, and is of course 
smaller for 1 0.5ν =  than for 1 0.3ν = .  This explains the superior FNR performance of the 

detector that we observed. 
We performed logistic regressions between the outputs at times t , 1t − , and 2t −  to test our 

assumption that detector outputs are Bernoulli.  We observed significant ( 0.001P < ) serial 
dependence.  Empirically, the conditional probability of a novel detector output given a previous 
novelty output increases dramatically from 0.1 to 0.3.  This analysis suggests that the detector 
output sequence obeys a Markov process where the probability at each point in time of a novelty 
is ( ) 01 0.1tP z ν= − = = , but the conditional probabilities for novelty outputs are 

( )11| 1 0.3t tP z z−= − = − =  and ( )11| 1 0.078t tP z z−= − = + = . 

We wrote a program to compute the probability of observing k  novel outputs in N  trials 
under the Markov process described above, and repeated our performance analysis.  The results 
(Table 2) clearly show that the performance of the detector is worse under the serial dependence 
model. 
 
 
 

Binomial Output Markovian Output 

0H  1H  1H  0H  1H  1H  
 

 1 0.3p =  1 0.5p =   
1 0.3p =  
*

1 0.5p =  

1 0.5p =  
*

1 0.75p =  

Normal 0.9567 0.2374 0.0059 0.9175 0.3095 0.0736 
Seizure 0.0433 0.7626 0.9941 0.0825 0.6905 0.8264 

 
Table 2: An analysis of the hypothesis test for the detector output for both the binomial, and 

Markov cases for the rule where we declare an event if 5 or more out of 20 outputs 
are novelties.  The estimated probability that an ictal frame is declared novel is1p , 

and its corresponding conditional probability, ( )
1

1 | 1
k k

P z z−= − = − , is *
1p . 

5 Conclusions 
Traditional approaches to seizure detection rely on binary classification. They require seizure data 
for training, which is difficult and invasive to collect, and do not address the class imbalance 
problem between interictal and ictal EEG, as less than 1% of EEG data from epileptic patients is 
seizure-related.  These approaches assume that seizures develop in a consistent manner and seek 
to identify features and architectures that discriminate seizure EEG from “other” EEG.  In 
contrast, we have presented a technique for seizure detection based on novelty detection that 
operates by modeling the dominant data class, interictal EEG, and declaring outliers to this class 
as seizure events.  The success of our method relies on detecting change points in the empirical 
outlier fraction with respect to a feature space that strongly discriminates interictal from ictal 
EEG.  If the feature space is well-chosen, the implication is that novelties are seizures. 
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In addition to achieving state-of-the-art performance, our technique overcomes three severe 
limitations of competing algorithms:  (1) it does not need to be trained on seizures, (2) it does not 
require patient-specific tuning, and (3) it does not require knowledge of patient state-of-
consciousness.  While the false positive performance of the detector is not as good as other 
reported algorithms, this may be attributable to the presence of subclinical seizures, or other non-
ictal anomalies in the data (e.g., normal periodic rhythms, artifacts, etc.).  Furthermore, the 
acceptance by the research community of “hyperdetection strategies”—high false-positive rates 
and high-sensitivity detection—diminishes the emphasis placed on FPR metrics.  For example, in 
early prototype reactive stimulation devices to treat seizures, the very brief and subthreshold 
stimulation involved in therapy appears to be well tolerated without any significant side-effects.  
In this setting, the need to prevent seizures (avoid false negative events), and the apparent relative 
harmlessness of false positive stimulations, encourage making the detector hypersensitive.  As a 
final note, the entire algorithm is computationally efficient because of the use of the SVM and 
small novelty threshold. 

Ongoing work includes methodological refinements for reducing FPR, and online 
implementations for validation on very large continuous, multichannel data sets. 
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