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This paper describes an application of one-clappat vector machine (SVM) novelty detection
for detecting seizures in humans. Our techniqupsmiatracranial electroencephalogram (EEG)
time series into corresponding novelty sequenceddssifying short-time, energy-based statistics
computed from one-second windows of data. We taitassifier on epochs of interictal (normal)
EEG. During ictal (seizure) epochs of EEG, seizactvity induces distributional changes in
feature space that increase the empirical outtastibn. A hypothesis test determines when the
parameter change differs significantly from its moah value, signaling a seizure detection event.
Outputs are gated in a “one-shot” manner usingigterse to reduce the false alarm rate of the
system. The detector was validated using leaveeome&ross-validation (LOO-CV) on a sample
of 41 interictal and 29 ictal epochs, and achie98d % sensitivity, a mean detection latency of
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-7.58 seconds, and an asymptotic false positive (FRPR) of 1.56 false positives per hour (Fp/hr).
These results are better than those obtained fronowelty detection technique based on
Mahalanobis distance outlier detection, and conigardo the performance of a supervised
learning technique used in experimental implantalgleices (Echauz et al., 2001). The novelty
detection paradigm overcomes three significanttéittins of competing methods: the need to
collect seizure data, precisely mark seizure oasel offset times, and perform patient-specific
parameter tuning for detector training.

Keywords: seizure detection, novelty detection, one-class S&ilepsy, unsupervised learning

1 Introduction

Epilepsy, a neurological disorder in which patiestsfer from recurring seizures, affects
approximately 1% of the world population. In thaitedd States, 200,000 new cases are reported
annually. There are more than 30 distinct clagdeseizure. Their manifestations range from
subtle, abnormal sensations to unpredictable clzangeawareness, to immediate loss of
consciousness and convulsions. In spite of aVaildietary, drug, and surgical treatment options,
more than 25% of individuals with epilepsy havezses that are uncontrollable (Kandel,
Schwartz & Jessel, 1991). Daily life for theseiguas is greatly impaired—education,
employment, and even transportation can become&uliffendeavors. Many new therapies for
medically resistant epilepsy are being investigat&thong the most promising are implantable
devices that deliver local therapy, such as diebettrical stimulation or chemical infusions, to
affected regions of the brain. These treatmemysare robust algorithms for seizure detection to
perform effectively.

Over the past 30 years seizure detection technolagy matured. Despite impressive
advances, all reported approaches suffer from on@ooe of the following limitations:

» Accurate detection requires careful, patient-spetihing

» Seizure detections do not occur “early enough’,(inderventions are more likely
to be effective if therapy is administered with mial delay following onset)

* A priori localization of the seizure focus is required

» Usefulness for poorly localized epilepsies is ladit

* Seizure data (which is expensive to collect) isunesgl for training

Techniques for overcoming some or all of thesetétions hold promise for more precise
and widely applicable methods to control or elinenaeizures. This paper presents one
technique for improving the state of the art inzae® detection by reformulating the task as a
time-series novelty detection problem. While sedzdetection is traditionally considered a
supervised learning problem (e.g., binary clasgifosn), an unsupervised approach allows for
uniform treatment of seizure detection and prealigtiand offers four key advantages for
implementation. First, there is no need to perfaupervised, patient-specific tuning during
training. Second, the assumption that seizures edeetrographically homogeneous—often
required for classifier training due to very snadta sets—is relaxed. Third, there is no need to
collect seizure data for training. Such data ctilt® is typically expensive (seizures occur
infrequently, and patients must be continually nameid until an event is observed), and often
invasive (e.g., craniotomy or burr hole for eledg#dmplantation). Finally, there is no need to
precisely mark seizure intervals. This practicdue is often overlooked, but is critical for
training and validation: while expert markers usuagree on the presence of a seizure, there is
considerable variability in marking its onset afff$et.

Other researchers have investigated novelty detefir event detection from time series, for
instance by directly extending the Incremental S\&\gorithm (Tax & Laskov, 2003), or
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modeling novelty region-of-support evolution to etstchange-points (Desobry & Davy, 2003).
In contrast to these approaches, we robustly detagirical changes in the novelty parameter
itself, and use these change-points to segmen{BR&) time series. For “properly chosen”
features, novelties correspond well with the ietants of interest, and our EEG time series are
successfully segmented in a one-class-from-manyneran

2 Background

In this section, we present a brief review of sedzaelated terminology, the seizure detection
literature, and the one-class SVM.

2.1 Seizure-Related Terminology

Seizure analysisefers collectively to algorithms for seizure dwign, seizure prediction, and
automatic focus channel identification. These asedyare primarily performed on the EEG. In
this study, analyses were carried out on the irdraal EEG (IEEG), which has considerably
better spatial resolution, higher signal-to-noiatio; and greater bandwidth than scalp EEG.
When multiple channels are considered, the eleettodation that exhibits the earliest evidence
of seizure activity is labeled thiecus channel It is convenient to describe segments of the EEG
signals by their temporal proximity to seizure @ityi Theictal period refers to the time during
which a seizure occurs. Theterictal period is the time between successive seizurelse T
unequivocal electrographic onset (UE@)defined as the earliest time that a seizureiwence

is evident to an epileptologist viewing an EEG with prior knowledge that a seizure follows;
the unequivocal clinical onset (UCQ3 the earliest time that a seizure occurren@pjmrent by
visually observing a patientSeizure onsen this paper is synonymous with UEO. It is worth
noting that the UEO almost always precedes the WyOseveral seconds, and that many
previously published papers defined “seizure onastthe UCO.

2.2 Seizure Detection

Early attempts to detect seizures began in thesl@7@lione, Ordon & Risch, 1970; Liss, 1973)
and primarily considered scalp EEG recordings tteatethe clinical (and less frequently)
electrographic onset of seizures. In 1990, Gotmnegrorted a technique for automated seizure
detection that achieved 76% detection accuracy Bp/hr for 293 seizures recorded from 49
patients (Gotman, 1990). In 1993, it was shown ttiia short-time mean Teager energy could be
used to detect seizures from electrocorticogranavdd, Williams & Sackellares, 1993). Their
detector achieved 100% detection accuracy on aseizlie database. In 1995, Qu and Gotman
presented an early seizure warning system traine@mplate EEG activity that achieved 100%
detection accuracy at a mean detection latency3% Seconds and false alarm rate of 0.2 Fp/hr
(Qu & Gotman, 1995). Similar results were alsoorggd using time- and frequency-domain
features classified by a k-nearest neighbor ciesgiQu & Gotman, 1997). In 1998, Osorio et al.
claimed 100% detection sensitivity with a mean cl&te latency of 2.1 seconds using a wavelet-
based measure called seizure intensity. They a@dlg database of 125 patients, but the same
data were used for training and validation (Osdfiei & Wilkinson, 1998). The algorithm was
more extensively analyzed in 2002 using offlinecelecorticogram recordings; again, 100%
sensitivity was reported, with detection latenagi@sging from 1.8 — 31.1 seconds (Osorio et al.,
2002).

Several successful attempts at seizure detectiony wstificial neural network classifiers
have been reported since 1996 (Khorasani & Weng6;1%ebber et al., 1996; Gabor, 1998;
Esteller, 2000). Evaluation of 31 distinct featu(Esteller, 2000) showed that fractal dimension,
wavelet packet energy, and mean Teager energy especially promising for seizure detection.
In 2001, Esteller reported a detector based onlitiee length feature that achieved a mean

1027



GARDNER, KRIEGER, VACHTSEVANOS ANDLITT

detection latency of 4.1 seconds at a false alatenaf 0.051 Fp/hr (Esteller et al., 2001). Altota
of 111 seizures (many subclinical) were used fdidation. NeuroPace, Inc., subsequently
reported a similar detector based upon this wodt @chieved 97% sensitivity at a mean
detection latency of 5.01 seconds (Echauz et @D1R This detector was evaluated on 1265
hours of IEEG data, but was tuned heuristicallyaipatient-specific manner. The NeuroPace
detector claims represent the state of the areiruse detection performance. More complete
reviews of the seizure detection and predicticerditure are available elsewhere (Litt & Echauz,
2002; Gardner, 2004).

2.3 Novelty Detection

Traditional classification architectures rely ongncal risk minimization algorithms to specify
“good” models for a classification decision funcoas such, they are prone to over- or
underfitting. In addition, their performance teridsbe highly sensitive to parameter tuning and
researcher skill. Statistical learning theory goaestructural risk minimization (SRM) criterion
that balances the trade-off between good empigediormance (i.e., classification accuracy on
training data) and good generalization ability.(i@assification accuracy on unseen data). One
popular application of SRM is the SVM, first pretshin 1992 (Boser, Guyon & Vapnik, 1992).
The basic idea behind the SVM is to find a hyperelan a feature space that “optimally”
separates two classes. Many other linear leamtmiaghines have been considered for this task,
but the SVM yields a unique solution that can bewsh to minimize the expected risk of
misclassifying unseen examples (Vapnik, 1999). infmg algorithms involve the solution of a
well-known optimization problem, constrained quaidrgrogramming, that is computationally
efficient and yields global solutions. Several efbant tutorials provide historical context and
details on the SVM (Burges, 1998; Bennett & Campl2€I00; Muller et al., 2001).

In 1998, Scholkopf et al. introduced an extensionS¥Ms to estimate the support of a
distribution (Scholkopf et al., 1999). Their matiion was to solve a simplified version of the
density estimation problem, e.g., finding a minimualume quantile estimator that is “simple.”
The solution they arrived at, the one-class SVMs wmé&oduced for novelty detection.

Definition 1 (Novelty Detection). Given a set of independent identically distribufiéd) training
samples,x;,---, X, U X[ R", drawn from a probability distribution in featuspace, P, the

goal of novelty detection is to determine the “dsff subset,S, of the feature space such that
the probability that an unseen test poirt, drawn fromP lies outside ofS is bounded by an a
priori specified valuep [ ( 0,1] .

In the one-class formulation, data are first mapipéal a feature space using an appropriate
kernel function and then maximally separated frdme obrigin using a hyperplane. The
hyperplane parameters are determined by solvingaadrqtic programming problem, similar to
the basic SVM case:

(1 2 1
min| S+ 532 - n
subject to

(win(x ))= p-& i=12...1 & =20 o)
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wherew and p are hyperplane parameter, is the map from input space to feature spaces

the asymptotic fraction of outliers (novelties)oaled, | is the number of training instances, and
£is a slack variable. For solutions to this problemand o, the decision function

f (x) = sgr{wm(x) - p) 3)

specifies labels for examples, e.g., -1 for novaigtances. Figure 1 shows the geometry of the
one-class SVM in feature space.

v

Figure 1: Geometry of the-SVM in feature space. Note the hyperplane and ciessol
parametersp andw , and the slack-variabld,, penalizing misclassifications.

Basic properties of the one-class SVM were proveithe initial paper (Scholkopf et al.,
1999). The most important result is the intergietaof v as both the asymptotic fraction of
data labeled as outliers, and the fraction of suppectors returned by the algorithm.
Implementation of the one-class SVM algorithm reegiithe following specifications: kernel
function, kernel parameters, outlier fraction, aeparating point in feature space. As with the
basic SVM, there is no automatic method for spawfyone-class SVM model parameters, but
the interpretation ofy eases this task to some degree: the choice akmwfithction should
incorporate prior knowledge about the frequency@felty occurrences (for example, a typical
value for patient seizure frequency). Additionallgmaller values ofv increase the
computational efficiency of the algorithm. The w® of origin as the separation point is
arbitrary and affects the decision boundary retiime the algorithm. Other work (e.g., Hayton
et al., 2001; Manevitz & Yousef, 2001) has addrésseparation point selection given partial
knowledge of outlier classes.

3 Methodology

In this section, we describe and discuss the exyatial methods for detecting seizures under a
novelty detection framework. A block diagram osteystem is shown in Figure 2.
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Figure 2:  The seizure analysis architecture. |Eife series data is block-processed in stages
to produce the final output sequen@,n], indicating the presence/absence of ictal
activity.

3.1 Human Data Preparation

The data analyzed were selected from intracrarti® Eecordings of epilepsy patients implanted
as part of standard evaluation for epilepsy surg@&gtients diagnosed with mesial temporal lobe
epilepsy were observed in a hospital for 3 to 1¢sdaBetween 20 and 36 electrodes were
surgically placed either on the brain (grids oipstiof electrodes), or in the brain substance fdept
electrodes), and simultaneous IEEG and video weterded. The IEEG data were amplified,
bandpass-filtered (cutoffs at 0.1 Hz and 100 Hey digitized at 200 samples/second, 12 bits-
per-sample resolution. Five consecutive patieritls 8eizures arising from the temporal lobe(s)
were selected for review, and the corresponding date expertly and independently marked by
two certified epileptologists to indicate UEO an€@ times. Collectively, these five patient
records contain over 200 hours of data. Furth&aildeon this database are available elsewhere
(D’Alessandro, 2001; Gardner, 2004).

Ictal epochs were selected from the focus chanmelefich temporal lobe seizure that a
patient exhibited. Two patients exhibited somews@s with extra-temporal focal regions: those
events were excluded from further analysis. lefadchs were extracted in a consistent manner
such that the UEO occurred at a 10-minute offsétimithe epoch, allowing for analysis of both
pre-ictal and post-ictal regimes. Interictal eppflom each patient were randomly selected. All
epochs were expertly reviewed to ensure the abseinmecording artifacts. The final data set
consisted of 29 ictal- and 41 interictal epochsheat 15-minute duration.
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3.2 Feature Extraction

Many features have been proposed for seizure asalisteller, 2000; D’Alessandro, 2001;
Esteller et al., 2001). We selected a featureovect, composed of three energy-based statistics

that have proven especially effective for seizugtedtion: mean curve lengt@L ; mean energy,
E ; and mean Teager energhk:,

cLin=tog & 3 |i{ri-{ m] @

m=n— N+2

(©®)

n

TE]n] = Iog(% 3 ({m-1J? -] x[m—2])j ©

m=n-N+3

where x[m] is an EEG time series, and is the window length. We applied logarithmic segli

for feature normalization. Features were extracigidg a block processing approach. In block
processing, the data are windowed, a feature vectmoymputed, and the window is advanced in
time. The selection of window length is an impottassue (Esteller, 2000). Values typically
range between 0.25 and 5 seconds; we used 1-sedoolws with 0.5-second overlap.

3.3 OneClassSVM

Feature extraction was performed on interictal Bpdo generate feature vectors for training. A
one-class SVM classifier was implemented using MBS a freely-available library of SVM
tools available fromhttp://www.csie.ntu.edu.tw/~cjlin/libsvmA Gaussian radial basis function
(y=1.0) was selected as the kernel function, and 0.1 was chosen consistent with the

estimated fraction of ictal data. The resultingssifier model was stored for subsequent use in
testing.

3.4 Parameter Estimation

For a stationary process, the one-class SVM novadiameter,y , asymptotically equals the
outlier fraction. We exploit this property by tnaig on features which strongly discriminate
interictal from ictal EEG: features are stationdrying interictal periods, but change markedly
during periods of seizure activity, causing sigrafit changes in the empirical outlier fraction.

We modeled classifier outputh{ﬂ,—]}, as (iid) Bernoulli random variables where

P(novelty = A y=-1)=v. We assumed that =v, for interictal EEG, and’ =v, >v, for

ictal EEG. At each output sample, we computednt&imum likelihood estimate of the outlier
fraction, v , as
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= [hes :%(1—32 y[i]) 7)

where n__ is the number of negative output occurrences énrthmost recent samples of.

9
Note that the sequence length, affects the adaptation rate of the system. Véa tised this
estimate to compute a seizure event indicator bkmja

z[K] =sgn(v - C) (8)

where z=+1 if a seizure is indicated oz =-1 otherwise, andC D[O,]] is a threshold
parameter. Thresholding is equivalent to a stahtigpothesis test ol :v =v, vs. H, :v =V,

where the null hypothesis is rejected/it>C . For nominal values ofi =20 and v, = 0.1, we

retained the null hypothesis (that is, we decladdame to be interictal) if we observed fewer
than five novelty outputs@ =0.8). Under the iid assumption, this rule has a 4.33fAnce of
falsely rejecting the null hypothesis (i.e., proihgca false positive). The chance of committing a
Type Il error (i.e., producing a false negativepeieds on the unknown value. We calculated

this error rate for several plausible values/pfin Section 4.2.

3.5 Persistence (Detector Refractory Period)

During early experiments we observed that the detdended to generate novelty events (i.e.,
“fire”) in bursts, with increasing frequency neaizire onset. This behavior may indicate the
presence of preictal states, periods of EEG agtihiat are likely to transition from interictal to

ictal state. The bursty behavior can be problemtidr performance assessment as multiple
detections of a single seizure, or multiple falgsifive declarations may occur during a short

interval of time. To address this problem, a retivey parameterT,, was introduced to the

detection system. The refractory parameter sgsciin interval during which the detector, if
triggered, maintains its state and ignores subsgdtiggers. In this sense it behaves like a “one-
shot” device familiar from digital circuits. Thee of this refractory rule is termed persistence.
Persistence offers an improvement to the basicesysbeyond false positive rate
improvement: it allows for the characterizationtbé& detector over a range of detection time
horizons. As persistence decreases, one expeetfalbe positive rate to increase and the
detection latency to approach zero seconds. Cselgras persistence increases, one expects the
false positive rate to decrease, asymptoticallyr@gghing a value determined jointly by the
novelty parameters of the system (some fractioth@fdata will always be novel) and the actual
novelty rate due to epileptiform activity. Figuf illustrates the use of persistence. We

heuristically set the detector persistenc@c=180 seconds for our experiments.
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Figure 3: Examples of persistence for improvingedtdr false alarm performanceTof) Ictal
epoch showing seizure activitye@, diagonal hatching (Botton) Interictal epoch.
When persistence is applied, detecticarsqws) are treated as a single evetaighed
green ling.

3.6 Performance Metrics

The detector was evaluated using LOO-CV and idehticodel parameters for each patient.
Training was only performed using interictal epqchewever, testing was performed on each

ictal segment, in addition to the withheld intemicepoch. This scheme yieIcfs‘(NBL,l)

interictal- andC( NBL,l) x Ng,ictal statistics per patient, wheid, , N, are the patient-specific

number of interictal and ictal epochs, respectivelfrom these statistics we estimate three key
performance metrics: sensitivity, false positigger and mean detection latency.
The detector’s sensitivity (9) and false positiaeer(10) measure its classification accuracy:

TP

S=— 9
TP+ FN ©)
FPR:E (10)
T

whereTP, FN, and FP are the number of block true positives, blockdalegatives, and block
false positives; and is the duration (in hours) of the data analyzeil.block true positive
occurs when the detector output, after applyingsipgnce, correctly identifies an interval
containing a seizure onset (c.f., Figure 4). Bléake negatives and false positives occur when
the detector incorrectly labels interictal and liatéervals, respectively.
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Figure 4: Temporal relationships considered in deteevaluation: intervals representing
detected noveltybjue, vertical hatchingand ictal activity ked, diagonal hatching
@, (i) Two examples of block true positives (e.g., thaveity output interval
overlaps ictal activity). The detection latenay, is also shown. An early-detection
results in negative latency(iii) A false positive detector erro(iv) A false negative
detector error.(v) A true negative.(vi) An example of a degenerate case (multiple
detection) producing both a true positive and sef@ositive event.

Mean detection latency (11) measures detector ns$geness:
1 N
U == z T, (12)

where 1, is the detection latency of each detected seizévaegative latency indicates seizure
event detection prior to the expert-labeled origst.t
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3.7 Benchmark Novelty Detection
To provide a reference for the relative performaofceur algorithm, and the general application
of unsupervised learning to the seizure detectimblpm, we implemented a simple benchmark
novelty detection algorithm.

During training, feature vectors), were extracted from IEEG time series (c.f. 3/2) ased
to estimate the covariance matriX,, and mean,u, of the training data. We subsequently

computed the Mahalanobis distances

Dy, (a) =y(a-4)" = (g-4) (12)

between each sample in the training data set amccehtroid of the training set. An outlier
threshold,K , was selected as threquantile of the Mahalanobis distances. As with dhe-class
SVM, we setv =0.1.

During testing, feature vectors were thresholdegromuce a frame-wise novelty sequence,

Y,

_[+1, Dy, (g,)<K
y[n]_{—l, D, (g,)= K (13)

as a replacement for the SVM classifier outputis Bequence was processed in the same manner
as before (c.f. 3.4) to generate detections.

4 Results

In this section we present the results of bothuseizletection approaches. Details on the effects
of varying the one-class SVM model parametersy34, p,N, and T — and results from a
genetic algorithm optimization are given in Gard(&€04).

41 Performance

Detection statistics from our LOO-CV analysis aresented in Table 1. Columns show patient
id, the number of epochs analyzed for intericta} jNand ictal data (), the fraction of false
positive detections on interictal (g and ictal (FB,) trials, the fraction of seizure epochs
producing false positives (M, the fraction of false negative detections (FAhd the mean
detection latency ). The bottom row of the table shows aggregatistits weighted by the
number of seizures or number of baselines.
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. One-class Novelty Benchmark Novelty
Patient Ng_ | Nsz — —
FPs. | FPsz | Mgp FN T FPs. | FPsz | Mgp FN T
1 6 5 0.00 | 0.10 | 0.20 0 2.07 0.17 | 0.123 [ 0.20 0 4. 60
2 9 7 0.22 | 0.43 | 0.57 0 -13.6 | 0.33 |1.03°|0.71 0 -9.51
3 10 | 6 | 0.40%*| 0.13 | 0.17 0 6.57 | 0.40%| 0.17 | 0.17 0 7.08
4 10 | 6 1.00 | 0.48 |0.17 | 0.12 |-6.57 | 1.00 | 0.48 [ 1.00 | 0.17 | -2.08
5 6 5 0.00 | 0.03 | 0.20 0 -27.0°] 0.33 | 0.17 | 0.20 0 -24.9°
41 |29 | 0.39 | 0.28 | 0.28 |0.029|-7.58| 0.49 | 0.47 | 0.45|0.041| -4.76

®All false positives occurred on a single ictal époc

®Several seizure onsets were originally mislabeleca® much as 110
seconds. Results in this table are calculated frentorrected markings.
‘Note that multiple false positive events per epoah produce fractional
values greater than one.

Table 1: Summary of detection statistics. Bottoow rof table summarizes aggregate
statistics.

We estimate the FPR over interictal EEG from th&dia Table 1 by dividing R by the
epoch duration (0.25 hours), yielding 1.56 Fp/hrtfee one-class technique, and 1.96 Fp/hr for
the benchmark technique. Since ictal events aeg aad the aggregate false positive rate on ictal
segments is lower than the corresponding rate mié¢tal segments, we take the interictal FPR
as an asymptotic measure of the overall FPR.

We reviewed the results for those patients (2, ®J &) with negative mean detection
latencies. For each of these patients we fountthedistribution of detection latencies was
skewed, and a fraction (less than one-third) ofrttualels detected seizures early. The median
detection latencies for these patients, which mgiae a more balanced view of performance,
ranged between 1.5 and 9.8 seconds for both mathelsine-class delays were always less than
the benchmarked values.

The SVM seizure detector achieved 97.1% sensitaity a mean detection latency of -7.58
seconds at an estimated 1.56 Fp/hr. Representi&i@ time series, novelty sequences, and
estimated outlier fractions for interictal- andaicepochs are shown in Figures 5 and 6. As
expected, the outlier fraction remained near iteal§ nominal value except during periods of
seizure activity. Onsets were detected quicklyl @@ entire seizure event—not just the onset—
was correctly identified as novel. The near-zaxisd negative rate (FNR) of the detector was
surprising because the data used for training raitgid from unknown states of consciousness
(e.g., sleep or wake). Typically, seizure detecp@rformance is drastically affected by patient
state-of-consciousness; evaluation on larger detgaveith concomitant sleep staging information
will provide a better estimate of the true FNR.
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IEEG Interictal Epoch
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0 1
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Figure 5: A typical interictal epoch. Tdp IEEG signal, Middle) frame-wise output of the
novelty detector,z, (Botton) estimated outlier fraction (dashed line is 0.8)he

mean ofv in this figure is 0.063.
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IEEG Ictal Epoch
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Figure 6: A typical ictal epoch. Tép IEEG signal. The earliest electrographic chaigye
visible as the beginning of the pinched region mptm the high-amplitude seizure
onset. The UEO occurs at time zerbliddle) frame-wise output of the novelty
detector,z, (Bottom) estimated outlier fraction and 0.8 threshold.e Tetector has a

latency of about 3 seconds in this example.

The SVM detector's mean detection latency outperémt all previously reported seizure
detection algorithms. It should be noted, howevteat this result is attributable to the large
fraction of seizures (27%) that were detected eailis finding suggests the presence of two
subclasses of seizures: those that are merelytdblecand those that may be predictable. These
classes of seizures appear to be patient-dependent.

A direct comparison to other published detectiayodathms is generally not meaningful due
to the disparity of data sets that each researmhpgoperates on. However, NeuroPace (Echauz
et al., 2001) previously evaluated their supervisigdrithm on the same data set. While they did
not perform cross-validation, and optimized in-s&rfpr each patient, their reported results—a
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mean detection latency of 5.01 seconds at 97%tsétysand 0.013 Fp/hr—support the use of
our approach.

The benchmark seizure detector achieved 95.8%tsétysand a mean detection latency of
-4.76 seconds at 1.96 Fp/hr. Both techniques agrisingly effective at seizure detection, but
the one-class SVM method performed consistentliehetspecially with respect to false positive
rate. To gain insight into the relative performantiference between the two approaches, we
examined the feature space for a single patienguré& 7 shows the marginal distributions of
features for both interictal and ictal data. Itisar from this figure that the feature distrilouts
are highly skewed and possibly bimodal. An obviaxplanation for the discrepancy in
performance is that the normality assumption ofitbechmark detector is severely violated, and
the non-parametric estimation of the one-class S¥bktter for modeling the data. The fact that
the one-class SVM performs better, albeit on atéichnumber of patients, suggests that it tends
to exclude vectors in feature space that appeae wmnmonly when seizures occur as compared
to the benchmark approach. Additionally, we exadithe regions-of-support for this patient
produced by each algorithm (Figure 8).

Interictal Feature Marginals
0.10 :

0.05¢

frequency

0.10

0.05¢

frequency

feature value

Figure 7: Representative marginals of the featetor—E éolid blug, TE (dashed rejj CL
(dotted greejr—for patient 5 corresponding to interictabg) and ictal botton)
frames.
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Figure 8: Representative isosurfaces in interiéégture space produced by each method.
(Top-lef) S, thev =0.1 enclosing surface for the one-class SVMg-righ) S,,

the v =0.1 enclosing surface for the benchmark meth@ttiom-lefy S\ S, the

volume unique to the one-class SVNBoftom-righ) S,\ §, the volume unique to
the benchmark method.

Both approaches, SVM and Mahalanobis, find regidis,and S,, in feature space that
include 90% of the observations from interictaladatt is interesting to note that, although the
overlap of the regionsS n S, must contain at least 80% of the training sam@&s2% of the
volume of § and 37.5% of the volume 08, are non-intersecting. The minimum-volume
property of the one-class SVM is also eviderb-is 84.4% of the volume of the benchmark

technigue—and may be a contributing factor tontgeased performance over the Mahalanobis
method.
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4.2 Detector Output Analysis

We analyzed a sample of 850 interictal detectoputstand confirmed that the empirical outlier
fraction equaled its nominal value, 0.10. We afs@stigated the performance of the detector

output under the hypothesld, :v =v, >v , assuming iid outputs. lllustratively, we consite

v, =0.3 andv, = 0.5 for the probabilities of a novelty occurrence dgrictal epochs. Results in
Table 1 show that the probability of falsely retagnthe null hypothesis is small, and is of course
smaller for v, =0.5 than for v, =0.3. This explains the superior FNR performance @& th

detector that we observed.

We performed logistic regressions between the dsitputimest, t -1, andt -2 to test our
assumption that detector outputs are Bernoulli. ®Wserved significant ¥ <0.001) serial
dependence. Empirically, the conditional probapitif a novel detector output given a previous
novelty output increases dramatically from 0.1 t8.0This analysis suggests that the detector
output sequence obeys a Markov process where thmlpitity at each point in time of a novelty

is P(; = —1) =v,=0.1, but the conditional probabilites for novelty puts are
P(z=-1|z,=-1)=0.:2andP(z =-1| 7z, =+1) = 0.07¢

We wrote a program to compute the probability o$eving k novel outputs inN trials
under the Markov process described above, and tegp@ar performance analysis. The results

(Table 2) clearly show that the performance ofdk&ector is worse under the serial dependence
model.

Binomial Output Markovian Output

H H H H,
p,=0.3 p,=0.5
p, =05 | p =0.75

Normal 0.9567| 0.2374| 0.0059| 0.9175 0.3095 0.0736
Seizure 0.0433| 0.7626 0.9941| 0.0825 0.6905 0.8264

1 1 1

p=03]| p,=05

Table 2:  An analysis of the hypothesis test for dk&ctor output for both the binomial, and
Markov cases for the rule where we declare an efdnbr more out of 20 outputs
are novelties. The estimated probability that ealiframe is declared novel gs,

and its corresponding conditional probabili§(z =-1|z_ =-1),is p, .

5 Conclusions

Traditional approaches to seizure detection relpioary classification. They require seizure data
for training, which is difficult and invasive to lbect, and do not address the class imbalance
problem between interictal and ictal EEG, as less1t1% of EEG data from epileptic patients is
seizure-related. These approaches assume thateseidevelop in a consistent manner and seek
to identify features and architectures that disorate seizure EEG from “other” EEG. In
contrast, we have presented a technique for sedeirection based on novelty detection that
operates by modeling the dominant data class,ictaeEEG, and declaring outliers to this class
as seizure events. The success of our method m@li@etecting change points in the empirical
outlier fraction with respect to a feature spacat thtrongly discriminates interictal from ictal
EEG. If the feature space is well-chosen, theicagibn is that novelties are seizures.
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In addition to achieving state-of-the-art performanour technique overcomes three severe
limitations of competing algorithms: (1) it doestmeed to be trained on seizures, (2) it does not
require patient-specific tuning, and (3) it doest mequire knowledge of patient state-of-
consciousness. While the false positive perforraaoicthe detector is not as good as other
reported algorithms, this may be attributable ® phesence of subclinical seizures, or other non-
ictal anomalies in the data (e.g., normal periodigthms, artifacts, etc.). Furthermore, the
acceptance by the research community of “hypertetestrategies’—high false-positive rates
and high-sensitivity detection—diminishes the engihalaced on FPR metrics. For example, in
early prototype reactive stimulation devices tatreeizures, the very brief and subthreshold
stimulation involved in therapy appears to be walérated without any significant side-effects.
In this setting, the need to prevent seizures (hfadse negative events), and the apparent relative
harmlessness of false positive stimulations, eragrimaking the detector hypersensitive. As a
final note, the entire algorithm is computationadificient because of the use of the SVM and
small novelty threshold.

Ongoing work includes methodological refinements feducing FPR, and online
implementations for validation on very large contins, multichannel data sets.
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