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Abstract

Similarity of edge labeled graphs is considered in the sense of minimum squared distance between
corresponding values. Vertex correspondences are established by isomorphisms if both graphs are
of equal size and by subisomorphisms if one graph has fewer vertices than the other. Best fit
isomorphisms and subisomorphisms amount to solutions of quadratic assignment problems and are
computed exactly as well as approximately by minimum cost flow, linear assignment relaxations
and related graph algorithms.

Keywords: assignment problem, best approximation, branch and bound, inexact graph matching,
model data base

1. Introduction

Structural similarity is involved in a variety of pattern recognition problems when considered from
an abstract perspective. The abstraction refers to measurements and observations whose specifics
are ignored. One class of such problems is encountered in image processing, where a set of features
or objects with topological interrelations is detected in several scenes. Whenever these are presumed
to be similar according to position, proximity or else, the degree of similarity is of interest.

Structures are represented throughout by labeled graphs such as image graphs. In image graphs,
vertices represent image edges, corners or regions of interest such as regions of constant intensity or
homogenous texture. Graph edges represent relations such as neighborhoods or concept hierarchies.
Edge labels represent distances, degrees of association or else.

Structural similarity is considered as similarity between two labeled graphs. Typical roles of the
two graphs are that of a model graph from a model data base or a prototype data base and that of an
instance graph representing an ’as is’ structure which is encountered ’at run time’. The issue is then
to determine the similarity between prototype and instance.

Similarity will be formulated as a best approximation problem. This involves minimization of
squared distances which results in a quadratic assignment problem. The problem is approached
by several algorithmic concepts including network algorithms with emphasis on linear assignment
relaxations. Also, cost minimal flows of given strength will play a major role. The focus is on
approximate algorithms for best graph approximation since the exact problem is NP-hard.

Besides image processing, structural similarity is encountered, for example, in document analy-
sis and molecular graph search. However, the objective of this work is not to consider one particular
real or potential application. Instead, common problem formulations and algorithms are presented.
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The remainder of this work is organized as follows. Section 2 introduces the best approxima-
tion problem for edge-labeled graphs and reviews related work. Polynomial time approximation
algorithms are stated in Section 3. Since the best graph approximation problem contains subgraph
isomorphism as a special case, no exact algorithm can be expected to run in polynomial worst case
time. The approximations are consequently based on linear assignment problems since the original
problem is a quadratic assignment problem. Approximations have interesting side features such as
being suited for grid computations. Section 4 contains two sketches of approaches for exact algo-
rithms for the best graph approximation problem. One is based on flows, the other on branch and
bound.

Unless otherwise stated, all graphs considered are undirected which means that edges have no
preferred directions. Moreover, the graphs are simple which means that there is at most one edge
between any two vertices and there are no loops so that no edge begins and ends in the same vertex.
The edge labels themselves must allow to be subtractable from each other but are otherwise uncon-
strained. In particular, the edge labels themselves do not have to reflect any notion of similarity.

The 2-norm or Euclidean norm of any vector z = (z1, . . . ,zn) of real numbers zi is denoted by

||z|| = ||z||2 =
√

z2
1 + . . .+ z2

n. The number of elements of a finite set A is denoted by |A|.

2. Problem and Related Work

A distance pattern is understood to be an undirected graph with edge labels. The graph vertices
denote objects or states and the edge labels denote distances, transition times etc. Though it may
take quite some effort to generate these graphs in applications, this effort is ignored here and two
such graphs are assumed to be given.

2.1 Problem Formulation

The best approximation of a labeled graph by another labeled graph is defined by a subisomorphism
of the vertex set of the first graph to the vertex set of the second graph. Thereby edge labels of the
first graph are approximated by corresponding edge labels of the second graph as minimum sum of
squared differences.

Formally, two undirected graphs with edge labelings are given by G1 = (V1,E1) with l1 : E1 → IR
and G2 = (V2,E2) with l2 : E2 → IR. The first graph has n = |V1| vertices and the second graph has
m = |V2| vertices with n ≤ m. The best approximation of G1 by G2 is defined via an optimal
approximating subisomorphism

ϕ0 = argminϕ:V1→V2, ϕ invertible

√

∑
{vi,v j}∈E1

(

l1(vi,v j)− l2(ϕ(vi),ϕ(v j))
)2

.

The best approximation is given by the image of the first vertex set ϕ0(V1) so that ϕ0(V1) ⊆V2. The
minimum value is called the distance of the best approximation.

In order to be well defined, the problem entails a technical condition that, whenever two vertices
of the first graph are joined by an edge, the images of the two vertices must be joined by an edge in
the second graph. Without further restrictions to the subisomorphisms this implies that the second
graph must be complete.
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The objective of best approximation can be considered as Frobenius distance when both graphs
are complete. The edge labelings then denote distance matrices D1,D2 with entries

D1(vi,v j) =

{
l1(vi,v j), for vi 6= v j

0, for vi = v j
D2(wi,w j) =

{
l2(wi,w j), for wi 6= w j

0, for wi = w j.

The best approximation objective can then be written as follows since counting over all edges
amounts to counting twice over all vertex pairs. Pairs of identical vertices are negligible because
they contribute value zero.

∑
{vi,v j}∈E1

(

l1(vi,v j)− l2(ϕ(vi),ϕ(v j))
)2

=
1
2 ∑

vi,v j∈V1

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2

=
1
2
||(D1(·, ·))− (D2(ϕ(·),ϕ(·)))||2F .

The Frobenius norm of any matrix is the square root of the sum of all squared entries (Golub
and van Loan, 1985).

Distance matrices allow to consider the best approximation problem also for graphs which are
not complete. Whenever one of the two given graphs is not complete, all missing edges are inserted.
The complete graph is then labeled by the shortest path distances according to the original edge
labeling. Original edge labels are preserved when these satisfy the triangle inequality. Original
edge labels may be overwritten when these do not satisfy the triangle inequality.

The celebrated graph isomorphism problem is contained in the best approximation problem as
the following special case. Suppose H1 and H2 are two unlabeled graphs with same number of
vertices and arbitrary edge sets. Each graph is extended to the complete graph on its vertex set and
receives the edge labels

li(e) :=

{
1, if edge e belongs to original graph Hi

0, if edge e does not belong to original graph Hi,

i = 1,2. These graphs are denoted G1 and G2 respectively. The original graphs are isomorphic if
and only if the best approximation of G1 by G2 and the best approximation of G2 by G1 both have
distance zero.

The most trivial case of the best approximation problem is given for the smaller graph being
the smallest possible. This is a two vertex graph with one edge only. The single edge graph is
best approximated by that edge from the larger graph whose label comes closest to the label of the
single-edge graph. A non-trivial example of the best approximation problem is given in Figures 1
and 2.

Best graph approximation can be considered as search for a minimum weight clique of given
size in a suitably defined graph, the association graph or correspondence graph. This relation is such
that the given clique size equals the size of the smaller graph and that no larger cliques exist in the
association graph. Mnemonically, best graph approximation can thus be remembered as search for
a minimum weight clique of maximum size.

The association graph of two graphs is defined as their product. Each vertex of one graph is
paired with each vertex of the other graph and each such pair is identified with a vertex of the asso-
ciation graph. Two vertices of the association graph are joined by an edge if the two vertices stem
from four distinct vertices of the original graphs. The construction is illustrated in Figure 3. The
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Figure 1: The left three vertex graph is best approximated by the triangle with edge labels 3,10,16
in the larger graph. The subisomorphism is ϕ(v1) = w1, ϕ(v2) = w4 and ϕ(v3) = w3 with
the two vertices w2 and w5 being unattained. The graph isomorphism is given explicitly
in the next figure.
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Figure 2: Original graph (left) and best approximating isomorphic substructure (right) for the situ-
ation of Figure 1. The squared distance between the two graphs is (2−3)2 +(8−10)2 +
(20−16)2 = 21.

cost of the edge between the vertices (vi,w j) and (vk,wl) is set equal to (D1(vi,vk)−D2(w j,wl))
2.

The meaning of selecting any vertex of the form (vi,w j) is that the original vertex vi is mapped to
the original vertex w j by a subisomorphism. These ”associations” motivate the name association
graph and the cost of a clique, which equals the cost sum over all edges between selected vertices,
is the objective of graph approximation.

An alternative view of best graph approximation can be obtained from quadratic assignment
problems such as the following

min
x

xTCx

such that
n

∑
i=1

xi j ≤ 1 ∀ j = 1, . . . ,m

m

∑
j=1

xi j = 1 ∀ i = 1, . . . ,n

xi j ∈ {0,1} ∀ i, j.

The binary variable xi j attaining value one means that vertex vi is assigned to vertex w j and
that variable attaining the value zero means that this assignment is not valid. The vector x has n ·m
coordinates and C is an n ·m× n ·m matrix denoting the cost incurred by pairwise assignments;
the assignments vi 7→ w j and vk 7→ wl entail the cost (D1(vi,vk)−D2(w j,wl))

2. The cost matrix is
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Figure 3: A ”small” graph and a ”large” graph (top) and their association graph (bottom). The
indicated clique of the vertices (v1,w4), (v2,w2) and (v3,w3) denotes the subisomorphism
ϕ(v1) = w4, ϕ(v2) = w2 and ϕ(v3) = w3.

computed as

C =






(D1(v1,v1)−D2(·, ·))
2 . . . (D1(v1,vn)−D2(·, ·))

2

...
...

...
(D1(vn,v1)−D2(·, ·))

2 . . . (D1(vn,vn)−D2(·, ·))
2






where D2(·, ·) is the m×m matrix of all distance values for the second graph and (c−M)2, the
square of a constant c minus a matrix M, is understood as a matrix of the size of M with each
element denoting the squared distance from the constant so that (c−M)2 = ((c−mab)

2)ab. The size
of the cost matrix is unfortunately large as it already is a 15×15 matrix for the small graphs from
Figure 1.

2.2 Related Work

The subisomorphism problem which is contained as special case of the best approximation problem
must not be confused with that version of the SUBGRAPH ISOMORPHISM problem which is
known to be NP-complete, see Garey and Johnson (1981, problem GT48). That problem does not
admit edge labels and it considers the two operations of vertex removal and edge removal for the
transition from the larger to the smaller graph. Even more, the LARGEST COMMON SUBGRAPH
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problem also is NP-complete, see Garey and Johnson (1981, problem GT49). This problem allows
edge removals only in order to find isomorphic subgraphs. Here, only vertex removals matter and
edge removals are allowed only in so far as they are implied by vertex removals.

A widely used measure for so-called inexact graph matching is the edit distance between two
unlabeled graphs. One graph is therefore modified by a minimum number of vertex insertions and
deletions and by edge insertions and deletions. The concept in general as well as a particular focus
on tree graphs is given in Wang et al. (1998). A simplification of the edit distance does not refer
to the graphs themselves and isomorphism between them but to their degree histograms which are
to be made equal by a minimum number of changes (Papadopoulos and Manolopoulos, 1999). The
edit distance for subisomorphisms of labeled graphs is considered by Messmer and Bunke (1998a).

Subisomorphism with vertices and edges both carrying labels is considered by Hlaoui and Wang
(2002). Conflicts of tentatively assigning several vertices of the smaller graph to one vertex of the
larger graph are resolved in a hierarchical manner. The method is reported to be well suited for
small graphs. Best graph approximation in terms of matching problems is considered by Gold and
Rangarajan (1996). There, the problem is extended to a sequence of continuous surrogate prob-
lems. This leads to an iterative, matrix-based solution scheme which is controlled by a continuous
parameter that intends to drive continuous relaxations to a discrete vertex assignment. While leav-
ing slight uncertainties about the control of this parameter and while using a linear instead of a
quadratic distance between edge labels, the method makes, like the approaches given below, use
of the assignment problem. A quite different, probabilistic approach which makes use of potential
functions is given in Caetano et al. (2005).

Best graph approximation can be considered as ”dual” to joint edge and label construction. This
construction was developed for trees by Desper and Vingron (2002). Only distance information
is required in order to build one tree with edge weights so that the given distances are approxi-
mated by path lengths between leaves of the tree. The construction is formulated as a least square
approximation problem so that solution methods have a strong algebraic component.

Matching techniques for graphs whose vertices denote positions in space have been developed
from the analogy of physical elasticity, compare Wiskott et al. (1997) and Wiskott and Malsburg
(2002). In addition, the elasticity idea supports the generation of the model graph from examples.
These physical methods are complemented by probabilistic methods for unlabeled graph subiso-
morphisms by Bengoetxea (2002).

Motivated by graphs that describe the structure of SQL data bases, an interactive fixpoint al-
gorithm for similarity computing has been proposed by Melnik et al. (2002). The method is based
on the assumption that adjacent vertices are more similar than non-adjacent vertices. The quality
of the matching result is measured by the number of human adjustment steps that are eventually
needed. For a similar data base purpose, case-based reasoning, similarity of graphs with character-
string labels has been considered (Champin and Solnon, 2003). Similarity is measured by weighted
counts of identical labels with vertex correspondence being generated by a greedy algorithm. This
algorithm maximizes the similarity score in each iteration.

Best graph approximation relates given lists of numbers by vertex-edge incidences. When these
are dropped, that is, when numbers are given as mere list entries of one list and when the numbers
are viewed as Euclidean distances on the real line, a complete line graph may be searched for
such that the given numbers form a coherent distance labeling. This is the NP-complete PARTIAL
DIGEST problem from genomic mapping, see Skiena and Sundaram (1994). Whenever the best
graph approximation problem refers to graphs with Euclidean distances on the line and whenever
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the smaller graph is known to be contained in the larger graph, methods for PARTIAL DIGEST can
help to identify the actual subgraph isomorphism.

Subgraph isomorphism for unlabeled graphs has been studied in Messmer and Bunke (1998b)
motivated by symbol recognition problems. A polynomial time algorithm is given which requires
preprocessing and exponential space in the worst case. Graph similarity has even been investigated
for machine learning (Pope and Lowe, 1996). A quite sketchy outline of graph search methods over
molecular graphs is presented in Shasha et al. (2002), while the perspective of distance methods for
molecular similarity and superstructure retrieval is given in Kämpke (2004).

3. Approximate Algorithms

The best approximation problem obviously is finite and, thus, can, in principle, be solved by enu-
meration over all

(m
n

)
n! selections for admissible functions ϕ. Approximate algorithms of different

types as well as a strategy for exact algorithms are given in the sequel. The present approximations
mainly focus on linear assignment problems since the original problem is a quadratic assignment
problem.

To illustrate the intuitive aim of best graph approximation, the squared approximation distance
is rewritten for the special case of equally sized graphs. The best isomorphism then is a solution of
the maximization problem

max
ϕ:V1→V2, ϕ invertible

∑
{vi,v j}∈E1

D1(vi,v j) ·D2(ϕ(vi),ϕ(v j)).

The sum can be considered as an inner product over edges. When all edges of the first graph are
sorted increasingly then the maximization is obtained by an isomorphism that maintains monotonic-
ity ”as far as possible”. This is motivated by the well known inner product maximization ∑N

i=1 aibπ(i)

problem over all permutations π. The solution is a permutation with bπ(1) ≤ . . . ≤ bπ(N) whenever
all coordinates of the first vector are sorted as a1 ≤ . . . ≤ aN , compare with Hardy et al. (1948). A
monotonicity preserving isomorphism does generally not exist for the edge labels.

3.1 Distance Lists

A heuristic procedure for best subgraph isomorphism can be devised on local, that is, vertex-oriented
decisions. These are based on distance lists. The distance list of a vertex contains the labels of all
edges that are incident with the vertex. Any distance list can also be considered as a vector. The
distance list of a vertex v is denoted by distlist(v). A distance list in a complete graph with edge
labels D(·, ·) is given by distlist(v) = (D(v,vi))vi∈V−{v}. For the ease of comparability, all vertex
lists are sorted increasingly. Distance lists generalize vertex degrees since they count the ”ones”
when unlabeled graphs receive the binary edge labeling as given above for the embedding of the
graph isomorphism problem.

The distance lists for the three-vertex graph from Figure 1 are given by distlist(v1) = (2,8),
distlist(v2) = (8,20) and distlist(v3) = (2,20). The five-vertex graph of the same figure has the dis-
tance lists distlist(w1) = (3,3,7,10), distlist(w2) = (6,7,7,9), distlist(w3) = (3,6,8,16),
distlist(w4) = (9,10,16,62) and distlist(w5) = (3,7,8,62).

Viewing distance lists as vectors allows to consider Euclidean distances between distance lists.
This only requires standard notions for vector distances as long as distance lists have the same
number of coordinates. The lists being sorted makes these differences meaningful. Whenever two

2071
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distance lists have different numbers of coordinates, a proper selection is made from the larger
distance list. In the foregoing example, selections of two out of the four coordinates from the
distance lists of the five-vertex graph are made.

The approximation of a distance list by a selection from a larger distance list can be formulated
as a weighted or cost minimal assignment problem. Therefore, two distance lists distlist(v) =
(x1, . . . ,xn−1) and distlist(w) = (y1, . . . ,ym−1), n ≤ m, are endowed with a complete bipartite graph.
Each coordinate receives one vertex and each coordinate of one distance list is connected by an
edge to each coordinate of the other distance list. No two coordinates of the same list are connected.
The edge connecting coordinates xi and y j is labeled by the squared difference of the list entries
(xi − y j)

2, compare with Figure 4.
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Figure 4: Complete bipartite graph for two distance lists. The vertices correspond to the coordinates
of the distance lists rather than to the vertices of the original graphs. Only one of the
(n−1) · (m−1) edge labels is sketched.

Any approximation of the first distance list by the second distance list amounts to a selection
of n− 1 distinct coordinates or indices from the second list. The approximation objective can be
formulated as a linear function of the edge labels

min
1≤ j1<...< jn−1≤m−1

n−1

∑
i=1

(xi − y ji)
2
.

Alternatively, the best approximation problem for distance lists can be formulated as cost minimal
perfect matching problem and as a cost minimal integral flow problem with flow value set to level
n−1, compare with Section 4.

The best approximation of a distance list distlist(v) by the distance list distlist(w) is denoted
as the projection pr(distlist(w), distlist(v)). The squared approximation error equals DL(v,w) =
||pr(distlist(w), distlist(v))− distlist(v)||2. Samples of distance lists, their best approximations
and approximation errors are given in the following table whose data refer to Figure 1.
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distlist(vi) distlist(w j) pr(distlist(w j), DL(vi,w j)
distlist(vi))

(2,8) (3,3,7,10) (3,7) (2−3)2 +(8−7)2 = 2
(2,8) (6,7,9,10) (6,7) or (6,9) (2−6)2 +(8−7)2 = 17

i = 1 (2,8) (3,6,11,16) (3,6) (2−3)2 +(8−6)2 = 5
(2,8) (9,10,16,62) (9,10) (2−9)2 +(8−10)2 = 53
(2,8) (3,10,11,62) (3,10) (2−3)2 +(8−10)2 = 5
(8,20) (3,3,7,10) (7,10) (8−7)2 +(20−10)2 = 101
(8,20) (6,7,9,10) (7,10) or (9,10) (8−7)2 +(20−10)2 = 101

i = 2 (8,20) (3,6,11,16) (6,16) (8−6)2 +(20−16)2 = 20
(8,20) (9,10,16,62) (9,16) (8−9)2 +(20−16)2 = 17
(8,20) (3,10,11,62) (10,11) (8−10)2 +(20−11)2 = 85
(2,20) (3,3,7,10) (3,10) (2−3)2 +(20−10)2 = 101
(2,20) (6,7,9,10) (6,10) (2−6)2 +(20−10)2 = 116

i = 3 (2,20) (3,6,10,16) (3,16) (2−3)2 +(20−16)2 = 17
(2,20) (9,10,16,62) (9,16) (2−9)2 +(20−16)2 = 65
(2,20) (3,10,11,62) (3,10) (2−3)2 +(20−10)2 = 101

3.2 Best Approximations by Distance Lists

The idea of cost minimal assignments can be carried over from distance lists of single vertices to the
whole graph. This results in an efficient heuristic algorithm for best graph approximation. Again, the
approximation problem is formulated as cost minimal assignment problem over a complete bipartite
graph. One set of vertices corresponds to the smaller graph and the other to the larger graph. The
edges are labeled by the errors of best distance list approximations. The general situation is sketched
in Figure 5.
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Figure 5: Complete bipartite graph for a heuristic solution of best graph approximation. The edge
labels refer to best approximations of distance lists.

A greedy heuristic for best graph approximation can now be based on iterative decisions accord-
ing to minimum distance list errors.
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ApproxDistList

1. Input complete labeled graphs G1,G2 with |V1| ≤ |V2|.
Initialization. Computation of distance list errors DL(v,w) for all v ∈ V1, w ∈ V2. A = V ,
B = W .

2. While A 6= /0 do

(a) Computation of W (v) = argminw∈BDL(v,w) and level(v,B) = DL(v,W (v)) and for all
v ∈ A.

(b) Selection of v0 = argminv∈Alevel(v,B).

(c) ϕ(v0) = w(v0) with w(v0) ∈W (v0).

(d) A = A−{v0}.

(e) B = B−{ϕ(v0)}.

3. Output subisomorphism ϕ(·) on V1.

The level computations in step 2(a) determine the best fit decision that can be made without
taking back prior decisions. The sets W (v) indicate all vertices from the second graph that attain the
minimum. Ties for selections in step 2(b) as well as for selections from the set W (v0) in step 2(c)
are broken arbitrarily. While the sets A and B of unassigned vertices decrease along the iterations
of the algorithm, the distance lists to consider become fewer but not smaller. Thus, the edge labels
DL(v,w) do not have to be updated along the iterations.

The greedy procedure applied to the graphs of Figure 1 can be traced with the data from the
table of Section 3.1. The resulting subisomorphism is given by selecting the minima for each vertex
from the smaller graph. This is exactly the solution indicated by Figure 2.

The foregoing algorithm need not solve the cost minimum assignment problem exactly. An
optimal solution of this problem (which still need not lead to the best graph approximation since the
assignment problem is only an approximative encoding for best graph approximation problem) can
be found by any weighted assignment algorithm for bipartite graphs. These algorithms are typically
based on transformations to cost minimum flow problems. Therefore, all vertices of the smaller
graph are connected to an extra source vertex and all vertices of the larger graph are connected to an
extra sink vertex. All the extra edges receive a unit capacity on the flow. All edges become oriented
edges or arcs as indicated in the flow network in Figure 6.

Among the cost minimal flows of strength n there is one with all integer values. This flow
amounts to a cost minimal assignment of all vertices from the smaller graph. The out of kilter
algorithm allows to compute the desired cost minimum flow, see Ahuja et al. (1993).

A different solution for cost minimal assignment problems can be obtained from straightforward
transformations to cost minimal perfect matching problems by introducing additional vertices for
the smaller graph. Both sets of the vertex partition then have the same size. All dummy vertices
for the smaller graph are connected to all vertices from the larger graph by edges with zero cost. A
matching is a set of edges such that any two edges do not have a common vertex. A matching is
perfect if each vertex of the graph is covered by an edge.

A polynomial time algorithm for cost minimal perfect matchings can be based on augmenting
paths that are constructed by shortest paths. Implementations thereof are available in the LEDA
system, see Mehlhorn and Näher (2000, Chapter 7). More recent scaling algorithms are given in
Ahuja et al. (1993).
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Figure 6: Flow network for a distance label heuristic. The edges that are incident either to the source
or the sink carry capacities but no cost coefficients while the edges with cost coefficients
do not carry capacities.

3.3 Direct Methods

Direct methods for graph approximation will use the original edge labels and the unaltered best
approximation errors for all fitting assessments.

3.3.1 SEQUENTIAL ASSIGNMENTS

A subisomorphism can be constructed by sequentially assigning vertices from the smaller graph to
the larger graph so that the sum of squared label distances over all new edge pairs is minimal. The
first assignment may stem from two best matching edges. No assignment is ever revised by the
following procedure.

SeqAssign

1. Input complete labeled graphs G1,G2 with |V1| ≤ |V2|.
Initialization. Computation of (e0, f0) = argmine∈E1, f∈E2 (D1(e)−D2( f ))2.

Selection of one vertex v1 of the two vertices incident with e0.
Selection of one vertex w1 of the two vertices incident with f0.
ϕ(v1) = w1.
Labeling all other vertices from V1 by v2, . . . ,vn.
B = V2 −{ϕ(v1)}.

2. For i = 2, . . . ,n do

(a) Computation of w0 = argminw∈B ∑i−1
j=1(D1(v j,vi)−D2(ϕ(v j),w)2.

(b) ϕ(vi) = w0.

(c) B = B−{ϕ(vi)}.

3. Output subisomorphism ϕ(·) on V1.
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3.3.2 IMPROVEMENTS

Whenever a subisomorphism is not optimal or not known to be optimal, improvements can be aimed
at by swapping two vertex assignments or by swapping an assigned with an unassigned vertex.
Swaps of both types can easily be evaluated.

For notational ease the vertices are numbered such that ϕ(vk) = wk, k = 1, . . . ,n, for some given
subisomorphism ϕ : V1 → V2. First, two vertices vi,v j, 1 ≤ i 6= j ≤ n are considered for swapping
their assignments while all other assignments are preserved.

ϕ′(vk) =







w j if k = i
wi if k = j
wk if k 6= i, j.

The new subisomorphism leads to a smaller approximation error if and only if

n

∑
k=1,k 6=i, j

(

l1(vi,vk)− l1(v j,vk)
)

·
(

l2(w j,wk)− l2(wi,wk)
)

> 0.

This condition being true is denoted by Imp(i, j) = true. Second, one vertex vi, 1 ≤ i ≤ n is con-
sidered for changing its assignment to an unassigned vertex w0 ∈ V2 −ϕ(V1), that is, the present
subisomorphism is compared to the new subisomorphism

ϕ′(vk) =

{
w0 if k = i
wk if k 6= i.

The new subisomorphism leads to a smaller approximation error if and only if

n

∑
k=1,k 6=i

l2
2(wi,wk)− l2

2(w0,wk) > 2
n

∑
k=1,k 6=i

l1(vi,vk) ·
(

l2(wi,wk)− l2(w0,wk)
)

.

This condition being true is denoted by Imp(i,w0) = true. The improvement conditions results in the
following procedure.

Imp

1. Input complete labeled graphs G1, G2.
Subisomorphism ϕ : V1 →V2 with ϕ(vk) = wk, k = 1, . . . ,n.

2. While Imp(i, j) = true or Imp(i,w0) = true for some w0 do

(a) If Imp(i, j) = true then ϕ(vi) = w j and ϕ(v j) = wi

else ϕ(vi) = w0

(b) Vertex relabeling such that ϕ(vk) = wk, k = 1, . . . ,n.

3. Output swap-improved subisomorphism ϕ : V1 →V2.

Swaps for triples, quadruples etc. can be considered instead of pairwise swaps. Though the
complexity of evaluating such swaps increases only little, the number of swap candidates increases
by one order of m for each size increase of the swap candidates.
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3.4 Relaxation Method

The previous methods can all be considered as primally feasible which means that all assignments
actually are subisomorphisms though not necessarily optimal. The subisomorphism constraint may
tentatively be relaxed in analogy to so-called dual optimization techniques. Starting from some
promising structure, a sequence of changes will be made that eventually attain feasibility and that
tend to incur as little additional cost as possible per step.

3.4.1 INITIAL STRUCTURE

A promising initial structure is constructible by enumerating the first vertex set. Each vertex from
that set is paired with all vertices from the second vertex set which amounts to considering their
common vertices in the association graph. The label sum of all edges which emanate from each of
these common vertices is minimized under the choice of the second vertex. This can be expressed
as the following nested minimization:

µ(i) = argmin j=1,...,m

n

∑
k=1,k 6=i

min
l=1,...,m

(

D1(vi,vk)−D2(w j,wl)
)2

.

This minimization implies a function from the first vertex set into the second vertex set by
vi 7→ wµ(i). The inner minimizations are independent of each other and, thus, may lead to overas-
signments which means that the same index l is attained as minimum for different outer indices.
The analogue is true for the outer minimization. The presence of overassignments implies that the
overall function is not a subisomorphism. However, the independence of the minimizations makes
them easy to compute and the resulting cost value provides a lower bound for the cost of best graph
approximation. The edges for summation in one minimization of the initial relaxation are sketched
in Figure 7. It is worth noticing that the minimization for the initial structure may lead to even

r(vi,w j)

r(vn,wln)

...

...

r(v2,wl2)

r(v1,wl1)

r(vi,wli)����XXXX

������

@
@

@
@

@
@

Figure 7: Vertices and edges of the association graph that are considered while computing the value
µ(i) for the initial structure of the relaxation method.

smaller objective values than the distance lists.

3.4.2 IMPROVEMENT

After initialization, the relaxation method proceeds by iteratively selecting an overassigned vertex
and redirecting or backtracking at least one assignment to a yet unassigned vertex. Several vertex
assignments may be altered in each iteration. Each iteration is organized by computing a wave front
of node potentials that emanates from an overassigned vertex.
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The edges for the wave front computations are directed. All edges of the current structure are
oriented as backward edges from the second vertex set to the first vertex set and all other edges are
oriented as forward edges from the first to the second vertex set, see Figure 8. Not all edge labels are
initially known in quite a contrast to the ordinary dual method for assignment problems. Actually,
node potentials will be computed according to edge transitions rather than by explicitly given edge
labels.
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Figure 8: Forward edges (thin) and four backward edges (bold) for the wave front computations to
resolve the double assignment of vertex w j0 . The wave front begins in that vertex and
ends in a suitable vertex from the second set from which no edge leads back into the first
set.

The relaxation method assigns tentative and permanent labels to graph nodes in analogy to the
Dijkstra algorithm. The labels are potentials which equal the cost of functions from the first vertex
set or a subset thereof into the second vertex set. Such functions need not be one-to-one. For-
mally, the potential of a function ϕ is computable as cost(ϕ) = ∑v∈dom(ϕ) ∑v′∈dom(ϕ)−{v}(D1(v,v′)−
D2(ϕ(v),ϕ(v′)))2, where dom(ϕ) denotes the domain of function ϕ. Whenever a function is altered
by deleting an assignment like v4 7→ w3 it is denoted by ϕ− (v4 7→ w3), when then the assignment
v4 7→ w8 is inserted, the function is denoted by ϕ− (v4 7→ w3)+ (v4 7→ w8) etc. Backward edges
amount to deleting assignments and forward edges amount to inserting assignments.

NoPo

1. Input Structure ϕ, overassigned vertex w0 ∈V2.
Initialization L = V1 ∪V2 −{w0}, m(l) = ∞ ∀ l ∈ L, and m(w0) = cost(ϕ).

2. While (V2 −ϕ(V1) ⊆ L) do:

(a) Selection of u = argminl∈Lm(l).

(b) L = L−{u}.

(c) ∀z ∈ L∩S(u) do:

i. ϕz = ϕu +(u 7→ z) if z ∈V2 and u ∈V1

ϕz = ϕu − (u 7→ z) if z ∈V1 and u ∈V2.
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ii. Computation of cost(ϕz).

iii. If cost(ϕz) < m(z) then m(z) = cost(ϕz).

3. Termination. Output ϕz for that z ∈ V2 − ϕ(V1) which received its permanent label most
recently.

The set S(u) denotes the set of all immediate successors of vertex u which is the set of all vertices
to which an edge points from vertex u. The list L contains all vertices that are tentatively labeled.
The graph vertices which are not contained in the list are permanently labeled. The algorithm
terminates as soon as the first yet unassigned vertex from the second set receives a permanent label.

It may occur during wave front propagation that an already assigned vertex from the second
set is permanently labeled. This means that an assignment of the input function ϕ is revised. The
node potential algorithm terminates with exactly one additional vertex assignment from the second
graph. The algorithm is applied repeatedly until all overassignments are eliminated.

The improvement algorithm Imp from Section 3.3.2 can be obtained from the mode potential
algorithm NoPo by starting at a vertex that is attained exactly once (with all vertices of the second
set being attained at most once). The search for cost reductions proceeds along wave fronts of length
two or four and by allowing the wave front to return to its origin.

3.5 Grid Computing Methods

The recently celebrated framework of grid computing is based on the idea of a system which co-
ordinates distributed resources using standard, open, general purpose protocols and interfaces to
deliver nontrivial qualities of services (Foster and Kesselman, 2004). Though the distribution of a
computational problem into subproblems is not an inherent feature of grid computing in general,
it is here considered as exactly that. The breakdown of a computational problem into subproblems
that amend to partial computations without any communication between them is here called grid
distribution. Grids with several thousand computing nodes have already become feasible.

The lack of any communication between computations means that neither intermediate results
nor data are shared. Whenever common data are required, they are physically copied and stored
separately before computations begin in order to avoid any access collision. The avoidance of
intermediate result communication is a trivial concept. But this makes distributed computations
feasible from a practical perspective. Multiple execution of certain operations is the price to be
paid. The computational subproblems are generated, distributed and possibly queued by a master.
The master also collects the individual computing results and aggregates them to the final computing
result.

Best graph approximation lends to grid computing in a straightforward manner. To this end, the
strategy of pivoting is here proposed for grid distribution. The idea is that of selecting a vertex from
the larger graph as pivot element. This means that best graph approximation is tentatively reduced to
only those subisomorphisms which attain that vertex and the optimal of such pivot-subisomorphisms
is computed exactly or approximately. Eventually, all vertices of the second graph are chosen as
pivot elements and the pivoting-subisomorphism with smallest objective value is reported as the
best one. Heuristics which make use of assignment problems are particularly suited for pivoting.

Any subisomorphism which attains the pivot element w j0 ∈ V2 from some vertex vi0 ∈ V1 is
denoted by ϕi0 7→ j0 . A candidate for the best subisomorphism of this type will be computed and the
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best ϕ j0 of these over all vertices from the first graph is selected by independent computations. Then,
the best ϕ0 of these over all vertices from the second graph is centrally computed. Schematically
this is denoted as

ϕi0 7→ j0

mini0∈{1,...,n}
−→

︸ ︷︷ ︸

grid

ϕ j0
pass result
−→ ϕ j0

min j0∈{1,...,m}
−→

︸ ︷︷ ︸

central

ϕ0.

The weighted assignment problems that are solved for each of the subisomorphisms ϕi0 7→ j0 is
sketched in Figure 9.
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Figure 9: Complete bipartite graph for pivot vertex and preselected vertex from the first graph.

The resulting algorithm that has to be executed at the grid nodes is as follows.

GridPivot

1. Input complete labeled graphs G1,G2 with n ≤ m and j0 ∈ {1, . . . ,m}.

2. Computations

(a) Computation of ϕi0 7→ j0 as minimal weighted assignment for all i0 ∈ {1, . . . ,n}.

(b) Selection of ϕ j0 with minimum objective of ϕi0 7→ j0 over all i0 ∈ {1, . . . ,n}.

3. Output subisomorphism ϕ j0 on V1.

The minimization in step 2(b) adheres to the original objective of best graph approximation and
no longer to the objective functions of the assignment problems from step 2(a). The computations
in step 2(a) can be coupled by using the optimal assignment for one problem—for one value of i0—
as an initial assignment for the next problem—for the next value of i0. This is feasible for primal
methods as well as for dual methods such as the relaxation method, see above.

The grid distribution of the complete problem into subproblems and the selection ϕ0 of the best
of their results is conceptually obvious.
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4. Towards Exact Methods

Since the focus is on practical algorithms, the descriptions of exact algorithmic solutions of best
graph approximations is kept to an informal level. First, flows are extended and second, a branch
and bound method is sketched.

4.1 Flows

Best graph approximation can be formulated as a cost minimal flow problem in loose analogy to
the distance list heuristic. However, the graph is more complicated and additional constraints are
necessary. These include submodular edge capacities and integrality conditions for the flow through
some edges.

The main problem of transforming the best graph approximation into a flow problem is that
subisomorphisms refer to vertices while the costs refer to edge pairs. The cost issue is therefore
dealt by introducing a biquadratic number of network vertices that represent all possible edge pair-
ings induced by the vertex assignments. Each pair of distinct vertices from the smaller graph may
correspond to each pair of distinct vertices from the larger graph. The incurred cost is an edge label
with the edge connecting a network vertex (vi,v j,wk,wl) with the sink in the flow network.

A subisomorphism in the network is specified by all considering each vertex vi of the smaller
graph and all its possible assignments by introducing the network vertices (vi,w1), . . . ,(vi,wm).
These are connected by edges. Since each vertex of the second graph is attained at most once
by any subisomorphism, the edges into the network vertices (v1,w j), . . . ,(vn,w j) have one common
capacity constraint. The joint flow into all these vertices is bounded by one. The situation is depicted
by Figure 10.

...

rv j

...

rvi

...

r(v j,wm)

...

r(v j,w1)

r(vi,wm)

...

r(vi,w1)

PPPPPPPPP

���������

PPPPPPPPP

���������

Figure 10: The m vertices (vi,w1), . . . ,(vi,wm) together allow an inflow of strength one only for
each of the vertices vi. Edges with common capacity constraints are indicated with
identical number of ticks.

Common edge capacities are known as submodular flow constraints, see Fujishige (1991). The
flow from the source vertex to each of the graph vertices is bounded by one and the flow out of each
vertex (vi,w j) is bounded by 1

n−1 . The reason for this bound is that each vertex of the smaller graph
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is incident with all n−1 other vertices and thus n−1 edges of the smaller graph are incident with
each vertex. The complete construction is illustrated in Figure 11 for the problem from Figure 1.
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Figure 11: Part of graph for an exact solution of the best approximation problem. The submodular
flow constraints as well as arc orientations are not indicated. Arcs are directed in the
general direction ”from left to right”. The arcs for which cost labels are specified refer
to the solution for the problem from Figure 1.

A best graph approximation amounts to a cost minimal flow of strength n from source to sink
such that the flows along the edges between all vi and (vi,w j) are integer. The other constraints then
imply that the flows are binary over these edges.

4.2 Branch and Bound

The complicated structure of the foregoing flow problem motivates to organize an exact best graph
approximation by branch and bound. Subisomorphisms will be built up sequentially by either prun-
ing or refining a partial subisomorphism. A partial subisomorphism is a subisomorphism defined
over a subset of the vertex set of the smaller graph. The domain of a partial subisomorphism is de-
noted by A(V1) and the partial subisomorphism itself is denoted by ϕ|A(V1). The special case of the
partial subisomorphism being defined over the complete vertex set of the smaller graph is denoted
by ϕ = ϕ|V1 .

A lower bound for the approximation distance of a partial subisomorphism can be obtained by
independently minimizing distances between unassigned and assigned vertices. Formally, the lower
bound is given by

∑
{vi,v j}∈E1

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2
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≥ ∑
{vi,v j}∈E1,vi,v j∈A(V1)

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2

+ ∑
v0∈A(V1)

c(v0)
2

=: Val(ϕ |A(V1)),

where c(v0) = minv∈V1−A(V1),w∈V2−ϕ(A(V1)) |D1(v0,v)−D2(ϕ(v0),w)| for all v0 ∈ A(V1).
Improved lower bounds can be constructed by cost minimal assignments in analogy to the

heuristic distance list constructions of Section 3. Independent minimization over unassigned ver-
tices is replaced by joint minimization. The vertex set of the bipartite graph for the assignment
problem consist of both sets of unassigned vertices which are V1 −A(V1) and V2 −ϕ(A(V1)). The
cost values of the edges are given by squared errors of distance list approximations DL(v,w), see
Figure 12.
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Figure 12: Assignment problem for improved lower bound of partial subisomorphism ϕ |A(V1).

The improved lower bound is

∑
{vi,v j}∈E1

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2

≥ ∑
{vi,v j}∈E1,vi,v j∈A(V1)

(

D1(vi,v j)−D2(ϕ(vi),ϕ(v j))
)2

+ val(ϕ |A(V1))

=: Val∗(ϕ |A(V1)),

where val(ϕ |A(V1)) is the minimum cost value of the lower bounding assignment problem from
Figure 12. The bounding strategy of a branch and bound algorithm for best graph approximation
can now be readily specified as follows.

Bound
Case A(V1) 6= V1.

If Val∗(ϕ |A(V1)) ≤ M then refine ϕ |A(V1)

else ignore ϕ |A(V1). (prune or bound).
Case A(V1) = V1.

If Val∗(ϕ) = M then Lopt = Lopt ∪{ϕ}.
If Val∗(ϕ) < M then Lopt = {ϕ} and M = Val∗(ϕ).

The value M is the approximation distance of the best subisomorphism found so far and Lopt is
a list of all these best subisomorphisms. This results in the following branch and bound approach.
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The algorithm operates on a list U of unexplored partial subisomorphisms until this list becomes
empty. The initial setting of this list consists of partial subisomorphisms that make exactly one
assignment.

B+B

1. Input graphs G1,G2 with distances D1,D2.
Initialization. M cost of arbitrary subisomorphism. U = {ϕ |v1(v1) = w1, . . . ,ϕ |v1(v1) = wm}.
Lopt = /0.

2. While U 6= /0 do

(a) Selection ϕ |A(V1) ∈U .

(b) U = U −{ϕ |A(V1)}.

(c) Computation of Val∗(ϕ |A(V1)).

(d) (Bound)
If A(V1) = V1 then

If Val∗(ϕ) = M then Lopt = Lopt ∪{ϕ}.
If Val∗(ϕ) < M then Lopt = {ϕ} and M = Val∗(ϕ).

(e) (Branch)
If Val∗(ϕ |A(V1)) < M then U = U ∪

S

w0∈V2−ϕ(A(V1)){ϕ |A(V1)∪{v0} with
ϕ |A(V1)∪{v0} (v0) = w0} for one v0 ∈ A(V1).

3. Output list of optimal subisomorphisms Lopt .

The branch and bound procedure is informal in so far as the selection step 2(a) and the branching
step 2(e) leave many ways of specialization. Removal is specified implicitly here which means that
a partial subisomorphism selected in step 2(a) is removed anyway in step 2(b). Refinements of
the partial subisomorphism are possibly added to U in the branching step. Whenever a partial
subisomorphism is not pruned by the bounding step, the next iteration of step 2 may or may not
select a refinement of this partial subisomorphism to continue with.

5. Conclusion

Best graph approximation has been formulated for labeled graphs in analogy to isomorphism for
unlabeled graphs. Polynomial time approximation algorithms in terms of linear assignment prob-
lems have been given and exact algorithms have been outlined. All algorithms are independent from
application domains.

Whenever an instance graph is to be matched to several instead of one model graph, this can
obviously be done sequentially. The best match is given by the minimum over all approximation
distances and a ranking of the matching results is given by increasingly sorted approximation dis-
tances.
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Kurt Mehlhorn and Stephan Näher. LEDA A Platform for Combinatorial and Geometric Computing.
Cambridge University Press, Cambridge, 2000.

Bruno T. Messmer and Horst Bunke. A new algorithm for error-tolerant subgraph isomorphism
detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 20:493-504,
1998.

Bruno T. Messmer and Horst Bunke. A decision tree approach to graph and subgraph isomorphism
detection. Pattern Recognition 32:1979-1998, 1999.

2085
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