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Abstract

This paper proposes a general probabilistic frameworktfaps-based modeling and classification
of waveform data. A segmental hidden Markov model (HMM) isdiso characterize waveform
shape and shape variation is captured by adding randomtsfi@the segmental model. The
resulting probabilistic framework provides a basis forféag of waveform models from data as
well as parsing and recognition of new waveforms. Expemtathaximization (EM) algorithms are
derived and investigated for fitting such models to data.driigular, the “expectation conditional
maximization either” (ECME) algorithm is shown to providgrsficantly faster convergence than
a standard EM procedure. Experimental results on two realdwdata sets demonstrate that the
proposed approach leads to improved accuracy in classificabd segmentation when compared
to alternatives such as Euclidean distance matching, digrtame warping, and segmental HMMs
without random effects.

Keywords: waveform recognition, random effects, segmental hidderkmMamodels, EM algo-
rithm, ECME

1. Introduction

Automatically parsing and recognizing waveforms based on their shapbrbad applications,
including interpretation and classification of heartbeats in ECG data andysiki( 1996), analysis
of waveforms from turbulent flow experiments (Bruun, 1995), andritignation of nuclear events
and earthquakes in seismograph data (Bennett and Murphy, 1986)fdifa analysis has also
attracted attention in information retrieval and data mining, with a focus on algxithat can take
a waveform as an input query and search a large database to find siaeionms that match the
query waveform (e.g., Yi and Faloutsos, 2000). Applications includerfiintkmporal patterns in
retail time-series data (Agrawal et al., 1993) and fault diagnosis in conggletems (Keogh and
Smyth, 1997).

While the human visual system can easily recognize the characteristic saodta partic-
ular waveform shape (a heartbeat waveform for example) the protdenbe quite difficult for
automated methods. For example, Figure 1 shows a set of time-series mavefdlected during
turbulent fluid-flow experiments where the shape of each waveformesrdmed by the nature of
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Figure 1: Fluid-flow waveform data: (a) a waveform from the ckgdgiting (where the probe splits
a bubble), (b) a set of such waveforms, (c) a waveform from thes glasice and (d) a
set of such waveforms.
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interactions between a probe and bubbles in the fluid. Figure 1(a) shoesaaple waveform
from a particular type of interaction. Figure 1(b) shows a whole set df staveforms that have
all been classified (by human experts) as being of the same interactionAifpeugh all of these
waveforms belong to the same interaction class, there is significant variab#iype among those
waveforms. The sources of variability include shifts of the locations afngment features such as
peaks, valleys, and plateaus, scaling along the time and amplitude axes,adengent noise. An
example waveform from a different class is shown in Figure 1(c), aset af such waveforms are
shown in Figure 1(d). Again there is significant within-class variability.

In this paper we address the problem of detecting and classifying deftesses of waveforms
based on their shape and propose a new statistical model that directhgsesiwithin-class shape
variability. We will assume in the paper that the waveforms to be analyzed dhe iform of
“snippets” that have already been extracted from the “background™demies, e.g., in the form
of Figures 1(b) and (d). This assumption can be relaxed—we outline a chéghaletection of
waveforms that are embedded in a time-series in Section 6. We will also asatrtiestivaveforms
are being analyzed offline, i.e., that all of the waveform measurement@vailable at the time
of analysis rather than arriving sequentially in an online fashion. The @skguential detection
problem can be addressed by generalizing the methods we proposes blat not pursue online
algorithms in this paper.

We will assume that a set of one or more waveforms from a single classavielgd a priori
(e.g., the data in Figures 1(b) or (d)) and from this data we wish to learn alrfaxdrecognition.
Hidden Markov models (HMMs) are a broadly useful class of generatiodels for waveform
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Figure 2: Waveform models: (a) a piecewise linear approximation of thefaeam in Figure 1(a),
(b) a segmental HMM best fit, and (c) a random effects segmental H\MBtIfbheas de-
scribed in this paper.

modeling, finding application (for example) in heartbeat monitoring of ECG (tédaki, 1996;
Hughes et al., 2003). These models are characterized by (a) a digcretBnite-state Markov
process which is unobserved, and (b) a set of observed measuseseach timé which only
depend (stochastically) on the state value at tinferom a shape-modeling viewpoint the standard
version of the model generates noisy versions of piecewise consi@msiover time, since the
observations within a sequence of states of the same value have constamt For waveform
modeling, a useful extension is the so-called segmental HMM, originally intexdiin the speech
recognition (Russell, 1993) and more recently used for more genevafoven modeling (Ge and
Smyth, 2000). The segmental model allows for the observed data withirsegoient (a sequence
of states with the same value) to follow a general parametric regression $oich,as a linear
function of time with additive noise. This allows us to model the shape of the farawedirectly,

in this case as a sequence of piecewise linear components—Figure @f{es) slpiecewise linear
representation of the waveform in Figure 1(a).

A limitation of this particular model is that it assumes that the parameters of the aredeted.
Thus, the only source of variability in an observed waveform arises frariation in the lengths of
the segments and observation noise added to the functional form in egokrge The limitation
of this can clearly be seen in Figure 2(b), where a segmental HMM hastksaed on the data
in Figure 1(b) and then used to generate maximum-likelihood estimates of segmerdaries,
slopes, and intercepts for the new waveform in Figure 2(b). We cathaethe best-fit slopes and
intercepts provided by the model do not match the observed data particuidriy each segment,
e.g., in the first segment the intercept is clearly too low onytlagis, in the second segment the
slope is too small, and so forth. By using the same fixed parameters for afovens, the model
cannot fully account for variability in waveform shapes (e.g., as se€igure 1(b)).

To address this limitation, in this paper we combine segmental HMMs with randemisfod-
els. The general idea of random effects is to allow each group of \dgmrs (or each waveform)
to have its own parameters that are still coupled together by an overalgpiopuprior (Laird and
Ware, 1982). By extending the segmental HMM to include random effeetsan allow the slopes
and intercepts within each segment of each waveform to vary accordagrior distribution. As
illustrated in Figure 3, in the hierarchical setup of our model each wavefat the bottom level)
has its own slope and intercept parameters (as shown at the middle leveldptimatfrom a shape
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template (at the top level) modeled as a population prior. The parameters aidhisgm be learned

in an unsupervised manner from data in the form of sets of wavefornesteRulting model can be
viewed as a directed graphical model, allowing for application of standatlaaie for inference

and learning (Jordan, 1999; Murphy, 2002). For example, we caririniple learn that the slopes
across multiple waveforms for the first segment in Figure 1(b) tend to haharacteristic mean
slope and standard deviation. The random effects approach pravsiegematic mechanism for
allowing variation in “shape space” in a manner that can be parametrizedreF2gc) shows a

visual example of how a random effects model (constructed from thertgadtata in Figure 1(b))

is used to generate maximum-likelihood estimates of segment boundaries arehsstppes and

intercepts for the waveform in Figure 1(a).

Kim et al. (2004) described preliminary results using random effectsiestal HMMs for
waveform parsing and recognition. A drawback of this earlier appr@athe relatively slow con-
vergence of the expectation-maximization (EM) algorithm in learning. This ésaltrof the large
amount of missing information present (due to the random effects compohtrg model), com-
pared to a standard segmental HMM. In this paper we use the “expectatiditional maximization
either” (ECME) algorithm (Liu and Rubin, 1994) for parameter estimatioraoflom effects seg-
mental HMMs. This dramatically speeds up convergence relative to the Edvitaly, making the
model much more practical to use for real-world waveform recognitioblpros.

We begin our discussion by reviewing related work on segmental HMMsamdbm effects
models in Section 2. We introduce segmental HMMs in Section 3. In Section éxigad this
model to incorporate random effects models, and describe the infepeacedure and the EM
algorithm for parameter estimation. We also show that the ECME algorithm casdokto signifi-
cantly speed up the convergence of the EM algorithm. In Section 5, weagdgaur model on two
applications involving bubble-probe interaction data and ECG data, andatermgndom effects
segmental HMMs to other waveform-matching algorithms such as Euclideamaistaatching,
dynamic time warping, and segmental HMMs without random effects. Sectamtins a brief
discussion of possible extensions of the model and final conclusions.

2. Related Work and Contributions

A general approach to waveform recognition is to extract charactefesttares from the wave-
form in the time-domain or the frequency-domain, and then perform classgsiicin the resulting
feature-vector space. Examples of this approach include the workmoi8bni and Intrator (1998)
who used neural networks to classify seismic waveforms, and JankanglOreziak (2003) who
used support vector machines to classify heartbeats in ECG data. Usssgiefa in this manner
requires training data from both positive and negative classes as wledl astraction of reliable dis-
criminative features from the raw waveform data. In the approactribeskin this paper we avoid
these requirements by learning models from the positive class only and tsfingpthe waveform
directly in the time-domain without any need for feature extraction. Other tggbs have been
pursued in the area of waveform query-matching for information refrievalving time-series
data (e.g., Agrawal et al., 1993; Chan and Fu, 1999; Keogh and Ma2880; Yi and Faloutsos,
2000). These approaches generally focus on the investigation aétrabhd computationally ef-
ficient similarity measures. In contrast, in this paper, we focus on a gameraodel approach,
allowing techniques from statistical learning to be brought to bear. This sll@yfor example)
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to learn models from data, to handle within-class waveform variability, anénemte maximum-
likelihood segmentations of waveforms.

As mentioned in Section 1, standard discrete-time finite-state HMMs are nbfodezodeling
waveform shapes since the generative model implicitly assumes a geométifimiticn on segment
lengths and a piecewise constant shape model. Segmental HMMs relaxtbaskng constraints
by allowing (a) arbitrary distributions on run lengths, and (b) “segmentaisddregression mod-
els) that allow the mean to be a function of time within each segment. HMMs that albbtreay
distributions on run lengths (the semi-Markov property in a HMM contexteviretroduced in the
work of Ferguson (1980), Russell and Moore (1985), and Levir$686). Deng et al. (1994) and
Russell (1993) extended these models to segmental HMMs by modelingdiaymées between ob-
servations from the same state with a parametric trajectory model that clesegeisne. Ostendorf
et al. (1996) reviewed variations of segmental HMMs from a speeduyretion perspective. More
recent work includes Achan et al. (2005) and Yun and Oh (2000ar@eSmyth (2000) introduced
the idea of using segmental HMMs for general waveform recognitioblenos.

The idea of using random effects with segmental HMMs to model parametabiigy across
waveforms is implicit in the speech recognition work of both Gales and Yoli8§3) and, later,
Holmes and Russell (1999). This work can be viewed as precursorg tmdhe general random
effects segmental HMM framework we present in this paper. Gales amigd 993) used a model
with a constant mean per segment, but where the mean values themselvesxomelistribution,
allowing modeling of variability across different individual speakers.Inis and Russell (1999)
extended this idea to use a linear regression function instead of a com&antfor each segment
with a Gaussian prior on the regression parameters (slope and inteoregarh segment. In earlier
work (Kim et al., 2004), we noted that Holmes and Russell's model couldbrealized within
a random effects framework, and derived a more general EM frankefioo such models, taking
advantage of ideas developed separately in speech recognition antisiicsta

In the statistical literature there is a significant body of work on modeling arcigical data-
generating process with a random effects model and estimating the paisaof¢bés model (Searle
et al.,, 1992). Dempster et al. (1977) sketched the EM algorithm for findingnmoen-likelihood
estimates for parameters of random effects models. This algorithm wasrfdeteloped by Demp-
ster et al. (1981), Laird and Ware (1982), and Laird et al. (198%Rerd@ appears to be no work in
the statistical literature on applying random effects to segmental HMMs.

In this context, the primary contribution of this paper is a general framefeomnandom-effects
segmental hidden Markov models. We demonstrate how such models card®ousvaveform
modeling, recognition, and segmentation, with experimental comparisons oartdem effects
approach with alternative methods such as dynamic time warping, using tinoodd data sets.
We extend earlier approaches for learning the parameters of randectsefegmental HMMs by
deriving a provably correct EM algorithm with monotonic convergencethBsales and Young
(1993) and Holmes and Russell (1999) derived EM-like optimization algosftbut their M steps
are not in a closed form and use approximate solutions—thus, the monotoniergence property
of EM is not guaranteed in general using their approaches.

We further extend the standard EM algorithm to develop an ECME algorithrfitfing ran-
dom effects segmental HMMs. The ECME approach significantly redheasumber of iterations
required for convergence, relative to EM, while increasing the time corntplpgr iteration only
slightly. For example, as we will discuss later, ECME led to a time-savings oti@rsrof mag-
nitude over the standard EM approach in our experiments. We derivmputationally efficient
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inference algorithm (applicable to both EM and ECME) that reduces the timplesity of the
forward-backward algorithm by a factor %, whereT is the length of a waveform. We also show
that this inference algorithm can be applied to full covariance models rethrrassuming (as in
Holmes and Russell, 1999) that the intercept and slope in the segment tiistréme conditionally
independent. Since the inference algorithm is used in each iteration of ttep Enghe EM and
ECME iterations, this significantly reduces the overall time complexity of eadtiberof EM and
ECME.

3. Segmental HMMs

A segmental HMM withM states is described by &h x M transition matrix, a probability distri-
bution over duration for each state, and a segment model for each stegdransition matrixA
(assumed here to be stationary in time) has ensiigshamely, the probability of being in statet
timet 4+ 1 given statek at timet. The initial state distribution can be includedAnas transitions
from a special state 0 to each stite 1,...,M. In waveform modeling, we typically constrain the
transition matrix to allow only left-to-right transitions and do not allow self-titorss. Thus, there
is an ordering on states, each state can be visited at most once, andastdtesskipped.

In this paper, we model the duration distribution of statesing a Poisson distribution,

e"‘k)\kd’l

P—1N) = g7

d=1,2,...

(shifted to start atl = 1 to prevent a silent state). Other choices for the duration distribution could
also be used (e.g., Ferguson, 1980; Levinson, 1986). Once thesgrenters state a durationd

is drawn, and statk produces a segment of observations of lertgffom the segment distribution
model. In this paper we focus on models with linear functional forms within sagiment. We
model therth segment of observations of lengthy,, generated by state as a linear function of
time,

Yr:Xer+er erNNd(0702|d)7 (1)

wheref, is a 2x 1 vector of regression coefficients for the intercept and slegs,ad x 1 vector of
Gaussian noise with varianc for each component, an is ad x 2 design matrix consisting of
a column of 1's (for the intercept term) and a columrxeflues representing discrete time values.

In speech recognition using the mid-point of a segment as a parameter in det¢ imsiead of
intercept has been shown to lead to better speech recognition perfor(iésioees and Russell,
1999). Nonetheless, parametrization of the model via the intercept warddéth our experiments,
and for this reason we use the intercept in the models discussed in this papsimplicity, 02 is
assumed to be common across all states; again this can be relaxed. Weetdoncs continuity
of the mean functions (Equation (1)) across segments in the probabilistid.ntboleever, as re-
ported in Section 5, the model without continuity constraints worked well alawerld data in our
recognition experiments.

Treating the unobserved state sequences as missing, we can estimatertretgad = {A, A =
{Mk=1,...,M},0¢ = {By, (0%)|k=1,...,M}}, using the EM algorithm, with the forward-backward
(F-B) algorithm as a subroutine for inference in the E step (Deng et &4)19he F-B algorithm
for segmental HMMs, modified from that of standard HMMs to take into astthe duration dis-
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tribution, recursively computes

ot (k) = P(y11, statek ends at|0)
oy (K) = P(y11, statek starts at + 1|0) 2

in the forward pass, and

Bt (k) = P(yt+1.7|statek ends at, 0)
B (K) = P(yi+1.7|statek starts at +1,0) (3)

in the backward pass, and returns the results to the M step as a set céntiitatistics (Rabiner
and Juang, 1993).

Inference algorithms for segmental HMMs provide a natural way to etali@ performance
of the model on test data. The F-B algorithm scores a previously unsaexiavmy by calculating
the likelihood

P(yl6) = ply,s|6) = ZGT(k), (4)

wheres represents a sequence of unknown state labels for observgtioitse Viterbi algorithm
can provide a segmentation of a waveform by computing the most likely staterses(e.qg., Figure
2(b)). The addition of duration distributions in segmental HMMs increasesirtie complexity of
both the F-B and Viterbi algorithms fro@(M>2T) for standard HMMs t@(M?T?2), whereT is the
length of the waveform (i.e., the number of observations).

4. Segmental HMM swith Random Effects

A random effects model is a general statistical framework when the datxajeon process has a
hierarchical structure, coupling a population-level model with individerad! variation. At each
level of the generative process, the model defines a prior distributientiog individual group pa-
rameters, called random effects, of one level below. The obsentachdagenerated at the bottom
of the hierarchy, given parameters drawn from the prior distributionered above. Typically, the
random effects are not observable, so the EM algorithm is a populanagpto learning model
parameters from the observed data (Dempster et al., 1981; Laird are] Y&82). By combin-
ing segmental HMMs and random effects models we can take advantagesifehgth of each in
waveform modeling. Random effects models add one level of hierarcthetprobabilistic struc-
ture of segmental HMMs, defining a population distribution over the posdislpes of waveform
segments. Instead of requiring all waveforms to be modeled with a singlé gatameters, indi-
vidual waveforms are allowed to have their own parameters but coupledcbynmon population
prior across all waveforms.

4.1 TheModel

Beginning with the segmental HMMs described in Section 3, we add randizttetia a new
variableu; to the segment distribution part of the model as follows. Considerttheegmeny, of
lengthd from theith individual wavefornmy' generated by state Following the discussion in Laird
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TemplateB,’s /\ /\

Observed data B . )

Figure 3: A visual illustration of the random effects segmental HMM, usiaglfllow waveform
data as an example (as described in Section 5.1). The top level showpthatom level
parameter$,'s for the waveform shape. The plots at the bottom level consist ofrebde
data. The plots in the middle level show the posterior estimates (combining botatthe d
and the prior) ofi' and§, using Equation (8) and the Viterbi algorithm respectively.

and Ware (1982), we describe the generative model as a two-lewelgmoAt the bottom level, we
model the observed daya as

yr =XiBe+Xiup+€ & ~Ny(0,0%g), ®)

where€ is the measurement nois¥! is ad x 2 design matrix for the time measurements cor-
responding toy!, (B + ul) are the regression coefficients, anet1 < N (for N waveforms). By
represents the mean regression parameters for segiramdul represents the variation in regres-
sion (or shape) parameters for tik individual waveform. At this level, the individual random
effectsul as well a3, anda? are viewed as parameters. At the top lewélis viewed as a random
variable with distribution ‘

U ~ N2(0, W), (6)

whereW is a 2x 2 covariance matrix, ang} is independent o.. Notice that this model described
by Equations (5) and (6) is equivalent to haviyjg= XIB; + € with B ~ Na(By,Wk). It can be
shown thaty, andu; have the following joint distribution:

! X XIWX + 0%y Xiw
()= CFF) (P™ W) o

Also, from Equation (7), the posterior distributionuf can be written as
uir ’ylr’ Bk’ ka702 ~ N (OlthO',) ) (8)
where
Or = (X X} +0%(Wh) ™) 71X (v — X1 B, ©
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Figure 4: Plate diagrams for the segment distribution part of segmental HMisandom effects
segmental HMMs. (a) segment model in segmental HMMs, (b) a two-stagel it
random effects parameters in random effects segmental HMMs, atite(o)odel after
integrating out random effects parameters from (b).

and

Ly -1
Wy = 0?(XI'XE+02(W) ™) (10)

In the discussion that follows we usé to denote{ul|r = 1,...,R} given the segmentatios of
waveformy' into R segments. Similarlyj' represent§dl|r = 1,..., R}, given the segmentatic
of waveformy' found by the Viterbi algorithm.

Figure 3 conceptually illustrates the hierarchical setup of the model. Theskenplate de-
scribed by the population parametgdss is shown at the top of the hierarchy. The plots at the
bottom level consist of observed data. The plots at the middle level shoposterior estimates
(combining both the data and the prior)ifandd, using Equation (8) and the Viterbi algorithm re-
spectively. From a generative model perspective, the shape templétesiiddle row, 3, + ul)’s,
i=1,...,5, are generated from the mean shape at the top level by Equation épbsbrved data
at the bottom of the hierarchy are modeled as noisy realizations of thegeluradishape templates.
This final data generation process is modeled in Equation (5).

Figure 4 shows plate diagrams for the segment distribution part of segrikvikds and random
effects segmental HMMs, illustrating the generative proceshl foaveformsy?, ..., yN, under the
simplifying assumption that each waveform comes from a single segmengtiiBrtorresponding
to statek.

4.2 Inference

To handle the random effects component in the F-B and Viterbi algorithmsefgmental HMMs,

we notice from Equation (7) that the marginal distribution of a segrgpfenerated by state

is Ng (X! By, XL WXL + 021 4), and that this corresponds to Equation (1) with the covariance matrix
0l 4 replaced b)(X‘rlPkXir’Jrozld). Replacing the two-level segment distribution with this marginal
distribution, and collapsing the hierarchy into a single level, we can use the 5eB and Viterbi
algorithm as in segmental HMMs in the marginalized space over the randeatseffarameters.
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The F-B algorithm recursively computes the quantities in Equations (2)3ndliese are then
used in the M step of the EM algorithm. The likelihood of a wavefgrngiven fixed parameters
8= {A N 08¢ = {B, ¥, (0%)[k=1,...,M}}, but with statess and random effecta unknown, is
evaluated as

pyle) = ¥ [ pU.sule)d v
= zp(y,SIB)zgaT(k)‘

As in segmental HMMs, the Viterbi algorithm can be used as a method to segmaveform by
computing the most likely state sequence.

What appears to make the inference in random effects segmental HMiMzutationally much
more expensive than in segmental HMMs is the inversion ofdtlved covariance matrix of the
marginal segment distributions! W Xi' + 621 4, during the evaluation of the likelihood of a seg-
ment. For example, in the F-B algorithm, the likelihood of a segrgnff lengthd given statek,
p(y!|By, Wk, 0%), needs to be calculated for all possible duratidris each of then; (k) and By (k)
expressions at each recursion. Naive computation of a segment liketlinsiog direct inversion of
thed x d covariance matrix, require®(T3) computations, wher is the upper bound fad, lead-
ing to an overall time complexity ad®(M2T®). This can be computationally impractical for long
waveforms with a large value daf (for example, T = 256 for the fluid-flow data shown in Figure
1(a)).

In the case of a simpler model with a diagonal covariance matri¥fgrHolmes and Russell
(1999) derived a method for computing the segment likelihood with time complexi#T3). We
obtain the same complexity for a more general case with an arbitrary cosaunaatrix as follows.
In discussing computational issues for random effects models, Dempster(£981) suggested
an expression for the likelihood that is simple to evaluate. Applying their methtteteegment
distribution of our model, we rewrite, using Bayes' rule, the likelihood of gmsenty! generated
by statek as

_ p(y:‘a u_i’ |Bk7 LIka 02)
p(ulr |y|r ) Bk7 LIka 02) ’

where the numerator and the denominator of the right-hand side are giegquations (7) and (8),
respectively. The right-hand side of the above equation holds for laksa@fu;. By settingu; to
0, as in Equation (9), we can simplify the expression for the segment likelihood to

Y2/ Wi Y 2exp(— /(20%)), (12)

P(Y} B k)

P(Y} B, Wi) = (21~ Y20~ Wyg,

where
S = O = XiBi— Xi0) () — X B — Xi}) + 0”0 W e
This can be further simplified using Equation (9):
S = (¥r = XiBW)' (% — XiB = X;01).

Equation (12) has a form that involves oryd) computations for each step, where previously this
involved O(d®) computations in the case of the naive approach with matrix inversions. fieus,
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time complexities of the F-B and Viterbi algorithms are reduce@®?T3). For segmental HMMs
this computational complexity can be further reduce®t®>T?) by precomputing the segment
likelihood and storing the values in a table (Mitchell et al., 1995). Howevés,pfecomputation
is not possible with random effects models, leading to the additional factbrimthe complexity
term.

4.3 Parameter Estimation

In this section, we describe how to obtain maximum-likelihood estimates of the pararfrem a
training set of multiple waveforms for a random effects segmental HMM usiad=M algorithm.
We augment the observed waveform data with both (a) state sequertt€s)aandom effects
parameters (both are considered to be hidden). The log likelihood of thelete data oN wave-
forms, Deomplete= (Y>S,U) = {(y*,s',ub),..., (yN,s¥,uN)}, where the state sequengémplies
R segments in waveforyl, is defined as:

logL(8|Dcomplete = _ZlOQ p(y',s,u'[A,A,B¢)
i=

= iiilog P(st|s 1,A) (13a)
+§lgllogP(de,k: ) (13b)
+iiilog p(Y:|up, B, 0% k=1, d}) (130)
+§1§1bg p(ur| W k=15). (13d)

As we can see from the above equation, given the complete data, the ligelikbdecouples into
four parts Equations (13a)-(13d), where the transition matrix, the dardistribution parameters,
the bottom level parametefg, 2, and the top level random effect parametgrappear in each of
the four terms. If we had complete data, we could optimize the four sets ahpsees indepen-
dently. When only parts of the data are observed, by iterating betweendteg Bnd the M step in
the EM algorithm as described below, we can find a solution that locally maxintizdikelihood
of the observed data.

4.3.1 E SEP

In the E step, we find the expected log likelihood of the complete data,

Q(8",8) = E[logL (8|D¢complete]: (14)
with respect to
p(S,UlY,8Y) = p(ulsy,8")P(sY,e")
N R

= p(ulls =k,y',0")P(s =klyi,8Y), (15)

i=1r=
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Figure 5: Example of training data log-likelihood convergence as a funofitiee number of EM
iterations, for fluid-flow waveform data, comparing segmental HMMs (@nl¢ift) and
random effects segmental HMMs (on the right), both using the EM algoritkestjs on
alog-scale.

wheree(t) is the estimate of the parameter vector from the previous M step ofitteM iteration.
P(s = kly',8") in Equation (15) can be obtained from the F-B algorithm. The sufficient titatis

E [uiryq' = k,Y,e(t)} and E[u‘ru‘r'|§r = k,Y,e(t)}, for P(u|s = k,yi,8") in Equation (15) can be

directly obtained from Equations (9) and (10). The time complexity for an E ist®(M2T3N)
whereN is the number of waveforms (and assuming each waveform is of Idngth

4.3.2 M STEP

In the M step, we find the values of the parameters that maximize EquationA%4ye can see
from Equations (13a)-(13d) and (14), the optimization problem deceupte four parts, each of
which involves a distinct set of parameters. Closed form solutions existlifof the parameters
(the equations are included in Appendix A). The time complexity for each Mis@®@pVT3N).

In practice, the algorithm often converges relatively slowly, comparecggonental HMMs,
due to the additional missing information in random effects paramétefsigure 5 shows a typ-
ical run of the algorithm. The segmental HMM converges much faster bwecges to a lower
log-likelihood value. The iterations were halted when the increase of thikigldiood from one
iteration to the next was less than 0

Holmes and Russell (1999) augmented the observed waveform data wétlsstmences after
integrating out the random effects parameters, and D%%thlete: {Y,S} in the E step. In this
case the parameters for the segment distribufiuno?, Wy} do not decouple in the complete data
log-likelihood and there is no closed form solution for those parameters iMtlsgep. Using
the approximate solutions proposed in Holmes and Russell means that the nmiogoto/ergence
property of EM is no longer guaranteed. In contrast, if weID@@mmete: {Y,S,U} inthe E step as
in Equation (14), we can ensure that the algorithm is a proper EM algorithnakivays converges
to a local maximum of log likelihood.
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Figure 6: Example of training data log-likelihood convergence as a funofidhe number of it-
erations (on the left) and as a function of computation time (on the right), fiokfllow
waveform data (the same data set as in Figure 5), comparing EM vs. EOGMiae
random effects segmental HMMs;axis on a log-scale.

4.4 Faster Learning with ECME

As mentioned above, the convergence of the EM algorithm can be veryespgcially in the es-
timation of random effects models. Various extensions of the algorithm hese proposed to
speed up the convergence. In the expectation conditional maximization (&@brithm Meng
and Rubin (1993) replaced the M step of the EM algorithm with a sequenaeefl constrained
or conditional maximizations (the CM steps). This does not necessarilgakethe number of
EM iterations but can significantly reduce the total computation time. Liu and Rab@v) fur-
ther extended the ECM algorithm to the ECME algorithm, reducing both the nuofliterations
and the total computation time. Both the ECM and the ECME algorithms preserveoiperty of
monotone convergence of the EM algorithm.

More specifically, the CM step of thh iteration of the ECM algorithm consists ¥f CM
steps. Thavth CM step maximize®(6'"), 8) under the constraint

Gw(6) = gu(8 W),

where 6%/W) denotes the value dd in the wth CM step of the(t + 1)th iteration andC =
{gw(B),w=1,...,W} is a set oW preselected vector functions. These constraints are set so that
the maximization is over the full parameter spac®.oin a typical application of the ECM algo-
rithm the set of parameteésis divided intow subvector®s,...,6y and in thewth CM step of the

tth iterationQ(6!), 8) is maximized ove®,,. In this casegy(6) is equal toB_y, the vector of all
parameters except f&,. In all of the following discussion we assurgg(0) has this particular
form.

In the ECME algorithm some of the CM steps of the ECM algorithm are replagedrbaxi-
mization of the actual log likelihood subject to the same constraint instead ofpleeted complete
data log likelihood. The large amount of missing information present in theceegheomplete data
log likelihood leads to slow convergence of the EM algorithm (Dempster et%7)1 The ECME
algorithm often speeds up the convergence dramatically by removing the gniisiirmation alto-
gether and maximizing the actual log likelihood in some of the CM steps.
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Figure 7: Convergence @ (x-axis is intercepty-axis is slope) for fluid-flow data. The starting
point is indicated by a circle. Gray arrows represent ECME, blackerrepresent EM.
An arrow for the parameter values is drawn for each iteration in ECME @nelery 100

iterations in EM.

Laird and Ware (1982) first derived an ECME algorithm for randofeat$ models but mistak-
enly thought it was the EM algorithm. Liu and Rubin (1994) gave a formairgjeson of the ECME
algorithm and introduced two different versions of the algorithm for cam@ffects models. The
first version has a closed form solution in the CM steps. The other recairgerative algorithm for
one of CM steps, and loses the monotone convergence property of taéggBNhm. Liu and Rubin
report slightly faster convergence from the latter, but in our applicaticgheoECME algorithm to
random effects segmental HMMs we use the first version with closed@insteps, thus, retaining

the monotone convergence property of EM.
For random effects segmental HMMs we partition the paramétiai® 8; = {A, A, Wy, 0%k =
1,...,M} andB; = {B|k=1,...,M} and consider the ECME algorithm with two CM steps for

each of the two partitions as follows.

CM step 1: ComputeA®D), ACD @ | — 1 M, and(0?)tY as in the M step of the
EM algorithm.

CM step 2: Given LIJf(Hl), k=1,...,M, and(oz)(t“) obtained from CM Step 1, we can integrate
outu’ from Equations (13c)-(13d), and maximig& ; SR, log p(y! B, WY, (02) ¢+ k=
s.,df), wherep(y} B, W ", (62t k=& d}) is given as

Na(XiBe XWX + (02) V).
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The update equations fﬁﬁ”l), k=1,...,Mare

N | .

(t+1) _ Nt 3 d<t Ciktd Xig ZtgXta) . Nt Sd<tCiktd (Xig Zigta)

Bk - 1= i e(t) 1= i e(t) ’
PY'19™) PY'19™)

whereXiy = X! 4., and
i i 1)yi / B
Zig = (x{qul((H Xy + (0?1 )L,
Whend is large we can avoid invertingdix d matrix to obtainz! by rewriting this as
Zig = {la—=Xlg (03 (W)~ + X}y Xig) Xig /(63 .

CM step 1 maximizes the expected complete data log likelihood where both statnsesgu
S and random effects parametddsare considered missing. In CM step 2 the incomplete data
log likelihood is augmented only witB and then maximized. The computational complexity of the
update equation fcﬁl((”l) in CM step 2 isO(MT*N) compared t@(MT3N) for the same parameter
in the M step of the EM algorithm. Thus, the overall asymptotic complexity for thesi¥s is
O(MT*N), and the ECME algorithm is computationally more expensive in time complexity per
iteration than the EM algorithm.

The convergence of the EM and the ECME algorithms for a random efegtmental HMM
with six states is shown in Figure 6 for the fluid-flow waveform data desgribb&ection 5.1. The
parameters were initialized to the same values for both algorithms and the gemeercriterion
was set to 16°. In Figure 6(a) the EM algorithm takes 11506 iterations to converge tchtpug
the same log-likelihood that the ECME algorithm converges to in only 8 iteratibash iteration
takes 133.3s in the ECME algorithm, versus 47.4s in the EM algorithm, but thrallotrme to
convergence of ECME is still over 3 orders of magnitude faster than EMHhawn in Figure 6(b)).

The convergence trajectories of the 2-dimensional param@tdos both algorithms are shown
in Figure 7 for each of the six states. The starting values are shown &sdiieles. Black arrows
represent the parameter values of every 100 iterations in the EM algoritthgrey arrows represent
the parameters in every iteration of the ECME algorithm. Both Figure 6 andd-igwhow a
dramatic improvement in the speed of convergence of ECME over EM: thitydonverge to the
same solutions in parameter space but ECME converges much more quickly.

5. Experiments

We apply our model to two real-world data sets: (a) hot-film anemometry databulémt bubbly
fluid-flow and (b) ECG heartbeat data: both are described in more detail/lin Section 5.1. In all
of our experiments we compare the results from our new segmental HMM avitom effects to
those obtained using segmental HMMs without random effects. We usmsawthods to evaluate
the models:

Average L ogP Score: We compute log(y|0) scores (Equations (4) and (11) for each model) for
test waveformy to compare how much probability is assigned to new test data by different
models. Higher logP scores indicate better predictive power.
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Figure 9: Negative examples in ECG data (a) right bundle branch blatkbgleft bundle branch
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Segmentation Quality: To evaluate how well the model can segment test waveforms, we first
obtain the segmentations of test waveforms with the Viterbi algorithm, estimategires+e
sion coefficientsy of each segment, and calculate the mean squared difference between the
observed data andy. Good segmentations should produce low scores.

Recognition Accuracy: We use the model learned from a training set of positive examples to
recognize waveforms of interest from a test set with both positive agdtme exemplars.
We compare the results from random effects segmental HMMs with thasedyoamic time
warping (Keogh and Pazzani, 2000), Euclidean distance matchingegnkestal HMMs.

All of the experiments were conducted using cross-validation. The nuaitssgmentdv for
each data set was determined by visual inspection prior to training the modlelev&forms were
shifted to have zero mean amplitude before training and testing.

In all experiments reported below, we use the ECME algorithm for trainingam effects
segmental HMMs. The convergence criterion is set to°>10We found in our experiments that
providing one manually-segmented example is useful in initialization of both EMEEBME—
details on initialization are described in Appendix B.

5.1 Data Sets

Below we describe two different data sets that were used as the basis fexperiments.
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Bubble-probe ECG
interaction data data
Avg. Avg. Avg. Avg.
LogP | Segmentation LogP | Segmentation
Score Error Score Error
Segmental HMMs -3.25 15.39 -3.12 2.55
Random Effects Segmental HMMs 4.50 1.43 19.63 0.39

Table 1: Average logP scores and segmentation errors for buble-prteraction data and ECG
data.

5.1.1 BUBBLE-PROBEINTERACTION DATA

Hot-film anemometry is a technique commonly used in turbulent bubbly flow me@asmts in fluid
physics. Different types of interactions between the bubbles and tioe pnaturbulent gas flow,
such as splitting, bouncing, and penetration, lead to characteristic wavsf@apes. Automatically
detecting the occurrence and types of interactions from such wavefsrenproblem of active
interest (Bruun, 1995). This recognition task is difficult because dttge variability in the shapes
of waveforms within a given class of interactions (e.qg., Figure 1(b)s@adby various factors such
as velocity fluctuations and different gas fractions during measurement.

We applied our method to individual bubble-probe interaction data. Ourséatzonsisted of 7
waveforms in the clagso interaction(Figure 8(a)), 5 waveforms in the claggncing(Figure 8(b)),
52 waveforms in the clagmuncing(Figure 8(c)), 8 waveforms in the clagenetrationFigure 8(d))
and 48 waveforms in the clasplitting (Figures 1(a) and (b)). Class labels were determined for each
interaction based on expert examination of high-speed image recordithgsswent obtained simul-
taneously with the interaction signal (Luther, 2004). Each waveform2béddata points sampled
at 5kHz. We built waveform models for the classapfitting interactions, where the probe splits
the bubble, and ran a 9-fold cross-validation with 5 waveforms in the tragghgnd 43 waveforms
in the test set for each run. The 72 waveforms from the other interactiers used as negative
examples in the test set. Given that Figure 2(a) is a reasonable piecewesedpproximation of
the general shape, we subjectively chbke- 6 as the number of states for both segmental HMMs
and random effects segmental HMMs.

5.1.2 ECG IATA

The shape of heartbeat cycles in ECG data can be used to diagnosartheoheition of a patient
(Koski, 1996; Hughes et al., 2003). For example, Figure 11 shows thieatyshape of normal
heartbeats, whereas Figures 9(a)-(d) are taken from a heariengeg various abnormal condi-
tions. Heartbeats of the same type can vary significantly across individualisns of the heights
and locations of peaks in the shape. Variability can also be found amonipdets from the same
individual although it is lower than across individuals.

For our experiments we used the ECG recordings with a sampling rate ob8gfles per sec-
ond from the MIT-BIH Arrhythmia databa$eWe selected hour long recordings from 23 subjects
and manually extracted two heartbeats of the same type from each subjeuotlMeartbeats were

1. http://www.physionet.org/physiobank/database/mitdb/
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Top 10| Top 20
Euclidean distance (using mean distance) 86.7 81.7
Euclidean distance (using minimum distance) | 82.2 80.0
Dynamic time warping (using mean distance) 85.6 82.2
Dynamic time warping (using minimum distance) 92.2 82.8
Segmental HMMs 86.7 82.2
Random Effects Segmental HMMs 100.0 | 95.0

Table 2: Cross-validated recognition accuracy for bubble-probeaiction data on test set. The
numbers represent the true positive rates in percentages (%) among thedageforms
selected by each algorithm.

taken from each of twelve subjects, and similarly, left bundle branch Weelts from three sub-
jects, right bundle branch block beats from two subjects, prematureicidatrcontraction beats
from three subjects, and paced beats from three subjects. The lefgartbeats varied approx-
imately from 210 to 410 samples. We modeled each normal heartbeaiwitl® segments. We
performed a 4-fold cross-validation with 6 normal waveforms from thrde/iduals as a training
set for each cross-validation run and the remainder as a test set. Nbtkethast set contained
heartbeats from a different set of individuals than the individuals tsserdin the model. Segmental
HMMs could not be learned for one of the cross-validation runs duerttenigal instability (a prob-
lem that did not occur with random effects HMMs), so we report resuits the remaining three
runs of cross-validations for segmental HMMs. The 22 abnormal hestglwere used as negative
examples for the evaluation of recognition accuracy in the test sets.

5.2 Results

In Table 1 we compare the average logP scores of positive test wansfor segmental HMMs with
those for random effects segmental HMMs. The new model producai§icgatly higher scores for
both data sets, indicating that random effects allow segmental HMMs to eapitin the typical
shape and shape variability.

Table 1 also shows the average segmentation errors for the test wagdfom both models.
Adding the random effects component to segmental HMMs reduces threeségtion error roughly
by a factor of 10 on both data sets. Segmentation examples are shown ie Egfar the bubble-
probe interaction data and Figure 11 for the ECG data, where it is apphegrrandom effects
segmental HMMs are more consistent in locating segment boundaries.

To evaluate the recognition accuracy we score both pattern and nompatteeforms in the
test set using the model for the pattern waveform learned from the traeingnd rank the wave-
forms according to their log probability scores. We also compare probabitigibods with non-
probabilistic scoring methods such as Euclidean distance and dynamic timmgvaifor non-
probabilistic methods we compute the distance between a test waveformdnaff ¢élaeN training
waveforms, and use both the average and minimum oftbestances as a score for that test wave-
form. The percentages of the true positives in the top 10 and 20 wavefosmsbubble-probe
interaction data are reported in Table 2. Random effects segmental HN#glsa ggubstantially
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Figure 10: Top 10 waveforms found by four different algorithms in bedgyobe interaction data.
‘0’s are true positives and ‘x’s are false positives. Segmentationseyitérbi algorithm
are overlaid on top of the waveforms in the case of true positives for sgghtéMMs
and random effects segmental HMMs. Segmentations are not prodyteeiBuclidean
distance method or by dynamic time warping.
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Figure 11: Segmentation of a normal ECG heartbeat by the Viterbi algorghsefmental HMMs
(left) and for random effects segmental HMMs (right).
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Figure 12: ROC plot for ECG data.

higher accuracy than any of the other methods. Figure 10 shows the twpvEforms found by
the different methods. All of the false positives are from the interactiosstlauncing which is
more similar in shape to the clasplitting than other interaction types. Random effects segmental
HMMs can effectively distinguish subtle differences in shape betweepdtiern that we are mod-
eling and the non-pattern waveforms. Segmentations are overlaid in Figjorethe waveforms as
found by probabilistic models using the Viterbi algorithm. Such segmentatiensoaavailable for
dynamic time warping and Euclidean distance methods, providing an additibreitage of using
probabilistic models in applications where segmentation is useful.

Figure 12 shows the ROC curves for the ECG data. The results from Eanlitistance are not
available for ECG data because the method as implemented requires the leagtt afaveform
sequence to be the same. Random effects segmental HMMs have the higueaty, particularly
over the range from 0 t0.B in terms of fraction of false positives-@xis) which is typically the
range of interest when ranking objects by similarity to a target. A similar resagtabtained for
bubble-probe interaction data as can be seen in Figure 13.
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Figure 13: ROC plot for bubble-probe interaction data.

6. Discussions and Conclusions

As noted elsewhere in the paper, the random effects segmental HMMg®opn this paper can
be extended in multiple different ways. For example, the parametrization sétimaent models as
linear functions of time can be generalized directly to any functional formishiaear in the pa-
rameters without altering the underlying time complexity of the learning and imferalgorithms.

In the results reported here we applied our model to score relativelywhoeeform “snippets”
to detect waveforms that are similar in shape to a query waveform. In trgeerrse online time-
series data and detect “embedded” waveforms relative to a target, aated-8MM with a pattern
state and a background state can be used, where the random effeettsd HMM is embedded
inside the pattern state. Each instance of the pattern waveform is allowegktishewn parameters
via the random effects mechanism. The background state models any emasts that do not
belong to pattern waveforms. A long time-series can then be parsed via thiei ¥iggorithm (for
example) to segment the series into background and pattern states, véeheegtients that belong
to the pattern state correspond to predicted waveform locations accéodimgmodel.

In conclusion, we have proposed a probabilistic model that extends s&gritMMs to in-
clude random effects. This model allows an individual waveform to itarghape in a constrained
manner via a prior distribution over individual waveform parameters. HG®E algorithm for
learning this model greatly improved the speed of convergence of para@stiteation compared
to a standard EM approach. Experimental results support the hypothasimndom effects seg-
mental HMMs perform better in modeling, segmentation, and recognition odfaawms compared
both to probabilistic models without random effects and to non-probabilisticadsth
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Appendix A: Re-estimation Formulasfor EM

The re-estimation formula for the transition probabilities and the duration disoibparameters
can be shown to be:

vy Ty BoiadBl()

ak - [ES )
| R ZmZt ai (K )ai((t,zq (1)

AtD _ Z' y'|9 Zt ¥ dCikta - (d—1)
k

I y,|e 7> 2t 2d Ciktd
where
Ciea = o} (K)P(AA )PV 1440108 B (K)-

Using the notation oK}y = X!_4 ;, andyjy =Vyi_4. 14, We update the covariance matrix of the
top level of the segment distribution model according to

- t
N St Sact CieaElujuy 1v.0")
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and for the bottom level, we re-estimate the parameters using
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where

E[D} DL|Y,0] = (Yl 1514 — XigBc— XIgEUL|Y,0D])) - (yiy — XlgB — XI4E[uf|Y,0))
r[Xt X Var(ug] Y, 60)].

Appendix B: Initialization of the EM and ECME Algorithms

Initialization of the EM and ECME algorithms is based on manual segmentationingle svave-
form in the training data. The manual segmentation is only used to determine initialsvfor the

parameters (for use in the first E-step), and is not used in any furthrerenay EM or ECME after
this initialization.
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Given the manually segmented waveform, the param@teiig, andp,’s are set to their maximum-
likelihood values as estimated from this waveform. The22covariance matricédy’s of the ran-
dom effects component of the model require more than two segmentedonrageh order to obtain
maximume-likelihood estimates—thus, their values are initialized in a different masfeilows.

The variance term for the slope #’s is set to a value generated from a uniform distribution over
[Zmins Zmax. From preliminary inspection of datg,i, andzmaxare setto 1 and 10 respectively for
bubble-probe interaction data, and 1 and 5 for ECG data. As the stateiimmle&ses, the values
of the intercept parameters ff3’s tend to increase and a small variability in slope leads to a more
significant variability in intercept values. To take into account this we initialieevidriance for

the intercept by sampling a value from the same uniform distribyg#y, Zzmax and multiplying

this value by the state inda@xXor that intercept. Given that a positive change in the slope leads to
a decreased value of the intercept we initialize the covariance betweelopleeasid intercept to a
negative value generated from a uniform distribution degfi, x (—0.1),Zmax x (—0.1)]. Multi-
plying zmi, andzmax by 0.1 makes the covariance relatively small compared to variancégsn
and also ensures that the covariance mattiégs are positive definite. Finally, we sample the ini-
tial value for the noise parametef from a uniform distribution ovefl, 6] for both data sets. This
initialization strategy essentially sets the variance paramétgssandao? to relatively large initial
values and then lets them adjust to the training data.

References

Kannan Achan, Sam Roweis, Aaron Hertzmann, and Brendan Freggrent-based probabilistic
generative model of speech. Rroc. of the 2005 IEEE International Conference on Acoustics,
Speech, and Signal Processjnglume 5, pages 221-224, Philadelphia, PA, 2005. IEEE.

Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient similsei&ych in sequence
databases. IRroc. of the 4th International Conference of Foundations of Data Ogtion and
Algorithms pages 69-84, Chicago, IL, 1993. Springer Verlag.

Theron Bennett and John Murphy. Analysis of seismic discrimination usiggpmal data from
western United States evenBull. Seis. Soc. Am76:1069-1086, 1986.

Hans Bruun. Hot Wire Anemometry: Principles and Signhal Analysi®xford University Press,
Oxford, 1995.

King-pong Chan and Ada Wai-chee Fu. Efficient time series matching bgletv InProc. of the
15th International Conference on Data Engineeripgges 126—-133, Sydney, Australia, 1999.
IEEE Computer Society.

Arthur Dempster, Nan Laird, and Donald Rubin. Maximum likelihood estimatiomfincomplete
data via the EM algorithmJournal of the Royal Statistical Society Series8B:1-38, 1977.

Arthur Dempster, Donald Rubin, and Robert Tsutakawa. Estimation in iaone@ components
models.Journal of the American Statistical Associatjait(374):341-353, 1981.

Li Deng, Mike Aksmanovic, Xiaodong Sun, and Jeff Wu. Speech reitiogp using hidden Markov
models with polynomial regression functions as nonstationary st#E& Trans. Speech Audio
Processing2(4):507-520, 1994.

967



KIM AND SMYTH

James Ferguson. Variable duration models for speedPron of the Symposium on the Application
of Hidden Markov Models to Text and Spegehges 143—-179, Princeton, NJ, 1980. IDA-CRD.

Mark Gales and Steve Young. The theory of segmental hidden Markoelsio@iechnical Report
CUED/F-INFENG/TR 133, Cambridge University Engineering Departmedfi31

Xianping Ge and Padhraic Smyth. Deformable Markov model templates for gnesattern
matching. InProc. of the 6th ACM SIGKDD International Conference on Knowledgedisry
and Data Mining pages 81-90, Boston, MA, 2000. ACM Press.

Wendy Holmes and Martin Russell. Probabilistic-trajectory segmental HMBsnputer Speech
and Languagel3(1):3—-37, 1999.

Nicholas Hughes, Lionel Tarassenko, and Stephen Roberts. Markdels for automated ECG
interval analysis. ImMdvances in Neural Information Processing Systemspages 611-618,
Cambridge, MA, 2003. MIT Press.

Stanislaw Jankowski and Artur Oreziak. Learning system for commitied ECG analysis based
on support vector machinekternational Journal of Bioelectromagnetiss(1):175-176, 2003.

Michael Jordan, editolearning in Graphical ModelsMIT Press, Cambridge, MA, 1999.

Eamonn Keogh and Michael Pazzani. Scaling up dynamic time warping fonahaiey applications.
In Proc. of the 6th ACM SIGKDD International Conference on Knowledgedisry and Data
Mining, pages 285-289, Boston, MA, 2000. ACM Press.

Eamonn Keogh and Padhraic Smyth. A probabilistic approach to fast patétching in time series
databases. IRroc. of the 3rd ACM SIGKDD International Conference on Knowledge@very
and Data Mining pages 24—-30, Newport Beach, CA, 1997. AAAI Press.

Seyoung Kim, Padhraic Smyth, and Stefan Luther. Modeling waveforpeshaith random effects
segmental hidden Markov models. Pnoc. of the 20th International Conference on Uncertainty
in Al, pages 309-316, Banff, Canada, 2004. AUAI Press.

Antti Koski. Modelling ECG signals with hidden Markov modelsAtrtificial Intelligence in
Medicine 8(5):453-471, 1996.

Nan Laird and James Ware. Random-effects models for longitudinal Baieetrics 38(4):963—
974, 1982.

Nan Laird, Nicholas Lange, and Daniel Stram. Maximum likelihood computatiotisrepeated
measures: application of the EM algorithdournal of the American Statistical Associati@2
(397):97-105, 1987.

Stephen Levinson. Continuously variable duration hidden Markov modelsutematic speech
recognition.Computer Speech and Langua@€1):29-45, 1986.

Chuanhai. Liu and Donald Rubin. The ECME algorithm: a simple extension cA&d/ECM with
faster monotone convergendgiometrikg 81(4):633-648, 1994.

Stefan Luther, 2004. personal correspondence.

968



SEGMENTAL HIDDEN MARKOV MODELS WITH RANDOM EFFECTS

Xiao-Li Meng and Donald Rubin. Maximum likelihood estimation via the ECM algamitha
general frameworkBiometrikg 80:267-278, 1993.

Carl Mitchell, Mary Harper, and Leah Jamieson. On the computational caiplef explicit
duration HMMs.IEEE Trans. on Speech and Audio ProcessB(§):213—-217, 1995.

Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference, and LeafdhD thesis,
University of California, Berkeley, 2002.

Mari Ostendorf, Vassilios Digalakis, and Owen Kimball. From HMMs to segaiemodels: a
unified view of stochastic modeling for speech recognititldEE Trans. on Speech and Audio
Processing4(5):360—-378, 1996.

Lawrence Rabiner and Biing-Hwang Juarfgundamentals of Speech Recognitidtrentice Hall,
Englewood Cliffs, NJ, 1993.

Martin Russell. A segmental HMM for speech pattern matching?rit. of the 1993 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processiggs 499-502, Minneapolis,
MN, 1993. IEEE.

Martin Russell and Roger Moore. Explicit modeling of state occupancy idenidviarkov mod-
els for automatic speech recognition. Pnoc. of the 1985 IEEE International Conference on
Acoustics, Speech and Signal Processpages 2376—-2379, Tampa, FL, 1985. IEEE.

Shayle Searle, George Casella, and Charles McCullgahiance ComponentdNiley, New York,
1992.

Yair Shimshoni and Nathan Intrator. Classification of seismic signals by atiegrensembles of
neural networkslEEE Trans. on Signal Processing6:1194-1201, 1998.

Byoung-Kee Yi and Christos Faloutsos. Fast time sequence indexiraylfrary L, norms. In
Proc. of the 26th Very Large Data Bases Conferepagies 385-394, Cairo, Egypt, 2000. Morgan
Kaufmann.

Young-Sun Yun and Yung-Hwan Oh. A segmental-feature HMM for sp@attern modelindEEE
Signal Processing Letterg(6):135-137, 2000.

969



