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Abstract
This paper proposes a general probabilistic framework for shape-based modeling and classification
of waveform data. A segmental hidden Markov model (HMM) is used to characterize waveform
shape and shape variation is captured by adding random effects to the segmental model. The
resulting probabilistic framework provides a basis for learning of waveform models from data as
well as parsing and recognition of new waveforms. Expectation-maximization (EM) algorithms are
derived and investigated for fitting such models to data. In particular, the “expectation conditional
maximization either” (ECME) algorithm is shown to provide significantly faster convergence than
a standard EM procedure. Experimental results on two real-world data sets demonstrate that the
proposed approach leads to improved accuracy in classification and segmentation when compared
to alternatives such as Euclidean distance matching, dynamic time warping, and segmental HMMs
without random effects.
Keywords: waveform recognition, random effects, segmental hidden Markov models, EM algo-
rithm, ECME

1. Introduction

Automatically parsing and recognizing waveforms based on their shape hasbroad applications,
including interpretation and classification of heartbeats in ECG data analysis (Koski, 1996), analysis
of waveforms from turbulent flow experiments (Bruun, 1995), and discrimination of nuclear events
and earthquakes in seismograph data (Bennett and Murphy, 1986). Waveform analysis has also
attracted attention in information retrieval and data mining, with a focus on algorithms that can take
a waveform as an input query and search a large database to find similar waveforms that match the
query waveform (e.g., Yi and Faloutsos, 2000). Applications include finding temporal patterns in
retail time-series data (Agrawal et al., 1993) and fault diagnosis in complexsystems (Keogh and
Smyth, 1997).

While the human visual system can easily recognize the characteristic signature of a partic-
ular waveform shape (a heartbeat waveform for example) the problemcan be quite difficult for
automated methods. For example, Figure 1 shows a set of time-series waveforms collected during
turbulent fluid-flow experiments where the shape of each waveform is determined by the nature of
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Figure 1: Fluid-flow waveform data: (a) a waveform from the classsplitting (where the probe splits
a bubble), (b) a set of such waveforms, (c) a waveform from the class glance, and (d) a
set of such waveforms.

interactions between a probe and bubbles in the fluid. Figure 1(a) shows an example waveform
from a particular type of interaction. Figure 1(b) shows a whole set of such waveforms that have
all been classified (by human experts) as being of the same interaction type.Although all of these
waveforms belong to the same interaction class, there is significant variability inshape among those
waveforms. The sources of variability include shifts of the locations of prominent features such as
peaks, valleys, and plateaus, scaling along the time and amplitude axes, and measurement noise. An
example waveform from a different class is shown in Figure 1(c), and aset of such waveforms are
shown in Figure 1(d). Again there is significant within-class variability.

In this paper we address the problem of detecting and classifying general classes of waveforms
based on their shape and propose a new statistical model that directly addresses within-class shape
variability. We will assume in the paper that the waveforms to be analyzed are inthe form of
“snippets” that have already been extracted from the “background” time-series, e.g., in the form
of Figures 1(b) and (d). This assumption can be relaxed—we outline a method for detection of
waveforms that are embedded in a time-series in Section 6. We will also assume that the waveforms
are being analyzed offline, i.e., that all of the waveform measurements areavailable at the time
of analysis rather than arriving sequentially in an online fashion. The online sequential detection
problem can be addressed by generalizing the methods we propose, butwe do not pursue online
algorithms in this paper.

We will assume that a set of one or more waveforms from a single class are provided a priori
(e.g., the data in Figures 1(b) or (d)) and from this data we wish to learn a model for recognition.
Hidden Markov models (HMMs) are a broadly useful class of generative models for waveform
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Figure 2: Waveform models: (a) a piecewise linear approximation of the waveform in Figure 1(a),
(b) a segmental HMM best fit, and (c) a random effects segmental HMM best fit as de-
scribed in this paper.

modeling, finding application (for example) in heartbeat monitoring of ECG data(Koski, 1996;
Hughes et al., 2003). These models are characterized by (a) a discrete-time finite-state Markov
process which is unobserved, and (b) a set of observed measurements at each timet which only
depend (stochastically) on the state value at timet. From a shape-modeling viewpoint the standard
version of the model generates noisy versions of piecewise constant shapes over time, since the
observations within a sequence of states of the same value have constant mean. For waveform
modeling, a useful extension is the so-called segmental HMM, originally introduced in the speech
recognition (Russell, 1993) and more recently used for more general waveform modeling (Ge and
Smyth, 2000). The segmental model allows for the observed data within eachsegment (a sequence
of states with the same value) to follow a general parametric regression form,such as a linear
function of time with additive noise. This allows us to model the shape of the waveform directly,
in this case as a sequence of piecewise linear components—Figure 2(a) shows a piecewise linear
representation of the waveform in Figure 1(a).

A limitation of this particular model is that it assumes that the parameters of the modelare fixed.
Thus, the only source of variability in an observed waveform arises from variation in the lengths of
the segments and observation noise added to the functional form in each segment. The limitation
of this can clearly be seen in Figure 2(b), where a segmental HMM has been trained on the data
in Figure 1(b) and then used to generate maximum-likelihood estimates of segmentboundaries,
slopes, and intercepts for the new waveform in Figure 2(b). We can seethat the best-fit slopes and
intercepts provided by the model do not match the observed data particularlywell in each segment,
e.g., in the first segment the intercept is clearly too low on they-axis, in the second segment the
slope is too small, and so forth. By using the same fixed parameters for all waveforms, the model
cannot fully account for variability in waveform shapes (e.g., as seen inFigure 1(b)).

To address this limitation, in this paper we combine segmental HMMs with random effects mod-
els. The general idea of random effects is to allow each group of observations (or each waveform)
to have its own parameters that are still coupled together by an overall population prior (Laird and
Ware, 1982). By extending the segmental HMM to include random effects,we can allow the slopes
and intercepts within each segment of each waveform to vary according toa prior distribution. As
illustrated in Figure 3, in the hierarchical setup of our model each waveform (at the bottom level)
has its own slope and intercept parameters (as shown at the middle level) thatcome from a shape
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template (at the top level) modeled as a population prior. The parameters of this prior can be learned
in an unsupervised manner from data in the form of sets of waveforms. The resulting model can be
viewed as a directed graphical model, allowing for application of standard methods for inference
and learning (Jordan, 1999; Murphy, 2002). For example, we can in principle learn that the slopes
across multiple waveforms for the first segment in Figure 1(b) tend to have acharacteristic mean
slope and standard deviation. The random effects approach providesa systematic mechanism for
allowing variation in “shape space” in a manner that can be parametrized. Figure 2(c) shows a
visual example of how a random effects model (constructed from the training data in Figure 1(b))
is used to generate maximum-likelihood estimates of segment boundaries and segment slopes and
intercepts for the waveform in Figure 1(a).

Kim et al. (2004) described preliminary results using random effects segmental HMMs for
waveform parsing and recognition. A drawback of this earlier approach is the relatively slow con-
vergence of the expectation-maximization (EM) algorithm in learning. This is a result of the large
amount of missing information present (due to the random effects componentof the model), com-
pared to a standard segmental HMM. In this paper we use the “expectation conditional maximization
either” (ECME) algorithm (Liu and Rubin, 1994) for parameter estimation of random effects seg-
mental HMMs. This dramatically speeds up convergence relative to the EM algorithm, making the
model much more practical to use for real-world waveform recognition problems.

We begin our discussion by reviewing related work on segmental HMMs andrandom effects
models in Section 2. We introduce segmental HMMs in Section 3. In Section 4, weextend this
model to incorporate random effects models, and describe the inferenceprocedure and the EM
algorithm for parameter estimation. We also show that the ECME algorithm can beused to signifi-
cantly speed up the convergence of the EM algorithm. In Section 5, we evaluate our model on two
applications involving bubble-probe interaction data and ECG data, and compare random effects
segmental HMMs to other waveform-matching algorithms such as Euclidean distance matching,
dynamic time warping, and segmental HMMs without random effects. Section 6contains a brief
discussion of possible extensions of the model and final conclusions.

2. Related Work and Contributions

A general approach to waveform recognition is to extract characteristicfeatures from the wave-
form in the time-domain or the frequency-domain, and then perform classification in the resulting
feature-vector space. Examples of this approach include the work of Shimshoni and Intrator (1998)
who used neural networks to classify seismic waveforms, and Jankowski and Oreziak (2003) who
used support vector machines to classify heartbeats in ECG data. Using classifiers in this manner
requires training data from both positive and negative classes as well asthe extraction of reliable dis-
criminative features from the raw waveform data. In the approach described in this paper we avoid
these requirements by learning models from the positive class only and by modeling the waveform
directly in the time-domain without any need for feature extraction. Other techniques have been
pursued in the area of waveform query-matching for information retrieval involving time-series
data (e.g., Agrawal et al., 1993; Chan and Fu, 1999; Keogh and Pazzani, 2000; Yi and Faloutsos,
2000). These approaches generally focus on the investigation of robust and computationally ef-
ficient similarity measures. In contrast, in this paper, we focus on a generative model approach,
allowing techniques from statistical learning to be brought to bear. This allows us (for example)
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to learn models from data, to handle within-class waveform variability, and to generate maximum-
likelihood segmentations of waveforms.

As mentioned in Section 1, standard discrete-time finite-state HMMs are not ideal for modeling
waveform shapes since the generative model implicitly assumes a geometric distribution on segment
lengths and a piecewise constant shape model. Segmental HMMs relax thesemodeling constraints
by allowing (a) arbitrary distributions on run lengths, and (b) “segment models” (regression mod-
els) that allow the mean to be a function of time within each segment. HMMs that allow arbitrary
distributions on run lengths (the semi-Markov property in a HMM context) were introduced in the
work of Ferguson (1980), Russell and Moore (1985), and Levinson (1986). Deng et al. (1994) and
Russell (1993) extended these models to segmental HMMs by modeling dependencies between ob-
servations from the same state with a parametric trajectory model that changesover time. Ostendorf
et al. (1996) reviewed variations of segmental HMMs from a speech recognition perspective. More
recent work includes Achan et al. (2005) and Yun and Oh (2000). Geand Smyth (2000) introduced
the idea of using segmental HMMs for general waveform recognition problems.

The idea of using random effects with segmental HMMs to model parameter variability across
waveforms is implicit in the speech recognition work of both Gales and Young (1993) and, later,
Holmes and Russell (1999). This work can be viewed as precursors to the more general random
effects segmental HMM framework we present in this paper. Gales and Young (1993) used a model
with a constant mean per segment, but where the mean values themselves come from a distribution,
allowing modeling of variability across different individual speakers. Holmes and Russell (1999)
extended this idea to use a linear regression function instead of a constantmean for each segment
with a Gaussian prior on the regression parameters (slope and intercept) for each segment. In earlier
work (Kim et al., 2004), we noted that Holmes and Russell’s model could be formalized within
a random effects framework, and derived a more general EM framework for such models, taking
advantage of ideas developed separately in speech recognition and in statistics.

In the statistical literature there is a significant body of work on modeling a hierarchical data-
generating process with a random effects model and estimating the parameters of this model (Searle
et al., 1992). Dempster et al. (1977) sketched the EM algorithm for finding maximum-likelihood
estimates for parameters of random effects models. This algorithm was further developed by Demp-
ster et al. (1981), Laird and Ware (1982), and Laird et al. (1987). There appears to be no work in
the statistical literature on applying random effects to segmental HMMs.

In this context, the primary contribution of this paper is a general frameworkfor random-effects
segmental hidden Markov models. We demonstrate how such models can be used for waveform
modeling, recognition, and segmentation, with experimental comparisons of therandom effects
approach with alternative methods such as dynamic time warping, using two real-world data sets.
We extend earlier approaches for learning the parameters of random effects segmental HMMs by
deriving a provably correct EM algorithm with monotonic convergence. Both Gales and Young
(1993) and Holmes and Russell (1999) derived EM-like optimization algorithms, but their M steps
are not in a closed form and use approximate solutions—thus, the monotonic convergence property
of EM is not guaranteed in general using their approaches.

We further extend the standard EM algorithm to develop an ECME algorithm for fitting ran-
dom effects segmental HMMs. The ECME approach significantly reducesthe number of iterations
required for convergence, relative to EM, while increasing the time complexity per iteration only
slightly. For example, as we will discuss later, ECME led to a time-savings of 3 orders of mag-
nitude over the standard EM approach in our experiments. We derive a computationally efficient
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inference algorithm (applicable to both EM and ECME) that reduces the time complexity of the
forward-backward algorithm by a factor ofT2, whereT is the length of a waveform. We also show
that this inference algorithm can be applied to full covariance models ratherthan assuming (as in
Holmes and Russell, 1999) that the intercept and slope in the segment distribution are conditionally
independent. Since the inference algorithm is used in each iteration of the E step in the EM and
ECME iterations, this significantly reduces the overall time complexity of each iteration of EM and
ECME.

3. Segmental HMMs

A segmental HMM withM states is described by anM×M transition matrix, a probability distri-
bution over duration for each state, and a segment model for each state. The transition matrixA
(assumed here to be stationary in time) has entriesakl, namely, the probability of being in statel at
time t + 1 given statek at timet. The initial state distribution can be included inA as transitions
from a special state 0 to each statek = 1, . . . ,M. In waveform modeling, we typically constrain the
transition matrix to allow only left-to-right transitions and do not allow self-transitions. Thus, there
is an ordering on states, each state can be visited at most once, and states can be skipped.

In this paper, we model the duration distribution of statek using a Poisson distribution,

P(d−1|λk) =
e−λkλk

d−1

(d−1)!
d = 1,2, . . .

(shifted to start atd = 1 to prevent a silent state). Other choices for the duration distribution could
also be used (e.g., Ferguson, 1980; Levinson, 1986). Once the process enters statek, a durationd
is drawn, and statek produces a segment of observations of lengthd from the segment distribution
model. In this paper we focus on models with linear functional forms within eachsegment. We
model therth segment of observations of lengthd, yr , generated by statek, as a linear function of
time,

yr = Xrβk + er er ∼ Nd(0,σ2Id), (1)

whereβk is a 2×1 vector of regression coefficients for the intercept and slope,er is ad×1 vector of
Gaussian noise with varianceσ2 for each component, andXr is ad×2 design matrix consisting of
a column of 1’s (for the intercept term) and a column ofx values representing discrete time values.

In speech recognition using the mid-point of a segment as a parameter in the model instead of
intercept has been shown to lead to better speech recognition performance(Holmes and Russell,
1999). Nonetheless, parametrization of the model via the intercept workedwell in our experiments,
and for this reason we use the intercept in the models discussed in this paper. For simplicity,σ2 is
assumed to be common across all states; again this can be relaxed. We do notenforce continuity
of the mean functions (Equation (1)) across segments in the probabilistic model. However, as re-
ported in Section 5, the model without continuity constraints worked well on real-world data in our
recognition experiments.

Treating the unobserved state sequences as missing, we can estimate the parameters,θ = {A,Λ =
{λk|k= 1, . . . ,M}, θ f = {βk,(σ2)|k= 1, . . . ,M}}, using the EM algorithm, with the forward-backward
(F-B) algorithm as a subroutine for inference in the E step (Deng et al., 1994). The F-B algorithm
for segmental HMMs, modified from that of standard HMMs to take into account the duration dis-
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tribution, recursively computes

αt(k) = P(y1:t ,statek ends att|θ)

α∗
t (k) = P(y1:t ,statek starts att +1|θ) (2)

in the forward pass, and

βt(k) = P(yt+1:T |statek ends att,θ)

β∗
t (k) = P(yt+1:T |statek starts att +1,θ) (3)

in the backward pass, and returns the results to the M step as a set of sufficient statistics (Rabiner
and Juang, 1993).

Inference algorithms for segmental HMMs provide a natural way to evaluate the performance
of the model on test data. The F-B algorithm scores a previously unseen waveformy by calculating
the likelihood

p(y|θ) = ∑
s

p(y,s|θ) = ∑
k

αT(k), (4)

wheres represents a sequence of unknown state labels for observationsy. The Viterbi algorithm
can provide a segmentation of a waveform by computing the most likely state sequence (e.g., Figure
2(b)). The addition of duration distributions in segmental HMMs increases the time complexity of
both the F-B and Viterbi algorithms fromO(M2T) for standard HMMs toO(M2T2), whereT is the
length of the waveform (i.e., the number of observations).

4. Segmental HMMs with Random Effects

A random effects model is a general statistical framework when the data generation process has a
hierarchical structure, coupling a population-level model with individual-level variation. At each
level of the generative process, the model defines a prior distribution over the individual group pa-
rameters, called random effects, of one level below. The observed data are generated at the bottom
of the hierarchy, given parameters drawn from the prior distribution onelevel above. Typically, the
random effects are not observable, so the EM algorithm is a popular approach to learning model
parameters from the observed data (Dempster et al., 1981; Laird and Ware, 1982). By combin-
ing segmental HMMs and random effects models we can take advantage of the strength of each in
waveform modeling. Random effects models add one level of hierarchy tothe probabilistic struc-
ture of segmental HMMs, defining a population distribution over the possible shapes of waveform
segments. Instead of requiring all waveforms to be modeled with a single set of parameters, indi-
vidual waveforms are allowed to have their own parameters but coupled bya common population
prior across all waveforms.

4.1 The Model

Beginning with the segmental HMMs described in Section 3, we add random effects via a new
variableui

r to the segment distribution part of the model as follows. Consider therth segmentyi
r of

lengthd from theith individual waveformyi generated by statek. Following the discussion in Laird
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Figure 3: A visual illustration of the random effects segmental HMM, using fluid-flow waveform
data as an example (as described in Section 5.1). The top level shows the population level
parametersβk’s for the waveform shape. The plots at the bottom level consist of observed
data. The plots in the middle level show the posterior estimates (combining both the data
and the prior) of̂ui andŝi , using Equation (8) and the Viterbi algorithm respectively.

and Ware (1982), we describe the generative model as a two-level process. At the bottom level, we
model the observed datayi

r as

yi
r = Xi

rβk +Xi
ru

i
r + ei

r ei
r ∼ Nd(0,σ2Id), (5)

whereei
r is the measurement noise,Xi

r is a d× 2 design matrix for the time measurements cor-
responding toyi

r , (βk + ui
r) are the regression coefficients, and 1≤ i ≤ N (for N waveforms).βk

represents the mean regression parameters for segmentk, andui
r represents the variation in regres-

sion (or shape) parameters for theith individual waveform. At this level, the individual random
effectsui

r as well asβk andσ2 are viewed as parameters. At the top level,ui
r is viewed as a random

variable with distribution
ui

r ∼ N2(0,Ψk), (6)

whereΨk is a 2×2 covariance matrix, andui
r is independent ofei

r . Notice that this model described
by Equations (5) and (6) is equivalent to havingyi

r = Xi
rβ

i
r + ei

r with βi
r ∼ N2(βk,Ψk). It can be

shown thatyi
r andui

r have the following joint distribution:

(

yi
r

ui
r

)

∼ Nd+2

( (

Xi
rβk
0

)

,

(

Xi
rΨkXi

r
′
+σ2Id Xi

rΨk

ΨkXi
r
′ Ψk

) )

. (7)

Also, from Equation (7), the posterior distribution ofui
r can be written as

ui
r |y

i
r ,βk,Ψk,σ2 ∼ N2

(

ûi
r ,Ψûi

r

)

, (8)

where

ûi
r = (Xi

r
′
Xi

r +σ2(Ψk)
−1)−1Xi

r
′
(yi

r −Xi
rβk), (9)
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Figure 4: Plate diagrams for the segment distribution part of segmental HMMsand random effects
segmental HMMs. (a) segment model in segmental HMMs, (b) a two-stage model with
random effects parameters in random effects segmental HMMs, and (c)the model after
integrating out random effects parameters from (b).

and

Ψûi
r
= σ2(Xi

r
′
Xi

r +σ2(Ψk)
−1)

−1
. (10)

In the discussion that follows we useui to denote{ui
r |r = 1, . . . ,R} given the segmentationsi of

waveformyi into R segments. Similarly,̂ui represents{ûi
r |r = 1, . . . ,R}, given the segmentation̂si

of waveformyi found by the Viterbi algorithm.
Figure 3 conceptually illustrates the hierarchical setup of the model. The shape template de-

scribed by the population parametersβk’s is shown at the top of the hierarchy. The plots at the
bottom level consist of observed data. The plots at the middle level show theposterior estimates
(combining both the data and the prior) ofûi andŝi , using Equation (8) and the Viterbi algorithm re-
spectively. From a generative model perspective, the shape templates inthe middle row,(βk +ui

r)’s,
i = 1, . . . ,5, are generated from the mean shape at the top level by Equation (6). The observed data
at the bottom of the hierarchy are modeled as noisy realizations of these individual shape templates.
This final data generation process is modeled in Equation (5).

Figure 4 shows plate diagrams for the segment distribution part of segmentalHMMs and random
effects segmental HMMs, illustrating the generative process forN waveforms,y1, . . . ,yN, under the
simplifying assumption that each waveform comes from a single segment of lengthD corresponding
to statek.

4.2 Inference

To handle the random effects component in the F-B and Viterbi algorithms for segmental HMMs,
we notice from Equation (7) that the marginal distribution of a segmentyi

r generated by statek
is Nd(Xi

rβk, Xi
rΨkXi

r
′
+σ2Id), and that this corresponds to Equation (1) with the covariance matrix

σ2Id replaced by(Xi
rΨkXi

r
′
+σ2Id). Replacing the two-level segment distribution with this marginal

distribution, and collapsing the hierarchy into a single level, we can use the same F-B and Viterbi
algorithm as in segmental HMMs in the marginalized space over the random effects parametersui .
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The F-B algorithm recursively computes the quantities in Equations (2) and (3). These are then
used in the M step of the EM algorithm. The likelihood of a waveformy, given fixed parameters
θ = {A,Λ,θ f = {βk,Ψk,(σ2)|k = 1, . . . ,M}}, but with statess and random effectsu unknown, is
evaluated as

p(y|θ) = ∑
s

Z

p(y,s,u|θ)du (11)

= ∑
s

p(y,s|θ) = ∑
k

αT(k).

As in segmental HMMs, the Viterbi algorithm can be used as a method to segmenta waveform by
computing the most likely state sequence.

What appears to make the inference in random effects segmental HMMs computationally much
more expensive than in segmental HMMs is the inversion of thed× d covariance matrix of the
marginal segment distribution,Xi

rΨkXi
r
′
+ σ2Id, during the evaluation of the likelihood of a seg-

ment. For example, in the F-B algorithm, the likelihood of a segmentyi
r of lengthd given statek,

p(yi
r |βk,Ψk,σ2), needs to be calculated for all possible durationsd in each of theαt(k) andβt(k)

expressions at each recursion. Naive computation of a segment likelihood, using direct inversion of
thed×d covariance matrix, requiresO(T3) computations, whereT is the upper bound ford, lead-
ing to an overall time complexity ofO(M2T5). This can be computationally impractical for long
waveforms with a large value ofT (for example,T = 256 for the fluid-flow data shown in Figure
1(a)).

In the case of a simpler model with a diagonal covariance matrix forΨk, Holmes and Russell
(1999) derived a method for computing the segment likelihood with time complexityO(M2T3). We
obtain the same complexity for a more general case with an arbitrary covariance matrix as follows.
In discussing computational issues for random effects models, Dempster et al. (1981) suggested
an expression for the likelihood that is simple to evaluate. Applying their method tothe segment
distribution of our model, we rewrite, using Bayes’ rule, the likelihood of a segmentyi

r generated
by statek as

p(yi
r |βk,Ψk) =

p(yi
r ,u

i
r |βk,Ψk,σ2)

p(ui
r |yi

r ,βk,Ψk,σ2)
,

where the numerator and the denominator of the right-hand side are given as Equations (7) and (8),
respectively. The right-hand side of the above equation holds for all values ofui

r . By settingui
r to

ûi
r as in Equation (9), we can simplify the expression for the segment likelihood to

p(yi
r |βk,Ψk) = (2π)−d/2σ−d|Ψûi

r
|1/2/|Ψk|

1/2exp(−Si
r/(2σ2)), (12)

where

Si
r = (yi

r −Xi
rβk−Xi

r û
i
r)

′(yi
r −Xi

rβk−Xi
r û

i
r)+σ2ûi

r
′Ψ(−1)

k ûi
r .

This can be further simplified using Equation (9):

Si
r = (yi

r −Xi
rβk)

′(yi
r −Xi

rβk−Xi
r û

i
r).

Equation (12) has a form that involves onlyO(d) computations for each step, where previously this
involved O(d3) computations in the case of the naive approach with matrix inversions. Thus,the
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time complexities of the F-B and Viterbi algorithms are reduced toO(M2T3). For segmental HMMs
this computational complexity can be further reduced toO(M2T2) by precomputing the segment
likelihood and storing the values in a table (Mitchell et al., 1995). However, this precomputation
is not possible with random effects models, leading to the additional factor ofT in the complexity
term.

4.3 Parameter Estimation

In this section, we describe how to obtain maximum-likelihood estimates of the parameters from a
training set of multiple waveforms for a random effects segmental HMM usingthe EM algorithm.
We augment the observed waveform data with both (a) state sequences and (b) random effects
parameters (both are considered to be hidden). The log likelihood of the complete data ofN wave-
forms,Dcomplete= (Y,S,U) = {(y1,s1,u1), . . . ,(yN,sN,uN)}, where the state sequencesi implies

Ri segments in waveformyi , is defined as:

logL(θ|Dcomplete) =
N

∑
i=1

logp(yi ,si ,ui |A,Λ,θ f )

=
N

∑
i=1

Ri

∑
r=1

logP(si
r |s

i
r−1,A) (13a)

+
N

∑
i=1

Ri

∑
r=1

logP(di
r |λk,k = si

r) (13b)

+
N

∑
i=1

Ri

∑
r=1

logp(yi
r |u

i
r ,βk,σ

2,k = si
r ,d

i
r) (13c)

+
N

∑
i=1

Ri

∑
r=1

logp(ui
r |Ψk,k = si

r). (13d)

As we can see from the above equation, given the complete data, the log-likelihood decouples into
four parts Equations (13a)-(13d), where the transition matrix, the duration distribution parameters,
the bottom level parametersβk,σ2, and the top level random effect parametersui

r appear in each of
the four terms. If we had complete data, we could optimize the four sets of parameters indepen-
dently. When only parts of the data are observed, by iterating between the Estep and the M step in
the EM algorithm as described below, we can find a solution that locally maximizesthe likelihood
of the observed data.

4.3.1 E STEP

In the E step, we find the expected log likelihood of the complete data,

Q(θ(t),θ) = E[logL(θ|Dcomplete)], (14)

with respect to

p(S,U|Y,θ(t)) = p(U|S,Y,θ(t))P(S|Y,θ(t))

=
N

∏
i=1

Ri

∏
r=1

p(ui
r |s

i
r = k,yi

r ,θ
(t))P(si

r = k|yi
r ,θ

(t)), (15)
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Figure 5: Example of training data log-likelihood convergence as a functionof the number of EM
iterations, for fluid-flow waveform data, comparing segmental HMMs (on the left) and
random effects segmental HMMs (on the right), both using the EM algorithm,x-axis on
a log-scale.

whereθ(t) is the estimate of the parameter vector from the previous M step of thetth EM iteration.
P(si

r = k|yi
r ,θ

(t)) in Equation (15) can be obtained from the F-B algorithm. The sufficient statistics,

E
[

ui
r |s

i
r = k,Y,θ(t)

]

and E
[

ui
ru

i
r
′
|si

r = k,Y,θ(t)
]

, for P(ui
r |s

i
r = k,yi

r ,θ
(t)) in Equation (15) can be

directly obtained from Equations (9) and (10). The time complexity for an E step is O(M2T3N)
whereN is the number of waveforms (and assuming each waveform is of lengthT).

4.3.2 M STEP

In the M step, we find the values of the parameters that maximize Equation (14).As we can see
from Equations (13a)-(13d) and (14), the optimization problem decouples into four parts, each of
which involves a distinct set of parameters. Closed form solutions exist for all of the parameters
(the equations are included in Appendix A). The time complexity for each M stepis O(MT3N).

In practice, the algorithm often converges relatively slowly, compared to segmental HMMs,
due to the additional missing information in random effects parametersU. Figure 5 shows a typ-
ical run of the algorithm. The segmental HMM converges much faster but converges to a lower
log-likelihood value. The iterations were halted when the increase of the log-likelihood from one
iteration to the next was less than 10−5.

Holmes and Russell (1999) augmented the observed waveform data with state sequences after
integrating out the random effects parameters, and usedDcomplete= {Y,S} in the E step. In this

case the parameters for the segment distribution{βk,σ2,Ψk} do not decouple in the complete data
log-likelihood and there is no closed form solution for those parameters in theM step. Using
the approximate solutions proposed in Holmes and Russell means that the monotonic convergence
property of EM is no longer guaranteed. In contrast, if we useDcomplete= {Y,S,U} in the E step as
in Equation (14), we can ensure that the algorithm is a proper EM algorithm that always converges
to a local maximum of log likelihood.
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Figure 6: Example of training data log-likelihood convergence as a functionof the number of it-
erations (on the left) and as a function of computation time (on the right), for fluid-flow
waveform data (the same data set as in Figure 5), comparing EM vs. ECME for the
random effects segmental HMM,x-axis on a log-scale.

4.4 Faster Learning with ECME

As mentioned above, the convergence of the EM algorithm can be very slowespecially in the es-
timation of random effects models. Various extensions of the algorithm have been proposed to
speed up the convergence. In the expectation conditional maximization (ECM) algorithm Meng
and Rubin (1993) replaced the M step of the EM algorithm with a sequence ofW > 1 constrained
or conditional maximizations (the CM steps). This does not necessarily decrease the number of
EM iterations but can significantly reduce the total computation time. Liu and Rubin(1994) fur-
ther extended the ECM algorithm to the ECME algorithm, reducing both the numberof iterations
and the total computation time. Both the ECM and the ECME algorithms preserve the property of
monotone convergence of the EM algorithm.

More specifically, the CM step of thetth iteration of the ECM algorithm consists ofW CM
steps. Thewth CM step maximizesQ(θ(t),θ) under the constraint

gw(θ) = gw(θ(t+(w−1)/W)),

where θ(t+w/W) denotes the value ofθ in the wth CM step of the(t + 1)th iteration andC =
{gw(θ),w = 1, . . . ,W} is a set ofW preselected vector functions. These constraints are set so that
the maximization is over the full parameter space ofθ. In a typical application of the ECM algo-
rithm the set of parametersθ is divided intoW subvectorsθ1, . . . ,θW and in thewth CM step of the
tth iterationQ(θ(t),θ) is maximized overθw. In this casegw(θ) is equal toθ−w, the vector of all
parameters except forθw. In all of the following discussion we assumegw(θ) has this particular
form.

In the ECME algorithm some of the CM steps of the ECM algorithm are replaced by a maxi-
mization of the actual log likelihood subject to the same constraint instead of the expected complete
data log likelihood. The large amount of missing information present in the expected complete data
log likelihood leads to slow convergence of the EM algorithm (Dempster et al., 1977). The ECME
algorithm often speeds up the convergence dramatically by removing the missing information alto-
gether and maximizing the actual log likelihood in some of the CM steps.
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Figure 7: Convergence ofβ (x-axis is intercept,y-axis is slope) for fluid-flow data. The starting
point is indicated by a circle. Gray arrows represent ECME, black arrows represent EM.
An arrow for the parameter values is drawn for each iteration in ECME and for every 100
iterations in EM.

Laird and Ware (1982) first derived an ECME algorithm for random effects models but mistak-
enly thought it was the EM algorithm. Liu and Rubin (1994) gave a formal description of the ECME
algorithm and introduced two different versions of the algorithm for random effects models. The
first version has a closed form solution in the CM steps. The other requires an iterative algorithm for
one of CM steps, and loses the monotone convergence property of the EMalgorithm. Liu and Rubin
report slightly faster convergence from the latter, but in our application of the ECME algorithm to
random effects segmental HMMs we use the first version with closed formCM steps, thus, retaining
the monotone convergence property of EM.

For random effects segmental HMMs we partition the parametersθ into θ1 = {A,Λ,Ψk, σ2|k =
1, . . . ,M} andθ2 = {βk|k = 1, . . . ,M} and consider the ECME algorithm with two CM steps for
each of the two partitions as follows.

CM step 1: ComputeA(t+1), Λ(t+1), Ψ(t+1)
k , k = 1, . . . ,M, and(σ2)(t+1) as in the M step of the

EM algorithm.

CM step 2: GivenΨ(t+1)
k , k = 1, . . . ,M, and(σ2)(t+1) obtained from CM Step 1, we can integrate

outui from Equations (13c)-(13d), and maximize∑N
i=1 ∑Ri

r=1 logp(yi
r |βk, Ψ(t+1)

k ,(σ2)(t+1),k=

si
r ,d

i
r), wherep(yi

r |βk,Ψ
(t+1)
k ,(σ2)(t+1),k = si

r ,d
i
r) is given as

Nd(Xi
rβk, Xi

rΨ
(t+1)
k Xi

r
′
+(σ2)(t+1)Id).
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The update equations forβ(t+1)
k , k = 1, . . . ,M are

β(t+1)
k =

(

∑N
i=1

∑t ∑d<t Ciktd(Xi
td
′Zi

tdXi
td)

P(yi |θ(t)
)

)−1

·

(

∑N
i=1

∑t ∑d<t Ciktd(Xi
td
′Zi

tdyi
td)

P(yi |θ(t)
)

)

,

whereXi
td = Xi

t−d+1:t and

Zi
td = (Xi

tdΨ(t+1)
k Xi

td
′
+(σ2)(t+1)Id)

−1.

Whend is large we can avoid inverting ad×d matrix to obtainZi
td by rewriting this as

Zi
td = {Id −Xi

td((σ
2)(t+1)(Ψk)

−1 +Xi
td
′
Xi

td)
−1Xi

td
′
}/(σ2)(t+1).

CM step 1 maximizes the expected complete data log likelihood where both state sequences
S and random effects parametersU are considered missing. In CM step 2 the incomplete data
log likelihood is augmented only withS and then maximized. The computational complexity of the
update equation forβ(t+1)

k in CM step 2 isO(MT4N) compared toO(MT3N) for the same parameter
in the M step of the EM algorithm. Thus, the overall asymptotic complexity for the CMsteps is
O(MT4N), and the ECME algorithm is computationally more expensive in time complexity per
iteration than the EM algorithm.

The convergence of the EM and the ECME algorithms for a random effectssegmental HMM
with six states is shown in Figure 6 for the fluid-flow waveform data described in Section 5.1. The
parameters were initialized to the same values for both algorithms and the convergence criterion
was set to 10−5. In Figure 6(a) the EM algorithm takes 11506 iterations to converge to roughly
the same log-likelihood that the ECME algorithm converges to in only 8 iterations.Each iteration
takes 133.3s in the ECME algorithm, versus 47.4s in the EM algorithm, but the overall time to
convergence of ECME is still over 3 orders of magnitude faster than EM (as shown in Figure 6(b)).

The convergence trajectories of the 2-dimensional parametersβk for both algorithms are shown
in Figure 7 for each of the six states. The starting values are shown as black circles. Black arrows
represent the parameter values of every 100 iterations in the EM algorithm and grey arrows represent
the parameters in every iteration of the ECME algorithm. Both Figure 6 and Figure 7 show a
dramatic improvement in the speed of convergence of ECME over EM: they both converge to the
same solutions in parameter space but ECME converges much more quickly.

5. Experiments

We apply our model to two real-world data sets: (a) hot-film anemometry data in turbulent bubbly
fluid-flow and (b) ECG heartbeat data: both are described in more detail below in Section 5.1. In all
of our experiments we compare the results from our new segmental HMM with random effects to
those obtained using segmental HMMs without random effects. We use several methods to evaluate
the models:

Average LogP Score: We compute logp(y|θ) scores (Equations (4) and (11) for each model) for
test waveformsy to compare how much probability is assigned to new test data by different
models. Higher logP scores indicate better predictive power.
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Figure 8: Negative examples in bubble-probe interaction data. (a) no interaction (b) glancing (c)
bouncing (d) penetrating.
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Figure 9: Negative examples in ECG data (a) right bundle branch block beat (b) left bundle branch
block beat (c) paced beat (d) premature ventricular contraction beat.

Segmentation Quality: To evaluate how well the model can segment test waveforms, we first
obtain the segmentations of test waveforms with the Viterbi algorithm, estimate the regres-
sion coefficientŝγ of each segment, and calculate the mean squared difference between the
observed data andXγ̂. Good segmentations should produce low scores.

Recognition Accuracy: We use the model learned from a training set of positive examples to
recognize waveforms of interest from a test set with both positive and negative exemplars.
We compare the results from random effects segmental HMMs with those from dynamic time
warping (Keogh and Pazzani, 2000), Euclidean distance matching, and segmental HMMs.

All of the experiments were conducted using cross-validation. The numberof segmentsM for
each data set was determined by visual inspection prior to training the models. All waveforms were
shifted to have zero mean amplitude before training and testing.

In all experiments reported below, we use the ECME algorithm for training random effects
segmental HMMs. The convergence criterion is set to 10−5. We found in our experiments that
providing one manually-segmented example is useful in initialization of both EM and ECME—
details on initialization are described in Appendix B.

5.1 Data Sets

Below we describe two different data sets that were used as the basis forour experiments.
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Bubble-probe ECG
interaction data data

Avg. Avg. Avg. Avg.
LogP Segmentation LogP Segmentation
Score Error Score Error

Segmental HMMs -3.25 15.39 -3.12 2.55
Random Effects Segmental HMMs 4.50 1.43 19.63 0.39

Table 1: Average logP scores and segmentation errors for bubble-probe interaction data and ECG
data.

5.1.1 BUBBLE-PROBEINTERACTION DATA

Hot-film anemometry is a technique commonly used in turbulent bubbly flow measurements in fluid
physics. Different types of interactions between the bubbles and the probe in turbulent gas flow,
such as splitting, bouncing, and penetration, lead to characteristic waveform shapes. Automatically
detecting the occurrence and types of interactions from such waveformsis a problem of active
interest (Bruun, 1995). This recognition task is difficult because of thelarge variability in the shapes
of waveforms within a given class of interactions (e.g., Figure 1(b)), caused by various factors such
as velocity fluctuations and different gas fractions during measurement.

We applied our method to individual bubble-probe interaction data. Our dataset consisted of 7
waveforms in the classno interaction(Figure 8(a)), 5 waveforms in the classglancing(Figure 8(b)),
52 waveforms in the classbouncing(Figure 8(c)), 8 waveforms in the classpenetration(Figure 8(d))
and 48 waveforms in the classsplitting(Figures 1(a) and (b)). Class labels were determined for each
interaction based on expert examination of high-speed image recordings of the event obtained simul-
taneously with the interaction signal (Luther, 2004). Each waveform had256 data points sampled
at 5kHz. We built waveform models for the class ofsplitting interactions, where the probe splits
the bubble, and ran a 9-fold cross-validation with 5 waveforms in the trainingset and 43 waveforms
in the test set for each run. The 72 waveforms from the other interactionswere used as negative
examples in the test set. Given that Figure 2(a) is a reasonable piecewise linear approximation of
the general shape, we subjectively choseM = 6 as the number of states for both segmental HMMs
and random effects segmental HMMs.

5.1.2 ECG DATA

The shape of heartbeat cycles in ECG data can be used to diagnose the heart condition of a patient
(Koski, 1996; Hughes et al., 2003). For example, Figure 11 shows the typical shape of normal
heartbeats, whereas Figures 9(a)-(d) are taken from a heart experiencing various abnormal condi-
tions. Heartbeats of the same type can vary significantly across individualsin terms of the heights
and locations of peaks in the shape. Variability can also be found among heartbeats from the same
individual although it is lower than across individuals.

For our experiments we used the ECG recordings with a sampling rate of 360 samples per sec-
ond from the MIT-BIH Arrhythmia database1. We selected hour long recordings from 23 subjects
and manually extracted two heartbeats of the same type from each subject. Normal heartbeats were

1. http://www.physionet.org/physiobank/database/mitdb/
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Top 10 Top 20
Euclidean distance (using mean distance) 86.7 81.7
Euclidean distance (using minimum distance) 82.2 80.0
Dynamic time warping (using mean distance) 85.6 82.2
Dynamic time warping (using minimum distance) 92.2 82.8
Segmental HMMs 86.7 82.2
Random Effects Segmental HMMs 100.0 95.0

Table 2: Cross-validated recognition accuracy for bubble-probe interaction data on test set. The
numbers represent the true positive rates in percentages (%) among the top k waveforms
selected by each algorithm.

taken from each of twelve subjects, and similarly, left bundle branch blockbeats from three sub-
jects, right bundle branch block beats from two subjects, premature ventricular contraction beats
from three subjects, and paced beats from three subjects. The lengths of heartbeats varied approx-
imately from 210 to 410 samples. We modeled each normal heartbeat withM = 9 segments. We
performed a 4-fold cross-validation with 6 normal waveforms from three individuals as a training
set for each cross-validation run and the remainder as a test set. Note that the test set contained
heartbeats from a different set of individuals than the individuals usedto train the model. Segmental
HMMs could not be learned for one of the cross-validation runs due to numerical instability (a prob-
lem that did not occur with random effects HMMs), so we report results from the remaining three
runs of cross-validations for segmental HMMs. The 22 abnormal heartbeats were used as negative
examples for the evaluation of recognition accuracy in the test sets.

5.2 Results

In Table 1 we compare the average logP scores of positive test waveforms for segmental HMMs with
those for random effects segmental HMMs. The new model produces significantly higher scores for
both data sets, indicating that random effects allow segmental HMMs to capture both the typical
shape and shape variability.

Table 1 also shows the average segmentation errors for the test waveforms from both models.
Adding the random effects component to segmental HMMs reduces the segmentation error roughly
by a factor of 10 on both data sets. Segmentation examples are shown in Figure 10 for the bubble-
probe interaction data and Figure 11 for the ECG data, where it is apparent that random effects
segmental HMMs are more consistent in locating segment boundaries.

To evaluate the recognition accuracy we score both pattern and non-pattern waveforms in the
test set using the model for the pattern waveform learned from the trainingset, and rank the wave-
forms according to their log probability scores. We also compare probabilisticmethods with non-
probabilistic scoring methods such as Euclidean distance and dynamic time warping. For non-
probabilistic methods we compute the distance between a test waveform and each of theN training
waveforms, and use both the average and minimum of theN distances as a score for that test wave-
form. The percentages of the true positives in the top 10 and 20 waveformsfrom bubble-probe
interaction data are reported in Table 2. Random effects segmental HMMs give a substantially
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Rank Euclidean Dynamic time Segmental Random effects
distance warping HMM segmental HMM

1

2

3

4

5

6

7

8

9

10

Figure 10: Top 10 waveforms found by four different algorithms in bubble-probe interaction data.
‘o’s are true positives and ‘x’s are false positives. Segmentations by the Viterbi algorithm
are overlaid on top of the waveforms in the case of true positives for segmental HMMs
and random effects segmental HMMs. Segmentations are not produced by the Euclidean
distance method or by dynamic time warping.
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Figure 11: Segmentation of a normal ECG heartbeat by the Viterbi algorithm for segmental HMMs
(left) and for random effects segmental HMMs (right).
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Figure 12: ROC plot for ECG data.

higher accuracy than any of the other methods. Figure 10 shows the top 10waveforms found by
the different methods. All of the false positives are from the interaction classbouncing, which is
more similar in shape to the classsplitting than other interaction types. Random effects segmental
HMMs can effectively distinguish subtle differences in shape between thepattern that we are mod-
eling and the non-pattern waveforms. Segmentations are overlaid in Figure 10 on the waveforms as
found by probabilistic models using the Viterbi algorithm. Such segmentations are not available for
dynamic time warping and Euclidean distance methods, providing an additional advantage of using
probabilistic models in applications where segmentation is useful.

Figure 12 shows the ROC curves for the ECG data. The results from Euclidean distance are not
available for ECG data because the method as implemented requires the length ofeach waveform
sequence to be the same. Random effects segmental HMMs have the highestaccuracy, particularly
over the range from 0 to 0.5 in terms of fraction of false positives (x-axis) which is typically the
range of interest when ranking objects by similarity to a target. A similar result was obtained for
bubble-probe interaction data as can be seen in Figure 13.
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Figure 13: ROC plot for bubble-probe interaction data.

6. Discussions and Conclusions

As noted elsewhere in the paper, the random effects segmental HMM proposed in this paper can
be extended in multiple different ways. For example, the parametrization of thesegment models as
linear functions of time can be generalized directly to any functional form that is linear in the pa-
rameters without altering the underlying time complexity of the learning and inference algorithms.

In the results reported here we applied our model to score relatively short waveform “snippets”
to detect waveforms that are similar in shape to a query waveform. In orderto parse online time-
series data and detect “embedded” waveforms relative to a target, a two-state HMM with a pattern
state and a background state can be used, where the random effects segmental HMM is embedded
inside the pattern state. Each instance of the pattern waveform is allowed to have its own parameters
via the random effects mechanism. The background state models any measurements that do not
belong to pattern waveforms. A long time-series can then be parsed via the Viterbi algorithm (for
example) to segment the series into background and pattern states, where the segments that belong
to the pattern state correspond to predicted waveform locations accordingto the model.

In conclusion, we have proposed a probabilistic model that extends segmental HMMs to in-
clude random effects. This model allows an individual waveform to varyits shape in a constrained
manner via a prior distribution over individual waveform parameters. TheECME algorithm for
learning this model greatly improved the speed of convergence of parameter estimation compared
to a standard EM approach. Experimental results support the hypothesisthat random effects seg-
mental HMMs perform better in modeling, segmentation, and recognition of waveforms compared
both to probabilistic models without random effects and to non-probabilistic methods.
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Appendix A: Re-estimation Formulas for EM

The re-estimation formula for the transition probabilities and the duration distribution parameters
can be shown to be:

a(t+1)
kl =

∑N
i=1

1

P(yi |θ(t)
)

∑t αi
t(k)a

(t)
kl βi∗

t (l)

∑N
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1

P(yi |θ(t)
)

∑m∑t αi
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(t)
kmβi∗
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,
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∑t ∑dCiktd
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k )p(yi
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(t)
fk

)βi
t+d(k).

Using the notation ofXi
td = Xi

t−d+1:t andyi
td = yi

t−d+1:t , we update the covariance matrix of the
top level of the segment distribution model according to
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)

,

and for the bottom level, we re-estimate the parameters using
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where

E[Di
k
′
Di

k|Y,θ(t)] = (yi
t+1:t+d −Xi

tdβk−Xi
tdE[ui

k|Y,θ(t)])′ · (yi
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Appendix B: Initialization of the EM and ECME Algorithms

Initialization of the EM and ECME algorithms is based on manual segmentation of a single wave-
form in the training data. The manual segmentation is only used to determine initial values for the
parameters (for use in the first E-step), and is not used in any further manner by EM or ECME after
this initialization.
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Given the manually segmented waveform, the parametersA, θd, andβk’s are set to their maximum-
likelihood values as estimated from this waveform. The 2×2 covariance matricesΨk’s of the ran-
dom effects component of the model require more than two segmented waveforms in order to obtain
maximum-likelihood estimates—thus, their values are initialized in a different manneras follows.
The variance term for the slope inΨk’s is set to a value generated from a uniform distribution over
[zmin,zmax]. From preliminary inspection of datazmin andzmaxare set to 1 and 10 respectively for
bubble-probe interaction data, and 1 and 5 for ECG data. As the state indexincreases, the values
of the intercept parameters inβk’s tend to increase and a small variability in slope leads to a more
significant variability in intercept values. To take into account this we initialize the variance for
the intercept by sampling a value from the same uniform distribution[zmin,zmax] and multiplying
this value by the state indexi for that intercept. Given that a positive change in the slope leads to
a decreased value of the intercept we initialize the covariance between the slope and intercept to a
negative value generated from a uniform distribution over[zmin× (−0.1),zmax× (−0.1)]. Multi-
plying zmin andzmax by 0.1 makes the covariance relatively small compared to variances inΨk’s
and also ensures that the covariance matricesΨk’s are positive definite. Finally, we sample the ini-
tial value for the noise parameterσ2 from a uniform distribution over[1,6] for both data sets. This
initialization strategy essentially sets the variance parametersΨk’s andσ2 to relatively large initial
values and then lets them adjust to the training data.
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