Journal of Machine Learning Research 7 (2006) 1909-1936 mitgdd 10/05; Revised 3/06; Published 9/06

Incremental Support Vector Learning:
Analysis, Implementation and Applications

Pavel Laskov LASKOV @FIRST.FHG.DE
Christian Genhl CGEHL@FIRST.FHG.DE
Stefan Kriiger KRUEGERS@FIRST.FHG.DE

Fraunhofer-FIRST.IDA
Kekukstrasse 7
12489 Berlin, Germany

Klaus-Robert M ller KLAUS @FIRST.FHG.DE
Fraunhofer-FIRST.IDA

Kekukstrasse 7

12489 Berlin, Germany

and

University of Potsdam

August-Bebelstrasse 89

14482 Potsdam, Germany

Editors: Kristin P. Bennett, Emilio Parrado-Heandez

Abstract

Incremental Support Vector Machines (SVM) are instrumientaractical applications of online
learning. This work focuses on the design and analysis afieffiincremental SVM learning, with
the aim of providing a fast, numerically stable and robugtlémentation. A detailed analysis of
convergence and of algorithmic complexity of incrementéhMSearning is carried out. Based on
this analysis, a new design of storage and numerical opesis proposed, which speeds up the
training of an incremental SVM by a factor of 5 to 20. The parfance of the new algorithm
is demonstrated in two scenarios: learning with limitedotgses and active learning. Various
applications of the algorithm, such as in drug discoveryinenmonitoring of industrial devices
and and surveillance of network traffic, can be foreseen.

Keywords: incremental SVM, online learning, drug discovery, intarsdetection

1. Introduction

Online learning is a classical learning scenario in which training data is mdwde example at a
time, as opposed to the batch mode in which all examples are available at aqndedebins and
Munro (1951); Murata (1992); Saad (1998); Bishop (1995); (i ®luller (1998); LeCun et al.
(1998); Murata et al. (2002)).

Online learning is advantageous when dealing with (a) very large or (Bstadionary data. In
the case of non-stationary data, batch algorithms will generally fail if ambgudormation, e.qg.
different distributions varying over time, is present and is erroneousdgiated by the batch algo-
rithm (cf. Murata (1992); Murata et al. (2002)). Many problems of hiigkrest in machine learning
can be naturally viewed as online ones. An important practical advanfagdime algorithms is

(©2006 Pavel Laskov, Christian Gehl, Stefariiger and Klaus-Robert Mler.

LAsSkoV, GEHL, KRUGER AND MULLER

that they allow to incorporate additional training data, when it is available, witlestraining from
scratch. Given that training is usually the most computationally intensiveitaskyot surprising
that availability of online algorithms is a major pre-requisite imposed by practisahet work on
large data sets (cf. LeCun et al. (1998)) or even have to perforatimeaestimation tasks for con-
tinuous data streams, such as in intrusion detection (e.g. Laskov et a)(E3®in et al. (2002)),
web-mining (e.g. Chakrabarti (2002)) or brain computer interfacing Bdankertz et al. (2003)).

In the 1980’s online algorithms were investigated in the context of PAC legu(eiig. Angluin
(1988); Littlestone et al. (1991)). With the emergence of Support Vedemhines (SVM) in the
mid-1990’s, interest to online algorithms for this learning method arose as telkever, early
work on this subject (e.g. Syed et al., 1999)gihg, 2002; Kivinen et al., 2001; Ralaivola and
d’Alché Buc, 2001) provided only approximate solutions.

An exact solution to the problem of online SVM learning has been foundamnw@nberghs and
Poggio (2001). Their incremental algorithm (hereinafter referred @ @&P algorithm) updates
an optimal solution of an SVM training problem after one training example iscaflitaemoved).

Unfortunately acceptance of the C&P algorithm in the machine learning commuastpden
somewhat marginal, not to mention that it remains widely unknown to potentictifiwaers. Only
a handful of follow-up publications is known that extend this algorithm to rotakted learning
problems (e.g. Martin, 2002; Ma et al., 2003; Tax and Laskov, 2003)utdknowledge, no suc-
cessful practical applications of this algorithm has been reported.

At a first glance, a limited interest to incremental SVM learning may seem ttt teslabsence
of well-accepted implementations, such as its counterparts'8Vdoachims, 1999), SMO (Platt,
1999) and LIBSVM (Chang and Lin, 2000) for batch SVM learning. Dhiginal Matlab imple-
mentation by the authorsas essentially the semantics of batch learning: training examples are
loaded all at once (although learned one at a time) and unlearning is adyfarscomputation of
the — ingenious — leave-one-out bound.

There are, however, deeper reasons why incremental SVM may rsat basy to implement.
To understand them — and to build a foundation for an efficient desigmnaplémentation of the
algorithm, a detailed analysis of the incremental SVM technique is carried dhisipaper. In
particular we address the “accounting” details, which contain pitfalls dbpaance bottlenecks
unless underlying data structures are carefully designed, and acalyzergence of the algorithm.

The following are the main results of our analysis:

1. Computational complexity of a minor iteration of the algorithm is quadratic in timeben
of training examples learned so far. The actual runtime depends on three®aimemory
access and arithmetic operations in a minor iteration.

2. The main incremental step of the algorithm is guaranteed to bring prdgrdss objective
function if a kernel matrix is positive semi-definite.

Based on the results of our analysis, we propose a new storage desigrganization of
computation for a minor iteration of the algorithm. The idea is to judiciously usemajor and
column-major storage of matrices, instead of one-dimensional arraysléntorpossibly eliminate
selection operations. The second building block of our design is gaxygyratrix-vector multipli-
cation, which allows to further minimize selection operations which cannot be aliedry storage

1. http://bach.ece.jhu.edu/pub/gert/svm/incremental/

1910

INCREMENTAL SUPPORTVECTORLEARNING

design alone. Our experiments show that the new design improves computefimiency by the
factor of 5 to 20.

To demonstrate applicability of incremental SVM to practical applications, twaoilegscenar-
ios are presented. Learning with limited resources allows to learn fromdiatgesets with as little
as 2% of the data needed to be stored in memory. Active learning is anotherfplotechnique
by means of which learning can be efficiently carried out in large data seétdimited availability
of labels. Various applications of the algorithm, such as in drug discoweeafine monitoring of
industrial devices and and surveillance of network traffic, can beséane.

In order to make this contribution self-contained, we begin with the presemtatithe C&P
algorithm, highlighting the details that are necessary for a subsequéysianan extension of the
basic incremental SVM to one-class classification is presented in Sectionr®ei@ence analy-
sis of the algorithm is carried out in Section 4. Analysis of computational codatyplelesign of
efficient storage and organization of operations are presented ahatd in Section 5. Finally,
potential applications of incremental SVM for learning with limited resourcekaaive learning
are illustrated in Section 6.

2. Incremental SVM Algorithm

In this section we present the basic incremental SVM algorithm. Beforeepdang with our pre-
sentation we need to establish some notation.

2.1 Preliminaries

We assume the training data and their labels are given by a set

{0%,¥1);- -5 (X, Yn) }-

The inner product between data points in a feature space is definedédipel kunctionk(x;,x;).
Then x n kernel matrixk® contains the inner product values for alKli, j < n. The matrixK is
obtained from the kernel matrix by incorporating the labels:

K=K (yy).

The operator denotes the element-wise matrix product, and a vectianotes labels as anx 1
vector. Using this notation, the SVM training problem can be formulated as
max min W:=—1Ta+ Sa’ Ta.
ax min, + 30 Ka+py o 1)
yTa=0

Unlike the classical setting of the SVM training problem, which is usually formdlagemaximiza-
tion or minimization, the problem (1) is a saddle-point formulation obtained byrjrozating the
equality constraint directly into the cost function. The reason for sudstoaction will become
clear shortly.

2.2 Derivation of the Basic Incremental SVM Algorithm

The main building block of the incremental SVM is a procedure for addingexaenple to an
existing optimal solution. When a new poixtis added, its weighti is initially set to 0. If this

1911

LAsSkoV, GEHL, KRUGER AND MULLER

assignment is not an optimal solution, i.e. whershould become a support vector, the weights
of other points and the threshgldmust be updated in order to obtain an optimal solution for the
enlarged data set. The procedure can be reversed for a removaérémple: its weight is forced
to zero while updating weights of the remaining examples and the threglsaidhat the solution
obtained witha = 0 is optimal for the reduced data set. For the remaining part of this paper we
only consider addition of examples.

The saddle point of the problem (1) is given by the Kuhn-Tucker conwditio

>0, ifa=0
gi:=—-1+K_.oa+uy< =0, ifO<a<C 2
<0, if aj=C
ow
a—u._y a=0. 3

Before an addition of a new examptg the Kuhn-Tucker conditions are satisfied for all previous
examples. The goal of the weight update in the incremental SVM algorithm iadoafweight
assignment such that the Kuhn-Tucker conditions are satisfied for ldrged data set.

Let us introduce some further notation. Let the Setenote unbounded support vectors{0
aj < C), the setE denote bounded support vectorg & C), and the seD denote non-support
vectors @ = 0); letR=EUO. These index sets induce respective partitions on the kernel matrix
K and the label vectoy (we shall use the lower-case lettsr®, o andr for such partitions).

By writing out the Kuhn-Tucker conditions (2)—(3) before and afteupdateAa we obtain the
following condition that must be satisfied after an update:

Age Yo Kes K(_::c
Ags Ys Kss AU] Kes

= Aa . 4
Ag i Kis [Aas A | T (4)
0 O yg As yC

One can see thdta, is in equilibrium withAag andp: any change téa. must be absorbed by the
appropriate changes ko andp in order for the condition (4) to hold.

The main equilibrium condition (4) can be further refined as follows. It Wedidrom (2) that
Ags = 0. Then lines 2 and 4 of the system (4) can be re-written as

o] [0 af O¢
M _ [as KSS] s+ [KJJ Ad. (5)

This linear system is easily solved fs as follows:

where L
L) [
= — 7
B [as el @
TV
fi

is the gradient of the manifold of optimal solutions parameterizeddy

1912

INCREMENTAL SUPPORTVECTORLEARNING

One can further substitute (6) into lines 1 and 3 of the system (4):

A
{Ag‘j = yAa, (8)
where
yC KCS KCC:|
p— 9
Y {Yr KrJ B+ [Kgr ©)

is the gradient of the manifold of gradiergsat an optimal solution parameterized doy.

The upshot of these derivations is that the update is controlled by veryesgapsitivity rela-
tions (6) and (8), wher is sensitivity ofAs with respect taAa. andy is sensitivity ofAge, with
respect td\ac.

2.3 Accounting

Unfortunately the system (4) cannot be used directly to obtain the new 3sftlel. sThe problem
lies in the changing composition of the s&andR with the change ofAs andAa in Eq. (4). To
handle this problem, the main strategy of the algorithm is to identify the largestisako. such
that some point migrates between the s&1dR. Four cases must be considered to account for
such structural changes:

1. Someq; in Sreaches a bound (an upper or a lower one).¢llee a small number. Compute

the sets

P={iecS:Bi>¢}

S={ieS:pi<—¢}.
The examples in sejtf have positive sensitivity with respect to the weight of the current
example; that is, their weight would increase by taking the Ateg? These examples should
be tested for reaching the upper boudLikewise, the examples in sef should be tested

for reaching zero. The examples witle < 3; < € should be ignored, as they are insensitive
to Aac. Thus the possible weight updates are

. . . S
G — C—aqaj, ifier?
—q;, ifierS,

and the largest possibli$ before some example Bmoves toR is

qmax
Ao = absmin——, (10)
icrfurs i

where
absimir(x) = miin i 'Sigr(x(arg_midxi\))-
2. Somey; in Rreaches zero. Compute the sets

IR={icE:y >¢}
R={icO:y < —¢}.

2. It can be shown that the stéyi; is always positive in the incremental case.

1913

LAsSkoV, GEHL, KRUGER AND MULLER

The examples in sat? have positive sensitivity of the gradient with respect to the weight of
the current example. Therefore their (negative) gradients can pdterdgech zero. Likewise,
gradients of the examples in sétare positive but are pushed towards zero with the increasing
weight of the current example. Thus the largest incréasebefore some point ifR moves
to Scan be computed as

Aol = min —9 (11)

icrRUIR Y
3. gc becomes zero. This case is similar to case 2, with the feasibility test in the form
Ye > €.

If the update is feasible the largest steqd is computed as

Aol = % 12
v (12)

4. ac reache€. The largest possible incremeha is clearly

Ao =C—a. (13)

Finally, the smallest of the four values
Aa = min(Aad, Aok Aad, Aal) (14)

constitutes the largest possible increment gf

After the largest possible incrementaf is determined, the updaté&s andAg are carried out.
The inverse matrixQ must be also re-computed in order to account for the new composition of the
setS. Efficient update of this matrix is presented in section 2.4. The sensitivitypre andy
must be also re-computed. The process repeats until the gradient afrtbateexample becomes
zero or its weight reachd&s. The high-level summary of incremental SVM algorithm is given in
Algorithm 1.

2.4 Recursive Update of the Inverse Matrix

It is clearly infeasible to explicitly invert the matri®Q in Eqg. (7) every time the s&is changed.
Luckily, it is possible to use the fact that this set is always updated one eleab@ time — an
example is either added to, or removed from theSset

Consider addition first. When the exampig is added to the s& the matrix to be inverted is
partitioned as follows:

T
0 Ys Yk |:Q_1 Nk :| (15)

Ri=1Yys Kss K% = T)
K
Yk Kks Kkk Nk Kk

I W
= [KJJ '

3. Adifferent indexk is used to emphasize that this example is not the same as the currentexamp

where

1914

INCREMENTAL SUPPORTVECTORLEARNING

Algorithm 1 Incremental SVM algorithm: high-level summary.
1. Read example&., computege.
2: whilegc <0& ac<Cdo
3: ComputeB andy according to (7), (9).
ComputeAa?,Acx?,Aag andAag according to (10)—(13).
ComputeAad® according to (14).
Oc < O¢c+Aag®
Os < BAaI
Oer < YAQT™
Letk be the index of the example yielding the minimum in (14).
10: if ke Sthen

© o N a R

11: Move k from Sto eitherE or O.

12: elseifk e EUOthen

13: Movek from eitherE orOto S.

14: else

15: {k = c: do nothing, the algorithm terminatés.
16: endif

17: UpdateQ recursively.{See section 2.4.

18: end while

Definefyx = —Qn, and denote the enlarged inverse matrixpyApplying the Sherman-Morrison-
Woodbury formula for block matrix inversion (see e.g. Golub and van I(®866)) toQ, we obtain:

[Ql ﬂk]lz [Q+Kk Q) (Qni) _Klan}

Nk Kik —k~H(Qn)T K
Y/
Q

[Q+kTIBBE KBk

= k! k-1
[0 1

B s

where

K = Kik— Ng Qnk. 17)

Thus the update of the inverse matrix involves expansion with a zero rowanehn and addition
of a rank-one matrix obtained via a matrix-vector multiplication. The running tineslee for

an update of the inverse matrix is quadratic in the siz€ofvhich is much better than explicit
inversion.

The removal case is straightforward. Knowing the inverse m&taxd using (16), we can write

~ [Q+kIBBE KBk
= k1B 1|

1915

= |01 Qw2
Q= [q21 %2}

LAsSkoV, GEHL, KRUGER AND MULLER

Re-writing this block matrix expression component-wise, we have:

Q= 11— K BBk (18)
Bk = KO12 = O12/022 (19)
Bk = K1 = 021/ G2 (20)
K™ = gpo. (21)

Substituting the last three relations into the first we obtain:

_ Gn2%a1 22)

Q=0u 2

The running time of the removal operations is also quadratic in the si@e of

3. Extension to One-Class Classification

Availability of labels, especially online, may not be possible in certain applicatibor example,
analysis of security logs is extremely time-consuming, and labels may be avaitdpli, limited
guantities after forensic investigation. As another example, monitoring ofalritirastructures,
such as power lines or nuclear reactors, must prevent a systemdemhimng a failure state which
may lead to gravest consequences. Nevertheless, algorithms similar to I8$#¥fication can be
applied for data-description, i.e. for automatic inference of a concegatrig¢ions deviations from
which are to be considered abnormal. Since examples of the class to bedleaemot (or rarely)
available, the problem is known as “one-class classification”.

The two well-known approaches to one-class classification are sepaotiata points from
the origin (Scklkopf et al., 2001) and spanning of data points with a sphere (Tax aimg D209).
Although they use different geometric constructions, these approbeate similar, and in certain
cases even identical, formulations of dual optimization problems. As we sglliscremental
learning can be naturally extended to both of these approaches.

The dual formulation of the “sphere” one-class classification is givethéyollowing quadratic
program:

n 1 n n
max i;a, (X, %) 22 lea.aj (X, Xj)
subjectto: Ko <C,i=1,...,n (23)

n

i;ai =1.

In order to extend the C&P algorithm for this problem consider the followirgirabt saddle-point
guadratic problem:
: o Tyt CnT T
ml?xogygc W:=—-c'a+3a Ha+p@ a+b). (24)
a'a-+b=0
It can be easily seen that formulation (24) generalizes both problemar@3)L), subject to follow-
ing definition of the abstract parameters:

c=diagK), H=K, a=1 b=1

1916

INCREMENTAL SUPPORTVECTORLEARNING

Algorithm 2 Initialization of incremental one-class SVM.

1: Take the first{%] objects, assign them weigBtand put them irE.
Take the next objedt, assignmic =1 — L%JC and put it inS.
Compute the gradienty of all objects, using Eq. (2).

Computeu so as to ensure non-positive gradient&int = —m%xgi
IS

Enter the main loop of the incremental algorithm.

The C&P algorithm presented in sections 2.2—2.4 can be applied to formulafipal@ost without
modification. The only necessary adjustment is a special initialization proedoiuidentification
of an initial feasible solution presented in Algorithnt 2.

4. Convergence Analysis

A very attractive feature of Algorithm 1 is that it obviously makes progtess optimal solution if

a non-zero updat&a, is found. Thus potential convergence problems arise only when a pdateu
step is encountered. This can happen in several situations. First, ifttBéssempty, no non-zero
update ofAa. is possible since otherwise the equality constraint of the SVM training proldem
violated. Second, a zero update can occur when two or more points sinnultyenigrate between
the index sets. In this case, each subsequent point requires a strupiate without improvement
of Aa.. Furthermore, it must be guaranteed, that after a point migrates frorseatrte another,
say fromE to S it is not immediately thrown out after the structure and the sensitivity parasneter
are re-computed. These issues constitute the scope of convergatyssato be covered in this
section. In particular we present a technique for handling the specalafahe empty s and
show that immediate cycling is impossible if a kernel matrix is positive semi-definite.

4.1 Empty SetS

The procedure presented in the previous two sections requires anqug-set of unbounded support
vectors, otherwise a zero matrix must be inverted in Eq. (7). To handleitiridisn, observe that
the main instrument needed to derive the sensitivity relations is pegging ofatengt to zero for
unbounded support vectors, which follows from the Kuhn-Tickerdttions (2). Notice that the
gradient can also be zero for some points in &edO. Therefore, if the seBis empty we can
freely move some examples with zero gradients from theEsatsdO to it and continue from there.
The question arises: what if no points with zero gradients can be fougairD?
With Aa = 0, Ao = 0 and no examples in the sgtthe equilibrium condition (4) reduces to

Agc = ycAu

25
Agr = yrAp. (29)

This is an equilibrium relation betweéu., and the scalahy, in which sensitivity is given by the
vector|yc; yr]. In other words, one can changéreely until one of components i} or gc hits zero,
which would allow an example to be brought ir§o

4. Through the presentation of the C&P algorithm it was assumed thasiblfeaolution is always available. This is
indeed no problem for the classification SVM since the zero solution is alfemsible. For the sphere formulation
of one-class classification this is not the case.

1917

LAsSkoV, GEHL, KRUGER AND MULLER

The problem remains — sindsgu is free as opposed to non-negatia. — to determine the
direction in which the components gf are pushed by changes in This can be done by first
solving (25) forAy, which yields the dependence &, on Agc:

Yr
Ag = — Y Ag.
Or Yo Oc

SincelAg. must be non-negative (gradient of the current example is negativehendd be brought
to zero if possible), the direction dg; is given by—xyi. Hence the feasibility conditions can be
formulated as

The rest of the argument essentially follows the main case. The largesbleostepALR is
computed as

0

AR= min 2. 26
H icrRUIR Y (20)

and the largest possible stAp° is computed as

Oc
A==, 27
H Ve (27)
Finally, the updat&pu™®*is chosen as

AP = min (APR ALC). (28)

4.2 Immediate Cycling

A more dangerous situation can occur if an example entering ti&is@nmediately thrown out at
a next iteration without any progress. It is not obvious why this kind of iniatectycling cannot
take place, since the sensitivity information contained in veq@@ndy does not seem to provide
a clue what would happen to an example after the structural change.n@ilysia provided in this
section shows that, in fact, such look-ahead information is present in thathafg and that this
property is related to positive semi-definiteness of a kernel matrix.

When an example is added to the Sgthe corresponding entry in the sensitivity vecfors
added at the end of this vector. Let us comgdutdter an addition of example k to set S

= = [Q 0][ve] L[BeBi Bl [Ye
B_ Qn_ [0 O] [KCJ K B-kr 1 Kes|
Computing the last line in the above matrix products we obtain:

Bena= —% (BI [Kyc d] + ch>~ (29)

cs\en

Yk

Let us assume that (defined in Eq. (17)) is non-negative. Examples witk= 0 must be
prevented from entering the sg&externally, otherwise invertibility o is ruined; therefora > 0

1918

INCREMENTAL SUPPORTVECTORLEARNING

for the examples entering the setThus we can see that the signﬁgﬁd after the addition of the
elementk to setSis the oppositeo the sign ofyk before the addition. Recalling the feasibility
conditions for inclusion of examples in s8tone can see that if an example is joining from the
setO its B after inclusion will be positive, and if an example is joining from the Bats (3 after
inclusion will be negative. Therefore, in no case will an example be immedittedwn out of the
setS,

Thus to prove that immediate cycling is impossible it has to be showmthd. Two technical
lemmas are useful before we proceed with the proof of this fact.

Lemma 1l Letz= —Qnk, 2= [z1]". Thenk = Z'RZ

Proof By writing out the quadratic form we obtain:

RZ=7"Q 1z nfz+ Z Ny + Kik
=1 QQ 1 QNK — 2NkQNk + Kik
= Kik — NkQNk-

The result follows by the definition of. |

The next lemma establishes a sufficient condition for non-negativity odratic form with a
matrix of the special structure possessed by m&rix

0 y'
y K

Lemma 2 LetX = [x0,X|T, K = {
a positive semi-definite;an matrix. If X'y = 0 thenX"K% > 0.

] , Where ¥ is a scalar, xy are vectors of length n, and K is

Proof By writing out the quadratic form we obtain
KTKK = 2xoxTy+ X" Kx.

SinceK is positive semi-definite the second term is greater than or equal to 0, astitheefirst term
vanished by the assumption of the lemma. |

Finally, the intermediate results of the lemmas are used in the main theorem of tioa.sec
Theorem 3 If the kernel matrix K is positive semi-definite thetr 0.

Proof Lemma 1 provides a quadratic form representatior.ofour goal is thus to establish its
non-negativity using the result of Lemma 2.
Using the partition matrix inversion formula we can wi@@dcf. Eq. 7) as

1 I, Tk-1
1__§ 1 ﬁysts T 1
— — — — 9
SKss Ys Kss - SKss YsYs Kss

Q=

1919

LAsSkoV, GEHL, KRUGER AND MULLER

whered = yI K lys. SubstitutingQ into the definition ofzin Lemma 1 and explicitly writing out
the first term, we obtain:

Z.= [ZO}:—[l _%1 1 81le1§SlT 1} [yk]
Z0 5Kss Vs Koo — 5Kss VaYs Kes | [Ksk

_ [. BV YA Kss' K } |

— 2K sy — KesT Kkt Ksstysye Kes Kk

Then L L
Z{oYs+ Yk = — = Yi¥a Kes'Ys — KiK' ¥s + = Kddas'Ysye Kes ¥+ Yk = 0
0 N—— o) N——
3 5
and the result follows by Lemma 2. |

5. Runtime Analysis and Efficient Design

Let us now zoom in on computational complexity of Algorithm 1 which constitutegar iteration

of the overall training algorithm.Asymptotically, the complexity of a minor iteration is quadratic in
a number of examples learned so far: re-computation of the grafliant]y involve matrix-vector
multiplications, which have quadratic complexity, and the recursive update iofzerse matrix has
also been shown (cf. Section 2.4) to be quadratic in the number of exarfiplese estimates have
to be multiplied by a number of minor iterations needed to learn an example. Theenofirhinor
iterations depends on the structure of a problem, namely on how often exxamigiete between
the index sets until an optimal solution is found. This number cannot be tdmtitee algorithm,
and can be potentially exponentially large.

For the practical purposes it is important to understand the constantshiddsymptotic esti-
mates. To this end, the analysis of a direct implementation of Algorithm 1 in Matlalsepted in
Section 5.1. The focus of our analysis lies on the complexity of the main stepmifor iteration
in terms of arithmetic and memory access operations. This kind of analysis istempbecause
arithmetics can be implemented much more efficiently than memory access. Pedertuaed
numeric libraries, such as BLASr ATLAS,® make extensive use of the cache memory which is
an order of magnitude faster than the main memory. Therefore, a key tiemdffcof the incre-
mental SVM algorithm lies in identifying performance bottlenecks associatedwéthory access
operations and trying to eliminate them in a clever design. The results of alysanare illustrated
by profiling experiments in Section 5.2, in which relative complexity of the main coatipnal
operations, as a percentage of total running time, is measured for difkenmels and sample sizes.

5. A major iteration corresponds to inclusion of a new example; theredtireomplexity estimates must be multiplied
by a number of examples to be learned. This is, however, a (verygtwase scenario, since no minor iteration is
needed for many points that do not become support vectors at theftimardnclusion.

6. The structure of the problem is determined by the geometry of a seasible solutions in a feature space. Since we
essentially follow the outer boundary of the set of feasible solutions, e/ea@und by the same limitation as linear
and non-linear programming in general, for which it is known that problexist with exponentially many vertices
in a set of feasible solutions (Klee and Minty, 1972).

7. http://www.netlib.org/blas/

8. http://math-atlas.sourceforge.net/

1920

INCREMENTAL SUPPORTVECTORLEARNING

It follows from our analysis and experiments that the main difficulty in efficiemlementation
of incremental SVM indeed lies in selection of non-contiguous elements of steay. in Eq. (9).
The problem cannot be addressed within Matlab in which storage organizsone-dimensional.
Furthermore, it must be realized, as our experience showed us, thelymeimplementing in-
cremental SVM without addressing the tradeoff between selection andhatithoperations, for
example using C++ with one-dimensional storagees notsolve the problem. The solution pro-
posed in Section 5.3, which allows to completely eliminate expensive selecticatiope at a cost
of minor increase of arithmetic operations, is based on a mixture of row-@uachn-major storage
and on the gaxpy-type (e.g. Golub and van Loan (1996)) matrix-veoboiupts. The evaluation of
the new design presented in Section 5.4 shows performance improvenietat 20 times.

5.1 Computational Complexity of Incremental SVM

On the basis of the pseudo-code of Algorithm 1 we will now discuss the kagssthat will later be
used for a more efficient implementation of the incremental SVM.

Line 1: Computation ofg. is done according to Eq. (2). This calculation requires partial computa-
tion of the kernel ronK¢ for the current example and examples in theSdf the condition
of the while loop in line 2 does not hold then the rest of the kernelkgwas to be computed
for Eqg. (9) in line 3. Computation of a kernel row is expensive since aeutf input points,
usually stored as a matrix, has to be selected using the inde® aetR.

Line 3: The computation o¥ via Eqg. (9) is especially costly since a two-dimensional selection
has to be performed to obtain the matk (O(sr) memory access operations), followed
by a matrix-vector multiplication@(sr) arithmetic operations). The computation ®fin
line 3 is relatively easy because the inverse mafrils present and only the matrix-vector
multiplication for Eq. (7) O(s9 arithmetic operations) has to be performed. The influence of
y andp for the algorithm scales with the size of Ssnd the number of data points.

Lines 4-8: These lines have minor runtime relevance because only vector-scalalatialts and
selections are to be performed.

Lines 9-16: Administration operations for se&andR have inferior complexity. If a kernel row of
the exampld is not present (in case &f entering theSfrom O) then it has to be re-computed
for the update of the inverse matrix in line 17.

Line 17: The update of the inverse matrix requires the calculatianadcording to Eq. (17)3(s9
arithmetic operations), which is of a similar order as the computatidgh afhe expansion
and rank-one matrix computation have also effect on the algorithm runtine eXransion
requires memory operation (in the naive implementation, a reallocation of the ersirix)
and is thus expensive for a large inverse matrix.

To summarize, the main performance bottlenecks of the algorithm are linesrid 37ain which
memory access operations take place.

1921

LAsSkoV, GEHL, KRUGER AND MULLER

5.2 Performance Evaluation

We now proceed with experimental evaluation of the findings of Section 5.1a #&st-bed the
MNIST handwritten digits data seis used to profile the training of an incremental SVM. For every
digit, a test run is made on the data sets of size 1000, 2000, 3000, 5020 808 randomly drawn
from the training data set. Every test run was performed for a lineaekexmpolynomial kernel of
degree 2 and an RBF kernel with= 30. Profiles were created by the Matlab profiler.

Eight operations were identified where a Matlab implementation of AlgorithmAdspthe bulk
of its runtime (varying from 75% to 95% depending on a digit). Seven of tbpseations pertain
to the bottlenecks identified in Section 5.1. Another relatively expensivatpe is augmentation
of a kernel matrix with a kernel row. Figure 1 shows proportions of runtapent in the most
expensive operations for the digit 8.

linear kernel
1 T

{=
=

portion of runtime

polynomial kernel
T

0.5

portion of runtime
o
|

RBF kernel
.“_E-’ 1 T
€
2
P ;_: 7
c
il
g o
1000 2000 3000 5000 10 000
datasize

Il Line 17, Eq.(17) : kappa calculation

[Line 17, Eq.(16) : update of matrix Q

[Line 13 : kernel matrix augmentation

[Line 3,Eq.(7) :beta calculation

[Line 3, Eq.(9) : matrix—vector multiplication

Il Line 3,Eq.(9) : matrix creation from kernel matrix
[] Line 1/3 : kernel calculation

Hl Line 1/3 : matrix creation from input space

Figure 1: Profiling results for digit 8 (MNIST).

The analysis clearly shows that memory access operations dominate the rsimbwiein Fig-
ure 1. It also reveals that the portion of kernel computation scales dathringreasing data size
for all three kernels.

9. This data set can be found at http://yann.lecun.com/exdb/mnist/, atelre©60,000 training and 10,000 test images
of size 28x 28.

1922

INCREMENTAL SUPPORTVECTORLEARNING

5.3 Organization of Matrix Storage and Arithmetic Computations

Having found the weak spots in the Matlab implementation of the incremental S\éMyilvnow
consider the possibilities for the efficiency improvement. In to order gaitraloover the storage
design we choose C++ as an implementation platform. Numerical operatiortsecefficiently
implemented by using the ATLAS library.

5.3.1 SORAGEDESIGN

As it was mentioned before, the difficulty of selection operations in Matlaldtrgem storing ma-
trices as one-dimensional arrays. For this type of storage, selectiowsfind columns necessarily
required a large amount of copying.

ﬂouble** doub\le**
D D D D D double*

| TTT] i

(T % % %

T

| 0]

— T Tl i
@ DDDL row D D D row

column column

[|
[|
[|
|

row-major matrix column-major matrix

Figure 2: C++ matrix design

An alternative representation of a matrix in C++ is a pointer-to-pointer sclsbiown in Fig-
ure 2. Depending on whether rows or columns of a matrix are stored idiomesional pointed to
doubl e** pointers, either a row-major or a column-major storage is realized.

What are the benefits of a pointer-to-pointer storage for our purPoSesh matrix represen-
tation has the advantage that selection along the pointer-of-pointer aqqaiyes hardly any time
since only addresses of rows or columns need to be fetched. As aareudan completely elimi-
nate selection operations in line 1 by storing the input data in a column-major nfairbkermore,
by storing a kernel matrix in a row-major format (a) additions of kernekroan be carried out with-
out memory relocation, and (b) selections in the malixare somewhat optimized since> s.
Another possible problem arises during addition of a new example whemnoslbave to added to
a kernel matrix. This problem can be solved by pre-allocation of columnshwdan be done in
constant-time (amortized).

5.3.2 MATRIX OPERATIONS

The proposed memory design does not completely solve the problem: wewtilidhperform col-
umn selection irs when computind<;s. Although tolerable for smaller number of support vectors,

1923

LAsSkoV, GEHL, KRUGER AND MULLER

Algorithm 3 C++ calculation ofy for (9) using gaxpy-type matrix-vector multiplication
Create an empty vectar
fori=1:|s do
z=PBi11Ks,+z {gaxpy cal}
end for
Computey = B1yr +2z + Ker

Algorithm 4 C++ calculation ofy for (9) using a naive matrix-vector multiplication
Create a matri¥
L= [er; Ksr]
Computey=B'Z+K, {dgemm cal}

the problem becomes acute whegrows with the arrival of more and more examples. Yet it turns
out to be possible to eliminate even this selection by re-organizing the compui&yion
Consider the following form of computing Eq. (9:

Y = Bry] +Blendsr + Ker. (30)

The first and the last terms are merely vectors, while the middle term is compaitefaumatrix-
vector multiplication and selection over a matrix. Using the transposed niatr{still stored in a
row-major form) at first seems counter-intuitive, as we argued in théquegection that expensive
selection should be carried out over short indice§Siand not the long indices iR. However,
consider the following observation:

Sinces < r we can just as well run the prodL@:emﬁgl;endat a tolerable extra cost of
O(ss9 arithmetic operations.

By doing so we do not need to worry about selection! The exél@ments in a product vector can
be discarded (of course by a selection, however selection over a i&cteap).

Still another problem with the form (30) of tyeupdate remains. If we run it as an inner-product
update, i.e. multiplying a row vector with columns of a matrix stored in a row-majondg this
loop must be run over the elements in non-contiguous memory. This is as slasingsselection.
However, by running it as a gaxpy-type update (e.g. Golub and van,4896) we end up with
loops running over theows of a kernel matrix, which brings a full benefit of performance-tuned
numerics. The summary of the gaxpy-type computationy f given in Algorithm 3. For com-
parison, Algorithm 4 shows a naive implementation of yhgdate using inner-product operations
(dgemm-type update).

This same construction can be also applied to the inverse matrix update ir6Ehy (dsing the
following format:

a=Ppra. (31)
By doing so explicit creation of a rank-one matrix can be avoided.

To summarize our design, by using the row-major storage of (transposatiix K and the
gaxpy-type matrix-vector multiplication selection can be avoided by at a ¢@stia O(ss) arith-
metic operations and performing a selection on a resulting vector.

10. For cleaner notation we ignore the first line in Eq. (9) here.

1924

INCREMENTAL SUPPORTVECTORLEARNING

linear kernel

1 . —— ——— — ——

0.5 B

portion of runtime

polynomial kernel
1 T T T T T

= = E = B0 |

portion of runtime
o
[63]
T

RBF kernel
1 T T T T
= e B e 2=

0.5F b

portion of runtime

1000 2000 3000 5000 10 000
datasize

I Line 17, Eq.(17) : kappa calculation

[Line 17, Eq.(16) : update of matrix Q

[Line 13 : kernel matrix augmentation

[Line 3,Eq.(7) :beta calculation

[] Line 3,Eqg.(9) :gamma calculation by gaxpy loop

[1 Line 1/3 : kernel calculation without matrix creation

Figure 3: C++ runtime proportion digit 8 (MNIST)

5.4 Experimental Evaluation of the New Design

The main goal of the experiments to be presented in this section is to evaluate #et ohthe
new design of storage and arithmetic operations on the overall perfoentdiriccremental SVM
learning. In particular, the following issues are to be investigated:

e How is the runtime profile of the main operations affected by the new design?

e How does the overall runtime of the new design scale with an increasing fsiz&aining
set?

e What is the overall runtime improvement over the previous implementations anddes it
depend on the size of a training set?

To investigate the runtime profiles of the new design, check-pointing hasrbaszed in our
C++ implementation. The profiling experiment presented in Section 5.2 (cf.rd-ijuhas been
repeated for the new design, and the results are shown in Figure 3olldweifig effects of the new
design can be observed:

1. The selection operation in Lines 1/3 is eliminated. The selection was ngcassaMatlab
implementation due to one-dimensional storage — a temporary matrix had to beddrea
order to represent a sub-matrix of the data. In the new design usingltimaremajor stor-
age for the data matrix a column sub-matrix can be directly passed (as pontaismns)
without a need for selection.

1925

LAsSkoV, GEHL, KRUGER AND MULLER

2. Matrix creation has been likewise eliminated in the computatiopiofLine 3. However,
the relative cost of the gaxpy computation in the new design remains as high edative
cost of the combined matrix creation / matrix-vector multiplication operations in thtall
implementation. The relative cost of tBecomputation is not affected by the new design.

3. Matrix augmentation in Line 13 takes place at virtually no computational cdge-to row-
major storage of the kernel matrix.

4. The relative cost of operations in Line 17 is not affected by the nasigde

The overall cost distribution of main operations remains largely the same iretheesign, kernel
computation having the largest weight for small training sets and gamma computétiothe large
training sets. However, as we will see from the following experiments, thedssign results in
major improvement of the absolute running time.

Evaluation of the absolute running time is carried out by means of the scatitog éxperiments.
The same data set and the same SVM parameters are used as in the prgiéinments. Four
implementations of incremental SVM are compared: the original Matlab implement#tio&P
(with leave-one-out error estimation turned off), the Matlab implementationggrthm 1, the C++
implementation of Algorithms 1 & 3 and the C++ implementation of Algorithms 1 &4. The latter
configuration is used in order to verify that the performance gains insteedfrom the gaxpy-type
updates rather than from switching from Matlab to C++.

The algorithms are run on the data sets ranging from 1000 to 10000 examples, and the
training times are plotted against the training set size at a log-log scale. pl¢s@re shown in
Figure 4 (for the linear kernel) and 5 (for the RBF kernel). The resattthie polynomial kernel are
similar to the linear kernel and are not shown. Ten plots are shown s$elyda each of the digits.

One can see that the C++ implementation significantly outperforms both Matlab immkeme
tions. The RBF kernel is more difficult for training than the linear kernelttie MNIST data set,
which is reflected by a larger proportion of support vectors (on aeeli®% for the RBF kernel
compared to 5% with the linear kernel, at 10000 training examples). Bechukes the experi-
ments with the C&P algorithm at 10000 training points were aborted. The Matlabrimeplkation
of Algorithm 1 was able to crank about 15000 examples with the RBF kerredrems the C++
implementation succeeded to learn 28000 examples, before running oubfrynfor storing the
kernel matrix and the auxiliary data structures (at about 3GB). Thewelpgrformance gain of
the C++ implementation using gaxpy-updates against the “best Matlab conipatitbagainst the
dgemm-updates is shown in Figure 6 (linear kernel, C&P algorithm) and Fig(iRBF kernel,
Algorithm 1). Major performance improvement in comparison to Matlab andéherC++ imple-
mentations can be observed, especially visible on larger training set sizes.

6. Applications

As it was mentioned in the introduction, various applications of incremental $évhing can
be foreseen. Two exemplare applications are presented in this sessi@eirnillustrate some
potential application domains.

1926

INCREMENTAL SUPPORTVECTORLEARNING

class 0 B class 1 class 2 class 3 class 4

runtime sec

runtime sec

data points # data points # data points # data points # data points

—©— Matlab C&P

—&- Matlab Algorithm 1
~ix— C++ Algorithm 1&3
—O— C++ Algorithm 1&4

Figure 4: Scaling factor plots of incremental SVM algorithms with the linearddern

class 0 . class 1 . class 2 . class 3 . class 4

runtime sec

runtime sec

3 4 3 3 4

data points # data points # data points # data points # data points

—©— Matlab C&P

—&- Matlab Algorithm 1
~— C++ Algorithm 1&3
—O— C++ Algorithm 1&4

Figure 5: Scaling factor plots of incremental SVM algorithms with the RBF k€me- 30).

1927

LAsSkoV, GEHL, KRUGER AND MULLER

class 0 class 1

improvment
]
]

class 2 class 3

improvment
o
]
1
<)
I
]
1

class 4 class 5
25 — 5 —
[} — —
g —
> —
(=}
Eo 0
class 6 class 7
2 5= T = 5 :
[} —
g - o —
> R —
[
o
class 8 class 9
2 5 — 5 —
Q o
E 1 -
>
o 4
1000 2000 3000 5000 10000 1000 2000 3000 5000 10000
data points # data points

[C++ Algorithm 1&3 versus Matlab C&P
[] C++ Algorithm 1&3 versus C++ Algorithm 1&4

Figure 6: Runtime improvement, linear kernel.

6.1 Learning with Limited Resources

To make SVM learning applicable to very large data sets, a classifier hasctmbtained to have
a limited number of objects in memory. This is, in principle, exactly what an onliresi€ier with
fixed window sizeM does. Upon arrival of a new example, a least relevant example neéds to
removed before a new example can be incorporated. A reasonabléarii@r relevance is the
value of the weight.

USPS experiment: learning with limited resources. As a proof of concept for learning with
limited resources we train an SVM on the USPS data set under the limitations onrttiEenof
points that can be seen at a time. The USPS data set contains 7291 traidi@g§himages
of handwritten digits, size 1& 16 (Vapnik, 1998). On this 10-class data set 10 support vector
classifiers with a RBF kernefi” = 0.3- 256 andC = 100, were trained During the evaluation of
a new obiject, it is assigned to the class corresponding to the classifier widrdlet output. The
total classification error on the test set for different window sids shown in Figure 8.

One can see that the classification accuracy deteriorates marginally ¢by H96) until the
working size of 150, which is about 2% of the data. True, by discardinglévant” examples,
one removes potential support vectors that cannot be recoverddtat atage. Therefore one can

11. The best model parameters as reported in (Vapnik, 1998) wetk u

1928

INCREMENTAL SUPPORTVECTORLEARNING

class 0 class 1

|
|

improvment
o

[
S

class 2 class 3

|
|

improvment
o

I
<)

1

class 4 class 5

improvment
o

]
=)

]

class 6 class 7
=5 5
[}
£
> —
[
o
class 8 class 9
2 5 — 5 —
[}
€
1S —
o
a -‘
Eo 0
1000 2000 3000 5000 10000 1000 2000 3000 5000 10000
data points # data points

[C++ Algorithm 1&3 versus Matlab Algorithm 1
[] C++ Algorithm 1&3 versus C++ Algorithm 1&4

Figure 7: Runtime improvement, RBF kernel.

classification error

— ©- ©

.)
50 100 150 200 250 300 350 400 450 500
window size

Figure 8: Test classification errors on the USPS data set, using a swpptor classifier (RBF
kernel,0? = 0.3- 256) with a limited "window” of training examples.

expect that performance of a limited memory classifier would be worse thaoftha unrestricted
classifier. It is also obvious that no more points than the number of supgeidrs are eventually
needed, although the latter number is not known in advance. The avenaper of support vectors

1929

LAsSkoV, GEHL, KRUGER AND MULLER

per each unrestricted 2-class classifier in this experiment is 274. dhetbe results above can be
interpreted as reducing the storage requirement by 46% from the minimal@ighof 10% increase
of classification problem.

Notice that the proposed strategy differs from the caching strategyatyfpicmany SVM9™-
like algorithms (Joachims, 1999; Laskov, 2002; Collobert and Bengi@il 2@ which kernel prod-
ucts are re-computed if the examples are found missing in the fixed-size aadhithe accuracy of
the classifier is not sacrificed. Our approach constitutes a tradetofébe accuracy and computa-
tional load because kernel products never need to be re-compusbadult be noted, however, that
computational cost of re-computing the kernels can be very significadcidly for the problems
with complicated kernels such as string matching or convolution kernels.

6.2 Active Learning

Another promising application of incremental SVM is active learning. In thenado, instead
of having all data labelled beforehand, an algorithm “actively” choesesnples for which labels
must be assigned by a user. Active learning can be extremely sudc#ssftindispensable, when
labelling is expensive, e.g. in computer security or in drug discovery atjalitcs.

A very powerful active learning algorithm using SVM was proposed aymith et al. (2003).
Assume that the goal of learning is to identify “positive” examples in a dataldet.meaning of
positivity can vary across applications; for example, it can be bindingeasties of molecules in
drug discovery applications, or hacker attacks in security applicatioalect®n of a next point
to be labelled is carried out in the algorithm of Warmuth et al. (2003) using ®ubistics that
can be derived from an SVM classifier trained on points with known lafdis.“largest positive”
heuristic selects the point that has the largest classification score amergrajples still unlabeled.
The “near boundary” heuristic selects the point whose classificatioe ses the smallest absolute
value. Although the semantics of these two heuristics differ — in one case/ivg to explore the
space of positive examples as fast as possible, whereas in the oteagheaffort is focused on
learning the boundary — in both cases the SVM has to be re-trained aftersekection. In the
original application of Warmuth et al. (2003) the data samples were relasvedyi, therefore one
could afford re-training SVM from scratch after addition of new pointbviOusly, a better way to
proceed is by applying incremental learning as presented in this paper.

In the remaining part of this section experiments will be presented that pgreugsefulness of
active learning in the intrusion detection context. Since the observed datoogain thousands
and even millions of examples it is clear that the problem can be addredyagsorg incremental
learning. As a by-product of our experiments, it will be seen that atg®ming helps to uncover
the structure of a learning problem revealed by the number of suppzidrse

The underlying data for the experiments is taken from the KDD Cup 1999s#atd As a
training set, 1000 examples are randomly drawn with an attack rate of 1@pefde incremental
SVM was run with the linear kernel and the RBF kernel vaith: 30. An independent set of the same
length with the same attack distribution is used for testing. The results arearagad over multiple
repetitions in order not to “disturb” the semantics of different phasestfealearning as can be
seen from the ROC curves. However, similar behavior was obsenerdravtiple experiments.

KDD Cup experiment: active learning. Consider the following learning scenario. Assume that
we can run an anomaly detection tool over our data set which ranks allofhts mccording to

12. http://www-cse.ucsd.edu/users/elkan/clresults.html

1930

true positive rate

0.9

0.8

0.7

0.6

0.5HT

0.4F

0.3

0.2

0.1

INCREMENTAL SUPPORTVECTORLEARNING

ROC curves, training set, linear kernel

— near boundary
largest positive
-— - anomaly score

true positive rate

0.9

0.8

0.7

0.6

0.5F]

0.4

0.3

0.2

0.1

ROC curves, training set, RBF kernel

— near boundary
largest positive
-— - anomaly score

. .
0.4 0.6
false positive rate

. .
0.4 0.6
false positive rate

0.8

Figure 9: linear kernel, n=10 and m=50

their degree of anomaly. No labels are needed for this; however, if ov kmem, we can evaluate
anomaly detection by a ROC curve. It is now the goal to use active learngggetd a ROC curve
of anomaly detection can be improved.

We take the firsh examples with the highest anomaly scores and train a (batch) SVM to obtain
an initial model. After that we turn to active learning and learn the negkamples. We are now
ready to classify the remaining examples by the trained SVM. The questi@s:aafter spending
manual effort to labeh+ m examples, can we classify the remaining examples better than anomaly
detection?

In order to address this question, an accuracy measure must be definadlearning scenario.
This can be done using the fact that only the ranking of examples acgdddiheir scores —and not
the score values themselves — matters for the computation of a ROC curves@wt Mohri, 2004).
The ranking in our experiment can be defined as follows: therfiesamples are ranked according
to their anomaly scores, the nerexamples are ranked according to their order of inclusion during
the active learning phase, and the remaining examples are ranked agdorttieir classification
scores.

The ROC curves for active learning with the two heuristics and for anoneéction are shown
in Figure 9. One can easily see a different behavior exhibited by the tive dearning rules. The
“largest positive” rule attains the highest true positive rate during theedeiarning phase, but does
not perform significantly better than anomaly detection during the classificaliasei(> 60). On
the contrary, the “near boundary” rule is close or worse than anomédgtiten during the learning
phase but exhibit a sharp increase of the true positive rate after movatgstification mode. Its
accuracy then remains consistently better than anomaly detection for aeraiédfalse positive
interval (until FP = 0.3 for the linear kernel and until FP = 0.9 for the RBi&bH. Similar behavior

1931

LAsSkoV, GEHL, KRUGER AND MULLER

ROC curves, test set, linear kernel

ROC curves, test set, RBF kernel

g O 1 80ep
o | o ‘
2 0 2 I
% 0.5(1 @ 05 - 1
] rr o r
o 1 o -
%} Il o 1
= I = ;
= 045 1 5 04fr i
{I 1
1 1
0.3 L 1 0.3 1
! 1
1 1
ozL 1 0.2H 1
; — - SVMall i — - SVMall
! — - SVM reduced — - SVM reduced
01F — near boundary 01F — near boundary H
| largest positive X largest positive
| -— anomaly score | -— anomaly score
1 L Y

.
0.8 1 0 0.2 0.4 0.6 0.8 1

. i
0 0.2 0.4 0.6
false positive rate

false positive rate

Figure 10: linear kernel, n=10 and m=50

of the two heuristics in the active learning phase was also observed byutVaet al. (2003). Yet
the “near boundary” heuristic is obviously more suitable for classificasorge it explores the

boundary region and not merely the region of positive examples.

Another interesting insight can be gained by investigating the behaviortigédearning on
test data. In this case, supervised learning can also be drawn into ¢sompain particular, we
consider a full SVM (using a training set size of 1000 examples as ogposenly 60 examples
used in the active learning) and a reduced SVM. The latter is obtainedaffathSVM by finding
a hyperplane closest to a full SVM hyperplane subject to 1-norm ragaten over expansion
coefficients (cf. Schilkopf et al. (1999)). The regularization constant is chosen suclatretuced
SVM has approximately the same number of support vectors as the solutgn pactive learning
(in our case the valuk = 2.5 resulted in about 30 support vectors). Thus one can compare active

learning with supervised learning given equal complexity of solutions.

The ROC curves of active learning, supervised learning and anomiagtiba on test data are
shown in Figure 10. It can be observed that the “near-boundanyisti of active learning attains
a solution which is at least as good (for EP0.4) as a reduced SVM for the linear kernel and
significantly better for the RBF kernel. This shows that active learning doeery good job at
discovering the necessary structure of a solution — it picks a betterseyedion within a desired
complexity since it is using a learning-related criterion to select an interesjimgsentation instead

of a merely geometric one.

1932

INCREMENTAL SUPPORTVECTORLEARNING

7. Discussion and Conclusions

Online learning algorithms have proved to be essential when dealing witerfalarge (see e.g. Le-
Cun et al. (1998); Bordes et al. (2005); Tsang et al. (2005)))angh-stationary data (see e.g. Rob-
bins and Munro (1951); Murata (1992); Murata et al. (1997, 200%)hile classical neural net-
works (e.g. LeCun et al. (1998); Saad (1998)) have a well establishine learning toolbox for
optimization, incremental learning techniques for Support Vector Machiares been only recently
developed (Cauwenberghs and Poggio, 2001; Tax and Laska®; RIadtin, 2002; Ma et al., 2003;
Ma and Perkins, 2003).

The current paper contributes two-fold to the field of incremental SVMhlaegr The conver-
gence analysis of the algorithm has been performed showing that immedikitg ©f the algorithm
is impossible provided a kernel matrix is positive semi-definite. Furthermargrapose a better
scheme for organization of memory and arithmetic operations in exact incran$/M using the
gaxpy-type updates of the sensitivity vector. As it is demonstrated by>qmerienents, the new
design results in major constant improvement in the running time of the algorithm.

The achieved performance gains open wide possibilities for applicatiorcadnrental SVM
to various practical problems. We have presented exemplary applications fmossible scenar-
ios: learning with limited resources and active learning. Potential applicadfdnsremental SVM
learning include, among others, drug discovery, intrusion detectionpnesurveillance, monitor-
ing of non-stationary time series etc. Our implementation is available free ajelfiaracademic
use at http://www.mind-ids.org/Software.

It is interesting to compare exact incremental learning to recently propalsexchative ap-
proaches to online learning. The recent work of Bordes et al. (20@Sents an online algorithm
for L1 SVM, in which a very close approximation of the exact solution is builiree before the
last gap is bridged in the REPROCESS phase in an offline fashion. Thistaigdas been shown
to scale well to several hundred thousand examples, however its onlirt®sas not as accurate
as the exact solution. It has been observed (cf. Fig. 9 in Bordes(208b)) that the REPROCESS
phase may result in major improvement of the test error and may come at afiggincomparison
with the online phase, depending on a data set. Another recent algorith@ortéé&/ector Machine
of Tsang et al. (2005), is based on the L2 formulation of an SVM and hashbwn to scale to
several million of examples. The idea of this algorithm is to approximate a solutiam t@ SVM
by a solution to the two-class Maximal Enclosing Ball problem, for which séefficient online
algorithms are known. While scalability results of CVM are very impressiveatiproximation of
the exact solution can likewise in higher test errors.

The major limilation of the exact incremental learning is its memory requirement, giaceet
of support vectors must be retained in memory during the entire learning.tdihis limitation,
the algorithm is unlikely to be scalable beyond tens of thousands examplesydrm for data sizes
within this limit it offers an advantage of immediate availablility of the exact solutiondal in e.g
learning of non-stationary problems) and reversibility.

Future work will include further investigation of properties of incrementd/Ssuch as numer-
ical stability and their utility for tracking the values of generalization boundselationship with
parametric optimization needs to be further clarified. Extensions to advaarrenig modes, such
as learning for structured domains and semi-supervised learning,iagedomsidered.

1933

LAsSkoV, GEHL, KRUGER AND MULLER

Acknowledgments

The authors are grateful to David Tax and Christian Zillober for fruitfstdssions on various top-
ics of mathematical optimization that contributed to the development of main ideais qftber.
Reré Gerstenberger provided valuable help in the profiling experiments. Tdriswas partially
supported byBundesministeriumif Bildung und Forschunginder the project MIND (FKZ 01-
SC40A), byDeutsche Forschungsgemeinschaftler the project MU 987/2-1, and by the IST Pro-
gramme of the European Community under the PASCAL Network of Excell¢8€€2002-506778.
This publication only reflects the authors’ views.

References

D. Angluin. Queries and concept learnifgachine Learning2:319-342, 1988.
C. M. Bishop.Neural Networks for Pattern Recognitio®xford University Press, 1995.

B.. Blankertz, G. Dornhege, C. Safer, R. Krepki, J. Kohimorgen, K.-R. Mler, V. Kunzmann,
F. Losch, and G. Curio. BCI bit rates and error detection for fasé-pastor commands based on
single-trial EEG analysidEEE Transactions on Neural Systems and Rehabilitation Engineering
11:127-131, 2003.

A. Bordes, S. Ertekin, J. Wesdon, and L. Bottou. Fast kernel classifor online and active learn-
ing. Journal of Machine Learning Researd11579-1619, 2005.

G. Cauwenberghs and T. Poggio. Incremental and decrementalrsuppimr machine learning. In
T. K. Leen, T. G. Dietterich, and V. Tresp, editoAglvances in Neural Information Processing
Systemsvolume 13, pages 409-415. MIT Press, 2001.

S. ChakrabartiMining the Web: Discovering Knowledge from Hypertext Datimrgan-Kaufmann,
2002. ISBN 1-55860-754-4.

C.-C. Chang and C.-J. Lin. Libsvm: Introduction and benchmarks. Teshreport, Department
of Computer Science and Information Engineering, National Taiwan sityeTaipei, 2000.

R. Collobert and S. Bengio. SVMTorch: Support vector machines fgelacale regression prob-
lems. Journal of Machine Learning Researcti143-160, 2001.

C. Cortes and M. Mohri. AUC optimization vs. error rate minimizationPhoc. NIPS'20032004.

E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfapplications of Data Mining in Com-
puter Security chapter A geometric framework for unsupervised anomaly detectionctoege
intrusions in unlabeled data. Kluwer, 2002.

G. H. Golub and C. F. van LoaMatrix ComputationsJohn Hopkins University Press, Baltimore,
London, 3rd edition, 1996.

T. Joachims. Making large—scale SVM learning practical. In B.08apf, C. J. C. Burges, and
A. J. Smola, editorsiAdvances in Kernel Methods — Support Vector Learnpages 169-184,
Cambridge, MA, 1999. MIT Press.

1934

INCREMENTAL SUPPORTVECTORLEARNING

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernelsT.IG. Diettrich,
S. Becker, and Z. Ghahramani, editofglvances in Neural Inf. Proc. Systems (NIPS @apes
785-792, 2001.

F. Klee and G. J. Minty. How good is the simplex algorithm? In O. Sisha, ediitequalities I,
pages 159-175. Academic Press, 1972.

P. Laskov. Feasible direction decomposition algorithms for training suppotor machinesMa-
chine Learning46:315-349, 2002.

P. Laskov, C. Scifer, and |. Kotenko. Intrusion detection in unlabeled data with quaptesre
support vector machines. Froc. DIMVA pages 71-82, 2004.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Mler. Efficient backprop. In G. Orr and K.-R. iler,
editors,Neural Networks: Tricks of the Tragdeolume 1524, pages 9-53, Heidelberg, New York,
1998. Springer LNCS.

N. Littlestone, P. M. Long, and M. K. Warmuth. On-line learning of linear tiorts. Technical
Report CRL-91-29, University of California at Santa Cruz, Octol8911

J. Ma and S. Perkins. Time-series novelty detection using one-classd¥gator Machines. In
IJCNN, 2003. to appear.

J. Ma, J. Theiler, and S. Perkins. Accurate online support vectaessign. http://nis-
www.lanl.gov/ jt/Papers/aosvr.pdf, 2003.

M. Martin. On-line Support Vector Machines for function approximatioecfnical report, Uni-
versitat Poliecnica de Catalunya, Departament de Llengatges i Sistemes tfosn2002.

N. Murata.A statistical study on the asymptotic theory of learniRgD thesis, University of Tokyo
(In Japanese), 1992.

N. Murata, M. Kawanabe, A. Ziehe, K.-R.Mer, and S.-I. Amari. On-line learning in changing
environments with applications in supervised and unsupervised learNiegral Networks15
(4-6):743-760, 2002.

N. Murata, K.-R. Miller, A. Ziehe, and S. i. Amari. Adaptive on-line learning in changing emsr
ments. In M. C. Mozer, M. I. Jordan, and T. Petsche, editddyjances in Neural Information
Processing Systemelume 9, page 599. The MIT Press, 1997.

G. Orr and K.-R. Miller, editors. Neural Networks: Tricks of the Tradgolume 1524. Springer
LNCS, 1998.

J. Platt. Fast training of support vector machines using sequential minintiadizgtion. In
B. Scholkopf, C. J. C. Burges, and A. J. Smola, editokslvances in Kernel Methods — Sup-
port Vector Learningpages 185-208, Cambridge, MA, 1999. MIT Press.

L. Ralaivola and F. d’Alck Buc. Incremental support vector machine learning: A local approach
Lecture Notes in Computer Sciened 30:322—-329, 2001.

1935

LAsSkoV, GEHL, KRUGER AND MULLER

H. Robbins and S. Munro. A stochastic approximation methadn. Math. Stat.22:400-407,
1951.

S. Riping. Incremental learning with support vector machines. Technigad®RE&R-18, Universkit
Dortmund, SFB475, 2002.

D. Saad, editorOn-line learning in neural networksCambridge University Press, 1998.

B. Sclolkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-Riiler, G. Ratsch, and A. J. Smola. Input
space vs. feature space in kernel-based metH&d<E Transactions on Neural NetworKE)(5):
1000-1017, September 1999.

B. Sclolkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estim#iagupport
of a high-dimensional distributioNeural Computation13(7):1443-1471, 2001.

N. A. Syed, H. Liu, and K. K. Sung. Incremental learning with suppexdter machines. VM
workshop, IJCAI1999.

D. Tax and R. Duin. Data domain description by support vectors. In Mleysen, editor,
Proc. ESANNpages 251-256, Brussels, 1999. D. Facto Press.

D. M. J. Tax and P. Laskov. Online SVM learning: from classification tadiescription and back.
In C. et al. Molina, editorProc. NNSP pages 499-508, 2003.

I. Tsang, J. Kwok, and P.-M. Cheung. Core Vector Machines: fa#t 8aining on very large data
sets.Journal of Machine Learning Researd1363—392, 2005.

V. N. Vapnik. Statistical Learning TheoryWiley, New York, 1998.

M. K. Warmuth, J. Liao, G. BRtsch, M. Mathieson, S. Putta, and C. Lemmem. Support Vector
Machines for active learning in the drug discovery procedsurnal of Chemical Information
Sciences43(2):667—673, 2003.

1936

