
Journal of Machine Learning Research 7 (2006) 1909–1936 Submitted 10/05; Revised 3/06; Published 9/06

Incremental Support Vector Learning:
Analysis, Implementation and Applications

Pavel Laskov LASKOV@FIRST.FHG.DE

Christian Gehl CGEHL@FIRST.FHG.DE

Stefan Krüger KRUEGERS@FIRST.FHG.DE

Fraunhofer-FIRST.IDA
Kekuĺestrasse 7
12489 Berlin, Germany

Klaus-Robert Müller KLAUS@FIRST.FHG.DE

Fraunhofer-FIRST.IDA
Kekuĺestrasse 7
12489 Berlin, Germany
and
University of Potsdam
August-Bebelstrasse 89
14482 Potsdam, Germany

Editors: Kristin P. Bennett, Emilio Parrado-Hernández

Abstract

Incremental Support Vector Machines (SVM) are instrumental in practical applications of online
learning. This work focuses on the design and analysis of efficient incremental SVM learning, with
the aim of providing a fast, numerically stable and robust implementation. A detailed analysis of
convergence and of algorithmic complexity of incremental SVM learning is carried out. Based on
this analysis, a new design of storage and numerical operations is proposed, which speeds up the
training of an incremental SVM by a factor of 5 to 20. The performance of the new algorithm
is demonstrated in two scenarios: learning with limited resources and active learning. Various
applications of the algorithm, such as in drug discovery, online monitoring of industrial devices
and and surveillance of network traffic, can be foreseen.

Keywords: incremental SVM, online learning, drug discovery, intrusion detection

1. Introduction

Online learning is a classical learning scenario in which training data is provided one example at a
time, as opposed to the batch mode in which all examples are available at once (e.g. Robbins and
Munro (1951); Murata (1992); Saad (1998); Bishop (1995); Orr and Müller (1998); LeCun et al.
(1998); Murata et al. (2002)).

Online learning is advantageous when dealing with (a) very large or (b) non-stationary data. In
the case of non-stationary data, batch algorithms will generally fail if ambiguous information, e.g.
different distributions varying over time, is present and is erroneously integrated by the batch algo-
rithm (cf. Murata (1992); Murata et al. (2002)). Many problems of highinterest in machine learning
can be naturally viewed as online ones. An important practical advantage of online algorithms is

c©2006 Pavel Laskov, Christian Gehl, Stefan Krüger and Klaus-Robert M̈uller.

LASKOV, GEHL, KRÜGER AND M ÜLLER

that they allow to incorporate additional training data, when it is available, without re-training from
scratch. Given that training is usually the most computationally intensive task,it is not surprising
that availability of online algorithms is a major pre-requisite imposed by practitioners that work on
large data sets (cf. LeCun et al. (1998)) or even have to perform real-time estimation tasks for con-
tinuous data streams, such as in intrusion detection (e.g. Laskov et al. (2004); Eskin et al. (2002)),
web-mining (e.g. Chakrabarti (2002)) or brain computer interfacing (e.g. Blankertz et al. (2003)).

In the 1980’s online algorithms were investigated in the context of PAC learning (e.g. Angluin
(1988); Littlestone et al. (1991)). With the emergence of Support VectorMachines (SVM) in the
mid-1990’s, interest to online algorithms for this learning method arose as well.However, early
work on this subject (e.g. Syed et al., 1999; Rüping, 2002; Kivinen et al., 2001; Ralaivola and
d’Alché Buc, 2001) provided only approximate solutions.

An exact solution to the problem of online SVM learning has been found by Cauwenberghs and
Poggio (2001). Their incremental algorithm (hereinafter referred to asa C&P algorithm) updates
an optimal solution of an SVM training problem after one training example is added (or removed).

Unfortunately acceptance of the C&P algorithm in the machine learning community has been
somewhat marginal, not to mention that it remains widely unknown to potential practitioners. Only
a handful of follow-up publications is known that extend this algorithm to other related learning
problems (e.g. Martin, 2002; Ma et al., 2003; Tax and Laskov, 2003); toour knowledge, no suc-
cessful practical applications of this algorithm has been reported.

At a first glance, a limited interest to incremental SVM learning may seem to result the absence
of well-accepted implementations, such as its counterparts SVMlight (Joachims, 1999), SMO (Platt,
1999) and LIBSVM (Chang and Lin, 2000) for batch SVM learning. Theoriginal Matlab imple-
mentation by the authors1 has essentially the semantics of batch learning: training examples are
loaded all at once (although learned one at a time) and unlearning is only used for computation of
the – ingenious – leave-one-out bound.

There are, however, deeper reasons why incremental SVM may not beso easy to implement.
To understand them – and to build a foundation for an efficient design andimplementation of the
algorithm, a detailed analysis of the incremental SVM technique is carried out inthis paper. In
particular we address the “accounting” details, which contain pitfalls of performance bottlenecks
unless underlying data structures are carefully designed, and analyzeconvergence of the algorithm.

The following are the main results of our analysis:

1. Computational complexity of a minor iteration of the algorithm is quadratic in the number
of training examples learned so far. The actual runtime depends on the balance of memory
access and arithmetic operations in a minor iteration.

2. The main incremental step of the algorithm is guaranteed to bring progressin the objective
function if a kernel matrix is positive semi-definite.

Based on the results of our analysis, we propose a new storage design and organization of
computation for a minor iteration of the algorithm. The idea is to judiciously use row-major and
column-major storage of matrices, instead of one-dimensional arrays, in order to possibly eliminate
selection operations. The second building block of our design is gaxpy-type matrix-vector multipli-
cation, which allows to further minimize selection operations which cannot be eliminated by storage

1. http://bach.ece.jhu.edu/pub/gert/svm/incremental/

1910

INCREMENTAL SUPPORTVECTORLEARNING

design alone. Our experiments show that the new design improves computational efficiency by the
factor of 5 to 20.

To demonstrate applicability of incremental SVM to practical applications, two learning scenar-
ios are presented. Learning with limited resources allows to learn from largedata sets with as little
as 2% of the data needed to be stored in memory. Active learning is another powerful technique
by means of which learning can be efficiently carried out in large data sets with limited availability
of labels. Various applications of the algorithm, such as in drug discovery,online monitoring of
industrial devices and and surveillance of network traffic, can be foreseen.

In order to make this contribution self-contained, we begin with the presentation of the C&P
algorithm, highlighting the details that are necessary for a subsequent analysis. An extension of the
basic incremental SVM to one-class classification is presented in Section 3. Convergence analy-
sis of the algorithm is carried out in Section 4. Analysis of computational complexity, design of
efficient storage and organization of operations are presented and evaluated in Section 5. Finally,
potential applications of incremental SVM for learning with limited resources and active learning
are illustrated in Section 6.

2. Incremental SVM Algorithm

In this section we present the basic incremental SVM algorithm. Before proceeding with our pre-
sentation we need to establish some notation.

2.1 Preliminaries

We assume the training data and their labels are given by a set

{(x1,y1), . . . ,(xn,yn)}.

The inner product between data points in a feature space is defined by a kernel functionk(xi ,x j).
Then×n kernel matrixK0 contains the inner product values for all 1≤ i, j ≤ n. The matrixK is
obtained from the kernel matrix by incorporating the labels:

K = K0⊙ (yyT).

The operator⊙ denotes the element-wise matrix product, and a vectory denotes labels as ann×1
vector. Using this notation, the SVM training problem can be formulated as

max
µ

min
0≤α≤C
yT α=0

W :=−1Tα+ C
2 αTKα+µyTα. (1)

Unlike the classical setting of the SVM training problem, which is usually formulated as maximiza-
tion or minimization, the problem (1) is a saddle-point formulation obtained by incorporating the
equality constraint directly into the cost function. The reason for such construction will become
clear shortly.

2.2 Derivation of the Basic Incremental SVM Algorithm

The main building block of the incremental SVM is a procedure for adding oneexample to an
existing optimal solution. When a new pointxc is added, its weightαc is initially set to 0. If this

1911

LASKOV, GEHL, KRÜGER AND M ÜLLER

assignment is not an optimal solution, i.e. whenxc should become a support vector, the weights
of other points and the thresholdµ must be updated in order to obtain an optimal solution for the
enlarged data set. The procedure can be reversed for a removal of an example: its weight is forced
to zero while updating weights of the remaining examples and the thresholdµ so that the solution
obtained withαc = 0 is optimal for the reduced data set. For the remaining part of this paper we
only consider addition of examples.

The saddle point of the problem (1) is given by the Kuhn-Tucker conditions:

gi :=−1+Ki,:α+µyi







≥ 0, if αi = 0

= 0, if 0 < αi < C

≤ 0, if αi = C

(2)

∂W
∂µ

:= yTα = 0. (3)

Before an addition of a new examplexc, the Kuhn-Tucker conditions are satisfied for all previous
examples. The goal of the weight update in the incremental SVM algorithm is to find a weight
assignment such that the Kuhn-Tucker conditions are satisfied for the enlarged data set.

Let us introduce some further notation. Let the setS denote unbounded support vectors (0<
αi < C), the setE denote bounded support vectors (αi = C), and the setO denote non-support
vectors (αi = 0); let R= E∪O. These index sets induce respective partitions on the kernel matrix
K and the label vectory (we shall use the lower-case letterss, e, o andr for such partitions).

By writing out the Kuhn-Tucker conditions (2)–(3) before and after anupdate∆α we obtain the
following condition that must be satisfied after an update:







∆gc

∆gs

∆gr

0







=







yc Kcs

ys Kss

yr Krs

0 yT
s







[
∆µ
∆αs

]

︸ ︷︷ ︸

∆s

+ ∆αc







KT
cc

KT
cs

KT
cr

yc







. (4)

One can see that∆αc is in equilibrium with∆αs andµ: any change to∆αc must be absorbed by the
appropriate changes in∆αs andµ in order for the condition (4) to hold.

The main equilibrium condition (4) can be further refined as follows. It follows from (2) that
∆gs = 0. Then lines 2 and 4 of the system (4) can be re-written as

[
0
0

]

=

[
0 αT

s
αs Kss

]

∆s+

[
αc

KT
cs

]

∆αc. (5)

This linear system is easily solved for∆sas follows:

∆s = β∆αc, (6)

where

β = −

[
0 αT

s
αs Kss

]−1

︸ ︷︷ ︸

Q

[
αc

KT
cs

]

︸ ︷︷ ︸

~η

(7)

is the gradient of the manifold of optimal solutions parameterized byαc.

1912

INCREMENTAL SUPPORTVECTORLEARNING

One can further substitute (6) into lines 1 and 3 of the system (4):
[

∆gc

∆gr

]

= γ∆αc, (8)

where

γ =

[
yc Kcs

yr Krs

]

β+

[
Kcc

KT
cr

]

(9)

is the gradient of the manifold of gradientsgr at an optimal solution parameterized byαc.
The upshot of these derivations is that the update is controlled by very simple sensitivity rela-

tions (6) and (8), whereβ is sensitivity of∆s with respect to∆αc andγ is sensitivity of∆gc,r with
respect to∆αc.

2.3 Accounting

Unfortunately the system (4) cannot be used directly to obtain the new SVM state. The problem
lies in the changing composition of the setsSandR with the change of∆s and∆αc in Eq. (4). To
handle this problem, the main strategy of the algorithm is to identify the largest increase∆αc such
that some point migrates between the setsS andR. Four cases must be considered to account for
such structural changes:

1. Someαi in S reaches a bound (an upper or a lower one). Letε be a small number. Compute
the sets

I
S
+ = {i ∈ S: βi > ε}

I
S
− = {i ∈ S: βi <−ε}.

The examples in setI S+ have positive sensitivity with respect to the weight of the current
example; that is, their weight would increase by taking the step∆αc.2 These examples should
be tested for reaching the upper boundC. Likewise, the examples in setI S− should be tested
for reaching zero. The examples with−ε < βi < ε should be ignored, as they are insensitive
to ∆αc. Thus the possible weight updates are

∆αmax
i =

{

C−αi , if i ∈ I S+

−αi , if i ∈ I S−,

and the largest possible∆αS
c before some example inSmoves toR is

∆αS
c = absmin

i∈I S+∪I
S
−

∆αmax
i

βi
, (10)

where
absmin

i
(x) := min

i
|xi | ·sign(x(argmin

i
|xi |)).

2. Somegi in R reaches zero. Compute the sets

I
R
+ = {i ∈ E : γi > ε}
I

R
− = {i ∈O : γi <−ε}.

2. It can be shown that the step∆αc is always positive in the incremental case.

1913

LASKOV, GEHL, KRÜGER AND M ÜLLER

The examples in setI R+ have positive sensitivity of the gradient with respect to the weight of
the current example. Therefore their (negative) gradients can potentially reach zero. Likewise,
gradients of the examples in setI R− are positive but are pushed towards zero with the increasing
weight of the current example. Thus the largest increase∆αg

c before some point inR moves
to Scan be computed as

∆αR
c = min

i∈I R+∪I
R
−

−gi

γi
. (11)

3. gc becomes zero. This case is similar to case 2, with the feasibility test in the form

γc > ε.

If the update is feasible the largest step∆αg
c is computed as

∆αg
c =
−gc

γc
. (12)

4. αc reachesC. The largest possible increment∆αα
c is clearly

∆αα
c = C−αc. (13)

Finally, the smallest of the four values

∆αmax
c = min(∆αS

c,∆αR
c ,∆αg

c,∆αα
c) (14)

constitutes the largest possible increment ofαc.
After the largest possible increment ofαc is determined, the updates∆s and∆g are carried out.

The inverse matrixQ must be also re-computed in order to account for the new composition of the
setS. Efficient update of this matrix is presented in section 2.4. The sensitivity vectors β andγ
must be also re-computed. The process repeats until the gradient of the current example becomes
zero or its weight reachesC. The high-level summary of incremental SVM algorithm is given in
Algorithm 1.

2.4 Recursive Update of the Inverse Matrix

It is clearly infeasible to explicitly invert the matrixQ in Eq. (7) every time the setS is changed.
Luckily, it is possible to use the fact that this set is always updated one element at a time – an
example is either added to, or removed from the setS.

Consider addition first. When the examplexk
3 is added to the setS, the matrix to be inverted is

partitioned as follows:

R :=





0 yT
s yk

ys Kss KT
ks

yk Kks Kkk



 =

[
Q−1 ηk

ηT
k Kkk

]

, (15)

where

ηk =

[
yk

KT
ks

]

.

3. A different indexk is used to emphasize that this example is not the same as the current example xc.

1914

INCREMENTAL SUPPORTVECTORLEARNING

Algorithm 1 Incremental SVM algorithm: high-level summary.
1: Read examplexc, computegc.
2: while gc < 0 & αc < C do
3: Computeβ andγ according to (7), (9).
4: Compute∆αS

c,∆αR
c ,∆αg

c and∆αα
c according to (10)–(13).

5: Compute∆αmax
c according to (14).

6: αc← αc +∆αmax
c .

7: αs← β∆αmax
c

8: gc,r ← γ∆αmax
c

9: Let k be the index of the example yielding the minimum in (14).
10: if k∈ S then
11: Movek from S to eitherE or O.
12: else ifk∈ E∪O then
13: Movek from eitherE or O to S.
14: else
15: {k = c: do nothing, the algorithm terminates.}
16: end if
17: UpdateQ recursively.{See section 2.4.}
18: end while

Defineβk =−Qηk, and denote the enlarged inverse matrix byQ̃. Applying the Sherman-Morrison-
Woodbury formula for block matrix inversion (see e.g. Golub and van Loan(1996)) toQ̃, we obtain:

[
Q−1 ηk

ηT
k Kkk

]−1

︸ ︷︷ ︸

Q̃

=

[
Q+κ−1(Qηk)(Qηk)

T −κ−1Qηk

−κ−1(Qηk)
T κ−1

]

=

[
Q+κ−1βkβT

k κ−1βk

κ−1βT
k κ−1

]

=

[
Q 0
0 0

]

+
1
κ

[
βk

1

]
[
βT

k 1
]
, (16)

where

κ = Kkk−ηT
k Qηk. (17)

Thus the update of the inverse matrix involves expansion with a zero row andcolumn and addition
of a rank-one matrix obtained via a matrix-vector multiplication. The running time needed for
an update of the inverse matrix is quadratic in the size ofQ, which is much better than explicit
inversion.

The removal case is straightforward. Knowing the inverse matrixQ̃ and using (16), we can write

Q̃ =

[
q11 q12

q21 q22

]

=

[
Q+κ−1βkβT

k κ−1βk

κ−1βT
k κ−1

]

.

1915

LASKOV, GEHL, KRÜGER AND M ÜLLER

Re-writing this block matrix expression component-wise, we have:

Q = q11−κ−1βkβT
k (18)

βk = κq12 = q12/q22 (19)

βT
k = κq21 = q21/q22 (20)

κ−1 = q22. (21)

Substituting the last three relations into the first we obtain:

Q = q11−
q12q21

q22
. (22)

The running time of the removal operations is also quadratic in the size ofQ.

3. Extension to One-Class Classification

Availability of labels, especially online, may not be possible in certain applications. For example,
analysis of security logs is extremely time-consuming, and labels may be availableonly in limited
quantities after forensic investigation. As another example, monitoring of critical infrastructures,
such as power lines or nuclear reactors, must prevent a system from reaching a failure state which
may lead to gravest consequences. Nevertheless, algorithms similar to SVM classification can be
applied for data-description, i.e. for automatic inference of a concept descriptions deviations from
which are to be considered abnormal. Since examples of the class to be learned are not (or rarely)
available, the problem is known as “one-class classification”.

The two well-known approaches to one-class classification are separation of data points from
the origin (Scḧolkopf et al., 2001) and spanning of data points with a sphere (Tax and Duin, 1999).
Although they use different geometric constructions, these approacheslead to similar, and in certain
cases even identical, formulations of dual optimization problems. As we shall see, incremental
learning can be naturally extended to both of these approaches.

The dual formulation of the “sphere” one-class classification is given bythe following quadratic
program:

max
α

n

∑
i=1

αik(xi ,xi)−
1
2

n

∑
i=1

n

∑
j=1

αiα jk(xi ,x j)

subject to: 0≤ αi ≤C, i = 1, . . . ,n
n

∑
i=1

αi = 1.

(23)

In order to extend the C&P algorithm for this problem consider the following abstract saddle-point
quadratic problem:

max
µ

min
0≤α≤C

aT α+b=0

W :=−cTα+ C
2 αTHα+µ(aTα+b). (24)

It can be easily seen that formulation (24) generalizes both problems (23)and (1), subject to follow-
ing definition of the abstract parameters:

c = diag(K), H = K, a = 1, b = 1.

1916

INCREMENTAL SUPPORTVECTORLEARNING

Algorithm 2 Initialization of incremental one-class SVM.

1: Take the first⌊ 1
C⌋ objects, assign them weightC and put them inE.

2: Take the next objectc, assignαc = 1−⌊ 1
C⌋C and put it inS.

3: Compute the gradientsgi of all objects, using Eq. (2).
4: Computeµ so as to ensure non-positive gradients inE: µ=−max

i∈E
gi

5: Enter the main loop of the incremental algorithm.

The C&P algorithm presented in sections 2.2–2.4 can be applied to formulation (24) almost without
modification. The only necessary adjustment is a special initialization procedure for identification
of an initial feasible solution presented in Algorithm 2.4

4. Convergence Analysis

A very attractive feature of Algorithm 1 is that it obviously makes progressto an optimal solution if
a non-zero update∆αc is found. Thus potential convergence problems arise only when a zero update
step is encountered. This can happen in several situations. First, if the set S is empty, no non-zero
update of∆αc is possible since otherwise the equality constraint of the SVM training problemis
violated. Second, a zero update can occur when two or more points simultaneously migrate between
the index sets. In this case, each subsequent point requires a structural update without improvement
of ∆αc. Furthermore, it must be guaranteed, that after a point migrates from oneset to another,
say fromE to S, it is not immediately thrown out after the structure and the sensitivity parameters
are re-computed. These issues constitute the scope of convergence analysis to be covered in this
section. In particular we present a technique for handling the special case of the empty setS and
show that immediate cycling is impossible if a kernel matrix is positive semi-definite.

4.1 Empty SetS

The procedure presented in the previous two sections requires a non-empty set of unbounded support
vectors, otherwise a zero matrix must be inverted in Eq. (7). To handle this situation, observe that
the main instrument needed to derive the sensitivity relations is pegging of the gradient to zero for
unbounded support vectors, which follows from the Kuhn-Ticker conditions (2). Notice that the
gradient can also be zero for some points in setsE andO. Therefore, if the setS is empty we can
freely move some examples with zero gradients from the setsE andO to it and continue from there.
The question arises: what if no points with zero gradients can be found inE or O?

With ∆α = 0, ∆αc = 0 and no examples in the setS, the equilibrium condition (4) reduces to

∆gc = yc∆µ

∆gr = yr∆µ.
(25)

This is an equilibrium relation between∆gc,r and the scalar∆µ, in which sensitivity is given by the
vector[yc;yr]. In other words, one can changeµ freely until one of components ingr or gc hits zero,
which would allow an example to be brought intoS.

4. Through the presentation of the C&P algorithm it was assumed that a feasible solution is always available. This is
indeed no problem for the classification SVM since the zero solution is always feasible. For the sphere formulation
of one-class classification this is not the case.

1917

LASKOV, GEHL, KRÜGER AND M ÜLLER

The problem remains – since∆µ is free as opposed to non-negative∆αc – to determine the
direction in which the components ofgr are pushed by changes inµ. This can be done by first
solving (25) for∆µ, which yields the dependence of∆gr on ∆gc:

∆gr =−
yr

yc
∆gc.

Since∆gc must be non-negative (gradient of the current example is negative andshould be brought
to zero if possible), the direction of∆gr is given by− yr

yc
. Hence the feasibility conditions can be

formulated as
I

R
+ = {i ∈ E :−

yi

yc
> ε}

I
R
− = {i ∈O :−

yi

yc
<−ε}.

The rest of the argument essentially follows the main case. The largest possible step∆µR is
computed as

∆µR = min
i∈I R+∪I

R
−

−gi

yi
. (26)

and the largest possible step∆µc is computed as

∆µc =−
gc

yc
. (27)

Finally, the update∆µmax is chosen as

∆µmax = min(∆µR,∆µc). (28)

4.2 Immediate Cycling

A more dangerous situation can occur if an example entering the setS is immediately thrown out at
a next iteration without any progress. It is not obvious why this kind of immediate cycling cannot
take place, since the sensitivity information contained in vectorsβ andγ does not seem to provide
a clue what would happen to an example after the structural change. The analysis provided in this
section shows that, in fact, such look-ahead information is present in the algorithm and that this
property is related to positive semi-definiteness of a kernel matrix.

When an example is added to the setS, the corresponding entry in the sensitivity vectorβ is
added at the end of this vector. Let us computeβ̃ after an addition of example k to set S:

β̃ =−Q̃η =−

[
Q 0
0 0

][
yc

Kcs

]

−
1
κ

[
βkβT

k βk

βT
k 1

][
yc

Kcs

]

.

Computing the last line in the above matrix products we obtain:

β̃end=−
1
κ

(

βT
k

[
yc

Kcs\end

]

+Kck

)

︸ ︷︷ ︸

γk

. (29)

Let us assume thatκ (defined in Eq. (17)) is non-negative. Examples withκ = 0 must be
prevented from entering the setSexternally, otherwise invertibility ofQ is ruined; thereforeκ > 0

1918

INCREMENTAL SUPPORTVECTORLEARNING

for the examples entering the setS. Thus we can see that the sign ofβ̃end after the addition of the
elementk to setS is the oppositeto the sign ofγk before the addition. Recalling the feasibility
conditions for inclusion of examples in setS, one can see that if an example is joining from the
setO its β̃ after inclusion will be positive, and if an example is joining from the setE its β̃ after
inclusion will be negative. Therefore, in no case will an example be immediatelythrown out of the
setS.

Thus to prove that immediate cycling is impossible it has to be shown thatκ≥ 0. Two technical
lemmas are useful before we proceed with the proof of this fact.

Lemma 1 Let z=−Qηk, z̃= [z,1]T . Thenκ = z̃TRz̃.

Proof By writing out the quadratic form we obtain:

z̃TRz̃= zTQ−1z+ηT
k z+zTηk +Kkk

= ηT
k QQ−1Qηk−2ηkQηk +Kkk

= Kkk−ηkQηk.

The result follows by the definition ofκ.

The next lemma establishes a sufficient condition for non-negativity of a quadratic form with a
matrix of the special structure possessed by matrixR.

Lemma 2 Let x̃ = [x0,x]T , K̃ =

[

0 yT

y K

]

, where x0 is a scalar, x,y are vectors of length n, and K is

a positive semi-definite n×n matrix. If xTy = 0 thenx̃TK̃x̃≥ 0.

Proof By writing out the quadratic form we obtain

x̃TK̃x̃ = 2x0xTy+xTKx.

SinceK is positive semi-definite the second term is greater than or equal to 0, whereas the first term
vanished by the assumption of the lemma.

Finally, the intermediate results of the lemmas are used in the main theorem of this section.

Theorem 3 If the kernel matrix K is positive semi-definite thenκ≥ 0.

Proof Lemma 1 provides a quadratic form representation ofκ. Our goal is thus to establish its
non-negativity using the result of Lemma 2.

Using the partition matrix inversion formula we can writeQ (cf. Eq. 7) as

Q =

[
−1

δ
1
δyT

s K−1
ss

1
δK−1

ss ys K−1
ss −

1
δK−1

ss ysyT
s K−1

ss

]

,

1919

LASKOV, GEHL, KRÜGER AND M ÜLLER

whereδ = yT
s K−1

ss ys. SubstitutingQ into the definition ofz in Lemma 1 and explicitly writing out
the first term, we obtain:

z :=

[
z0

z\0

]

=−

[
−1

δ
1
δyT

s K−1
ss

1
δK−1

ss ys K−1
ss −

1
δK−1

ss ysyT
s K−1

ss

][
yk

Ksk

]

=

[1
δyk−

1
δyT

s K−1
ss Ksk

−1
δK−1

ss ysyk−K−1
ss Ksk+

1
δK−1

ss ysyT
s K−1

ss Ksk

]

.

Then

zT
\0ys+yk =−

1
δ

yky
T
s K−1

ss ys
︸ ︷︷ ︸

δ

−KT
skK
−1
ss ys+

1
δ

KT
skK
−1
ss ysy

T
s K−1

ss ys
︸ ︷︷ ︸

δ

+yk = 0

and the result follows by Lemma 2.

5. Runtime Analysis and Efficient Design

Let us now zoom in on computational complexity of Algorithm 1 which constitutes aminor iteration
of the overall training algorithm.5 Asymptotically, the complexity of a minor iteration is quadratic in
a number of examples learned so far: re-computation of the gradient,β andγ involve matrix-vector
multiplications, which have quadratic complexity, and the recursive update ofan inverse matrix has
also been shown (cf. Section 2.4) to be quadratic in the number of examples.These estimates have
to be multiplied by a number of minor iterations needed to learn an example. The number of minor
iterations depends on the structure of a problem, namely on how often examples migrate between
the index sets until an optimal solution is found. This number cannot be control in the algorithm,
and can be potentially exponentially large.6

For the practical purposes it is important to understand the constants hidden in asymptotic esti-
mates. To this end, the analysis of a direct implementation of Algorithm 1 in Matlab is presented in
Section 5.1. The focus of our analysis lies on the complexity of the main steps ofa minor iteration
in terms of arithmetic and memory access operations. This kind of analysis is important because
arithmetics can be implemented much more efficiently than memory access. Performance-tuned
numeric libraries, such as BLAS7 or ATLAS,8 make extensive use of the cache memory which is
an order of magnitude faster than the main memory. Therefore, a key to efficiency of the incre-
mental SVM algorithm lies in identifying performance bottlenecks associated withmemory access
operations and trying to eliminate them in a clever design. The results of our analysis are illustrated
by profiling experiments in Section 5.2, in which relative complexity of the main computational
operations, as a percentage of total running time, is measured for different kernels and sample sizes.

5. A major iteration corresponds to inclusion of a new example; therefore, all complexity estimates must be multiplied
by a number of examples to be learned. This is, however, a (very) worst case scenario, since no minor iteration is
needed for many points that do not become support vectors at the time of their inclusion.

6. The structure of the problem is determined by the geometry of a set of feasible solutions in a feature space. Since we
essentially follow the outer boundary of the set of feasible solutions, we are bound by the same limitation as linear
and non-linear programming in general, for which it is known that problems exist with exponentially many vertices
in a set of feasible solutions (Klee and Minty, 1972).

7. http://www.netlib.org/blas/
8. http://math-atlas.sourceforge.net/

1920

INCREMENTAL SUPPORTVECTORLEARNING

It follows from our analysis and experiments that the main difficulty in efficient implementation
of incremental SVM indeed lies in selection of non-contiguous elements of matrices, e.g. in Eq. (9).
The problem cannot be addressed within Matlab in which storage organization is one-dimensional.
Furthermore, it must be realized, as our experience showed us, that merely re-implementing in-
cremental SVM without addressing the tradeoff between selection and arithmetic operations, for
example using C++ with one-dimensional storage,does notsolve the problem. The solution pro-
posed in Section 5.3, which allows to completely eliminate expensive selection operations at a cost
of minor increase of arithmetic operations, is based on a mixture of row- and column-major storage
and on the gaxpy-type (e.g. Golub and van Loan (1996)) matrix-vector products. The evaluation of
the new design presented in Section 5.4 shows performance improvement of5 to 20 times.

5.1 Computational Complexity of Incremental SVM

On the basis of the pseudo-code of Algorithm 1 we will now discuss the key issues that will later be
used for a more efficient implementation of the incremental SVM.

Line 1: Computation ofgc is done according to Eq. (2). This calculation requires partial computa-
tion of the kernel rowKcs for the current example and examples in the setS. If the condition
of the while loop in line 2 does not hold then the rest of the kernel rowKcr has to be computed
for Eq. (9) in line 3. Computation of a kernel row is expensive since a subset of input points,
usually stored as a matrix, has to be selected using the index setsSandR.

Line 3: The computation ofγ via Eq. (9) is especially costly since a two-dimensional selection
has to be performed to obtain the matrixKrs (O(sr) memory access operations), followed
by a matrix-vector multiplication (O(sr) arithmetic operations). The computation ofβ in
line 3 is relatively easy because the inverse matrixQ is present and only the matrix-vector
multiplication for Eq. (7) (O(ss) arithmetic operations) has to be performed. The influence of
γ andβ for the algorithm scales with the size of setSand the number of data points.

Lines 4-8: These lines have minor runtime relevance because only vector-scalar calculations and
selections are to be performed.

Lines 9-16: Administration operations for setsSandR have inferior complexity. If a kernel row of
the examplek is not present (in case ofxk entering theSfrom O) then it has to be re-computed
for the update of the inverse matrix in line 17.

Line 17: The update of the inverse matrix requires the calculation ofκ according to Eq. (17) (O(ss)
arithmetic operations), which is of a similar order as the computation ofβ. The expansion
and rank-one matrix computation have also effect on the algorithm runtime. The expansion
requires memory operation (in the naive implementation, a reallocation of the entire matrix)
and is thus expensive for a large inverse matrix.

To summarize, the main performance bottlenecks of the algorithm are lines 1, 3, and 17, in which
memory access operations take place.

1921

LASKOV, GEHL, KRÜGER AND M ÜLLER

5.2 Performance Evaluation

We now proceed with experimental evaluation of the findings of Section 5.1. Asa test-bed the
MNIST handwritten digits data set9 is used to profile the training of an incremental SVM. For every
digit, a test run is made on the data sets of size 1000, 2000, 3000, 5000 and10,000 randomly drawn
from the training data set. Every test run was performed for a linear kernel, a polynomial kernel of
degree 2 and an RBF kernel withσ = 30. Profiles were created by the Matlab profiler.

Eight operations were identified where a Matlab implementation of Algorithm 1 spends the bulk
of its runtime (varying from 75% to 95% depending on a digit). Seven of theseoperations pertain
to the bottlenecks identified in Section 5.1. Another relatively expensive operation is augmentation
of a kernel matrix with a kernel row. Figure 1 shows proportions of runtimespent in the most
expensive operations for the digit 8.

0

0.5

1
linear kernel

po
rt

io
n

of
 r

un
tim

e

0

0.5

1
polynomial kernel

po
rt

io
n

of
 r

un
tim

e

1000 2000 3000 5000 10 000
0

0.5

1
RBF kernel

po
rt

io
n

of
 r

un
tim

e

datasize

Line 17, Eq.(17) : kappa calculation
Line 17, Eq.(16) : update of matrix Q
Line 13 : kernel matrix augmentation
Line 3, Eq.(7) : beta calculation
Line 3, Eq.(9) : matrix−vector multiplication
Line 3, Eq.(9) : matrix creation from kernel matrix
Line 1/3 : kernel calculation
Line 1/3 : matrix creation from input space

Figure 1: Profiling results for digit 8 (MNIST).

The analysis clearly shows that memory access operations dominate the runtimeshown in Fig-
ure 1. It also reveals that the portion of kernel computation scales down with increasing data size
for all three kernels.

9. This data set can be found at http://yann.lecun.com/exdb/mnist/, and contains 60,000 training and 10,000 test images
of size 28×28.

1922

INCREMENTAL SUPPORTVECTORLEARNING

5.3 Organization of Matrix Storage and Arithmetic Computations

Having found the weak spots in the Matlab implementation of the incremental SVM, we will now
consider the possibilities for the efficiency improvement. In to order gain control over the storage
design we choose C++ as an implementation platform. Numerical operations canbe efficiently
implemented by using the ATLAS library.

5.3.1 STORAGE DESIGN

As it was mentioned before, the difficulty of selection operations in Matlab result from storing ma-
trices as one-dimensional arrays. For this type of storage, selection of rows and columns necessarily
required a large amount of copying.

Figure 2: C++ matrix design

An alternative representation of a matrix in C++ is a pointer-to-pointer schemeshown in Fig-
ure 2. Depending on whether rows or columns of a matrix are stored in one-dimensional pointed to
double** pointers, either a row-major or a column-major storage is realized.

What are the benefits of a pointer-to-pointer storage for our purposes? Such matrix represen-
tation has the advantage that selection along the pointer-of-pointer array requires hardly any time
since only addresses of rows or columns need to be fetched. As a resultone can completely elimi-
nate selection operations in line 1 by storing the input data in a column-major matrix.Furthermore,
by storing a kernel matrix in a row-major format (a) additions of kernel rows can be carried out with-
out memory relocation, and (b) selections in the matrixKrs are somewhat optimized sincer ≫ s.
Another possible problem arises during addition of a new example when columns have to added to
a kernel matrix. This problem can be solved by pre-allocation of columns which can be done in
constant-time (amortized).

5.3.2 MATRIX OPERATIONS

The proposed memory design does not completely solve the problem: we still have to perform col-
umn selection ins when computingKrs. Although tolerable for smaller number of support vectors,

1923

LASKOV, GEHL, KRÜGER AND M ÜLLER

Algorithm 3 C++ calculation ofγ for (9) using gaxpy-type matrix-vector multiplication
Create an empty vectorz
for i = 1 : |s| do

z= βi+1Ksi ,: +z {gaxpy call}
end for
Computeγ = β1yr +zr +Kcr

Algorithm 4 C++ calculation ofγ for (9) using a naive matrix-vector multiplication
Create a matrixZ
Z =

[
yT

r ;Ksr
]

Computeγ = βTZ+Kcr {dgemm call}

the problem becomes acute whens grows with the arrival of more and more examples. Yet it turns
out to be possible to eliminate even this selection by re-organizing the computationof γ.

Consider the following form of computing Eq. (9):10

γT = β1yT
r +βT

2:endKsr +Kcr. (30)

The first and the last terms are merely vectors, while the middle term is computed using a matrix-
vector multiplication and selection over a matrix. Using the transposed matrixKsr (still stored in a
row-major form) at first seems counter-intuitive, as we argued in the previous section that expensive
selection should be carried out over short indices inS and not the long indices inR. However,
consider the following observation:

Sinces≪ r we can just as well run the productβT
2:endKs,1:endat a tolerable extra cost of

O(ss) arithmetic operations.

By doing so we do not need to worry about selection! The extras elements in a product vector can
be discarded (of course by a selection, however selection over a vector is cheap).

Still another problem with the form (30) of theγ-update remains. If we run it as an inner-product
update, i.e. multiplying a row vector with columns of a matrix stored in a row-major format, this
loop must be run over the elements in non-contiguous memory. This is as slow asusing selection.
However, by running it as a gaxpy-type update (e.g. Golub and van Loan, 1996) we end up with
loops running over therows of a kernel matrix, which brings a full benefit of performance-tuned
numerics. The summary of the gaxpy-type computation ofγ is given in Algorithm 3. For com-
parison, Algorithm 4 shows a naive implementation of theγ-update using inner-product operations
(dgemm-type update).

This same construction can be also applied to the inverse matrix update in Eq. (16) by using the
following format:

Qi =
βi

κ
β+Qi,:. (31)

By doing so explicit creation of a rank-one matrix can be avoided.
To summarize our design, by using the row-major storage of (transposed)matrix K and the

gaxpy-type matrix-vector multiplication selection can be avoided by at a cost of extraO(ss) arith-
metic operations and performing a selection on a resulting vector.

10. For cleaner notation we ignore the first line in Eq. (9) here.

1924

INCREMENTAL SUPPORTVECTORLEARNING

0

0.5

1
linear kernel

po
rt

io
n

of
 r

un
tim

e

0

0.5

1
polynomial kernel

po
rt

io
n

of
 r

un
tim

e

1000 2000 3000 5000 10 000
0

0.5

1
RBF kernel

po
rt

io
n

of
 r

un
tim

e

datasize

Line 17, Eq.(17) : kappa calculation
Line 17, Eq.(16) : update of matrix Q
Line 13 : kernel matrix augmentation
Line 3, Eq.(7) : beta calculation
Line 3, Eq.(9) : gamma calculation by gaxpy loop
Line 1/3 : kernel calculation without matrix creation

Figure 3: C++ runtime proportion digit 8 (MNIST)

5.4 Experimental Evaluation of the New Design

The main goal of the experiments to be presented in this section is to evaluate the impact of the
new design of storage and arithmetic operations on the overall performance of incremental SVM
learning. In particular, the following issues are to be investigated:

• How is the runtime profile of the main operations affected by the new design?

• How does the overall runtime of the new design scale with an increasing size of a training
set?

• What is the overall runtime improvement over the previous implementations and how does it
depend on the size of a training set?

To investigate the runtime profiles of the new design, check-pointing has been realized in our
C++ implementation. The profiling experiment presented in Section 5.2 (cf. Figure 1) has been
repeated for the new design, and the results are shown in Figure 3. The following effects of the new
design can be observed:

1. The selection operation in Lines 1/3 is eliminated. The selection was necessary in a Matlab
implementation due to one-dimensional storage – a temporary matrix had to be created in
order to represent a sub-matrix of the data. In the new design using the column-major stor-
age for the data matrix a column sub-matrix can be directly passed (as pointersto columns)
without a need for selection.

1925

LASKOV, GEHL, KRÜGER AND M ÜLLER

2. Matrix creation has been likewise eliminated in the computation ofγ in Line 3. However,
the relative cost of the gaxpy computation in the new design remains as high asthe relative
cost of the combined matrix creation / matrix-vector multiplication operations in the Matlab
implementation. The relative cost of theβ computation is not affected by the new design.

3. Matrix augmentation in Line 13 takes place at virtually no computational cost –due to row-
major storage of the kernel matrix.

4. The relative cost of operations in Line 17 is not affected by the new design.

The overall cost distribution of main operations remains largely the same in the new design, kernel
computation having the largest weight for small training sets and gamma computation – for the large
training sets. However, as we will see from the following experiments, the new design results in
major improvement of the absolute running time.

Evaluation of the absolute running time is carried out by means of the scaling factor experiments.
The same data set and the same SVM parameters are used as in the profiling experiments. Four
implementations of incremental SVM are compared: the original Matlab implementationof C&P
(with leave-one-out error estimation turned off), the Matlab implementation of Algorithm 1, the C++
implementation of Algorithms 1 & 3 and the C++ implementation of Algorithms 1 & 4. The latter
configuration is used in order to verify that the performance gains indeedstem from the gaxpy-type
updates rather than from switching from Matlab to C++.

The algorithms are run on the data sets ranging from 1000 to 10000 examplesin size, and the
training times are plotted against the training set size at a log-log scale. Theseplots are shown in
Figure 4 (for the linear kernel) and 5 (for the RBF kernel). The results for the polynomial kernel are
similar to the linear kernel and are not shown. Ten plots are shown separately for each of the digits.

One can see that the C++ implementation significantly outperforms both Matlab implementa-
tions. The RBF kernel is more difficult for training than the linear kernel for the MNIST data set,
which is reflected by a larger proportion of support vectors (on average 15% for the RBF kernel
compared to 5% with the linear kernel, at 10000 training examples). Becauseof this the experi-
ments with the C&P algorithm at 10000 training points were aborted. The Matlab implementation
of Algorithm 1 was able to crank about 15000 examples with the RBF kernel, whereas the C++
implementation succeeded to learn 28000 examples, before running out of memory for storing the
kernel matrix and the auxiliary data structures (at about 3GB). The relative performance gain of
the C++ implementation using gaxpy-updates against the “best Matlab competitor” and against the
dgemm-updates is shown in Figure 6 (linear kernel, C&P algorithm) and Figure 7(RBF kernel,
Algorithm 1). Major performance improvement in comparison to Matlab and the naive C++ imple-
mentations can be observed, especially visible on larger training set sizes.

6. Applications

As it was mentioned in the introduction, various applications of incremental SVMlearning can
be foreseen. Two exemplare applications are presented in this session in order to illustrate some
potential application domains.

1926

INCREMENTAL SUPPORTVECTORLEARNING

10
3

10
4

10
1

10
2

10
3

10
4

class 0

ru
nt

im
e

se
c

10
3

10
4

10
1

10
2

10
3

10
4

class 1

10
3

10
4

10
1

10
2

10
3

10
4

class 2

10
3

10
4

10
1

10
2

10
3

10
4

class 3

10
3

10
4

10
1

10
2

10
3

10
4

class 4

10
3

10
4

10
1

10
2

10
3

10
4

class 5

data points

ru
nt

im
e

se
c

10
3

10
4

10
1

10
2

10
3

10
4

class 6

data points
10

3
10

4

10
1

10
2

10
3

10
4

class 7

data points
10

3
10

4

10
1

10
2

10
3

10
4

class 8

data points
10

3
10

4

10
1

10
2

10
3

10
4

class 9

data points

Matlab C&P
Matlab Algorithm 1
C++ Algorithm 1&3
C++ Algorithm 1&4

Figure 4: Scaling factor plots of incremental SVM algorithms with the linear kernel.

10
3

10
4

10
1

10
2

10
3

10
4

class 0

ru
nt

im
e

se
c

10
3

10
4

10
1

10
2

10
3

10
4

class 1

10
3

10
4

10
1

10
2

10
3

10
4

class 2

10
3

10
4

10
1

10
2

10
3

10
4

class 3

10
3

10
4

10
1

10
2

10
3

10
4

class 4

10
3

10
4

10
1

10
2

10
3

10
4

class 5

data points

ru
nt

im
e

se
c

10
3

10
4

10
1

10
2

10
3

10
4

class 6

data points
10

3
10

4

10
1

10
2

10
3

10
4

class 7

data points
10

3
10

4
10

1

10
2

10
3

10
4

class 8

data points
10

3
10

4

10
1

10
2

10
3

10
4

class 9

data points

Matlab C&P
Matlab Algorithm 1
C++ Algorithm 1&3
C++ Algorithm 1&4

Figure 5: Scaling factor plots of incremental SVM algorithms with the RBF kernel (σ = 30).

1927

LASKOV, GEHL, KRÜGER AND M ÜLLER

0

5

im
pr

ov
m

en
t

class 0

0

5
class 1

0

5

im
pr

ov
m

en
t

class 2

0

5
class 3

0

5

im
pr

ov
m

en
t

class 4

0

5
class 5

0

5

im
pr

ov
m

en
t

class 6

0

5
class 7

1000 2000 3000 5000 10 000
0

5

data points

im
pr

ov
m

en
t

class 8

1000 2000 3000 5000 10 000
0

5

data points

class 9

C++ Algorithm 1&3 versus Matlab C&P
C++ Algorithm 1&3 versus C++ Algorithm 1&4

Figure 6: Runtime improvement, linear kernel.

6.1 Learning with Limited Resources

To make SVM learning applicable to very large data sets, a classifier has to beconstrained to have
a limited number of objects in memory. This is, in principle, exactly what an online classifier with
fixed window sizeM does. Upon arrival of a new example, a least relevant example needs tobe
removed before a new example can be incorporated. A reasonable criterion for relevance is the
value of the weight.

USPS experiment: learning with limited resources. As a proof of concept for learning with
limited resources we train an SVM on the USPS data set under the limitations on the number of
points that can be seen at a time. The USPS data set contains 7291 training and 2007 images
of handwritten digits, size 16× 16 (Vapnik, 1998). On this 10-class data set 10 support vector
classifiers with a RBF kernel,σ2 = 0.3 ·256 andC = 100, were trained.11 During the evaluation of
a new object, it is assigned to the class corresponding to the classifier with thelargest output. The
total classification error on the test set for different window sizesM is shown in Figure 8.

One can see that the classification accuracy deteriorates marginally (by about 10%) until the
working size of 150, which is about 2% of the data. True, by discarding “irrelevant” examples,
one removes potential support vectors that cannot be recovered at alater stage. Therefore one can

11. The best model parameters as reported in (Vapnik, 1998) were used.

1928

INCREMENTAL SUPPORTVECTORLEARNING

0

5

im
pr

ov
m

en
t

class 0

0

5
class 1

0

5

im
pr

ov
m

en
t

class 2

0

5
class 3

0

5

im
pr

ov
m

en
t

class 4

0

5
class 5

0

5

im
pr

ov
m

en
t

class 6

0

5
class 7

1000 2000 3000 5000 10 000
0

5

data points

im
pr

ov
m

en
t

class 8

1000 2000 3000 5000 10 000
0

5

data points

class 9

C++ Algorithm 1&3 versus Matlab Algorithm 1
C++ Algorithm 1&3 versus C++ Algorithm 1&4

Figure 7: Runtime improvement, RBF kernel.

50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

window size

cl
as

si
fic

at
io

n
er

ro
r

Figure 8: Test classification errors on the USPS data set, using a support vector classifier (RBF
kernel,σ2 = 0.3·256) with a limited ”window” of training examples.

expect that performance of a limited memory classifier would be worse than that of an unrestricted
classifier. It is also obvious that no more points than the number of supportvectors are eventually
needed, although the latter number is not known in advance. The averagenumber of support vectors

1929

LASKOV, GEHL, KRÜGER AND M ÜLLER

per each unrestricted 2-class classifier in this experiment is 274. Therefore the results above can be
interpreted as reducing the storage requirement by 46% from the minimal at the cost of 10% increase
of classification problem.

Notice that the proposed strategy differs from the caching strategy, typical for many SVMlight-
like algorithms (Joachims, 1999; Laskov, 2002; Collobert and Bengio, 2001), in which kernel prod-
ucts are re-computed if the examples are found missing in the fixed-size cache and the accuracy of
the classifier is not sacrificed. Our approach constitutes a trade-off between accuracy and computa-
tional load because kernel products never need to be re-computed. Itshould be noted, however, that
computational cost of re-computing the kernels can be very significant, especially for the problems
with complicated kernels such as string matching or convolution kernels.

6.2 Active Learning

Another promising application of incremental SVM is active learning. In this scenario, instead
of having all data labelled beforehand, an algorithm “actively” choosesexamples for which labels
must be assigned by a user. Active learning can be extremely successful, if not indispensable, when
labelling is expensive, e.g. in computer security or in drug discovery applications.

A very powerful active learning algorithm using SVM was proposed by Warmuth et al. (2003).
Assume that the goal of learning is to identify “positive” examples in a data set.The meaning of
positivity can vary across applications; for example, it can be binding properties of molecules in
drug discovery applications, or hacker attacks in security applications. Selection of a next point
to be labelled is carried out in the algorithm of Warmuth et al. (2003) using two heuristics that
can be derived from an SVM classifier trained on points with known labels.The “largest positive”
heuristic selects the point that has the largest classification score among allexamples still unlabeled.
The “near boundary” heuristic selects the point whose classification score has the smallest absolute
value. Although the semantics of these two heuristics differ – in one case we trying to explore the
space of positive examples as fast as possible, whereas in the other case the effort is focused on
learning the boundary – in both cases the SVM has to be re-trained after each selection. In the
original application of Warmuth et al. (2003) the data samples were relativelysmall, therefore one
could afford re-training SVM from scratch after addition of new points. Obviously, a better way to
proceed is by applying incremental learning as presented in this paper.

In the remaining part of this section experiments will be presented that provethe usefulness of
active learning in the intrusion detection context. Since the observed data can contain thousands
and even millions of examples it is clear that the problem can be addressed only using incremental
learning. As a by-product of our experiments, it will be seen that activelearning helps to uncover
the structure of a learning problem revealed by the number of support vectors.

The underlying data for the experiments is taken from the KDD Cup 1999 dataset.12 As a
training set, 1000 examples are randomly drawn with an attack rate of 10 percent. The incremental
SVM was run with the linear kernel and the RBF kernel withσ = 30. An independent set of the same
length with the same attack distribution is used for testing. The results are not averaged over multiple
repetitions in order not to “disturb” the semantics of different phases of active learning as can be
seen from the ROC curves. However, similar behavior was observed over multiple experiments.

KDD Cup experiment: active learning. Consider the following learning scenario. Assume that
we can run an anomaly detection tool over our data set which ranks all the points according to

12. http://www-cse.ucsd.edu/users/elkan/clresults.html

1930

INCREMENTAL SUPPORTVECTORLEARNING

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curves, training set, linear kernel

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

near boundary
largest positive
anomaly score

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

i = 60

i = 10

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curves, training set, RBF kernel

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

near boundary
largest positive
anomaly score

0 0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

i = 60

i = 10

Figure 9: linear kernel, n=10 and m=50

their degree of anomaly. No labels are needed for this; however, if we know them, we can evaluate
anomaly detection by a ROC curve. It is now the goal to use active learning tosee if a ROC curve
of anomaly detection can be improved.

We take the firstn examples with the highest anomaly scores and train a (batch) SVM to obtain
an initial model. After that we turn to active learning and learn the nextm examples. We are now
ready to classify the remaining examples by the trained SVM. The question arises: after spending
manual effort to labeln+mexamples, can we classify the remaining examples better than anomaly
detection?

In order to address this question, an accuracy measure must be definedfor our learning scenario.
This can be done using the fact that only the ranking of examples according to their scores – and not
the score values themselves – matters for the computation of a ROC curve (Cortes and Mohri, 2004).
The ranking in our experiment can be defined as follows: the firstn examples are ranked according
to their anomaly scores, the nextmexamples are ranked according to their order of inclusion during
the active learning phase, and the remaining examples are ranked according to their classification
scores.

The ROC curves for active learning with the two heuristics and for anomaly detection are shown
in Figure 9. One can easily see a different behavior exhibited by the two active learning rules. The
“largest positive” rule attains the highest true positive rate during the active learning phase, but does
not perform significantly better than anomaly detection during the classification phase (i > 60). On
the contrary, the “near boundary” rule is close or worse than anomaly detection during the learning
phase but exhibit a sharp increase of the true positive rate after moving toclassification mode. Its
accuracy then remains consistently better than anomaly detection for a considerable false positive
interval (until FP = 0.3 for the linear kernel and until FP = 0.9 for the RBF kernel). Similar behavior

1931

LASKOV, GEHL, KRÜGER AND M ÜLLER

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curves, test set, linear kernel

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SVM all
SVM reduced
near boundary
largest positive
anomaly score

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curves, test set, RBF kernel

false positive rate

tr
ue

 p
os

iti
ve

 r
at

e

SVM all
SVM reduced
near boundary
largest positive
anomaly score

Figure 10: linear kernel, n=10 and m=50

of the two heuristics in the active learning phase was also observed by Warmuth et al. (2003). Yet
the “near boundary” heuristic is obviously more suitable for classification,since it explores the
boundary region and not merely the region of positive examples.

Another interesting insight can be gained by investigating the behavior of active learning on
test data. In this case, supervised learning can also be drawn into comparison. In particular, we
consider a full SVM (using a training set size of 1000 examples as opposed to only 60 examples
used in the active learning) and a reduced SVM. The latter is obtained froma full SVM by finding
a hyperplane closest to a full SVM hyperplane subject to 1-norm regularization over expansion
coefficients (cf. Scḧolkopf et al. (1999)). The regularization constant is chosen such thata reduced
SVM has approximately the same number of support vectors as the solution obtain by active learning
(in our case the valueλ = 2.5 resulted in about 30 support vectors). Thus one can compare active
learning with supervised learning given equal complexity of solutions.

The ROC curves of active learning, supervised learning and anomaly detection on test data are
shown in Figure 10. It can be observed that the “near-boundary” heuristic of active learning attains
a solution which is at least as good (for FP≤ 0.4) as a reduced SVM for the linear kernel and
significantly better for the RBF kernel. This shows that active learning does a very good job at
discovering the necessary structure of a solution – it picks a better representation within a desired
complexity since it is using a learning-related criterion to select an interesting representation instead
of a merely geometric one.

1932

INCREMENTAL SUPPORTVECTORLEARNING

7. Discussion and Conclusions

Online learning algorithms have proved to be essential when dealing with (a) very large (see e.g. Le-
Cun et al. (1998); Bordes et al. (2005); Tsang et al. (2005)) or (b) non-stationary data (see e.g. Rob-
bins and Munro (1951); Murata (1992); Murata et al. (1997, 2002)). While classical neural net-
works (e.g. LeCun et al. (1998); Saad (1998)) have a well established online learning toolbox for
optimization, incremental learning techniques for Support Vector Machineshave been only recently
developed (Cauwenberghs and Poggio, 2001; Tax and Laskov, 2003; Martin, 2002; Ma et al., 2003;
Ma and Perkins, 2003).

The current paper contributes two-fold to the field of incremental SVM learning. The conver-
gence analysis of the algorithm has been performed showing that immediate cycling of the algorithm
is impossible provided a kernel matrix is positive semi-definite. Furthermore, we propose a better
scheme for organization of memory and arithmetic operations in exact incremental SVM using the
gaxpy-type updates of the sensitivity vector. As it is demonstrated by our experiments, the new
design results in major constant improvement in the running time of the algorithm.

The achieved performance gains open wide possibilities for application of incremental SVM
to various practical problems. We have presented exemplary applications to two possible scenar-
ios: learning with limited resources and active learning. Potential applicationsof incremental SVM
learning include, among others, drug discovery, intrusion detection, network surveillance, monitor-
ing of non-stationary time series etc. Our implementation is available free of charge for academic
use at http://www.mind-ids.org/Software.

It is interesting to compare exact incremental learning to recently proposedalternative ap-
proaches to online learning. The recent work of Bordes et al. (2005)presents an online algorithm
for L1 SVM, in which a very close approximation of the exact solution is built online before the
last gap is bridged in the REPROCESS phase in an offline fashion. This algorithm has been shown
to scale well to several hundred thousand examples, however its online solution is not as accurate
as the exact solution. It has been observed (cf. Fig. 9 in Bordes et al.(2005)) that the REPROCESS
phase may result in major improvement of the test error and may come at a high price in comparison
with the online phase, depending on a data set. Another recent algorithm, theCore Vector Machine
of Tsang et al. (2005), is based on the L2 formulation of an SVM and has be shown to scale to
several million of examples. The idea of this algorithm is to approximate a solution toan L2 SVM
by a solution to the two-class Maximal Enclosing Ball problem, for which several efficient online
algorithms are known. While scalability results of CVM are very impressive, the approximation of
the exact solution can likewise in higher test errors.

The major limilation of the exact incremental learning is its memory requirement, sincethe set
of support vectors must be retained in memory during the entire learning. Due to this limitation,
the algorithm is unlikely to be scalable beyond tens of thousands examples; however, for data sizes
within this limit it offers an advantage of immediate availablility of the exact solution (crucial in e.g
learning of non-stationary problems) and reversibility.

Future work will include further investigation of properties of incremental SVM such as numer-
ical stability and their utility for tracking the values of generalization bounds. Arelationship with
parametric optimization needs to be further clarified. Extensions to advance learning modes, such
as learning for structured domains and semi-supervised learning, are being considered.

1933

LASKOV, GEHL, KRÜGER AND M ÜLLER

Acknowledgments

The authors are grateful to David Tax and Christian Zillober for fruitful discussions on various top-
ics of mathematical optimization that contributed to the development of main ideas of this paper.
Reńe Gerstenberger provided valuable help in the profiling experiments. This work was partially
supported byBundesministerium für Bildung und Forschungunder the project MIND (FKZ 01-
SC40A), byDeutsche Forschungsgemeinschaftunder the project MU 987/2-1, and by the IST Pro-
gramme of the European Community under the PASCAL Network of Excellence,IST-2002-506778.
This publication only reflects the authors’ views.

References

D. Angluin. Queries and concept learning.Machine Learning, 2:319–342, 1988.

C. M. Bishop.Neural Networks for Pattern Recognition. Oxford University Press, 1995.

B.. Blankertz, G. Dornhege, C. Schäfer, R. Krepki, J. Kohlmorgen, K.-R. M̈uller, V. Kunzmann,
F. Losch, and G. Curio. BCI bit rates and error detection for fast-pace motor commands based on
single-trial EEG analysis.IEEE Transactions on Neural Systems and Rehabilitation Engineering,
11:127–131, 2003.

A. Bordes, S. Ertekin, J. Wesdon, and L. Bottou. Fast kernel classifiers for online and active learn-
ing. Journal of Machine Learning Research, 6:1579–1619, 2005.

G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning. In
T. K. Leen, T. G. Dietterich, and V. Tresp, editors,Advances in Neural Information Processing
Systems, volume 13, pages 409–415. MIT Press, 2001.

S. Chakrabarti.Mining the Web: Discovering Knowledge from Hypertext Data. Morgan-Kaufmann,
2002. ISBN 1-55860-754-4.

C.-C. Chang and C.-J. Lin. Libsvm: Introduction and benchmarks. Technical report, Department
of Computer Science and Information Engineering, National Taiwan University, Taipei, 2000.

R. Collobert and S. Bengio. SVMTorch: Support vector machines for large-scale regression prob-
lems.Journal of Machine Learning Research, 1:143–160, 2001.

C. Cortes and M. Mohri. AUC optimization vs. error rate minimization. InProc. NIPS’2003, 2004.

E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and S. Stolfo.Applications of Data Mining in Com-
puter Security, chapter A geometric framework for unsupervised anomaly detection: detecting
intrusions in unlabeled data. Kluwer, 2002.

G. H. Golub and C. F. van Loan.Matrix Computations. John Hopkins University Press, Baltimore,
London, 3rd edition, 1996.

T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf, C. J. C. Burges, and
A. J. Smola, editors,Advances in Kernel Methods — Support Vector Learning, pages 169–184,
Cambridge, MA, 1999. MIT Press.

1934

INCREMENTAL SUPPORTVECTORLEARNING

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. InT. G. Diettrich,
S. Becker, and Z. Ghahramani, editors,Advances in Neural Inf. Proc. Systems (NIPS 01), pages
785–792, 2001.

F. Klee and G. J. Minty. How good is the simplex algorithm? In O. Sisha, editor,Inequalities III,
pages 159–175. Academic Press, 1972.

P. Laskov. Feasible direction decomposition algorithms for training supportvector machines.Ma-
chine Learning, 46:315–349, 2002.

P. Laskov, C. Scḧafer, and I. Kotenko. Intrusion detection in unlabeled data with quarter-sphere
support vector machines. InProc. DIMVA, pages 71–82, 2004.

Y. LeCun, L. Bottou, G. B. Orr, and K.-R. M̈uller. Efficient backprop. In G. Orr and K.-R. M̈uller,
editors,Neural Networks: Tricks of the Trade, volume 1524, pages 9–53, Heidelberg, New York,
1998. Springer LNCS.

N. Littlestone, P. M. Long, and M. K. Warmuth. On-line learning of linear functions. Technical
Report CRL-91-29, University of California at Santa Cruz, October 1991.

J. Ma and S. Perkins. Time-series novelty detection using one-class Support Vector Machines. In
IJCNN, 2003. to appear.

J. Ma, J. Theiler, and S. Perkins. Accurate online support vector regression. http://nis-
www.lanl.gov/˜jt/Papers/aosvr.pdf, 2003.

M. Martin. On-line Support Vector Machines for function approximation. Technical report, Uni-
versitat Polit̀ecnica de Catalunya, Departament de Llengatges i Sistemes Informàtics, 2002.

N. Murata.A statistical study on the asymptotic theory of learning. PhD thesis, University of Tokyo
(In Japanese), 1992.

N. Murata, M. Kawanabe, A. Ziehe, K.-R. M̈uller, and S.-I. Amari. On-line learning in changing
environments with applications in supervised and unsupervised learning.Neural Networks, 15
(4-6):743–760, 2002.

N. Murata, K.-R. M̈uller, A. Ziehe, and S. i. Amari. Adaptive on-line learning in changing environ-
ments. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors,Advances in Neural Information
Processing Systems, volume 9, page 599. The MIT Press, 1997.

G. Orr and K.-R. M̈uller, editors. Neural Networks: Tricks of the Trade, volume 1524. Springer
LNCS, 1998.

J. Platt. Fast training of support vector machines using sequential minimal optimization. In
B. Scḧolkopf, C. J. C. Burges, and A. J. Smola, editors,Advances in Kernel Methods — Sup-
port Vector Learning, pages 185–208, Cambridge, MA, 1999. MIT Press.

L. Ralaivola and F. d’Alch́e Buc. Incremental support vector machine learning: A local approach.
Lecture Notes in Computer Science, 2130:322–329, 2001.

1935

LASKOV, GEHL, KRÜGER AND M ÜLLER

H. Robbins and S. Munro. A stochastic approximation method.Ann. Math. Stat., 22:400–407,
1951.

S. R̈uping. Incremental learning with support vector machines. Technical Report TR-18, Universiẗat
Dortmund, SFB475, 2002.

D. Saad, editor.On-line learning in neural networks. Cambridge University Press, 1998.

B. Scḧolkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. R̈atsch, and A. J. Smola. Input
space vs. feature space in kernel-based methods.IEEE Transactions on Neural Networks, 10(5):
1000–1017, September 1999.

B. Scḧolkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson. Estimatingthe support
of a high-dimensional distribution.Neural Computation, 13(7):1443–1471, 2001.

N. A. Syed, H. Liu, and K. K. Sung. Incremental learning with support vector machines. InSVM
workshop, IJCAI, 1999.

D. Tax and R. Duin. Data domain description by support vectors. In M. Verleysen, editor,
Proc. ESANN, pages 251–256, Brussels, 1999. D. Facto Press.

D. M. J. Tax and P. Laskov. Online SVM learning: from classification to data description and back.
In C. et al. Molina, editor,Proc. NNSP, pages 499–508, 2003.

I. Tsang, J. Kwok, and P.-M. Cheung. Core Vector Machines: fast SVM training on very large data
sets.Journal of Machine Learning Research, 6:363–392, 2005.

V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

M. K. Warmuth, J. Liao, G. R̈atsch, M. Mathieson, S. Putta, and C. Lemmem. Support Vector
Machines for active learning in the drug discovery process.Journal of Chemical Information
Sciences, 43(2):667–673, 2003.

1936

