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Abstract

In this paper we prove the optimality of an aggregation pdoce. We prove lower bounds for
aggregation of model selection type Mif density estimators for the Kullback-Leibler divergence
(KL), the Hellinger's distance and tHg-distance. The lower bound, with respect to the KL dis-
tance, can be achieved by the on-line type estimate suglyesteong others, by Yang (2000a).
Combining these results, we state thatNbgn is an optimal rate of aggregation in the sense of
Tsybakov (2003), wherais the sample size.
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1. Introduction

Let (x,4) be a measurable space ante ao-finite measure ofx,2). LetDp = (Xy,...,X,) be
a sample ofhi.i.d. observations drawn from an unknown probability of densign x with respect
tov. Consider the estimation dffrom Dp,.

Suppose that we hawd > 2 different estimatorg;, ..., fy of f. Catoni (1997), Yang (2000a),
Yang (2000b), Nemirovski (2000), Juditsky and Nemirovski (208@hg (2001), Tsybakov (2003),
Catoni (2004) and Rigollet and Tsybakov (2004) have studied thdgarobdf model selection type
aggregation. It consists in construction of a new estimétqcalled aggregatg which is approx-
imatively at least as good as the best amdng. ., fi. In most of these papers, this problem is
solved by using a kind of cross-validation procedure. Namely, the ggtiom is based on splitting
the sample in two independent subsamidésand D,2 of sizesm and| respectively, wheren>> |
andm+| = n. The size of the first subsample has to be greater than the one of thel $smause
it is used for the true estimation, that is for the construction ofl\thestimatorsﬂ,..., fu. The
second subsample is used for the adaptation step of the procedure fohatésconstruction of an
aggregate‘n, which has to mimic, in a certain sense, the behavior of the best among the etimato
fi. Thus, f, is measurable w.r.t. the whole samplgunlike the first estlmatorﬁl fM Actually,
Nemirovski (2000) and Juditsky and Nemirovski (2000) did not foausnodel selectlon type ag-
gregation. These papers give a bigger picture about the generabfquiccedure aggregation and
Yang (2004) complemented their results. Tsybakov (2003) improved teestts and formulated
the three types of aggregation problems (cf. Tsybakov (2003)).

One can suggest different aggregation procedures and the quegtawa to look for an optimal
one. A way to define optimality in aggregation in a minimax sense for a regrepsitatem is
suggested in Tsybakov (2003). Based on the same principle we car defimality for density
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aggregation. In this paper we will not consider the sample splitting and ntrate only on the
adaptation step, i.e. on the construction of aggregates (following Nemin@&d0), Juditsky and
Nemirovski (2000), Tsybakov (2003)). Thus, the first subsampleésifand instead of estimators
ﬂ, ey fm, we have fixed function$,, ..., fiy. Rather than working with a part of the initial sample
we will use, for notational simplicity, the whole samjidg of sizen instead of a subsampl?.

The aim of this paper is to prove the optimality, in the sense of Tsybakov J20D®e aggre-
gation method proposed by Yang, for the estimation of a densifRBr\) where is the Lebesgue
measure oRY. This procedure is a convex aggregation with weights which can be sedem in
different ways. Yang’s point of view is to express these weights intfanof the likelihood of the
model, namely

<

fa =S WV f(x), wxex, 1)

i _ K
where the weights amﬁm =(n+1) 12210\,\,} ) and

W — T (X
S AIOG) - (%)

And the second point of view is to write these weights as exponential osesea in Augustin

et al. (1997), Catoni (2004), Hartigan (2002), Bunea and Nob@0%p, Juditsky et al. (2005)
and Lecé (2005), for different statistical models. Define the empirical Kullback kg f) =
—(1/n) 3L log f(Xi) (keeping only the term independent of the underlying density to estimate) for
all densityf. We can rewrite these weights as exponential weights:

Wi —  exp—KK(fj))
g exp(—kKk(f))’

Most of the results on convergence properties of aggregation methedbtmined for the re-
gression and the gaussian white noise models. Nevertheless, Catonj 2084l), Devroye and
Lugosi (2001), Yang (2000a), Zhang (2003) and Rigollet and @kgth (2004) have explored the
performances of aggregation procedures in the density estimation frakneMost of them have
established upper bounds for some procedure and do not deal withaiblerm of optimality of
their procedures. Nemirovski (2000), Juditsky and Nemirovski (2600 Yang (2004) state lower
bounds for aggregation procedure in the regression setup. To owtdaige, lower bounds for the
performance of aggregation methods in density estimation are available onigaheRand Tsy-
bakov (2004). Their results are obtained with respect to the mean siqusike Catoni (1997) and
Yang (2000a) construct procedures and give convergencewatesthe KL loss. One aim of this
paper is to prove optimality of one of these procedures w.r.t. the KL loss.et.oounds w.r.t.
the Hellinger’s distance arld;-distance (stated in Section 3) and some results oféBj2§04) and
Devroye and Lugosi (2001) (recalled in Section 4) suggest that the od convergence obtained
in Theorem 2 and 4 are optimal in the sense given in Definition 1. In factpproaimate bound
can be achieved, if we allow the leading term in the RHS of the oracle inequadityir( the upper
bound) to be multiplied by a constant greater than one.

The paper is organized as follows. In Section 2 we give a Definition of optymgor a rate
of aggregation and for an aggregation procedure, and our main rdsmier bounds, for different
loss functions, are given in Section 3. In Section 4, we recall a res¥iig (2000a) about an exact
oracle inequality satisfied by the aggregation procedure introduced.in (1)

_ o _ 1
,Vk_l,...,nandwj =M (2)

vk=0,...,n.
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LOWERBOUNDS AND AGGREGATION INDENSITY ESTIMATION

2. Main Definition and Main Results

To evaluate the accuracy of a density estimator we use the Kullback-Ledl@d{vergence, the
Hellinger's distance and thie;-distance as loss functions. Thé divergenceis defined for all
densitiesf, g w.r.t. ac—finite measure on a spacer, by

k(1 = { I log (£) fav if Pr < Py;
+00 otherwise

wherePs (respectivelyP;) denotes the probability distribution of densityrespectivelyg) w.r.t. v.
Hellinger's distancés defined for all non-negative measurable functibrasxdg by

H(f.9) = |vT-vg

2)

where thel ,-norm is defined by f > = ([, fz(x)dv(x))l/2 for all functionsf € Ly(x,v). The
L1-distanceis defined for all measurable functiofiandg by

V(.9 = [ 1-gdv.

The main goal of this paper is to find optimal rate of aggregation in the serthe dfinition
given below. This definition is an analog, for the density estimation probletheafne in Tsybakov
(2003) for the regression problem.

Definition 1 Take M> 2 an integer,¥ a set of densities o ,.2,v) and % a set of functions on
x with values inR such thaty C 7. Let d be a loss function on the ggf. A sequence of positive
numbers(Wn(M))nen- is calledoptimal rate of aggregation of M functionsin (7o, 7 ) w.r.t. the
lossd if :

(i) There exists a constant € o, depending only or¥g, # and d, such that for all functions
f1,..., fm in Fo there exists an estimatdy, (aggregate) of f such that

sup[Ef [d(f, f)] —

in d(f7fi)} <Cyn(M), ¥ne N, @3)
fer i=1,...M

)

(if) There exist some functions,f.., fm in #o and c> 0 a constant independent of M such that
for all estimatorsf, of f,

Sup[Ef [d(f, fo)] — min d(f,fi)]ZCLpn(M), vne N*. (4)
fer i=1...M

Moreover, when the inequalities (3) and (4) are satisfied, we say thairtveduref,, appearing
in (3), is anoptimal aggregation procedure w.r.t. the losg.

Let A> 1 be a given number. In this paper we are interested in the estimation of dehgitigin
¥ (A) = {densities bounded b¥} (5)

and, depending on the used loss function, we aggregate functiggsshich can be:
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1. 7k (A) = {densities bounded b4} for KL divergence,
2. 71 (A) = {non-negative measurable functions boundedpyor Hellinger’s distance,
3. #v(A) = {measurable functions bounded Ay for theL,-distance.

The main result of this paper, obtained by using Theorem 5 and assd}iohTheorem 3, is
the following Theorem.

Theorem 1 Let A> 1. Let M and n be two integers such tHagM < 16(min(1,A— 1))?n. The
sequence

qJn(M) = IOiM

is an optimal rate of aggregation of M functions (& (A), ¥ (A)) (introduced in (5)) w.rt. the
KL divergence loss. Moreover, the aggregation procedure with exuital weights, defined in (1),
achieves this rate. So, this procedure is an optimal aggregation proeedut. the KL-loss.

Moreover, if we allow the leading term "miry, v d(f, fi)”, in the upper bound and the lower
bound of Definition 1, to be multiplied by a constant greater than one, theatd@,(M))nen- is
said "near optimal rate of aggregation”. Observing Theorem 6 and $ldt i Devroye and Lugosi
(2001) (recalled at the end of Section 4), the rates obtained in Theorans4£

q
logM 2
(%)

are near optimal rates of aggregation for the Hellinger’s distance ard ttisstance to the power
g, whereq > 0.

3. Lower Bounds

To prove lower bounds of type (4) we use the following lemma on minimax lowendt® which
can be obtained by combining Theorems 2.2 and 2.5 in Tsybakov (20043ay\thatd is asemi-
distance or® if d is symmetric, satisfies the triangle inequality at{@,6) = 0.

Lemma 1 Letd be a semi-distance on the set of all densitiesxom ,v) and w be a non-decreasing
function defined ofR . which is not identically0. Let (y)nen be a sequence of positive numbers.
Let ¢ be a finite set of densities ¢i, 2,v) such that cardc) =M > 2,

vi,gec,f #g=d(f,g) >4, >0,

and the KL divergences (IP§”|P§<’”), between the product probability measures corresponding to
densities f and g respectively, satisfy, for some €,

vt e o, K(PEMPEM) < (1/16)log(M).

Then,

infsupE+ [w(y,d(fn, £))] > ci,

fh fec
whereinf; denotes the infimum over all estimators based on a sample of size n fromkaown
distribution with density f andic> O is an absolute constant.
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LOWERBOUNDS AND AGGREGATION INDENSITY ESTIMATION

Now, we give a lower bound of the form (4) for the three different loggtions introduced in
the beginning of the section. Lower bounds are given in the problemtiafason of a density on
RY, namely we haver = RY andv is the Lebesgue measure BA.

Theorem 2 Let M be an integer greater tha?y A > 1 and g> 0 be two numbers. We have for all
integers n such thdogM < 16(min(1,A—1))?n,

A a/2
sup inf sup [Ef [H(fn, £)9 — min H(fj’f)q:| ZC<I09M> 7
f1,, tMEFH(A) Tn feg (A) =1...M n

where c is a positive constant which depends only on A and g. The é&jsand 7 (A) are defined
in (5) whenx = RY and the infimum is taken over all the estimators based on a sample of size n.

Proof : For all densitied, ..., fy bounded byA we have,

sup inf sup I:Ef [H(fn, )] —

“min H(fj,f)q] >inf  sup Ef[H(fn, £)1].
f1,..., IMEFH (A) fn fer (A

ji=1...M fn fe{flr-“7fM}

Thus, to prove Theorem 1, it suffices to fiMlappropriate densities bounded Ayand to apply
Lemma 1 with a suitable rate.

We considerD the smallest integer such tha?/8 > M andA = {0,1}°. We seth;(y) =
h(y—(j—1)/D) for all y € R, whereh(y) = (L/D)g(Dy) andg(y) = Jjo.12(y) — J(1/2,15(y) for
ally € R andL > 0 will be chosen later. We consider

D
fs(X) = U 14(X) <1+ Z djh; (xl)) . WX=(X1,...,xq) € RY,
=1

for all 8= (81,...,0p) € A. We takeL such thatL < Dmin(1,A— 1) thus, for alld € A, fy is

a density bounded bj. We choose our densitiefy, ..., fy in 3 = {fs: 6 A}, but we do not
take all of the densities 0B (because they are too close to each other), but only a subggt of
indexed by a separated set (this is a set where all the points are sdpapateeach other by
a given distance) oh for the Hamming distancelefined byp(d',8%) = Y2, 1(&" # &) for all

ot = (8},...8),0% = (&,...,83) € A. Since [ hdA = 0, we have

Ho (o f) = i /ﬂl(é}#éﬁ) (1—m)zdx
=1Y"D
_ 2p(61,62)/01/D (1- VI+h() ) dx

for all 8 = (&%,...,8%),8% = (82,...,83) € A. On the other hand the functigi(x) = 1 — ax? —
V1+x, wherea = 8 %2, is convex on[—1,1] and we haveh(x)| < L/D < 1 so, according to
Jensen L o(h(x))dx > ¢ ( folh(x)dx). Therefore f/° (1— VIt h(x)) dx > o [P R (x)dx =
(aL?)/D3, and we have

2012

Hz(f617 fg2) > D3 p(61a62)7
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for all 8,8% € A. According to Varshamov-Gilbert, cf. Tsybakov (2004, p. 89) oa¢imov and
Hasminskii (1980), there existsldy/8-separated set, calléd, g, on A for the Hamming distance
such that its cardinal is higher thaR/8 and(0,...,0) € Np/g- On the separated sip g we have,

alL?
>,
— 4D?

In order to apply Lemma 1, we need to control the KL divergences too.eSichave taken
Np /g such that0, ...,0) € Np s, we can control the KL divergences w. R, the Lebesgue measure
on [0,1]9. We denote byPs the probability of densityfs w.r.t. the Lebesgue’s measure Bf, for
all d € A. We have,

V&', 8 € Npjg, H (s, fe)

KBRS = n [ 10g(fsx) fsxx

- J;/,-Dl 9(1+8;hj(x)) (1+3;hj(x)) dx

D 1/D
_ ”(,Zf‘)/o log(1+h(x))(L+h(x))dx,

foralld=(81,...,0p) € Npg. SincevVu > —1,log(1+u) < u, we have,

nL2

naon D 1/D 1/D
K(P5"|Py )§n<1216,-)/0 (1+h(x))h(x)dx < nD/O hz(x)dxzﬁ_

Since logV < 16(min(1,A—1))?n, we can take. such that(nL?)/D? = log(M)/16 and still
havingL < Dmin(1,A—1). Thus, forL = (D/4),/log(M)/n, we have for all element&!, & in
Np /g, H(fs, fs2) > (a1/64)(log(M) /n) andVd € Np /g, K(P5"|Pg™") < (1/16)log(M).

Applying Lemma 1 wherd is H, the Hellinger’'s distance, wittM densitiesfs,..., fy in
{f5 o€ ND/S} wheref; = 1o ¢ and the increasing functiom(u) = u4, we get the result.

Remark 1 The construction of the family of densitiésﬁs 10¢€ ND/g} is in the same spirit as the
lower bound of Tsybakov (2003), Rigollet and Tsybakov (2004).&Bwompared to Rigollet and
Tsybakov (2004), we consider a different problem (model selectjgregation) and as compared
to Tsybakov (2003), we study in a different context (density estimatdsr), our risk function is
different from those considered in these papers.

Now, we give a lower bound for KL divergence. We have the samdtrasufor square of
Hellinger’'s distance.

Theorem 3 Let M > 2 be an integer, A~ 1 and g> 0. We have, for any integer n such that
logM < 16(min(1,A—1))?n,

(6)

logM\ 9
n )

sup inf sup |Ef [(K(f|fn)9] — min (K(fyf,-))ﬂ 2c<
f1,....,fTMEFK (A) fh fer (A =1...M
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and

sup inf sup Ef[<K<ﬂ1f»Q]_nnnM<K<fnf>fﬂ 2z0< ™)

IogM)q
)
f1,....,fMEFK (A) fn fer (A) =L, n

where c is a positive constant which depends only on A. Thersgts and 7k (A) are defined in
(5) for x =RY.

Proof : Proof of the inequality (7) of Theorem 3 is similar to the one for (6). Sincénae for all
densitiesf andg,

K(f|g) > H3(f,qg),

(a proofis given in Tsybakov, 2004, p. 73), it suffices to note thdt, if. ., fyy are densities bounded
by A then,

sup inf sup |E¢ [(K(f[f0)9] — min (K(f]f))®
fi,....tuerk(A) fn fer (A) j=1..M

>inf sup [E¢ [(K(f|f)Y]] >inf  sup  [E¢ [HX(f, f)]],
fn fE{fl,...,fm} fn fé{fl,...,fm}

to get the result by applying Theorem 2.

With the same method as Theorem 1, we get the result below fanthéstance.

Theorem 4 Let M > 2 be an integer, A> 1 and g> 0. We have for any integers n such that
logM < 16(min(1,A—1))?n,

N a/2
sup inf sup |E¢[v(f,f,)9] — min v(f,fi)q} zc<|0gM)
f1,....fmer(A) fn fer (A) =L..M n

where c is a positive constant which depends only on A. Thergétsand #,(A) are defined in (5)
for x =RY.

Proof : The only difference with Theorem 2 is in the control of the distances. Withs#dme
notations as the proof of Theorem 2, we have,

1 52 1/b L 1 52
Wi fw) = [ 115100~ T00ldx=p(@.3) [ Ih(x)dx= ,p(8".8),
[0, 0 D

for all &',8° € A. Thus, forL = (D/4),/log(M)/n andNp g, theD /8-separated set df introduced
in the proof of Theorem 2, we have,

1 M, V61,52€No/sandK(P§n’P§n)S%IOQ(M% VoEA.

>
V(fa, f52) > 37 =

Therefore, by applying Lemma 1 to the-distance withM densitiesfy, ..., fy in {f5 10€ ND/g}
wheref; = 1 ;0 and the increasing functiom(u) = u4, we get the result.
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4. Upper Bounds

In this section we use an argument in Yang (2000a) (see also Caton), 20fl#bw that the rate of
the lower bound of Theorem 3 is an optimal rate of aggregation with resp#w KL loss. We use
an aggregate constructed by Yang (defined in (1)) to attain this rate. per lppund of the type
(3) is stated in the following Theorem. Remark that Theorem 5 holds in a @énamework of a

measurable spade ,.2 ) endowed with a-finite measure.

Theorem 5 (Yang) Let X,..., X, be n observations of a probability measgre(ocrm) of density
f with respect tov. Let fi,..., fu be M densities ofx, 42,v). The aggregatdy, introduced in (1),
satisfies, for any underlying density f,

- ) [
e [K(FIf)] < min, K(F[1)+ o2, ®)

Proof : Proof follows the line of Yang (2000a), although he does not state thit iaghe form
(3), for convenience we reproduce the argument here. We difireX ¥)) = z’}":lwgk) fj(x), vk=
1,...,n (wherewgk) is defined in (2) an&k®™ = (xq,...,x) for all k € N andxy,...,x € x) and
fi (x X)) = (1/M)zJ 1 fj(x) for all x € x. Thus, we have

n

. 1 .
fn(x;X(n)) = e Z fk(X;X(k)).
k=0

Let f be a density orix,4,v). We have

Z E [K(flfi)] = / Xk+1) k“f VD ()
i k E e fsanx | I 1y Xkt
(Xi1) sy ®(n+1)
= Elo |Ifx- dv X1y e eny X
/Xn+l < (fk Xk+l!X k)))) L ( I) ( 1 I’H—l)

n+1
= / Iog< fn(xl) f(xnﬂ) ) l_lf X )AVEMD (1 Xne1),
xn+l I_lk:O fk(Xk+11

but (o ficer2;x®) = (1/M) $M, fj(x1) ... Fj(Xas1), VX1, - .., Xns1 € X thus,

n+1
%Ef f | fk / log Xl) f(XnJrl) I—l f dv®(n+1) (XL Xn+1)
i SV (%) fj(Xnea)

moreoverx — log(1/x) is a decreasing function so,

i () foarn) VT : (n+1)
< Lo (g 0000

(
fxa) . f () \ 1 2(nt1)
OO A {/xm"’g( fa). xn+1>|_lfx' 04, X““)}
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finally we have,
Z]Ef f|fk <logM+(n+1) ilnfMK(f|fj). 9)
=

On the other hand we have,

n+1
E [K( f | ﬁ‘)] = /Xn+1 |og ( 1 . ¢n f()'(\m_l) k )) u f<xi)dV®(n+l>(X17 e 7Xn+1)>

71 koo fk(np; x®

andx+— log(1/x) is convex, thus,

n

Er [K(flf)] < — Z K(f|fo)] (10)

Theorem 5 follows by combining (9) and (10).
[

Birgé constructs estimators, call@gestimatorgthe "T” is for "test”), which are adaptive in
aggregation selection model M estimators with a residual proportional (zilm)gM/n)q/2 when
Hellinger andL;-distances are used to evaluate the quality of estimation (cfeB2604)). But it
does not give an optimal result as Yang, because there is a consgatgrghan 1 in front of the
main term min_, v d9(f, f;) whered is the Hellinger distance or tHe, distance. Nevertheless,
observing the proof of Theorem 2 and 4, we can obtain

/
sup inf sup [Ef [d(f,fAn)Q]_C(q), min d(f f)] (Io?]M)q 2’

f1,.. fmer (A) fn fer (A i=1..,

whered is the Hellinger olL;-distanceq > 0 andA > 1. The constant(q) can be chosen equal to
the one appearing in the following Theorem. The same residual appeais liovier bound and in
the upper bounds of Theorem 6, so we can say that

logM ¥/2
n

is near optimal rate of aggregation w.r.t. the Hellinger distance dt thdistance to the powa, in
the sense given at the end of Section 2. We recall@srgesults in the following Theorem.

Theorem 6 (Birgé) If we have n observations of a probability measure of density f wrand
f1,..., fu densities onx,4,v), then there exists an estimatéy ( T-estimator) such that for any
underlying density f and g O, we have

/2
Er [H(f, )9 <C(q) ( min H(f, )%+ ('O?]'V'>q )

and for the l3-distance we can construct an estimafqmwhich satisfies :

E¢ [v(f, fn)9] < C(a) < min v(f £)0+ (lo?]M)qm) |

i=1...,

where Gq) > 0is a constant depending only on g.
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Another result, which can be found in Devroye and Lugosi (2001jestdhat the minimum
distance estimate proposed by Yatracos (1985) (cf. Devroye ancsL(&fiD1, p. 59)) achieves the
same aggregation rate as in Theorem 6 folLthdistance withg= 1. Namely, for allf, f,..., fy €
F (A,

logM

. _ _
Ef [v(f, fn)] _31_:T|“r71Mv(f,f,)+ T

wheref, is the estimator of Yatracos defined by

1 n
f—= Uy
/A ni; {XieA}

fo=arg min sup
fe{f,...fw} Aca

Y

anda = {{x: fi(x) > fj(x)}:1<i,j <M}.
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