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Abstract
In this paper we prove the optimality of an aggregation procedure. We prove lower bounds for

aggregation of model selection type ofM density estimators for the Kullback-Leibler divergence
(KL), the Hellinger’s distance and theL1-distance. The lower bound, with respect to the KL dis-
tance, can be achieved by the on-line type estimate suggested, among others, by Yang (2000a).
Combining these results, we state that logM/n is an optimal rate of aggregation in the sense of
Tsybakov (2003), wheren is the sample size.
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1. Introduction

Let (X ,A ) be a measurable space andν be aσ-finite measure on(X ,A ). Let Dn = (X1, . . . ,Xn) be
a sample ofn i.i.d. observations drawn from an unknown probability of densityf onX with respect
to ν. Consider the estimation off from Dn.

Suppose that we haveM ≥ 2 different estimatorŝf1, . . . , f̂M of f . Catoni (1997), Yang (2000a),
Yang (2000b), Nemirovski (2000), Juditsky and Nemirovski (2000),Yang (2001), Tsybakov (2003),
Catoni (2004) and Rigollet and Tsybakov (2004) have studied the problem of model selection type
aggregation. It consists in construction of a new estimatorf̃n (calledaggregate) which is approx-
imatively at least as good as the best amongf̂1, . . . , f̂M. In most of these papers, this problem is
solved by using a kind of cross-validation procedure. Namely, the aggregation is based on splitting
the sample in two independent subsamplesD1

m andD2
l of sizesm and l respectively, wherem≫ l

andm+ l = n. The size of the first subsample has to be greater than the one of the second because
it is used for the true estimation, that is for the construction of theM estimatorsf̂1, . . . , f̂M. The
second subsample is used for the adaptation step of the procedure, that isfor the construction of an
aggregatef̃n, which has to mimic, in a certain sense, the behavior of the best among the estimators
f̂i . Thus, f̃n is measurable w.r.t. the whole sampleDn unlike the first estimatorŝf1, . . . , f̂M. Actually,
Nemirovski (2000) and Juditsky and Nemirovski (2000) did not focus on model selection type ag-
gregation. These papers give a bigger picture about the general topicof procedure aggregation and
Yang (2004) complemented their results. Tsybakov (2003) improved theseresults and formulated
the three types of aggregation problems (cf. Tsybakov (2003)).

One can suggest different aggregation procedures and the questionis how to look for an optimal
one. A way to define optimality in aggregation in a minimax sense for a regressionproblem is
suggested in Tsybakov (2003). Based on the same principle we can define optimality for density
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aggregation. In this paper we will not consider the sample splitting and concentrate only on the
adaptation step, i.e. on the construction of aggregates (following Nemirovski (2000), Juditsky and
Nemirovski (2000), Tsybakov (2003)). Thus, the first subsample is fixed and instead of estimators
f̂1, . . . , f̂M, we have fixed functionsf1, . . . , fM. Rather than working with a part of the initial sample
we will use, for notational simplicity, the whole sampleDn of sizen instead of a subsampleD2

l .
The aim of this paper is to prove the optimality, in the sense of Tsybakov (2003), of the aggre-

gation method proposed by Yang, for the estimation of a density on(Rd,λ) whereλ is the Lebesgue
measure onRd. This procedure is a convex aggregation with weights which can be seen intwo
different ways. Yang’s point of view is to express these weights in function of the likelihood of the
model, namely

f̃n(x) =
M

∑
j=1

w̃(n)
j f j(x), ∀x∈ X , (1)

where the weights are ˜w(n)
j = (n+1)−1 ∑n

k=0w(k)
j and

w(k)
j =

f j(X1) . . . f j(Xk)

∑M
l=1 fl (X1) . . . fl (Xk)

, ∀k = 1, . . . ,n andw(0)
j =

1
M

. (2)

And the second point of view is to write these weights as exponential ones, as used in Augustin
et al. (1997), Catoni (2004), Hartigan (2002), Bunea and Nobel (2005), Juditsky et al. (2005)
and Lecúe (2005), for different statistical models. Define the empirical Kullback loss Kn( f ) =
−(1/n)∑n

i=1 log f (Xi) (keeping only the term independent of the underlying density to estimate) for
all density f . We can rewrite these weights as exponential weights:

w(k)
j =

exp(−kKk( f j))

∑M
l=1exp(−kKk( fl ))

, ∀k = 0, . . . ,n.

Most of the results on convergence properties of aggregation methods are obtained for the re-
gression and the gaussian white noise models. Nevertheless, Catoni (1997, 2004), Devroye and
Lugosi (2001), Yang (2000a), Zhang (2003) and Rigollet and Tsybakov (2004) have explored the
performances of aggregation procedures in the density estimation framework. Most of them have
established upper bounds for some procedure and do not deal with the problem of optimality of
their procedures. Nemirovski (2000), Juditsky and Nemirovski (2000) and Yang (2004) state lower
bounds for aggregation procedure in the regression setup. To our knowledge, lower bounds for the
performance of aggregation methods in density estimation are available only in Rigollet and Tsy-
bakov (2004). Their results are obtained with respect to the mean squared risk. Catoni (1997) and
Yang (2000a) construct procedures and give convergence ratesw.r.t. the KL loss. One aim of this
paper is to prove optimality of one of these procedures w.r.t. the KL loss. Lower bounds w.r.t.
the Hellinger’s distance andL1-distance (stated in Section 3) and some results of Birgé (2004) and
Devroye and Lugosi (2001) (recalled in Section 4) suggest that the rates of convergence obtained
in Theorem 2 and 4 are optimal in the sense given in Definition 1. In fact, an approximate bound
can be achieved, if we allow the leading term in the RHS of the oracle inequality (i.e. in the upper
bound) to be multiplied by a constant greater than one.

The paper is organized as follows. In Section 2 we give a Definition of optimality, for a rate
of aggregation and for an aggregation procedure, and our main results. Lower bounds, for different
loss functions, are given in Section 3. In Section 4, we recall a result ofYang (2000a) about an exact
oracle inequality satisfied by the aggregation procedure introduced in (1).
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2. Main Definition and Main Results

To evaluate the accuracy of a density estimator we use the Kullback-Leibler (KL) divergence, the
Hellinger’s distance and theL1-distance as loss functions. TheKL divergenceis defined for all
densitiesf , g w.r.t. aσ−finite measureν on a spaceX , by

K( f |g) =

{

R

X log
(

f
g

)

f dν if Pf ≪ Pg;

+∞ otherwise,

wherePf (respectivelyPg) denotes the probability distribution of densityf (respectivelyg) w.r.t. ν.
Hellinger’s distanceis defined for all non-negative measurable functionsf andg by

H( f ,g) =
∥

∥

∥

√

f −√
g
∥

∥

∥

2
,

where theL2-norm is defined by‖ f‖2 =
(

R

X f 2(x)dν(x)
)1/2

for all functions f ∈ L2(X ,ν). The
L1-distanceis defined for all measurable functionsf andg by

v( f ,g) =
Z

X

| f −g|dν.

The main goal of this paper is to find optimal rate of aggregation in the sense ofthe definition
given below. This definition is an analog, for the density estimation problem, ofthe one in Tsybakov
(2003) for the regression problem.

Definition 1 Take M≥ 2 an integer,F a set of densities on(X ,A ,ν) andF0 a set of functions on
X with values inR such thatF ⊆ F0. Let d be a loss function on the setF0. A sequence of positive
numbers(ψn(M))n∈N∗ is calledoptimal rate of aggregation of M functions in (F0,F ) w.r.t. the
loss d if :

(i) There exists a constant C< ∞, depending only onF0,F and d, such that for all functions
f1, . . . , fM in F0 there exists an estimator̃fn (aggregate) of f such that

sup
f∈F

[

E f
[

d( f , f̃n)
]

− min
i=1,...,M

d( f , fi)

]

≤Cψn(M), ∀n∈ N
∗. (3)

(ii) There exist some functions f1, . . . , fM in F0 and c> 0 a constant independent of M such that
for all estimatorsf̂n of f ,

sup
f∈F

[

E f
[

d( f , f̂n)
]

− min
i=1,...,M

d( f , fi)

]

≥ cψn(M), ∀n∈ N
∗. (4)

Moreover, when the inequalities (3) and (4) are satisfied, we say that theproceduref̃n, appearing
in (3), is anoptimal aggregation procedure w.r.t. the lossd.

Let A > 1 be a given number. In this paper we are interested in the estimation of densities lying in

F (A) = {densities bounded byA} (5)

and, depending on the used loss function, we aggregate functions inF0 which can be:
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1. FK(A) = {densities bounded byA} for KL divergence,

2. FH(A) = {non-negative measurable functions bounded byA} for Hellinger’s distance,

3. Fv(A) = {measurable functions bounded byA} for theL1-distance.

The main result of this paper, obtained by using Theorem 5 and assertion (6) of Theorem 3, is
the following Theorem.

Theorem 1 Let A> 1. Let M and n be two integers such thatlogM ≤ 16(min(1,A−1))2n. The
sequence

ψn(M) =
logM

n
is an optimal rate of aggregation of M functions in(FK(A),F (A)) (introduced in (5)) w.r.t. the
KL divergence loss. Moreover, the aggregation procedure with exponential weights, defined in (1),
achieves this rate. So, this procedure is an optimal aggregation procedure w.r.t. the KL-loss.

Moreover, if we allow the leading term ”mini=1,...,M d( f , fi)”, in the upper bound and the lower
bound of Definition 1, to be multiplied by a constant greater than one, then the rate(ψn(M))n∈N∗ is
said ”near optimal rate of aggregation”. Observing Theorem 6 and the result of Devroye and Lugosi
(2001) (recalled at the end of Section 4), the rates obtained in Theorems 2and 4:

(

logM
n

)
q
2

are near optimal rates of aggregation for the Hellinger’s distance and theL1-distance to the power
q, whereq > 0.

3. Lower Bounds

To prove lower bounds of type (4) we use the following lemma on minimax lower bounds which
can be obtained by combining Theorems 2.2 and 2.5 in Tsybakov (2004). Wesay thatd is asemi-
distance onΘ if d is symmetric, satisfies the triangle inequality andd(θ,θ) = 0.

Lemma 1 Let d be a semi-distance on the set of all densities on(X ,A ,ν) and w be a non-decreasing
function defined onR+ which is not identically0. Let (ψn)n∈N be a sequence of positive numbers.
LetC be a finite set of densities on(X ,A ,ν) such that card(C ) = M ≥ 2,

∀ f ,g∈ C , f 6= g =⇒ d( f ,g) ≥ 4ψn > 0,

and the KL divergences K(P⊗n
f |P⊗n

g ), between the product probability measures corresponding to
densities f and g respectively, satisfy, for some f0 ∈ C ,

∀ f ∈ C , K(P⊗n
f |P⊗n

f0
) ≤ (1/16) log(M).

Then,
inf
f̂n

sup
f∈C

E f
[

w(ψ−1
n d( f̂n, f ))

]

≥ c1,

whereinf f̂n
denotes the infimum over all estimators based on a sample of size n from an unknown

distribution with density f and c1 > 0 is an absolute constant.
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Now, we give a lower bound of the form (4) for the three different lossfunctions introduced in
the beginning of the section. Lower bounds are given in the problem of estimation of a density on
R

d, namely we haveX = R
d andν is the Lebesgue measure onR

d.

Theorem 2 Let M be an integer greater than2, A> 1 and q> 0 be two numbers. We have for all
integers n such thatlogM ≤ 16(min(1,A−1))2n,

sup
f1,..., fM∈FH(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

H( f̂n, f )q]− min
j=1,...,M

H( f j , f )q
]

≥ c

(

logM
n

)q/2

,

where c is a positive constant which depends only on A and q. The setsF (A) andFH(A) are defined
in (5) whenX = R

d and the infimum is taken over all the estimators based on a sample of size n.

Proof : For all densitiesf1, . . . , fM bounded byA we have,

sup
f1,..., fM∈FH(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

H( f̂n, f )q]− min
j=1,...,M

H( f j , f )q
]

≥ inf
f̂n

sup
f∈{ f1,..., fM}

E f
[

H( f̂n, f )q] .

Thus, to prove Theorem 1, it suffices to findM appropriate densities bounded byA and to apply
Lemma 1 with a suitable rate.

We considerD the smallest integer such that 2D/8 ≥ M and ∆ = {0,1}D. We seth j(y) =
h(y− ( j −1)/D) for all y ∈ R, whereh(y) = (L/D)g(Dy) andg(y) = 1I[0,1/2](y)− 1I(1/2,1](y) for
all y∈ R andL > 0 will be chosen later. We consider

fδ(x) = 1I[0,1]d(x)

(

1+
D

∑
j=1

δ jh j(x1)

)

, ∀x = (x1, . . . ,xd) ∈ R
d,

for all δ = (δ1, . . . ,δD) ∈ ∆. We takeL such thatL ≤ Dmin(1,A− 1) thus, for allδ ∈ ∆, fδ is
a density bounded byA. We choose our densitiesf1, . . . , fM in B = { fδ : δ ∈ ∆}, but we do not
take all of the densities ofB (because they are too close to each other), but only a subset ofB ,
indexed by a separated set (this is a set where all the points are separated from each other by
a given distance) of∆ for the Hamming distancedefined byρ(δ1,δ2) = ∑D

i=1 I(δ1
i 6= δ2

i ) for all
δ1 = (δ1

1, . . .δ1
D),δ2 = (δ2

1, . . . ,δ2
D) ∈ ∆. Since

R

R
hdλ = 0, we have

H2( fδ1, fδ2) =
D

∑
j=1

Z

j
D

j−1
D

I(δ1
j 6= δ2

j )

(

1−
√

1+h j(x)

)2

dx

= 2ρ(δ1,δ2)
Z 1/D

0

(

1−
√

1+h(x)
)

dx,

for all δ1 = (δ1
1, . . . ,δ1

D),δ2 = (δ2
1, . . . ,δ2

D) ∈ ∆. On the other hand the functionϕ(x) = 1−αx2−√
1+x, whereα = 8−3/2, is convex on[−1,1] and we have|h(x)| ≤ L/D ≤ 1 so, according to

Jensen,
R 1

0 ϕ(h(x))dx≥ ϕ
(

R 1
0 h(x)dx

)

. Therefore
R 1/D

0

(

1−
√

1+h(x)
)

dx≥ α
R 1/D

0 h2(x)dx =

(αL2)/D3, and we have

H2( fδ1, fδ2) ≥ 2αL2

D3 ρ(δ1,δ2),
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for all δ1,δ2 ∈ ∆. According to Varshamov-Gilbert, cf. Tsybakov (2004, p. 89) or Ibragimov and
Hasminskii (1980), there exists aD/8-separated set, calledND/8, on ∆ for the Hamming distance
such that its cardinal is higher than 2D/8 and(0, . . . ,0) ∈ ND/8. On the separated setND/8 we have,

∀δ1,δ2 ∈ ND/8 , H2( fδ1, fδ2) ≥ αL2

4D2 .

In order to apply Lemma 1, we need to control the KL divergences too. Since we have taken
ND/8 such that(0, . . . ,0)∈ND/8, we can control the KL divergences w.r.t.P0, the Lebesgue measure
on [0,1]d. We denote byPδ the probability of densityfδ w.r.t. the Lebesgue’s measure onR

d, for
all δ ∈ ∆. We have,

K(P⊗n
δ |P⊗n

0 ) = n
Z

[0,1]d
log( fδ(x)) fδ(x)dx

= n
D

∑
j=1

Z j/D

j−1
D

log(1+δ jh j(x))(1+δ jh j(x))dx

= n

(

D

∑
j=1

δ j

)

Z 1/D

0
log(1+h(x))(1+h(x))dx,

for all δ = (δ1, . . . ,δD) ∈ ND/8. Since∀u > −1, log(1+u) ≤ u, we have,

K(P⊗n
δ |P⊗n

0 ) ≤ n

(

D

∑
j=1

δ j

)

Z 1/D

0
(1+h(x))h(x)dx≤ nD

Z 1/D

0
h2(x)dx=

nL2

D2 .

Since logM ≤ 16(min(1,A−1))2n, we can takeL such that(nL2)/D2 = log(M)/16 and still
havingL ≤ Dmin(1,A−1). Thus, forL = (D/4)

√

log(M)/n, we have for all elementsδ1,δ2 in
ND/8, H2( fδ1, fδ2) ≥ (α/64)(log(M)/n) and∀δ ∈ ND/8 , K(P⊗n

δ |P⊗n
0 ) ≤ (1/16) log(M).

Applying Lemma 1 whend is H, the Hellinger’s distance, withM densities f1, . . . , fM in
{

fδ : δ ∈ ND/8
}

where f1 = 1I[0,1]d and the increasing functionw(u) = uq, we get the result.

�

Remark 1 The construction of the family of densities
{

fδ : δ ∈ ND/8
}

is in the same spirit as the
lower bound of Tsybakov (2003), Rigollet and Tsybakov (2004). But, as compared to Rigollet and
Tsybakov (2004), we consider a different problem (model selection aggregation) and as compared
to Tsybakov (2003), we study in a different context (density estimation).Also, our risk function is
different from those considered in these papers.

Now, we give a lower bound for KL divergence. We have the same result as for square of
Hellinger’s distance.

Theorem 3 Let M ≥ 2 be an integer, A> 1 and q> 0. We have, for any integer n such that
logM ≤ 16(min(1,A−1))2n,

sup
f1,..., fM∈FK(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

(K( f | f̂n))q]− min
j=1,...,M

(K( f | f j))
q
]

≥ c

(

logM
n

)q

, (6)
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and

sup
f1,..., fM∈FK(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

(K( f̂n| f ))q]− min
j=1,...,M

(K( f j | f ))q
]

≥ c

(

logM
n

)q

, (7)

where c is a positive constant which depends only on A. The setsF (A) andFK(A) are defined in
(5) for X = R

d.

Proof : Proof of the inequality (7) of Theorem 3 is similar to the one for (6). Since wehave for all
densitiesf andg,

K( f |g) ≥ H2( f ,g),

(a proof is given in Tsybakov, 2004, p. 73), it suffices to note that, iff1, . . . , fM are densities bounded
by A then,

sup
f1,..., fM∈FK(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

(K( f | f̂n))q]− min
j=1,...,M

(K( f | fi))q
]

≥ inf
f̂n

sup
f∈{ f1,..., fM}

[

E f
[

(K( f | f̂n))q]]≥ inf
f̂n

sup
f∈{ f1,..., fM}

[

E f
[

H2q( f , f̂n)
]]

,

to get the result by applying Theorem 2.

�

With the same method as Theorem 1, we get the result below for theL1-distance.

Theorem 4 Let M ≥ 2 be an integer, A> 1 and q> 0. We have for any integers n such that
logM ≤ 16(min(1,A−1))2n,

sup
f1,..., fM∈Fv(A)

inf
f̂n

sup
f∈F (A)

[

E f
[

v( f , f̂n)
q]− min

j=1,...,M
v( f , fi)

q
]

≥ c

(

logM
n

)q/2

where c is a positive constant which depends only on A. The setsF (A) andFv(A) are defined in (5)
for X = R

d.

Proof : The only difference with Theorem 2 is in the control of the distances. With thesame
notations as the proof of Theorem 2, we have,

v( fδ1, fδ2) =
Z

[0,1]d
| fδ1(x)− fδ2(x)|dx= ρ(δ1,δ2)

Z 1/D

0
|h(x)|dx=

L
D2 ρ(δ1,δ2),

for all δ1,δ2 ∈ ∆. Thus, forL = (D/4)
√

log(M)/n andND/8, theD/8-separated set of∆ introduced
in the proof of Theorem 2, we have,

v( fδ1, fδ2) ≥ 1
32

√

log(M)

n
, ∀δ1,δ2 ∈ ND/8 andK(P⊗n

δ |P⊗n
0 ) ≤ 1

16
log(M), ∀δ ∈ ∆.

Therefore, by applying Lemma 1 to theL1-distance withM densitiesf1, . . . , fM in
{

fδ : δ ∈ ND/8
}

where f1 = 1I[0,1]d and the increasing functionw(u) = uq, we get the result.

�
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4. Upper Bounds

In this section we use an argument in Yang (2000a) (see also Catoni, 2004) to show that the rate of
the lower bound of Theorem 3 is an optimal rate of aggregation with respectto the KL loss. We use
an aggregate constructed by Yang (defined in (1)) to attain this rate. An upper bound of the type
(3) is stated in the following Theorem. Remark that Theorem 5 holds in a general framework of a
measurable space(X ,A ) endowed with aσ-finite measureν.

Theorem 5 (Yang) Let X1, . . . ,Xn be n observations of a probability measure on(X ,A ) of density
f with respect toν. Let f1, . . . , fM be M densities on(X ,A ,ν). The aggregatẽfn, introduced in (1),
satisfies, for any underlying density f ,

E f
[

K( f | f̃n)
]

≤ min
j=1,...,M

K( f | f j)+
log(M)

n+1
. (8)

Proof : Proof follows the line of Yang (2000a), although he does not state the result in the form
(3), for convenience we reproduce the argument here. We definef̂k(x;X(k)) = ∑M

j=1w(k)
j f j(x), ∀k =

1, . . . ,n (wherew(k)
j is defined in (2) andx(k) = (x1, . . . ,xk) for all k ∈ N andx1, . . . ,xk ∈ X ) and

f̂0(x;X(0)) = (1/M)∑M
j=1 f j(x) for all x∈ X . Thus, we have

f̃n(x;X(n)) =
1

n+1

n

∑
k=0

f̂k(x;X(k)).

Let f be a density on(X ,A ,ν). We have

n

∑
k=0

E f
[

K( f | f̂k)
]

=
n

∑
k=0

Z

X k+1
log

(

f (xk+1)

f̂k(xk+1;x(k))

) k+1

∏
i=1

f (xi)dν⊗(k+1)(x1, . . . ,xk+1)

=
Z

X n+1

(

n

∑
k=0

log

(

f (xk+1)

f̂k(xk+1;x(k))

)

)

n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1)

=
Z

X n+1
log

(

f (x1) . . . f (xn+1)

∏n
k=0 f̂k(xk+1;x(k))

)n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1),

but ∏n
k=0 f̂k(xk+1;x(k)) = (1/M)∑M

j=1 f j(x1) . . . f j(xn+1),∀x1, . . . ,xn+1 ∈ X thus,

n

∑
k=0

E f
[

K( f | f̂k)
]

=
Z

X n+1
log

(

f (x1) . . . f (xn+1)
1
M ∑M

j=1 f j(x1) . . . f j(xn+1)

)

n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1),

moreoverx 7−→ log(1/x) is a decreasing function so,

n

∑
k=0

E f
[

K( f | f̂k)
]

≤ min
j=1,...,M

{

Z

X n+1
log

(

f (x1) . . . f (xn+1)
1
M f j(x1) . . . f j(xn+1)

)

n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1)

}

≤ logM + min
j=1,...,M

{

Z

X n+1
log

(

f (x1) . . . f (xn+1)

f j(x1) . . . f j(xn+1)

)n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1)

}

,
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finally we have,
n

∑
k=0

E f
[

K( f | f̂k)
]

≤ logM +(n+1) inf
j=1,...,M

K( f | f j). (9)

On the other hand we have,

E f
[

K( f | f̃n)
]

=
Z

X n+1
log

(

f (xn+1)
1

n+1 ∑n
k=0 f̂k(xn+1;x(k))

)

n+1

∏
i=1

f (xi)dν⊗(n+1)(x1, . . . ,xn+1),

andx 7−→ log(1/x) is convex, thus,

E f
[

K( f | f̃n)
]

≤ 1
n+1

n

∑
k=0

E f
[

K( f | f̂k)
]

. (10)

Theorem 5 follows by combining (9) and (10).

�

Birgé constructs estimators, calledT-estimators(the ”T” is for ”test”), which are adaptive in
aggregation selection model ofM estimators with a residual proportional at(logM/n)q/2 when
Hellinger andL1-distances are used to evaluate the quality of estimation (cf. Birgé (2004)). But it
does not give an optimal result as Yang, because there is a constant greater than 1 in front of the
main term mini=1,...,M dq( f , fi) whered is the Hellinger distance or theL1 distance. Nevertheless,
observing the proof of Theorem 2 and 4, we can obtain

sup
f1,..., fM∈F (A)

inf
f̂n

sup
f∈F (A)

[

E f
[

d( f , f̂n)
q]−C(q) min

i=1,...,M
d( f , fi)

q
]

≥ c

(

logM
n

)q/2

,

whered is the Hellinger orL1-distance,q > 0 andA > 1. The constantC(q) can be chosen equal to
the one appearing in the following Theorem. The same residual appears in this lower bound and in
the upper bounds of Theorem 6, so we can say that

(

logM
n

)q/2

is near optimal rate of aggregation w.r.t. the Hellinger distance or theL1-distance to the powerq, in
the sense given at the end of Section 2. We recall Birgé’s results in the following Theorem.

Theorem 6 (Birgé) If we have n observations of a probability measure of density f w.r.t.ν and
f1, . . . , fM densities on(X ,A ,ν), then there exists an estimatorf̃n ( T-estimator) such that for any
underlying density f and q> 0, we have

E f
[

H( f , f̃n)
q]≤C(q)

(

min
j=1,...,M

H( f , f j)
q +

(

logM
n

)q/2
)

,

and for the L1-distance we can construct an estimatorf̃n which satisfies :

E f
[

v( f , f̃n)
q]≤C(q)

(

min
j=1,...,M

v( f , f j)
q +

(

logM
n

)q/2
)

,

where C(q) > 0 is a constant depending only on q.
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Another result, which can be found in Devroye and Lugosi (2001), states that the minimum
distance estimate proposed by Yatracos (1985) (cf. Devroye and Lugosi (2001, p. 59)) achieves the
same aggregation rate as in Theorem 6 for theL1-distance withq= 1. Namely, for allf , f1, . . . , fM ∈
F (A),

E f
[

v( f , f̆n)
]

≤ 3 min
j=1,...,M

v( f , f j)+

√

logM
n

,

where f̆n is the estimator of Yatracos defined by

f̆n = arg min
f∈{ f1,..., fM}

sup
A∈A

∣

∣

∣

∣

∣

Z

A
f − 1

n

n

∑
i=1

1I{Xi∈A}

∣

∣

∣

∣

∣

,

andA =
{

{x : fi(x) > f j(x)} : 1≤ i, j ≤ M
}

.
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