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Abstract
This paper is about non-approximate acceleration of high-dimensional nonparametric operations

such ask nearest neighbor classifiers. We attempt to exploit the factthat even if we want exact
answers to nonparametric queries, we usually do not need to explicitly find the data points close to
the query, but merely need to answer questions about the properties of that set of data points. This
offers a small amount of computational leeway, and we investigate how much that leeway can be
exploited. This is applicable to many algorithms in nonparametric statistics, memory-based learn-
ing and kernel-based learning. But for clarity, this paper concentrates on purek-NN classification.
We introduce new ball-tree algorithms that on real-world data sets give accelerations from 2-fold
to 100-fold compared against highly optimized traditionalball-tree-basedk-NN . These results in-
clude data sets with up to 106 dimensions and 105 records, and demonstrate non-trivial speed-ups
while giving exact answers.

keywords: ball-tree,k-NN classification

1. Introduction

Nonparametric models have become increasingly popular in the statistics and probabilistic AI com-
munities. These models are extremely useful when the underlying distribution of the problem is
unknown except that which can be inferred from samples. One simple well-known nonparametric
classification method is called thek-nearest-neighbors ork-NN rule. Given a data setV ⊂ RD con-
tainingn points, it finds thek closest points to a query pointq ∈ RD, typically under the Euclidean
distance, and chooses the label corresponding to the majority. Despite the simplicity of this idea,
it was famously shown by Cover and Hart (Cover and Hart, 1967) that asymptotically its error is
within a factor of 2 of the optimal. Its simplicity allows it to be easily and flexibly appliedto a
variety of complex problems. It has applications in a wide range of real-world settings, in particular
pattern recognition (Duda and Hart, 1973; Draper and Smith, 1981); textcategorization (Uchimura
and Tomita, 1997); database and data mining (Guttman, 1984; Hastie and Tibshirani, 1996); in-
formation retrieval (Deerwester et al., 1990; Faloutsos and Oard, 1995; Salton and McGill, 1983);
image and multimedia search (Faloutsos et al., 1994; Pentland et al., 1994; Flickner et al., 1995;
Smeulders and Jain, 1996); machine learning (Cost and Salzberg, 1993); statistics and data anal-
ysis (Devroye and Wagner, 1982; Koivune and Kassam, 1995) and also combination with other
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methods (Woods et al., 1997). However, these methods all remain hamperedby their computational
complexity.

Several effective solutions exist for this problem when the dimensionD is small, including Voronoi
diagrams (Preparata and Shamos, 1985), which work well for two dimensional data. Other meth-
ods are designed to work for problems with moderate dimension (i.e. tens of dimensions), such
as k-D tree (Friedman et al., 1977; Preparata and Shamos, 1985), R-tree (Guttman, 1984), and
ball-tree (Fukunaga and Narendra, 1975; Omohundro, 1991; Uhlmann, 1991; Ciaccia et al., 1997).
Among these tree structures, balltree, or metric-tree (Omohundro, 1991),represent the practical
state of the art for achieving efficiency in the largest dimension possible (Moore, 2000; Clarkson,
2002) without resorting to approximate answers. They have been used inmany different ways, in a
variety of tree search algorithms and with a variety of “cached sufficient statistics” decorating the
internal leaves, for example in Omohundro (1987); Deng and Moore (1995); Zhang et al. (1996);
Pelleg and Moore (1999); Gray and Moore (2001). However, many real-world problems are posed
with very large dimensions that are beyond the capability of such search structures to achieve sub-
linear efficiency, for example in computer vision, in which each pixel of an image represents a
dimension. Thus, the high-dimensional case is the long-standing frontier ofthe nearest-neighbor
problem.

With one exception, the proposals involving tree-based or other data structures have considered
the generic nearest-neighbor problem, not that of nearest-neighborclassificationspecifically. Many
proposals designed specifically for nearest-neighbor classification have been proposed, virtually all
of them pursuing the idea of reducing the number of training points. In most of these approaches,
such as Hart (1968), although the runtime is reduced, so is the classification accuracy. Several sim-
ilar training set reduction schemes yielding only approximate classifications have been proposed
(Fisher and Patrick, 1970; Gates, 1972; Chang, 1974; Ritter et al., 1975; Sethi, 1981; Palau and
Snapp, 1998). Our method achieves the exact classification that would beachieved by exhaus-
tive search for the nearest neighbors. A few training set reduction methods have the capability of
yielding exact classifications. Djouadi and Bouktache (1997) described both approximate and exact
methods, however a speedup of only about a factor of two over exhaustive search was reported for
the exact case, for simulated, low-dimensional data. Lee and Chae (1998) also achieves exact clas-
sifications, but only obtained a speedup over exhaustive search of about 1.7. It is in fact common
among the results reported for training set reduction methods that only 40-60% of the training points
can be discarded,i.e. no important speedups are possible with this approach when the Bayes riskis
not insignificant. Zhang and Srihari (2004) pursued a combination of training set reduction and a
tree data structure, but is an approximate method.

In this paper, we propose two new ball-tree based algorithms, which we’ll call KNS2 and KNS3.
They are both designed for binaryk-NN classification. We only focus on binary case, since there
are many binary classification problems, such as anomaly detection (Kruegel and Vigna, 2003),
drug activity detection (Komarek and Moore, 2003); and video segmentation (Qi et al., 2003). Liu
et al. (2004b) applied similar ideas to many-class classification and proposed a variation of the
k-NN algorithm. KNS2 and KNS3 share the same insight that the task ofk-nearest-neighbor clas-
sification of a queryq need not require us to explicitly find those k nearest neighbors. To be more
specific, there are three similar but in fact different questions: (a)“What are the k nearest neigh-
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bors ofq?” (b) “How many of the k nearest neighbors ofq are from the positive class?”and (c)
“Are at least t of the k nearest neighbors from the positive class?”Many researches have focused
on the first question (a), but uses of proximity queries in statistics far more frequently require (b)
and (c) types of computations. In fact, for thek-NN classification problem, when the thresholdt is
set, it is sufficient to just answer the much simpler question (c). The triangle inequality underlying
a ball-tree has the advantage of bounding the distances between data points, and can thus help us
estimate the nearest neighbors without explicitly finding them. In our paper, we test our algorithms
on 17 synthetic and real-world data sets, with dimensions ranging from 2 to 1.1×106 and number
of data points ranging from 104 to 4.9×105. We observe up to 100-fold speedup compared against
highly optimized traditional ball-tree-basedk-NN , in which the neighbors are found explicitly.

Omachi and Aso (2000) proposed a fastk-NN classifier based on a branch and bound method, and
the algorithm shares some ideas of KNS2, but it did not fully explore the ideaof doingk-NN classifi-
cation without explicitly finding thek nearest neighbor set, and the speed-up the algorithm achieved
is limited. In section 4, we address Omachi and Aso’s method in more detail.

We will first describe ball-trees and this traditional way of using them (whichwe call KNS1), which
computes problem (a). Then we will describe a new method (KNS2) for problem (b), designed for
the common setting of skewed-class data. We’ll then describe a new method (KNS3) for problem
(c), which removes the skewed-class assumption, applying to arbitrary classification problems. At
the end of Section 5 we will say a bit about the relative value of KNS2 versus KNS3.

2. Ball-Tree

A ball-tree(Fukunaga and Narendra, 1975; Omohundro, 1991; Uhlmann, 1991;Ciaccia et al., 1997;
Moore, 2000) is a binary tree where each node represents a set of points, called Points(Node). Given
a data set, theroot nodeof a ball-tree represents the full set of points in the data set. A node can be
either aleaf nodeor anon-leaf node. A leaf node explicitly contains a list of the points represented
by the node. A non-leaf node has two children nodes:Node.child1andNode.child2, where

Points(Node.child1)∩Points(Node.child2) = φ
Points(Node.child1)∪Points(Node.child2) = Points(Node)

Points are organized spatially. Each node has a distinguished point called aPivot. Depending on the
implementation, thePivot may be one of the data points, or it may be the centroid ofPoints(Node).
Each node records the maximum distance of the points it owns to its pivot. Call this the radius of
the node

Node.Radius= max
x∈Points(Node)

| Node.Pivot−x |

Nodes lower down the tree have smaller radius. This is achieved by insisting,at tree construction
time, that

x ∈ Points(Node.child1) ⇒ | x−Node.child1.Pivot | ≤ | x−Node.child2.Pivot |

x ∈ Points(Node.child2) ⇒ | x−Node.child2.Pivot | ≤ | x−Node.child1.Pivot |
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Provided that our distance function satisfies the triangle inequality, we can bound the distance from
a query pointq to any point in any ball-tree node. Ifx ∈ Points(Node)then we know that:

|x−q| ≥ |q−Node.Pivot|−Node.Radius (1)

|x−q| ≤ |q−Node.Pivot|+Node.Radius (2)

Here is an easy proof of the inequality. According to triangle inequality, we have |x− q| ≥ |q−
Node.Pivot|− |x−Node.Pivot|. Givenx ∈ Points(Node)andNode.Radiusis the maximum distance
of the points it owns to its pivot,|x−Node.Pivot| ≤ Node.Radius, so |x−q| ≥ |q−Node.Pivot|−
Node.Radius. Similarly, we can prove Equation (2).�

A ball-tree is constructed top-down. There are several ways to construct them, and practical al-
gorithms trade off the cost of construction (it can be inefficient to beO(R2) given a data set withR
points, for example) against the tightness of the radius of the balls. Moore (2000) describes a fast
way for constructing a ball-tree appropriate for computational statistics. Ifa ball-tree is balanced,
then the construction time isO(CRlogR), whereC is the cost of a point-point distance computation
(which isO(m) if there arem dense attributes, andO( f m) if the records are sparse with only frac-
tion f of attributes taking non-zero value). Figure 1 shows a 2-dimensional dataset and the first few
levels of a ball-tree.

1a.  A dataset
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1b.  Root node
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C


1c.  The 2 children
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1d. The 4 grandchildren
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B
 C
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1e.  The internal tree

structure


Figure 1: An example of ball-tree structure

3. KNS1: Conventionalk Nearest Neighbor Search with Ball-Tree

In this paper, we call conventional ball-tree-based search (Uhlmann, 1991)KNS1. Let PSbe a set
of data points, andPS ⊆V, whereV is the training set. We begin with the following definition:
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Say thatPS consists of the k-NN ofq in V if and only if

|V |≥ k and PSare thek-NN of q in V
or

|V |< k and PS== V
(3)

We now define a recursive procedure calledBallKNN with the following inputs and output.

PSout = BallKNN(PSin,Node)

LetV be the set of points searched so far, on entry. Assume thatPSin consists of thek-NN of q in V.
This function efficiently ensures that on exit,PSout consists of thek-NN of q in V ∪Points(Node).
We define

Dsofar=

{

∞ i f | PSin |< k
maxx∈PSin | x−q | i f | PSin |== k

(4)

Dsofar is the minimum distance within which points become interesting to us.

Let DNode
minp =

{

max(|q−Node.Pivot|−Node.Radius,DNode.parent
minp ) i f Node6= Root

max(|q−Node.Pivot|−Node.Radius,0) i f Node== Root
(5)

DNode
minp is the minimum possible distance from any point inNodeto q. This is computed using the

bound given by Equation (1) and the fact that all points covered by a node must be covered by
its parent. This property implies thatDNode

minp will never be less than the minimum distance of its
ancestors. Step 2 of section 4 explains this optimization further. See Figure 2for details.
Experimental results show that KNS1 (conventional ball-tree-basedk-NN search) achieves signifi-
cant speedup over Naivek-NN when the dimensiond of the data set is moderate (less than 30). In
the best case, the complexity of KNS1 can be as good asO(d logR), given a data set withR points.
However, withd increasing, the benefit achieved by KNS1 degrades, and whend is really large, in
the worst case, the complexity of KNS1 can be as bad asO(dR). Sometimes it is even slower than
Naivek-NN search, due to the curse of dimensionality.

In the following sections, we describe our new algorithms KNS2 and KNS3, these two algorithms
are both based on ball-tree structure, but by using different search strategies, we explore how much
speedup can be achieved beyond KNS1.

4. KNS2: Fasterk-NN Classification for Skewed-Class Data

In many binary classification domains, one class is much more frequent than the other. For example,
in High Throughput Screening data sets, (described in section 7.2), it is far more common for the
result of an experiment to be negative than positive. In detection of fraud telephone calls (Fawcett
and Provost, 1997) or credit card transactions (Stolfo et al., 1997), the number of legitimate transac-
tions is far more common than fraudulent ones. In insurance risk modeling (Pednault et al., 2000),
a very small percentage of the policy holders file one or more claims in a giventime period. There
are many other examples of domains with similar intrinsic imbalance, and therefore, classification
with a skewed distribution is important. Various researches have been focused on designing clever
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ProcedureBallKNN (PSin,Node)
begin

if (DNode
minp ≥ Dsofar) then /* If this condition is satisfied, then impossible

ReturnPSin unchanged. for a point in Node to be closer than the
previously discoveredkth nearest neighbor.*/

else if(Node is a leaf)
PSout = PSin

∀x ∈ Points(Node)
if (| x−q |< Dsofar) then /* If a leaf, do a naive linear scan */

addx to PSout

if (| PSout |== k+1) then
remove furthest neighbor fromPSout

updateDsofar

else /*If a non-leaf, explore the nearer of the two
node1 = child of Node closest toq child nodes, then the further. It is likely that
node2 = child of Node furthest fromq further search will immediately prune itself.*/
PStemp= BallKNN(PSin,node1)
PSout = BallKNN(PStemp,node2)

end

Figure 2: A call of BallKNN({},Root) returns thek nearest neighbors ofq in the ball-tree.

methods to solve this type of problem (Cardie and Howe, 1997). The new algorithm introduced in
this section, KNS2, is designed to acceleratek-NN based classification in such skewed data scenar-
ios.

KNS2 answers type(b) question described in the introduction, namely, “How many of thek nearest
neighbors are in the positive class?” The key idea of KNS2 is we can answer question (b) without
explicitly finding thek-NN set.

KNS2 attacks the problem by building two ball-trees: APostreefor the points from the positive
(small) class, and aNegtreefor the points from the negative (large) class. Since the number of
points from the positive class(small) is so small, it is quite cheap to find the exactk nearest positive
points ofq by using KNS1. And the idea of KNS2 is first searchPostreeusing KNS1 to find the
k nearest positive neighbors setPossetk, and then searchNegtreewhile usingPossetk as bounds to
prune nodes far away, and at the same time estimating the number of negative points to be inserted
to the true nearest neighbor set. The search can be stopped as soon aswe get the answer to question
(b). Empirically, much more pruning can be achieved by KNS2 than conventional ball-tree search.
A concrete description of the algorithm is as follows:

Let Rootpos be the root ofPostree, andRootneg be the root ofNegtree. Then, we classify a new
query pointq in the following fashion
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• Step 1 —“ Find positive” : Find thek nearest positive class neighbors ofq (and their dis-
tances toq) using conventional ball-tree search.

• Step 2 —“Insert negative” : Do sufficient search on the negative tree to prove that the
number of positive data points amongk nearest neighbors isn for some value ofn.

Step 2 is achieved using a new recursive search calledNegCount. In order to describeNegCountwe
need the following four definitions.

• The Dists Array. Dists is an array of elementsDists1 . . .Distsk consisting of the distances to
thek nearest positive neighbors found so far ofq, sorted in increasing order of distance. For
notational convenience we will also writeDists0 = 0 andDistsk+1 = ∞.

• PointsetV. Define pointsetV as the set of points in the negative balls visited so far in the
search.

• The Counts Array (n,C) (n≤ k+1). C is an array of counts containing n+1 array elements
C0,C1, ...Cn. Say(n,C)summarize interesting negative points for pointsetV if and only if

1. ∀i = 0,1, ...,n,
Ci =|V ∩{x :| x−q |< Distsi} | (6)

Intuitively Ci is the number of points inV whose distances toq are closer thanDistsi . In
other words,Ci is the number of negative points inV closer than theith positive neighbor
to q.

2. Ci + i ≤ k(i < n), Cn +n > k.

This simply declares that the lengthn of theC array is as short as possible while ac-
counting for thek members ofV that are nearest toq. Such ann exists sinceC0 = 0 and
Ck+1 = Total number of negative points. To make the problem interesting, we assume
that the number of negative points and the number of positive points are bothgreater
thank.

• DNode
minp andDNode

maxp

Here we will continue to useDNode
minp which is defined in equation (4).

Symmetrically, we also defineDNode
maxp as follows:

Let DNode
maxp=

{

min(|q−Node.Pivot|+Node.Radius, DNode.parent
maxp ) i f Node6= Root

|q−Node.Pivot|+Node.Radius i f Node== Root
(7)

DNode
maxp is the maximum possible distance from any point in Node toq. This is computed using

the bound in Equation (1) and the property of a ball-tree that all the points covered by a node
must be covered by its parent. This property implies thatDNode

maxp will never be greater than the
maximum possible distance of its ancestors.

Figure 3 gives a good example. There are 3 nodesp, c1 andc2. c1 andc2 arep’s children.
q is the query point. In order to computeDc1

minp, first we compute|q−c1.pivot|−c1.radius,
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Figure 3: An example to illustrate how to computeDNode
minp

which is the dotted line in the figure, butDc1
minp can be further bounded byDp

minp, since it is
impossible for any point to be in the shaded area. Similarly, we get the equationfor Dc1

maxp.
DNode

minp andDNode
maxp are used to estimate the counts array(n,C). Again we take advantage of

the triangle inequality of ball-tree. For any Node, if there exists ani (i ∈ [1,n]), such that
Distsi−1 ≤ DNode

maxp< Distsi , then for∀x∈ Points(Node), Distsi−1 ≤| x−q |< Distsi . Accord-
ing to the definition ofC, we can add| Points(Node)| toCi ,Ci+1, ...Cn. The function ofDNode

minp
similar to KNS1, is used to help prune uninteresting nodes.

Step 2 of KNS2 is implemented by the recursive function below:

(nout,Cout) = NegCount(nin,Cin,Node, jparent,Dists)

See Figure 4 for the detailed implementation of NegCount.
Assume that on entry(nin,Cin) summarize interesting negative points for pointsetV, whereV is
the set of points visited so far during the search. This algorithm efficiently ensures that, on exit,
(nout,Cout) summarize interesting negative points forV ∪Points(Node). In addition, jparent is a
temporary variable used to prevent multiple counts for the same point. This variable relates to the
implementation of KNS2, and we do not want to go into the details in this paper.

We can stop the procedure whennout becomes 1 (which means all thek nearest neighbors ofq
are in the negative class) or when we run out of nodes.nout represents the number of positive points
in thek nearest neighbors ofq.The top-level call is

NegCount(k,C0,NegTree.Root,k+1,Dists)

whereC0 is an array of zeroes andDistsare defined in step 2 and obtained by applying KNS1 to the
Postree.

There are at least two situations where this algorithm can run faster than simply finding k-NN .
First of all, whenn = 1, we can stop and exit, since this means we have found at leastk negative
points closer than the nearest positive neighbor toq. Notice that thek negative points we have
found are not necessarily the exactk nearest neighbors toq, but this won’t change the answer to
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ProcedureNegCount (nin,Cin,Node, jparent,Dists)
begin

nout := nin /* Variables to be returned by the search.
Cout := Cin Initialize them here. */

ComputeDNode
minp andDNode

maxp

Search fori, j ∈ [1,nout], such that
Distsi-1 ≤ DNode

minp < Distsi

Distsj-1 ≤ DNode
maxp< Distsj

For all index∈ [ j, jparent) /* Re-estimateCout */
UpdateCout

index := Cout
index+ | Points(Node)| /* Only update the count less thanjparent

Updatenout, such that to avoid counting twice. */
Cout

nout−1 +(nout−1) ≤ k, Cout
nout +nout > k

SetDistsnout := ∞

(1) if (nout == 1) /* At leastk negative points closer toq
Return(1,Cout) than the closest positive one: done! */

(2) if (i == j) /* Node is located between two adjacent
Return(nout,Cout) positive points, no need to split. */

(3) if (Node is a leaf)
Forallx∈ Points(Node)

Compute| x−q |
Update and return (nout,Cout)

(4) else
node1 := child of Node closest toq
node2 := child of Node furthest fromq
(ntemp,Ctemp) := NegCount(nin,Cin,node1, j,Dists)
if (ntemp== 1)

Return (1,Cout)
else (nout,Cout) := NegCount(ntemp,Ctemp,node2, j,Dists)

end

Figure 4: Procedure NegCount.

our question. This situation happens frequently for skewed data sets. The second situation is as
follows: A Node can also be pruned if it is located exactly between two adjacent positive points, or
it is farther away than thenth positive point. This is because that in these situations, there is no need
to figure out which negative point is closer within the Node. Especially asn gets smaller, we have
more chance to prune a node, becauseDistsnin decreases asnin decreases.

Omachi and Aso (2000) proposed ak-NN method based on branch and bound. For simplicity,
we call their algorithm KNSV. KNSV is similar to KNS2, in that for the binary classcase, it also
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builds two trees, one for each class. For consistency, let’s still call themPostreeandNegtree. KNSV
first searches the tree whose center of gravity is closer toq. Without loses of generality, we assume
Negtreeis closer, so KNSV will searchNegtreefirst. Instead of fully exploring the tree, it does a
greedy depth first search only to findk candidate points. Then KNSV moves on to searchPostree.
The search is the same as conventional ball-tree search (KNS1), except that it uses thekth candidate
negative point to bound the distance. After the search ofPostreeis done. KNSV counts how many
of thek nearest neighbors so far are from the negative class. If the number ismore thank/2, the al-
gorithm stops. Otherwise, KNSV will go back to searchNegtreefor the second time, this time fully
search the tree. KNSV has advantages and disadvantages. The first advantage is that it is simple,
and thus it is easy to extend to many-class case. Also if the first guess of KNSV is correct and the
k candidate points are good enough to prune away many nodes, it will be faster than conventional
ball-tree search. But there are some obvious drawbacks of the algorithm.First, the guess of the
winner class is only based on which class’s center of gravity is the closestto q. Notice that this is
a pure heuristic, and the probability of making a mistake is high. Second, usinga greedy search to
find thek candidate nearest neighbors has a high risk, since these candidates might not even be close
to the true nearest neighbors. In that case, the chance for pruning away nodes from the other class
becomes much smaller. We can imagine that in many situations, KNSV will end up searching the
first tree for yet another time. Finally, we want to point out that KNSV claims itcan perform well
for many-class nearest neighbors, but this is based on the assumption that the winner class contains
at leastk/2 points within the nearest neighbors, which is often not true for the many-class case.
Comparing to KNSV, KNS2’s advantages are (i) it uses the skewness property of a data set, which
can be robustly detected before the search, and (ii) more careful design gives KNS2 more chance to
speedup the search.

5. KNS3: Are at Leastt of the k Nearest Neighbors Positive?

In this paper’s second new algorithm, we remove KNS2’s constraint of anassumed skewness in the
class distribution. Instead, we answer a weaker question: “are at leastt of thek nearest neighbors
positive?”, where the questioner must supplyt andk. In the usualk-NN rule,t represents a majority
with respect tok, but here we consider the slightly more general form which might be used for
example during classification with known false positive and false negative costs.

In KNS3, we define two important quantities:

Dpos
t = distance o f the tth nearest positive neighbor o fq (8)

Dneg
m = distance o f the mth nearest negative neighbor o fq (9)

wherem+ t = k+1.

Before introducing the algorithm, we state and prove an important proposition, which relate the
two quantitiesDpos

t andDneg
m with the answer to KNS3.

Proposition 1 Dpos
t ≤ Dneg

m if and only if at least t of the k nearest neighbors ofq from the positive
class.
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Proof:
If Dpos

t ≤ Dneg
m , then there are at leastt positive points closer than themth negative point toq. This

also implies that if we draw a ball centered atq, and with its radius equal toDneg
m , then there are

exactlym negative points and at leastt positive points within the ball. Sincet + m= k+ 1, if we
useDk to denote the distance of thekth nearest neighbor, we getDk ≤ Dneg

m , which means that there
are at mostm− 1 of thek nearest neighbors ofq from the negative class. It is equivalent to say
that there are at leastt of the k nearest neighbors ofq are from the positive class. On the other
hand, if there are at leastt of thek nearest neighbors from the positive class, thenDpos

t ≤ Dk, the
number of negative points is at mostk−t < m, soDk ≤Dneg

m . This implies thatDpos
t ≤Dneg

m is true.�

Figure 5 provides an illustration. In this example,k = 5, t = 3. We use black dots to represent
positive points, and white dots to represent negative points. The reasonto redefine the problem of

D3
neg

D3
pos

q

A

B

Figure 5: An example ofDpos
t andDneg

m

KNS3 is to transform ak nearest neighbor searching problem to a much simpler counting prob-
lem. In fact, in order to answer the question, we do not even have to computethe exact value of
Dpos

t and Dneg
m , instead, we can estimate them. We defineLo(Dpos

t ) andU p(Dpos
t ) as the lower

and upper bounds ofDpos
t , and similarly we defineLo(Dneg

m ) andU p(Dneg
m ) as the lower and upper

bounds ofDneg
m . If at any point,U p(Dpos

t ) ≤ Lo(Dneg
m ), we knowDpos

t ≤ Dneg
m , on the other hand, if

U p(Dneg
m ) ≤ Lo(Dpos

t ), we knowDneg
m ≤ Dpos

t .

Now our computational task is to efficiently estimateLo(Dpos
t ), U p(Dpos

t ), Lo(Dneg
m ) andU p(Dneg

m ).
And it is very convenient for a ball-tree structure to do so. Below is the detailed description:

At each stage of KNS3 we have two sets of balls in use calledP andN, whereP is a set of balls from
Postreebuilt from positive data points, andN consists of balls fromNegtreebuilt from negative data
points.

Both sets have the property that if a ball is in the set, then neither its ball-tree ancestors nor de-
scendants are in the set, so that each point in the training set is a member of oneor zero balls in
P∪N. Initially, P = {PosTree.root} andN = {NegTree.root}. Each stage of KNS3 analyzesP to
estimateLo(Dpos

t ), U p(Dpos
t ), and analyzesN to estimateLo(Dneg

m ), U p(Dneg
m ). If possible, KNS3

terminates with the answer, else it chooses an appropriate ball fromP or N, and replaces that ball
with its two children, and repeats the iteration. Figure (6) shows one stage ofKNS3. The balls
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involved are labeleda throughg and we have

P = {a,b,c,d}

N = {e, f ,g}

Notice that although c and d are inside b, they are not descendants of b. This is possible because
when a ball is splitted, we only require the pointset of its children be disjoint, butthe balls covering
the children node may be overlapped.

a

b

c

d

f

g

e

q

Figure 6: A configuration at the start of a stage.

In order to computeLo(Dpos
t ), we need to sort the ballsu∈ P, such that

∀ui ,u j ∈ P, i < j ⇒ Di
minp≤ D j

minp

Then

Lo(Dpos
t ) = D

u j
minp, where

j−1

∑
i=1

| Points(ui) |< t and
j

∑
i=1

| Points(ui) |≥ t

Symmetrically, in order to computeU p(Dpos
t ), we sortu∈ P, such that

∀ui ,u j ∈ P, i < j ⇒ Di
maxp≤ D j

maxp.

Then

U p(Dpos
t ) = D

u j
maxp, where

j−1

∑
i=1

| Points(ui) |< t and
j

∑
i=1

| Points(ui) |≥ t

Similarly, we can computeLo(Dneg
m ) andU p(Dneg

m ).

To illustrate this, it is useful to depict a ball as an interval, where the two endsof the interval
denote the minimum and maximum possible distances of a point owned by the ball to the query.
Figure 5(a) shows an example. Notice, we also mark “+5” above the interval to denote the number
of points owned by the ballB. After we have this representation, bothP andN can be represented as
a set of intervals, each interval corresponds to a ball. This is shown in 5(b). For example, the second
horizontal line denotes the fact that ballb contains four positive points, and that the distance from
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any location inb to q lies in the range[0,5]. The value ofLo(Dpos
t ) can be understood as the answer

to the following question: what if we tried to slide all the positive points within their bounds as far
to the left as possible, where would thetth closest positive point lie? Similarly, we can estimate
U p(Dpos

t ) by sliding all the positive points to the right ends within their bounds.

Dist
0 1 2 3 4 5

Dist
0 1 2 3 4 5

Up(D6
neg )

Lo(D )7
pos

Lo(D6
neg )

Up(D  )7
pos

q

+5

a +2

b +4

+4c

d

e

f

g

−3

+3

−5

−5

B

(a) (b)

Figure 7: (a) The interval representation of a ballB. (b) The interval representation of the configu-
ration in Figure 6

.

For example, in Figure 6, letk= 12 andt = 7. Thenm= 12−7+1= 6. We can estimate (Lo(Dpos
7 ),

U p(Dpos
7 )) and (Lo(Dneg

6 ), U p(Dneg
6 )), and the results are shown in Figure 5. Since the two intervals

(Lo(Dpos
7 ), U p(Dpos

7 )) and (Lo(Dneg
6 ),U p(Dneg

6 )) have overlap now, no conclusion can be made at
this stage. Further splitting needs to be done to refine the estimation.

Below is the pseudo code of KNS3 algorithm: We define a loop procedure called PREDICTwith
the following input and output.

Answer= PREDICT(P,N, t,m)

The Answer, a boolean value, is TRUE, if there are at leastt of the k nearest neighbors from the
positive class; and False otherwise. Initially, P ={PosTree.root} and N ={NegTree.root}. The
thresholdt is given, andm= k− t +1.

Before we describe the algorithm, we first introduce two definitions.
Define:

(Lo(DS
i ),U p(DS

i )) = Estimatebound(S, i) (10)

Here S is either setP or N, and we are interested in theith nearest neighbor ofq from set S. The
output is the lower and upper bounds. The concrete procedure for estimating the bounds was just
described.

Notice that the estimation of the upper and lower bounds could be very loose inthe beginning,
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and will not give us enough information to answer the question. In this case, we will need to split a
ball-tree node and re-estimate the bounds. With more and more nodes being splitted, our estimation
becomes more and more precise, and the procedure can be stopped as soon asU p(Dpos

t )≤ Lo(Dneg
m )

or U p(Dneg
m ) ≤ Lo(Dpos

t ). The function ofPick(P,N) below is to choose one node either from P or
N to split. There are different strategies for picking a node, for simplicity, our implementation only
randomly pick a node to split.
Define:

split node= Pick(P,N) (11)

Here splitnode is the node chosen to be split. See Figure 8.

ProcedurePREDICT ( P, N, t, m)
begin

Repeat
(Lo(Dpos

t ),U p(Dpos
t )) = Estimatebound(P, t) /* See Definition 10. */

(Lo(Dneg
m ),U p(Dneg

m )) = Estimatebound(N, m)
if (U p(Dpos

t ) ≤ Lo(Dneg
m )) then

Return TRUE
if (U p(m

neg) ≤ Lo(Dneg
m )) then

Return FALSE

split node = Pick(P, N)
remove splitnode from P or N
insert splitnode.child1 and splitnode.child2 to P or N

end

Figure 8: Procedure PREDICT.
.

Our explanation of KNS3 was simplified for clarity. In order to avoid frequent searches over the full
lengths of setsN andP, they are represented as priority queues. Each set in fact uses two queues:
one prioritized byDu

maxpand the other byDu
minp.This ensures that the costs of all argmins, deletions

and splits are logarithmic in the queue size.

Some people may ask the question: “It seems that KNS3 has more advantagesthan KNS2, it re-
moves the assumption of skewness of the data set. In general, it has more chances to prune away
nodes, etc. Why we still need KNS2?” The answer is KNS2 does have its own advantages. It
answers a more difficult question than KNS3. To know exact how many of the nearest neighbors
are from the positive class can be especially useful when the threshold for deciding a class is not
known. In that case, KNS3 doesn’t work at all since we can not provide a statict for answering the
question (c). But KNS2 can still work very well. On the other hand, the implementation of KNS2 is
much simpler than KNS3. For instance, it does not need the priority queues we just described. So
there does exist some cases where KNS2 is faster than KNS3.
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6. Experimental Results

To evaluate our algorithms, we used both real data sets (from UCI and KDDrepositories) and also
synthetic data sets designed to exercise the algorithms in various ways.

6.1 Synthetic Data Sets

We have six synthetic data sets. The first synthetic data set we have is calledIdeal, as illustrated in
Figure 6.1(a). All the data in the left upper area are assigned to the positive class, and all the data in
the right lower area are assigned to the negative class. The second dataset we have is calledDiag2d,
as illustrated in Figure 6.1(b). The data are uniformly distributed in a 10 by 10 square. The data
above the diagonal are assigned to the positive class, below diagonal are assigned to the negative
class. We made several variants of Diag2d to test the robustness of KNS3.Diag2d(10%) has 10%
data ofDiag2d. Diag3d is a cube with uniformly distributed data and classified by a diagonal-
plane.Diag10d is a 10 dimensional hypercube with uniformly distributed data and classified bya
hyper-diagonal-plane.Noise-diag2d has the same data asDiag2d(10%), but 1% of the data was
assigned to the wrong class.

(10, 0)

(0, 0) (0, 10)

(10, 10)

(b) Diag2d (100,000 data−points)(a)   Ideal

Figure 9: Synthetic Data Sets

Table6.1 is a summary of the data sets in the empirical analysis.

6.2 Real-World Data Sets

We used UCI & KDD data (listed in Table 6.2), but we also experimented with datasets of particular
current interest within our laboratory.

Life Sciences.These were proprietary data sets (ds1andds2) similar to the publicly available Open
Compound Database provided by the National Cancer Institute (NCI Open Compound Database,
2000). The two data sets are sparse. We also present results on data sets derived fromds1, denoted
ds1.10pca, ds1.100pcaandds2.100anchorby linear projection using principal component analysis
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Data Set Num. of Num. of Num. of Num.pos/Num.neg
records Dimensions positive

Ideal 10000 2 5000 1
Diag2d(10%) 10000 2 5000 1
Diag2d 100000 2 50000 1
Diag3d 100000 3 50000 1
Diag10d 100000 10 50000 1
Noise2d 10000 2 5000 1

Table 1: Synthetic Data Sets

(PCA).

Link Detection. The first, Citeseer, is derived from the Citeseer web site (Citeseer,2002)and lists
the names of collaborators on published materials. The goal is to predict whether JLee (the most
common name) was a collaborator for each work based on who else is listed for that work. We
useJ Lee.100pcato represent the linear projection of the data to 100 dimensions using PCA. The
second link detection data set is derived from the Internet Movie Database (IMDB, 2002) and is
denotedimdbusing a similar approach, but to predict the participation of Mel Blanc (againthe most
common participant).

UCI/KDD data. We use four large data sets from KDD/UCI repository (Bay, 1999). Thedata
sets can be identified from their names. They were converted to binary classification problems.
Each categorical input attribute was converted inton binary attributes by a 1-of-n encoding (where
n is the number of possible values of the attribute).

1. Letteroriginally had 26 classes: A-Z. We performed binary classification using the letter A
as the positive class and “Not A” as negative.

2. Ipums(from ipums.la.97). We predictfarm status, which is binary.

3. Movie is a data set from (informedia digital video library project, 2001). The TREC-2001
Video Track organized by NIST shot boundary Task. 4 hours of video or 13 MPEG-1 video
files at slightly over 2GB of data.

4. Kdd99(10%)has a binary prediction: Normal vs. Attack.

6.3 Methodology

The data setds2 is particular interesting, because its dimension is 1.1×106. Our first experiment
is especially designed for it. We usek=9, andt = ⌈k/2⌉, then we print out the distribution of time
taken for queries of three algorithms: KNS1, KNS2, and KNS3. This is aimedat understanding the
range of behavior of the algorithms under huge dimensions (some queries will be harder, or take
longer, for an algorithm than other queries). We randomly took 1% negative records (881) and 50%
positive records (105) as test data (total 986 points), and train on the remaining 87372 data points.
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Data Set Num. of Num. of Num.of Num.pos/Num.neg
records Dimensions positive

ds1 26733 6348 804 0.03
ds1.10pca 26733 10 804 0.03
ds1.100pca 26733 100 804 0.03
ds2 88358 1.1×106 211 0.002
ds2.100anchor88358 100 211 0.002
J Lee.100pca 181395 100 299 0.0017
Blanc Mel 186414 10 824 0.004

Data Set Num. Num. of Num.of Num.pos/Num.neg
records Dimensions positive

Letter 20000 16 790 0.04
Ipums 70187 60 119 0.0017
Movie 38943 62 7620 0.24
Kdd99( 10% ) 494021 176 97278 0.24

Table 2: Real Data Sets

For our second set of experiments, we did 10-fold cross-validation on all the data sets. For each
data set, we testedk = 9 andk = 101, in order to show the effect of a small value and a large
value. For KNS3, we usedt = ⌈k/2⌉: a data point is classified as positive iff the majority of its
k nearest neighbors are positive. Since we use cross-validation, thus each experiment required
R k-NN classification queries (whereR is the umber of records in the data set) and each query in-
volved thek-NN among 0.9R records. A naive implementation with no ball trees would thus require
0.9R2 distance computations. We want to emphasize here that these algorithms are allexact. No
approximations were used in the classifications.

6.4 Results

Figure 10 shows the histograms of times and speed-ups for queries on the ds2 data set. For Naive
k-NN , all the queries take 87372 distance computations. For KNS1, all the queries take more than
1.0×104 distance computations, (the average number of distances computed is 1.3×105) which
is greater than 87372 and thus traditional ball-tree search is worse than “naive” linear scan. For
KNS2, most of the queries take less than 4.0×104 distance computations, a few points take longer
time. The average number of distances computed is 6233. For KNS3, all the queries take less than
1.0× 104 distance computations, the average number of distances computed is 3411. The lower
three figures illustrate speed-up achieved for KNS1, KNS2 and KNS3 over naive linear scan. The
figures show the distribution of the speedup obtained for each query. From 10(d) we can see that on
average, KNS1 is even slower than the naive algorithm. KNS2 can get from 2- to 250-fold speedups.
On average, it has a 14-fold speedup. KNS3 can get from 2- to 2500-fold speedups. On average, it
has a 26-fold speedups.
Table 6.4 shows the results for the second set of experiments. The second column lists the computa-
tional cost of naivek-NN , both in terms of the number of distance computations and the wall-clock
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Figure 10: (a) Distribution of times taken for queries of KNS1 (b) Distributionof times taken for
queries of KNS2 (c) Distribution of times taken for queries of KNS3 (d) Distribution of
speedup for queries achieved for KNS1 (e) Distribution of speedup for queries achieved
for KNS2 (f) Distribution of speedup for queries achieved for KNS3

time on an unloaded 2 GHz Pentium. We then examine the speedups of KNS1 (traditional use
of a ball-tree) and our two new ball-tree methods (KNS2 and KNS3). Generally speaking, the
speedup achieved for distance computations on all three algorithms are greater than the correspond-
ing speedup for wall-clock time. This is expected, because the wall-clock time also includes the
time for building ball trees, generating priority queues and searching. We can see that for the syn-
thetic data sets, KNS1 and KNS2 yield 2-700 fold speedup over naive. KNS3 yields a 2-4500 fold
speedup. Notice that KNS2 can’t beat KNS1 for these data sets, because KNS2 is designed to
speedupk-NN search on data sets with unbalanced output classes. Since all the synthetic data sets
have equal number of data from positive and negative classes, KNS2 has no advantage.

It is notable that for some high-dimensional data sets, KNS1 does not produce an acceleration
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over naive. KNS2 and KNS3 do, however, and in some cases they are hundreds of times faster than
KNS1.

NAIVE KNS1 KNS2 KNS3
dists time dists time dists time dists time

(secs) speedup speedup speedup speedup speedup speedup
ideal k=9 9.0×107 30 96.7 56.5 112.9 78.5 4500 486

k=101 23.0 10.2 24.7 14.7 4500 432
Diag2d(10%)k=9 9.0×107 30 91 51.1 88.2 52.4 282 27.1

k=101 22.3 8.7 21.3 9.3 167.9 15.9
Diag2d k=9 9.0×109 3440 738 366 664 372 2593 287

k=101 202.9 104 191 107.5 2062 287
Diag3d k=9 9.0×109 4060 361 184.5 296 184.5 1049 176.5

k=101 111 56.4 95.6 48.9 585 78.1
Diag10d k=9 9.0×109 6080 7.1 5.3 7.3 5.2 12.7 2.2

k=101 3.3 2.5 3.1 1.9 6.1 0.7
Noise2d k=9 9.0×107 40 91.8 20.1 79.6 30.1 142 42.7

k=101 22.3 4 16.7 4.5 94.7 43.5
ds1 k=9 6.4×108 4830 1.6 1.0 4.7 3.1 12.8 5.8

k=101 1.0 0.7 1.6 1.1 10 4.2
ds1.10pca k=9 6.4×108 420 11.8 11.0 33.6 21.4 71 20

k=101 4.6 3.4 6.5 4.0 40 6.1
ds1.100pca k=9 6.4×108 2190 1.7 1.8 7.6 7.4 23.7 29.6

k=101 0.97 1.0 1.6 1.6 16.4 6.8
ds2 k=9 8.5×109 105500 0.64 0.24 14.0 2.8 25.6 3.0

k=101 0.61 0.24 2.4 0.83 28.7 3.3
ds2.100- k=9 7.0×109 24210 15.8 14.3 185.3 144 580 311

k=101 10.9 14.3 23.0 19.4 612 248
J Lee.100- k=9 3.6×1010 142000 2.6 2.4 28.4 27.2 15.6 12.6

k=101 2.2 1.9 12.6 11.6 37.4 27.2
Blanc Mel k=9 3.8×1010 44300 3.0 3.0 47.5 60.8 51.9 60.7

k=101 2.9 3.1 7.1 33 203 134.0
Letter k=9 3.6×108 290 8.5 7.1 42.9 26.4 94.2 25.5

k=101 3.5 2.6 9.0 5.7 45.9 9.4
Ipums k=9 4.4×109 9520 195 136 665 501 1003 515

k=101 69.1 50.4 144.6 121 5264 544
Movie k=9 1.4×109 3100 16.1 13.8 29.8 24.8 50.5 22.4

k=101 9.1 7.7 10.5 8.1 33.3 11.6
Kddcup99 k=9 2.7×1011 1670000 4.2 4.2 574 702 4 4.1
(10%) k=101 4.2 4.2 187.7 226.2 3.9 3.9

Table 3: Number of distance computations and wall-clock-time for Naivek-NN classification (2nd
column). Acceleration for normal use of KNS1 (in terms of num. distances and time).
Accelerations of new methods KNS2 and KNS3 in other columns. Naive times are inde-
pendent ofk.

7. Comments and Related Work

Why k-NN ? k-NN is an old classification method, often not achieving the highest possible accu-
racies when compared to more complex methods. Why study it? There are many reasons.k-NN is
a useful sanity check or baseline against which to check more sophisticated algorithmsprovided
k-NN is tractable. It is often the first line of attack in a new complex problem dueto its simplic-
ity and flexibility. The user need only provide a sensible distance metric. The method is easy to
interpret once this distance metric is understood. We have already mentionedits compelling theo-
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retical properties, which explains its surprisingly good performance in practice in many cases. For
these reason and others,k-NN is still popular in some fields that need classification, for example
Computer Vision and QSAR analysis of High Throughput Screening data (e.g., Zheng and Tropsha,
2000). Finally, we believe that the same insights that acceleratek-NN will apply to more modern
algorithms. From a theoretical viewpoint, many classification algorithms can be viewed simply as
the nearest-neighbor method with a certain broader notion of distance function; see for example
Baxter and Bartlett (1998) for such a broad notion. RKHS kernel methods use another example of a
broadened notion of distance function. More concretely, we have applied similar ideas to speed up
nonparametric Bayes classifiers, in work to be submitted.

Applicability of other proximity query work. For the problem of “find thek nearest datapoints”
(as opposed to our question of “performk-NN or Kernel classification”) in high dimensions, the fre-
quent failure of a traditional ball-tree to beat naive has lead to some very ingenious and innovative
alternatives, based on random projections, hashing discretized cubes, and acceptance of approxi-
mate answers. For example Gionis et al. (1999) gives a hashing method thatwas demonstrated to
provide speedups over a ball-tree-based approach in 64 dimensions bya factor of 2-5 depending
on how much error in the approximate answer was permitted. Another approximatek-NN idea is
in Arya et al. (1998), one of the firstk-NN approaches to use a priority queue of nodes, in this
case achieving a 3-fold speedup with an approximation to the truek-NN . In (Liu et al., 2004a),
we introduced a variant of ball-tree structures which allow non-backtracking search to speed up
approximate nearest neighbor, and we observed up to 700-fold accelerations over conventional ball-
tree basedk-NN . Similar idea has been proposed by Indyk (2001). However, theseapproaches are
based on the notion that any points falling within a factor of(1+ ε) times the true nearest neighbor
distance are acceptable substitutes for the true nearest neighbor. Notingin particular that distances
in high-dimensional spaces tend to occupy a decreasing range of continuous values (Hammersley,
1950), it remains unclear whether schemes based upon the absolute values of the distances rather
than theirranksare relevant to the classification task. Our approach, because it need not find the
k-NN to answer the relevant statistical question, finds an answer without approximation. The fact
that our methods are easily modified to allow(1+ ε) approximation in the manner of Arya et al.
(1998) suggests an obvious avenue for future research.

No free lunch. For uniform high-dimensional data no amount of trickery can save us. The expla-
nation for the promising empirical results is that all the inter-dependences in the data mean we are
working in a space of much lower intrinsic dimensionality (Maneewongvatana and Mount, 2001).
Note though, that in experiments not reported here, QSAR and visionk-NN classifiers give better
performance on the original data than on PCA-projected low dimensional data, indicating that some
of these dependencies are non-linear.

Summary. This paper has introduced and evaluated two new algorithms for more effectively ex-
ploiting spatial data structures duringk-NN classification. We have shown significant speedups on
high dimensional data sets without resorting to approximate answers or sampling. The result is
that thek-NN method now scales to many large high-dimensional data sets that previously were not
tractable for it, and are still not tractable for many popular methods such as support vector machines.
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