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Abstract

This paper is about non-approximate acceleration of higiedsional nonparametric operations
such ask nearest neighbor classifiers. We attempt to exploit thetfatteven if we want exact
answers to honparametric queries, we usually do not needtizidy find the data points close to
the query, but merely need to answer questions about themgiepof that set of data points. This
offers a small amount of computational leeway, and we ingatt how much that leeway can be
exploited. This is applicable to many algorithms in nonpaetic statistics, memory-based learn-
ing and kernel-based learning. But for clarity, this papmraentrates on puteNN classification.
We introduce new ball-tree algorithms that on real-worlthdsets give accelerations from 2-fold
to 100-fold compared against highly optimized traditioball-tree-base&-NN . These results in-
clude data sets with up to $@imensions and forecords, and demonstrate non-trivial speed-ups
while giving exact answers.

keywords: ball-tree k-NN classification

1. Introduction

Nonparametric models have become increasingly popular in the statisticsarabibistic Al com-
munities. These models are extremely useful when the underlying distributibwe @roblem is
unknown except that which can be inferred from samples. One simplekn@n nonparametric
classification method is called ttenearest-neighbors NN rule. Given a data s&t ¢ R° con-
taining n points, it finds thek closest points to a query poigte RP, typically under the Euclidean
distance, and chooses the label corresponding to the majority. Despitenfhliesisy of this idea,
it was famously shown by Cover and Hart (Cover and Hart, 1967) thanhptotically its error is
within a factor of 2 of the optimal. Its simplicity allows it to be easily and flexibly apptiec
variety of complex problems. It has applications in a wide range of reddgettings, in particular
pattern recognition (Duda and Hart, 1973; Draper and Smith, 1981 )cagagjorization (Uchimura
and Tomita, 1997); database and data mining (Guttman, 1984; Hastie andanibsh996); in-
formation retrieval (Deerwester et al., 1990; Faloutsos and Oard, B#®n and McGill, 1983);
image and multimedia search (Faloutsos et al., 1994; Pentland et al., 199eFlatkal., 1995;
Smeulders and Jain, 1996); machine learning (Cost and Salzberg, $8&&stics and data anal-
ysis (Devroye and Wagner, 1982; Koivune and Kassam, 1995) lsndcambination with other
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methods (Woods et al., 1997). However, these methods all remain hantyyeresir computational
complexity.

Several effective solutions exist for this problem when the dimerBi@small, including Voronoi

diagrams (Preparata and Shamos, 1985), which work well for two dimexigiata. Other meth-
ods are designed to work for problems with moderate dimension (i.e. tens ofglome), such

as k-D tree (Friedman et al., 1977; Preparata and Shamos, 1985 Raméman, 1984), and
ball-tree (Fukunaga and Narendra, 1975; Omohundro, 1991; UhlmM&84; Ciaccia et al., 1997).
Among these tree structures, balltree, or metric-tree (Omohundro, 1@fitesent the practical
state of the art for achieving efficiency in the largest dimension possibb®i@®) 2000; Clarkson,
2002) without resorting to approximate answers. They have been usshindifferent ways, in a
variety of tree search algorithms and with a variety of “cached suffictatisscs” decorating the
internal leaves, for example in Omohundro (1987); Deng and Moor@5)1Zhang et al. (1996);
Pelleg and Moore (1999); Gray and Moore (2001). However, maaiywerld problems are posed
with very large dimensions that are beyond the capability of such seauists to achieve sub-
linear efficiency, for example in computer vision, in which each pixel of angengepresents a
dimension. Thus, the high-dimensional case is the long-standing fronttee afearest-neighbor
problem.

With one exception, the proposals involving tree-based or other datdwstsdave considered
the generic nearest-neighbor problem, not that of nearest-neiglassificationspecifically. Many
proposals designed specifically for nearest-neighbor classificati@ldgeen proposed, virtually all
of them pursuing the idea of reducing the number of training points. In nidkese approaches,
such as Hart (1968), although the runtime is reduced, so is the classifiaatiaracy. Several sim-
ilar training set reduction schemes yielding only approximate classificatiorestbe®en proposed
(Fisher and Patrick, 1970; Gates, 1972; Chang, 1974; Ritter et ab, B#thi, 1981; Palau and
Snapp, 1998). Our method achieves the exact classification that wowddhived by exhaus-
tive search for the nearest neighbors. A few training set reductionaaethave the capability of
yielding exact classifications. Djouadi and Bouktache (1997) desthibth approximate and exact
methods, however a speedup of only about a factor of two over etbemsearch was reported for
the exact case, for simulated, low-dimensional data. Lee and Chae) @96&chieves exact clas-
sifications, but only obtained a speedup over exhaustive searctoof &Y. It is in fact common
among the results reported for training set reduction methods that onl§%®bthe training points
can be discardedge. no important speedups are possible with this approach when the Bayés risk
not insignificant. Zhang and Srihari (2004) pursued a combination imfitgaset reduction and a
tree data structure, but is an approximate method.

In this paper, we propose two new ball-tree based algorithms, which ved'IKNS2 and KNS3.
They are both designed for binakyNN classification. We only focus on binary case, since there
are many binary classification problems, such as anomaly detection (Kausdjd/igna, 2003),
drug activity detection (Komarek and Moore, 2003); and video segmentgicet al., 2003). Liu

et al. (2004b) applied similar ideas to many-class classification and piposariation of the
k-NN algorithm. KNS2 and KNS3 share the same insight that the takknefarest-neighbor clas-
sification of a queryy need not require us to explicitly find those k nearest neighbtosbe more
specific, there are three similar but in fact different questions:“{@hat are the k nearest neigh-
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bors ofq?” (b) “How many of the k nearest neighbors @fire from the positive class?and (c)
“Are at least t of the k nearest neighbors from the positive clas@ny researches have focused
on the first question (a), but uses of proximity queries in statistics far megadéntly require (b)
and (c) types of computations. In fact, for tkéIN classification problem, when the threshoid

set, it is sufficient to just answer the much simpler question (c). The triangtiality underlying

a ball-tree has the advantage of bounding the distances between datagmintsin thus help us
estimate the nearest neighbors without explicitly finding them. In our pajggiest our algorithms

on 17 synthetic and real-world data sets, with dimensions ranging from 2 toi0° and number

of data points ranging from £@o 4.9 x 10°. We observe up to 100-fold speedup compared against
highly optimized traditional ball-tree-bas&eNN , in which the neighbors are found explicitly.

Omachi and Aso (2000) proposed a fedtiN classifier based on a branch and bound method, and
the algorithm shares some ideas of KNS2, but it did not fully explore theafigaingk-NN classifi-
cation without explicitly finding thé nearest neighbor set, and the speed-up the algorithm achieved
is limited. In section 4, we address Omachi and Aso’s method in more detail.

We will first describe ball-trees and this traditional way of using them (whiettall KNS1), which
computes problem (a). Then we will describe a new method (KNS2) fdrgmo (b), designed for
the common setting of skewed-class data. We'll then describe a new metht&BjKor problem
(c), which removes the skewed-class assumption, applying to arbitrasifatation problems. At
the end of Section 5 we will say a bit about the relative value of KNS2 gefS3.

2. Ball-Tree

A ball-tree(Fukunaga and Narendra, 1975; Omohundro, 1991; Uhlmann, £3&dgia et al., 1997,
Moore, 2000) is a binary tree where each node represents a saébts, palled Points(Node). Given

a data set, theot nodeof a ball-tree represents the full set of points in the data set. A node can be
either aleaf nodeor anon-leaf nodeA leaf node explicitly contains a list of the points represented
by the node. A non-leaf node has two children noddsde.childlandNode.child2 where

PointgNodechild1) nPointgNodechild2) = ¢
PointgNodechild1) U Pointg Nodechild2) = Points(Node)

Points are organized spatially. Each node has a distinguished point cBlilesteDepending on the
implementation, th€ivotmay be one of the data points, or it may be the centroidonfits(Node)
Each node records the maximum distance of the points it owns to its pivot. @athéhradius of
the node

Node.Radius- max Node.Pivot- X |
xePoints(Node

Nodes lower down the tree have smaller radius. This is achieved by insiatitrge construction
time, that

x € Point§Nodechildl) = |x—Nodechild1l.Pivot |
x € Point§Nodechild2) = |x—Nodechild2.Pivot |

| x—Nodechild2.Pivot |
| x—Nodechild1.Pivot |

IN A
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Provided that our distance function satisfies the triangle inequality, weatardidthe distance from
a query poing to any point in any ball-tree node.)xfe Points(Node}hen we know that:

IX—q| > |q—Node.Pivot— Node.Radius (1)
IXx—q| < |q—Node.Pivot+ Node.Radius 2

Here is an easy proof of the inequality. According to triangle inequality, awex — q| > |q —
Node.Pivot— |x— Node.Pivot Givenx € Points(NodepndNode.Radiuss the maximum distance
of the points it owns to its pivoix — Node.Pivot < Node.Radiusso |x — q| > |q — Node.Pivot—
Node.RadiusSimilarly, we can prove Equation (28

A ball-tree is constructed top-down. There are several ways to cahshem, and practical al-
gorithms trade off the cost of construction (it can be inefficient t@b?) given a data set witR
points, for example) against the tightness of the radius of the balls. M2066®) describes a fast
way for constructing a ball-tree appropriate for computational statistics b#ll-tree is balanced,
then the construction time 3(CRIogR), whereC is the cost of a point-point distance computation
(which isO(m) if there arem dense attributes, ar@( fm) if the records are sparse with only frac-
tion f of attributes taking non-zero value). Figure 1 shows a 2-dimensionasdbsad the first few
levels of a ball-tree.

la. A dataset 1b. Root node 1c. The 2 children
A ’ A

D AA

O\E D EF G

le. The internal tree
structure

1d. The 4 grandchildren

Figure 1: An example of ball-tree structure

3. KNS1: Conventionalk Nearest Neighbor Search with Ball-Tree

In this paper, we call conventional ball-tree-based search (Uhim&1) KNS1 Let PSbe a set
of data points, an®S C V, whereV is the training set. We begin with the following definition:
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Say thatPS consists of the k-NN gfin V if and only if

|V |>k and PSarethek-NNof qinV
or 3)
|V|<k and PS==V

We now define a recursive procedure caBadlIKNN with the following inputs and output.
P = BallKNN(PS",Node

LetV be the set of points searched so far, on entry. Assuméatonsists of thé-NN of q in V.
This function efficiently ensures that on ex®S'" consists of thé&-NN of q in V U Points(Node)

We define
o _[® if |PS"|<k @)
R makeps [ x—q| if [P ==k

Dsofaris the minimum distance within which points become interesting to us.
Node_ ] max(|q — Node.Pivot— Node.RadiuD)eP**") if Node# Root
Let Doty = . : : T (5)
max(|q — Node.Pivot— Node.Radiu®) if Node== Root

Dm?rﬂf is the minimum possible distance from any poinNodeto q. This is computed using the
bound given by Equation (1) and the fact that all points covered byde maust be covered by
its parent. This property implies thﬁ)i\'n?ndrf will never be less than the minimum distance of its
ancestors. Step 2 of section 4 explains this optimization further. See Fidgorelails.
Experimental results show that KNS1 (conventional ball-tree-bks¢N search) achieves signifi-
cant speedup over NaikeNN when the dimensiod of the data set is moderate (less than 30). In
the best case, the complexity of KNS1 can be as godd(d$ogR), given a data set witR points.
However, withd increasing, the benefit achieved by KNS1 degrades, and dieereally large, in
the worst case, the complexity of KNS1 can be as baO(@R). Sometimes it is even slower than

Naivek-NN search, due to the curse of dimensionality.

In the following sections, we describe our new algorithms KNS2 and KN®3gtiwo algorithms
are both based on ball-tree structure, but by using different seiatbges, we explore how much
speedup can be achieved beyond KNS1.

4. KNS2: Fasterk-NN Classification for Skewed-Class Data

In many binary classification domains, one class is much more frequent thath#ér. For example,
in High Throughput Screening data sets, (described in section 7.2)ait mdre common for the
result of an experiment to be negative than positive. In detection o fielephone calls (Fawcett
and Provost, 1997) or credit card transactions (Stolfo et al., 19%/juimber of legitimate transac-
tions is far more common than fraudulent ones. In insurance risk modelgunéelt et al., 2000),
a very small percentage of the policy holders file one or more claims in a imerperiod. There
are many other examples of domains with similar intrinsic imbalance, and therefassification
with a skewed distribution is important. Various researches have beesefaun designing clever
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ProcedureBallKNN (PS",Nod@

begin
if (Dm?,?,fz Dsofar) then /* If this condition is satisfied, then impossible
ReturnPS" unchanged. for a point in Node to be closer than the

previously discoverel" nearest neighbor.*/
else if(Node is a leaf)
Pt — pgn
V¥x € Points(Node)
if (| X—q |< Dsofay) then [* If a leaf, do a naive linear scan */
addx to PSU
if (| P |==k+ 1)then
remove furthest neighbor froRS'"
updateDgofar
else [*If a non-leaf, explore the nearer of the two
nodeq = child of Node closest tq child nodes, then the further. Itis likely that
node = child of Node furthest frong further search will immediately prune itself.t
PSemP— BallKNN(PS",nodg)
P = BallKNN(PS®™P node)
end

~

Figure 2: A call of BallKNN( },Root) returns th& nearest neighbors @fin the ball-tree.

methods to solve this type of problem (Cardie and Howe, 1997). The nenithlg introduced in
this section, KNS2, is designed to acceletatéN based classification in such skewed data scenar-
ios.

KNS2 answers type(b) question described in the introduction, namelyy thiany of thek nearest
neighbors are in the positive class?” The key idea of KNS2 is we canearggvestion (b) without
explicitly finding thek-NN set.

KNS2 attacks the problem by building two ball-trees:Pastreefor the points from the positive
(small) class, and alegtreefor the points from the negative (large) class. Since the number of
points from the positive class(small) is so small, it is quite cheap to find the lexaetrest positive
points ofq by using KNS1. And the idea of KNS2 is first seaf@bstreeusing KNS1 to find the

k nearest positive neighbors geisset, and then searcNegtreewhile usingPosset as bounds to
prune nodes far away, and at the same time estimating the number of negatigt@ be inserted

to the true nearest neighbor set. The search can be stopped as sa@ogeithe answer to question
(b). Empirically, much more pruning can be achieved by KNS2 than conveaitiall-tree search.

A concrete description of the algorithm is as follows:

Let Root,es be the root ofPostree and Rookeg be the root ofNegtree Then, we classify a new
query pointg in the following fashion
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e Step 1 —* Find positive” : Find thek nearest positive class neighborsgofand their dis-
tances tay) using conventional ball-tree search.

e Step 2 —“Insert negative”: Do sufficient search on the negative tree to prove that the
number of positive data points amokgearest neighbors isfor some value oh.

Step 2 is achieved using a new recursive search chlégrCount In order to describdlegCountve
need the following four definitions.

e The Dists Array. Distsis an array of elemenBists; ... Dists consisting of the distances to
thek nearest positive neighbors found so fapsorted in increasing order of distance. For
notational convenience we will also wrikistgy = 0 andDists1 = .

e PointsetV. Define pointseV as the set of points in the negative balls visited so far in the
search.

e The Counts Array (n,C) (n < k+1). Cis an array of counts containing n+1 array elements
Co,Cy,...C,. Say(n,C)summarize interesting negative points for poinisétand only if

1. Vi=0,1,....n,
C =|Vn{x:x—q|< Dists} | (6)

Intuitively C; is the number of points i¥ whose distances tpare closer thaDists. In
other words(; is the number of negative pointsVhcloser than thé&" positive neighbor
toq.

2. G+i<k(i<n),Ci+n>k
This simply declares that the lengthof the C array is as short as possible while ac-
counting for thek members oV that are nearest ip Such am exists sinc&Cy = 0 and
Ck1 = Total number of negative points. To make the problem interesting, we assume
that the number of negative points and the number of positive points aregtester
thank.
e Dote andDoSE
Here we will continue to usﬁ?ﬁgwhich is defined in equation (4).
Symmetrically, we also defirﬁmgﬁig as follows:

min(|q — Node.Pivot+ Node.RadiusDhaxs">®™) if Nodes Root
|g — Node.Pivot+ Node.Radius if Node= Root

(7)
Dm‘;‘i‘; is the maximum possible distance from any point in Node. tdhis is computed using
the bound in Equation (1) and the property of a ball-tree that all the pointsed by a node
must be covered by its parent. This property implies [frlﬁ‘f(gwill never be greater than the

maximum possible distance of its ancestors.

Let DYoSS= {

Figure 3 gives a good example. There are 3 nqged andc2. cl andc2 arep’s children.

q is the query point. In order to comptﬂﬁ}inp, first we computeq — cl.pivot| — cl.radius
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Figure 3: An example to illustrate how to comp ?ndpe

which is the dotted line in the figure, bDlﬁ}inp can be further bounded @ﬁqinp, since it is
impossible for any point to be in the shaded area. Similarly, we get the eqlﬂaltimﬁ}axp
Dm’; and Dmggg are used to estimate the counts arfayC). Again we take advantage of
the triangle inequality of ball-tree. For any Node, if there exists é&ne [1,n]), such that
Dists_1 < Dmg§§< Dists, then forvx € Points(Node)Dists_1 <| x— q |< Dists. Accord-
ing to the definition ofC, we can add Points(Node) to C;,Ci 1, ...Cy. The function oﬂ),’}'ﬁf’
similar to KNS1, is used to help prune uninteresting nodes.

Step 2 of KNS2 is implemented by the recursive function below:
(n°Ut Co) — NegCountn™, C", Node j parent, Dists)

See Figure 4 for the detailed implementation of NegCount.

Assume that on entryn™,C'") summarize interesting negative points for poiniéetwhereV is
the set of points visited so far during the search. This algorithm efficiendyres that, on exit,
(n°Ut Co!Y) summarize interesting negative points ¥t Points(Node) In addition, jparent iS &
temporary variable used to prevent multiple counts for the same point. Tlabhearelates to the
implementation of KNS2, and we do not want to go into the details in this paper.

We can stop the procedure whaft' becomes 1 (which means all tlkenearest neighbors af
are in the negative class) or when we run out of nod&8 represents the number of positive points
in thek nearest neighbors @f The top-level call is

NegCountk,C% NegTreeRoot k+ 1, Dists)

whereC? is an array of zeroes aristsare defined in step 2 and obtained by applying KNS1 to the
Postree

There are at least two situations where this algorithm can run faster thaty gimging k-NN .
First of all, whenn = 1, we can stop and exit, since this means we have found atlessgative
points closer than the nearest positive neighbog.tdNotice that thek negative points we have
found are not necessarily the ex&ahearest neighbors @ but this won't change the answer to
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ProcedureNegCount (",C",Node j parent, Dists)

begin
nout = n"" [* Variables to be returned by the search.
cout .= chn Initialize them here. */

ComputeDjde and DRSS

Search foi, j € [1,n°Y], such that
Dists.; < DNod¢ < Distg

Distg.1 < DNoSs < Dists

FOI‘ a.” IndeXG [J, jparen[)
UpdateCPu, ;= Codl + | Points(Node)

Updaten®“, such that
COE |+ (nPU — 1) < k, S +noUt > k

SetDistSput = o

(1) if (n°Ut == 1)
Return(1.C°"

@)if (i==)
Return®t, cout

/* Re-estimateCOUt */
* Only update the count less thgparent

to avoid counting twice. */

/* At leastk negative points closer
than the closest positive one: done! *
/* Node is located between two adjacen
positive points, no need to split. */

[

(3) if(Node is a leaf)
Forallx € PointgNod¢
Compute| x—q |
Update and returmP4t, Cou
(4) else
nodeg : = child of Node closest tq
node := child of Node furthest frong
(n'€mP Ctemp - = NegCountf",C", noda, j, Dists)
if (ntéMP==1)
Return (1,C°)
else (n°UL,CO4) : = NegCount(®™P, Ct®™P node, j, Dists)
end

Figure 4: Procedure NegCount.

our question. This situation happens frequently for skewed data setsseliond situation is as
follows: A Node can also be pruned if it is located exactly between two adfjgaesitive points, or

it is farther away than thet" positive point. This is because that in these situations, there is no need
to figure out which negative point is closer within the Node. Especially gats smaller, we have
more chance to prune a node, becabDists;» decreases as” decreases.

Omachi and Aso (2000) proposedkéNN method based on branch and bound. For simplicity,
we call their algorithm KNSV. KNSV is similar to KNS2, in that for the binary classe, it also
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builds two trees, one for each class. For consistency, let’s still call BestmreeandNegtree KNSV
first searches the tree whose center of gravity is closer Without loses of generality, we assume
Negtreeis closer, so KNSV will searchegtreefirst. Instead of fully exploring the tree, it does a
greedy depth first search only to fikccandidate points. Then KNSV moves on to sedfoktree
The search is the same as conventional ball-tree search (KNS1)t éxaeipuses thé" candidate
negative point to bound the distance. After the seardPostreeis done. KNSV counts how many
of thek nearest neighbors so far are from the negative class. If the nummerésthark/2, the al-
gorithm stops. Otherwise, KNSV will go back to seaiégtreefor the second time, this time fully
search the tree. KNSV has advantages and disadvantages. Theviastage is that it is simple,
and thus it is easy to extend to many-class case. Also if the first guess®VKdNcorrect and the
k candidate points are good enough to prune away many nodes, it will tee fiasn conventional
ball-tree search. But there are some obvious drawbacks of the algorithst, the guess of the
winner class is only based on which class’s center of gravity is the cltsgstNotice that this is
a pure heuristic, and the probability of making a mistake is high. Second, agregdy search to
find thek candidate nearest neighbors has a high risk, since these candidatesohi&glen be close
to the true nearest neighbors. In that case, the chance for prunagreses from the other class
becomes much smaller. We can imagine that in many situations, KNSV will end tghseathe
first tree for yet another time. Finally, we want to point out that KNSV claintait perform well
for many-class nearest neighbors, but this is based on the assumptithrethénner class contains
at leastk/2 points within the nearest neighbors, which is often not true for the miasg-case.
Comparing to KNSV, KNS2's advantages are (i) it uses the skewnepenpycf a data set, which
can be robustly detected before the search, and (ii) more carefuhdgges KNS2 more chance to
speedup the search.

5. KNS3: Are at Leastt of the k Nearest Neighbors Positive?

In this paper’s second new algorithm, we remove KNS2's constraint afanmed skewness in the
class distribution. Instead, we answer a weaker question: “are at lebte k nearest neighbors
positive?”, where the questioner must suppindk. In the usuak-NN rule,t represents a majority
with respect tok, but here we consider the slightly more general form which might be used f
example during classification with known false positive and false negaisis.c

In KNS3, we define two important quantities:

D = distance of the't nearest positive neighbor of (8)
DY — distance of the fi nearest negative neighbor af 9)

wherem+t = k+ 1.

Before introducing the algorithm, we state and prove an important propqgsitioich relate the
two quantitiesDP°® andDyy? with the answer to KNS3.

Proposition 1 DP°° < Diy?if and only if at least t of the k nearest neighborsydfom the positive
class.
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Proof:

If DP°° < D2 then there are at leasspositive points closer than thrg" negative point tay. This
also implies that if we draw a ball centeredggtand with its radius equal tBp;°, then there are
exactlym negative points and at leaspositive points within the ball. Sindet m=k+ 1, if we
useDy to denote the distance of th& nearest neighbor, we g < Dfft®, which means that there
are at mostn— 1 of thek nearest neighbors ef from the negative class. It is equivalent to say
that there are at leastof the k nearest neighbors af are from the positive class. On the other
hand, if there are at leasbf the k nearest neighbors from the positive class, tB&f° < Dy, the
number of negative points is at mdst t < m, soDy < D% This implies thaDP** < Dy ¥is true. ®

Figure 5 provides an illustration. In this example= 5,t = 3. We use black dots to represent
positive points, and white dots to represent negative points. The réasedefine the problem of

\\ N ® ) / //
/ e,
Figure 5: An example obP°®andDp;?

KNS3 is to transform & nearest neighbor searching problem to a much simpler counting prob-

lem. In fact, in order to answer the question, we do not even have to corffguexact value of
DP°® and Diy®, instead, we can estimate them. We deIimxéDpOS) andU p(DP%) as the lower

and upper bounds d@{°°, and similarly we definéo(Dm?) andU p(Dm?) as the lower and upper

bounds oD% If at any poth p(DP%®) < Lo(Dm?), we knowDP® < DIv¥, on the other hand, if

U p(Dm?) < Lo(Df?), we knowDry® < DP,

Now our computational task is to efficiently estimat DP°%), U p(DP), Lo(Di?) andU p(Diy
And it is very convenient for a ball-tree structure to do so. Below is thelddtdescription:

At each stage of KNS3 we have two sets of balls in use célladdN, whereP is a set of balls from
Postreebuilt from positive data points, arid consists of balls fronN egtreeouilt from negative data
points.

Both sets have the property that if a ball is in the set, then neither its ball-to=stans nor de-
scendants are in the set, so that each point in the training set is a memberasfzere balls in
PUN. Initially, P = {PosTreeoot} andN = {NegTreeoot}. Each stage of KNS3 analyzsto
estimateLo(DP%°), U p(DP®°), and analyzedl to estimateLo(Dm?), U p(Dm?). If possible, KNS3
terminates with the answer, else it chooses an appropriate ballFroniN, and replaces that ball
with its two children, and repeats the iteration. Figure (6) shows one staBl®8. The balls
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involved are labeled throughg and we have

P={ab,c,d}

N={e f,g}

Notice that although c and d are inside b, they are not descendants afshispossible because
when a ball is splitted, we only require the pointset of its children be disjointhieusalls covering
the children node may be overlapped.

Figure 6: A configuration at the start of a stage.

In order to computéo(DP°%), we need to sort the balisc P, such that

VUi, uj € Pi < j = Dipinp < Dﬂnmp

Then
Lo(DP%) = mmp, where Zl | Pointg(u;) |< t and Zl| Pointgu;) |>t

Symmetrically, in order to computép(D°°), we sortu € P, such that
Yu,uj eRi<j= Dmaxp< Dmaxp

Then
j—1

U p(Df°®) = Dnjaxp Where 21 | Pointgu;) |<t and Zl| Pointgu;) |>t
Similarly, we can computeo(Df?) andU p(Dmy

To illustrate this, it is useful to depict a ball as an interval, where the two ehdse interval
denote the minimum and maximum possible distances of a point owned by the badl qaehy.
Figure 5(a) shows an example. Notice, we also mark “+5” above the ihterdanote the number
of points owned by the balB. After we have this representation, bétlandN can be represented as
a set of intervals, each interval corresponds to a ball. This is showh)nEgr example, the second
horizontal line denotes the fact that bhltontains four positive points, and that the distance from
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any location inb to q lies in the rangg0, 5]. The value oLo(D{°°) can be understood as the answer
to the following question: what if we tried to slide all the positive points within theurids as far
to the left as possible, where would ttie closest positive point lie? Similarly, we can estimate
U p(D®) by sliding all the positive points to the right ends within their bounds.

Dist Dist
0O 1 2 3 4 5 0o 1 2 3 4 5
+2
B © a "
b
O O c ‘+4
| +3
q” “
O € | s
. |
| g | ! ! -
*+5 1 Lo@® | Up(D))
Lo(Ds™) Up(Q™)
(@) (b)

Figure 7: (a) The interval representation of a [Bal(b) The interval representation of the configu-
ration in Figure 6

For example, in Figure 6, l&t= 12 andt = 7. Thenm= 12— 7+1=6. We can estimaté6(D?*),

U p(DY°%) and Lo(Dg®9), U p(Dg®9)), and the results are shown in Figure 5. Since the two intervals
(Lo(D5%), U p(DE*)) and Lo(Dg®9),U p(Dg"?)) have overlap now, no conclusion can be made at
this stage. Further splitting needs to be done to refine the estimation.

Below is the pseudo code of KNS3 algorithm: We define a loop procedilesl REDICTwith
the following input and output.

Answer= PREDICT(P,N,t,m)

The Answer a boolean value, is TRUE, if there are at least the k nearest neighbors from the
positive class; and False otherwise. Initially, PosTree.rogt and N ={NegTree.root. The
threshold is given, andn=k—t + 1.

Before we describe the algorithm, we first introduce two definitions.
Define:
(Lo(DP),U p(DP)) = Estimatebound S, i) (10)

Here S is either se® or N, and we are interested in thif8 nearest neighbor af from set S. The
output is the lower and upper bounds. The concrete proceduretiioraéiang the bounds was just
described.

Notice that the estimation of the upper and lower bounds could be very lodbse imeginning,
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and will not give us enough information to answer the question. In this easwill need to split a
ball-tree node and re-estimate the bounds. With more and more nodes Hitad,spur estimation
becomes more and more precise, and the procedure can be stopped as 50(D*°) < Lo(Dny
orUp(Dm?) < Lo(DP®). The function ofPick(P,N) below is to choose one node either from P or
N to split. There are different strategies for picking a node, for simplicity,implementation only
randomly pick a node to split.

Define:

split_.node= Pick(P,N) (12)

Here splitnode is the node chosen to be split. See Figure 8.

Procedure PREDICT (P, N, t, m)
begin
Repeat
(Lo(Dp°S) U p(DpOS)) Estimatebound(P, t) /* See Definition 10. */
(Lo(Dy9),U p(Dy 9)) Estimatebound(N, m)
if (Up(DP®) < Lo(Dm?) then
Return TRUE
if (Upm™9) < Lo(Dm?)) then
Return FALSE

splitnode = Pick(P, N)

remove splithode from P or N

insert splithode.child1 and splihode.child2 to P or N
end

Figure 8: Procedure PREDICT.

Our explanation of KNS3 was simplified for clarity. In order to avoid fredueearches over the full
lengths of setdN andP, they are represented as priority queues. Each set in fact uses éwesju
one prioritized b)Dmaxpand the other by')mmp This ensures that the costs of all argmins, deletions
and splits are logarithmic in the queue size.

Some people may ask the question: “It seems that KNS3 has more advathiageaNS2, it re-
moves the assumption of skewness of the data set. In general, it has moceshaprune away
nodes, etc. Why we still need KNS2?” The answer is KNS2 does have iisaowantages. It
answers a more difficult question than KNS3. To know exact how manyeofi¢arest neighbors
are from the positive class can be especially useful when the thresitali@diding a class is not
known. In that case, KNS3 doesn’t work at all since we can notigeoa statid for answering the
question (c). But KNS2 can still work very well. On the other hand, the impieat®n of KNS2 is
much simpler than KNS3. For instance, it does not need the priority queaigsstwdescribed. So
there does exist some cases where KNS2 is faster than KNS3.
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6. Experimental Results

To evaluate our algorithms, we used both real data sets (from UCI andr€pdsitories) and also
synthetic data sets designed to exercise the algorithms in various ways.

6.1 Synthetic Data Sets

We have six synthetic data sets. The first synthetic data set we have islclléd as illustrated in
Figure 6.1(a). All the data in the left upper area are assigned to the paddss, and all the data in
the right lower area are assigned to the negative class. The secomsédatahave is called ag2d,

as illustrated in Figure 6.1(b). The data are uniformly distributed in a 10 byg@ére. The data
above the diagonal are assigned to the positive class, below diageredsigned to the negative
class. We made several variants of Diag2d to test the robustness of KN&Rd(10% has 10%
data ofDi ag2d. Di ag3d is a cube with uniformly distributed data and classified by a diagonal-
plane.Di ag10d is a 10 dimensional hypercube with uniformly distributed data and classified by
hyper-diagonal-planehoi se- di ag2d has the same data Bsag2d( 1099 , but 1% of the data was
assigned to the wrong class.

(10, 0) (10, 10

(0,0) (0, 1C

(a) Ideal (b) Diag2d (100,000 data—points)

Figure 9: Synthetic Data Sets

Table6.1 is a summary of the data sets in the empirical analysis.

6.2 Real-World Data Sets

We used UCI & KDD data (listed in Table 6.2), but we also experimented withs#eiseof particular
current interest within our laboratory.

Life Sciences.These were proprietary data seds{andds? similar to the publicly available Open
Compound Database provided by the National Cancer Institute (NCI Opep@und Database,
2000). The two data sets are sparse. We also present results ontdatarsed fromdsl, denoted
ds1.10pcadsl1.100pcandds2.100anchoby linear projection using principal component analysis

1149



Liu, MOORE AND GRAY

Data Set Num. of | Num. of Num. of | Num.pos/Num.neg
records | Dimensions | positive
Ideal 10000 |2 5000 1
Diag2d(10%) 10000 | 2 5000 1
Diag2d 100000 | 2 50000 |1
Diag3d 100000 | 3 50000 |1
Diag10d 100000 | 10 50000 |1
Noise2d 10000 | 2 5000 1

Table 1: Synthetic Data Sets

(PCA).

Link Detection. The first, Citeseer, is derived from the Citeseer web site (Citeseer,2002)sts

the names of collaborators on published materials. The goal is to predithevtid ee (the most
common name) was a collaborator for each work based on who else is listdthfavork. We

useJ_Lee.100pcdo represent the linear projection of the data to 100 dimensions using P@A.
second link detection data set is derived from the Internet Movie DaasB, 2002) and is
denotedmdbusing a similar approach, but to predict the participation of Mel Blanc (abaimost

common participant).

UCI/KDD data. We use four large data sets from KDD/UCI repository (Bay, 1999). ddta
sets can be identified from their names. They were converted to binasjificason problems.
Each categorical input attribute was converted mtwnary attributes by a 1-afrencoding (where
nis the number of possible values of the attribute).

1. Letteroriginally had 26 classes: A-Z. We performed binary classification usiadetiter A
as the positive class and “Not A’ as negative.

2. Ipums(from ipums.la.97). We predi¢arm statuswhich is binary.

3. Movieis a data set from (informedia digital video library project, 2001). The TRB01
Video Track organized by NIST shot boundary Task. 4 hours ofovimel 3 MPEG-1 video
files at slightly over 2GB of data.

4. Kdd99(10%)has a binary prediction: Normal vs. Attack.

6.3 Methodology

The data setls2is particular interesting, because its dimension.isx110°. Our first experiment
is especially designed for it. We uke9, andt = [k/2], then we print out the distribution of time
taken for queries of three algorithms: KNS1, KNS2, and KNS3. This is amhedderstanding the
range of behavior of the algorithms under huge dimensions (some quelliée \warder, or take
longer, for an algorithm than other queries). We randomly took 1% negegeords (881) and 50%
positive records (105) as test data (total 986 points), and train onrtremieg 87372 data points.
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Data Set Num. of | Num. of Num.of | Num.pos/Num.neg
records | Dimensions | positive

dsl 26733 | 6348 804 0.03

dsl.10pca | 26733 10 804 0.03

ds1.100pca | 26733 100 804 0.03

ds2 88358 1.1x10° 211 0.002

ds2.100anchpi88358 100 211 0.002

J.Lee.100pcg 181395 | 100 299 0.0017

Blanc__Mel 186414 | 10 824 0.004

Data Set Num. Num. of Num.of | Num.pos/Num.neg
records | Dimensions| positive

Letter 20000 16 790 0.04

Ipums 70187 60 119 0.0017

Movie 38943 | 62 7620 0.24

Kdd99( 10% ) 494021 | 176 97278 | 0.24

Table 2: Real Data Sets

For our second set of experiments, we did 10-fold cross-validatiorlldheadata sets. For each
data set, we testekl= 9 andk = 101, in order to show the effect of a small value and a large
value. For KNS3, we uset= [k/2]: a data point is classified as positive iff the majority of its
k nearest neighbors are positive. Since we use cross-validation, dglchsegperiment required

R kNN classification queries (whefRis the umber of records in the data set) and each query in-
volved thek-NN among 0OR records. A naive implementation with no ball trees would thus require
0.9R? distance computations. We want to emphasize here that these algorithmsexacallNo
approximations were used in the classifications.

6.4 Results

Figure 10 shows the histograms of times and speed-ups for queries ostdata set. For Naive
k-NN , all the queries take 87372 distance computations. For KNS1, all #regutake more than
1.0 x 10* distance computations, (the average number of distances comput&dxid®) which

is greater than 87372 and thus traditional ball-tree search is worse thame™tinear scan. For
KNS2, most of the queries take less thafi 4 10* distance computations, a few points take longer
time. The average number of distances computed is 6233. For KNS3, ali¢hiegtake less than
1.0 x 10* distance computations, the average number of distances computed is 34 lowEr
three figures illustrate speed-up achieved for KNS1, KNS2 and KN8Brmive linear scan. The
figures show the distribution of the speedup obtained for each quemyn Fd(d) we can see that on
average, KNS1 is even slower than the naive algorithm. KNS2 can get¥r¢o 250-fold speedups.
On average, it has a 14-fold speedup. KNS3 can get from 2- to 830@peedups. On average, it
has a 26-fold speedups.

Table 6.4 shows the results for the second set of experiments. Thalsatomn lists the computa-
tional cost of naivé&k-NN , both in terms of the number of distance computations and the wall-clock
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Figure 10: (a) Distribution of times taken for queries of KNS1 (b) Distributibtimes taken for
gueries of KNS2 (c) Distribution of times taken for queries of KNS3 (d) hstion of
speedup for queries achieved for KNS1 (e) Distribution of speedugpueries achieved
for KNS2 (f) Distribution of speedup for queries achieved for KNS3

time on an unloaded 2 GHz Pentium. We then examine the speedups of KNStiofteddise
of a ball-tree) and our two new ball-tree methods (KNS2 and KNS3). G#peapeaking, the
speedup achieved for distance computations on all three algorithms aterdghan the correspond-
ing speedup for wall-clock time. This is expected, because the wall-clock tsndrecludes the
time for building ball trees, generating priority queues and searching.aWwsee that for the syn-
thetic data sets, KNS1 and KNS2 yield 2-700 fold speedup over naiv&34helds a 2-4500 fold
speedup. Notice that KNS2 can’'t beat KNS1 for these data sets, de&dNS2 is designed to
speeduk-NN search on data sets with unbalanced output classes. Since all thetgydata sets
have equal number of data from positive and negative classes, KdS2ohadvantage.

It is notable that for some high-dimensional data sets, KNS1 does notiggaah acceleration
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over naive. KNS2 and KNS3 do, however, and in some cases theyiadedds of times faster than

KNS1.
NAIVE KNS1 KNS2 KNS3
dists time dists time dists time dists time
(secs) speedup  speedup speedup speedup speedup  speedup
ideal k=9 9.0x 107 30 96.7 56.5 112.9 78.5 4500 486
k=101 23.0 10.2 24.7 14.7 4500 432
Diag2d(10%)k=9 | 9.0x10° 30 91 51.1 88.2 52.4 282 27.1
k=101 22.3 8.7 21.3 9.3 167.9 15.9
Diag2d k=9 9.0x 10° 3440 738 366 664 372 2593 287
k=101 202.9 104 191 107.5 2062 287
Diag3d k=9 9.0x10° 4060 361 184.5 296 184.5 1049 176.5
k=101 111 56.4 95.6 48.9 585 78.1
Diag10d k=9 9.0 x 10° 6080 7.1 5.3 7.3 5.2 12.7 2.2
k=101 3.3 2.5 3.1 1.9 6.1 0.7
Noise2d k=9 9.0 x 107 40 91.8 20.1 79.6 30.1 142 42.7
k=101 22.3 4 16.7 4.5 94.7 435
dsi k=9 6.4x 108 4830 1.6 1.0 4.7 3.1 12.8 5.8
k=101 1.0 0.7 1.6 1.1 10 4.2
dsl.10pca k=9 6.4x 108 420 11.8 11.0 33.6 21.4 71 20
k=101 4.6 3.4 6.5 4.0 40 6.1
ds1.100pca k=9 6.4x 108 2190 1.7 1.8 7.6 7.4 23.7 29.6
k=101 0.97 1.0 1.6 1.6 16.4 6.8
ds2 k=9 8.5x 10° 105500 | 0.64 0.24 14.0 2.8 25.6 3.0
k=101 0.61 0.24 2.4 0.83 28.7 3.3
ds2.100- k=9 7.0x 10° 24210 15.8 14.3 185.3 144 580 311
k=101 10.9 14.3 23.0 19.4 612 248
Jlee.100- k=9 3.6x10° 142000 | 2.6 2.4 28.4 27.2 15.6 12.6
k=101 2.2 1.9 12.6 11.6 37.4 27.2
Blanc_Mel k=9 38x 109 44300 3.0 3.0 475 60.8 51.9 60.7
k=101 2.9 3.1 7.1 33 203 134.0
Letter k=9 3.6x10° 290 8.5 7.1 42.9 26.4 94.2 25.5
k=101 3.5 2.6 9.0 5.7 45.9 9.4
Ipums k=9 44x10° 9520 195 136 665 501 1003 515
k=101 69.1 50.4 144.6 121 5264 544
Movie k=9 1.4x10° 3100 16.1 13.8 29.8 24.8 50.5 22.4
k=101 9.1 7.7 10.5 8.1 33.3 11.6
Kddcup99 k=9 2.7x 10" 1670000| 4.2 4.2 574 702 4 4.1
(10%) k=101 4.2 4.2 187.7 226.2 3.9 3.9

Table 3: Number of distance computations and wall-clock-time for NieiM& classification (2nd
column). Acceleration for normal use of KNS1 (in terms of num. distancdstiame).
Accelerations of new methods KNS2 and KNS3 in other columns. Naive tinecsde-
pendent ok.

7. Comments and Related Work

Why k-NN ? k-NN is an old classification method, often not achieving the highest possibie a
racies when compared to more complex methods. Why study it? There are @asonsk-NN is

a useful sanity check or baseline against which to check more sophidtaigtrithmsprovided
k-NN is tractable. It is often the first line of attack in a new complex problemtduts simplic-
ity and flexibility. The user need only provide a sensible distance metric. Thigochés easy to
interpret once this distance metric is understood. We have already meniisiedpelling theo-
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retical properties, which explains its surprisingly good performancedatjwe in many cases. For
these reason and otheksNN is still popular in some fields that need classification, for example
Computer Vision and QSAR analysis of High Throughput Screening daja Féeng and Tropsha,
2000). Finally, we believe that the same insights that accel&rhifd will apply to more modern
algorithms. From a theoretical viewpoint, many classification algorithms careled simply as
the nearest-neighbor method with a certain broader notion of distancgofunsee for example
Baxter and Bartlett (1998) for such a broad notion. RKHS kernel mathed another example of a
broadened notion of distance function. More concretely, we have dpgitiglar ideas to speed up
nonparametric Bayes classifiers, in work to be submitted.

Applicability of other proximity query work. For the problem of “find th& nearest datapoints”
(as opposed to our question of “perfokaNN or Kernel classification”) in high dimensions, the fre-
qguent failure of a traditional ball-tree to beat naive has lead to some vgeyious and innovative
alternatives, based on random projections, hashing discretized, @arzegacceptance of approxi-
mate answers. For example Gionis et al. (1999) gives a hashing methadathdemonstrated to
provide speedups over a ball-tree-based approach in 64 dimensianfabtor of 2-5 depending
on how much error in the approximate answer was permitted. Another apyai@k-NN idea is

in Arya et al. (1998), one of the fir&¢NN approaches to use a priority queue of nodes, in this
case achieving a 3-fold speedup with an approximation to thekddl . In (Liu et al., 2004a),
we introduced a variant of ball-tree structures which allow non-badkitrgcsearch to speed up
approximate nearest neighbor, and we observed up to 700-fold eattmhs over conventional ball-
tree based#-NN . Similar idea has been proposed by Indyk (2001). However, thggmaches are
based on the notion that any points falling within a facto(bf €) times the true nearest neighbor
distance are acceptable substitutes for the true nearest neighbor. Mqgtergicular that distances
in high-dimensional spaces tend to occupy a decreasing range of cartivaloes (Hammersley,
1950), it remains unclear whether schemes based upon the absolute ofalbe distances rather
than theirranksare relevant to the classification task. Our approach, because it neédcdthe
k-NN to answer the relevant statistical question, finds an answer withpubxmation. The fact
that our methods are easily modified to all¢i+ €) approximation in the manner of Arya et al.
(1998) suggests an obvious avenue for future research.

No free lunch. For uniform high-dimensional data no amount of trickery can save us.eXpla-
nation for the promising empirical results is that all the inter-dependences uhetlh mean we are
working in a space of much lower intrinsic dimensionality (Maneewongvatadavount, 2001).
Note though, that in experiments not reported here, QSAR and vksidiN classifiers give better
performance on the original data than on PCA-projected low dimensiotaliddicating that some
of these dependencies are non-linear.

Summary. This paper has introduced and evaluated two new algorithms for moreiedfgex-
ploiting spatial data structures duriRg\NN classification. We have shown significant speedups on
high dimensional data sets without resorting to approximate answers or sgmplie result is
that thek-NN method now scales to many large high-dimensional data sets that ptgwi@ure not
tractable for it, and are still not tractable for many popular methods sualppsi vector machines.
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