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Abstract
Kernels are two-placed functions that can be interpreted as inner products in some Hilbert space. It
is this property which makes kernels predestinated to carry linear models of learning, optimization
or classification strategies over to non-linear variants. Following this idea, various kernel-based
methods like support vector machines or kernel principal component analysis have been conceived
which prove to be successful for machine learning, data mining and computer vision applications.
When applying a kernel-based method a central question is the choice and the design of the kernel
function. This paper provides a novel view on kernels based on fuzzy-logical concepts which allows
to incorporate prior knowledge in the design process. It is demonstrated that kernels mapping to
the unit interval with constant one in its diagonal can be represented by a commonly used fuzzy-
logical formula for representing fuzzy rule bases. This means that a great class of kernels can be
represented by fuzzy-logical concepts. Apart from this result, which only guarantees the existence
of such a representation, constructive examples are presented and the relation to unlabeled learning
is pointed out.
Keywords: kernel, triangular norm, T -transitivity, fuzzy relation, residuum

1. Motivation

Positive-definiteness plays a prominent role especially in optimization and machine learning due to
the fact that two-place functions with this property, so-called kernels, can be represented as inner
products in some Hilbert space. Thereby, optimization techniques conceived on the basis of linear
models can be extended to non-linear algorithms. For a survey of applications see, for example,
Jolliffe (1986), Schölkopf and Smola (2002) and Schölkopf et al. (1998).

Recently in Moser (2006) it was shown that kernels with values from the unit interval can
be interpreted as fuzzy equivalence relations motivated by the idea that kernels express a kind of
similarity. This means that the concept of fuzzy equivalence relations, or synonymously fuzzy
similarity relations, is more general than that of kernels, provided only values in the unit interval
are considered. Fuzzy equivalence relations distinguish from Boolean equivalence relations by a
many-valued extension of transitivity which can be interpreted as many-valued logical model of the
statement “IF x is similar to y AND y is similar to z THEN x is similar to z”. In contrast to the
Boolean case, in many-valued logics the set of truth values is extended such that also assertions,
for example, whether two elements x and y are similar, can be treated as a matter of degree. The
standard model for the set of (quasi) truth values of fuzzy logic and other many-valued logical
systems is the unit interval. If E(x,y) represents the (quasi) truth value of the statement that x is
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similar to y, then the many-valued version of transitivity is modeled by

T (E(x,y),E(y,z)) ≤ E(x,z)

where T is a so-called triangular norm which is an extension of the Boolean conjunction. This
many-valued concept for transitivity is called T -transitivity. For a survey on triangular norms see,
for example, Dubois and Prade (1985), Gottwald (1986), Gottwald (1993) and Klement et al. (2000),
and for fuzzy equivalence relations and T -transitivity see, for example, Bodenhofer (2003), Höhle
(1993), Höhle (1999), Klement et al. (2000), and Zadeh (1971).

Based on the semantics of fuzzy logic, this approach allows to incorporate knowledge-based
models for the design of kernels. From this perspective, the most interesting mathematical question
is how positive-semidefinite fuzzy equivalence relations can be characterized or at least constructed
under some circumstances. At least for some special cases, proofs are provided in Section 4, which
motivate further research aiming at establishing a more general theory on the positive-definiteness
of fuzzy equivalence relations. These cases are based on the most prominent representatives of
triangular norms, that is the Minimum, the Product and the Łukasiewicz t-norm.

The paper is structured as follows. First of all, in Section 2, some basic prerequisites concerning
kernels and fuzzy relations are outlined. In Section 3, a result about the T -transitivity of kernels
from Moser (2006) is cited and interpreted as existence statement that guarantees a representation
of kernels mapping to the unit interval with constant 1 in its diagonal by a certain, commonly used,
fuzzy-logical construction of a fuzzy equivalence relation. Finally, in contrast to the pure existence
theorem of Section 3, in Section 4 constructive examples of fuzzy equivalence relations are provided
which are proven to be kernels. In a concluding remark, the relationship to the problem of labeled
and unlabeled learning is pointed out.

2. Prerequisites

This section summarizes definitions and facts from the theory of kernels as well as from fuzzy set
theory which are needed later on.

2.1 Kernels and Positive-Semidefiniteness Preserving Functions

There is an extensive literature concerning kernels and kernel-based methods like support vector
machines or kernel principal component analysis especially in the machine learning, data mining
and computer vision communities. For an overview and introduction, see, for example, Schölkopf
and Smola (2002). Here we present only what is needed later on. For completeness let us recall the
basic definition for kernels and positive-semidefiniteness.

Definition 1 Let X be a non-empty set. A real-valued function k : X ×X → R is said to be a
kernel iff it is symmetric, that is, k(x,y) = k(y,x) for all x,y ∈ X , and positive-semidefinite, that is,
∑n

i, j=1 cic jk(xi,x j) ≥ 0 for any n ∈ N, any choice of x1, . . . ,xn ∈ X and any choice of c1, . . . ,cn ∈ R.

One way to generate new kernels from known kernels is to apply operations which preserve the
positive-semidefiniteness property. A characterization of such operations is provided by C. H. FitzGer-
ald (1995).

Theorem 2 (Closeness Properties of Kernels) Let f : R
n → R, n ∈ N, then k : X ×X → R given by

k(x,y) := f (k1(x,y), . . . ,kn(x,y))
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is a kernel for any choice of kernels k1, . . . ,kn on X ×X iff f is the real restriction of an entire
function on C

n of the form

f (x1, . . . ,xn) = ∑
r1≥0,...,rn≥0

cr1,...,rnxr1
1 · · ·xrn

n (1)

where cr1,...,rn ≥ 0 for all nonnegative indices r1, . . . ,rn.

2.2 Triangular Norms

Triangular norms have been originally studied within the framework of probabilistic metric spaces,
see Schweizer and Sklar (1961) and Schweizer and Sklar (1983). In this context, t-norms proved to
be an appropriate concept when dealing with triangle inequalities. Later on, t-norms and their dual
version, t-conorms, have been used to model conjunction and disjunction for many-valued logic,
see Dubois and Prade (1985), Gottwald (1986), Gottwald (1993) and Klement et al. (2000).

Definition 3 A function T : [0,1]2 → [0,1] is called t-norm (triangular norm), if it satisfies the
following conditions:

(i) ∀x,y ∈ [0,1] : T (x,y) = T (y,x) (commutativity)
(ii) ∀x,y,z ∈ [0,1] : T (x,T (y,z)) = T (T (x,y),z) (associativity)
(iii) ∀x,y,z ∈ [0,1] : y ≤ z =⇒ T (x,y) ≤ T (x,z) (monotonicity)
(iv) ∀x,y ∈ [0,1] : T (x,1) = x∧T (1,y) = y (boundary condition)

Further, a t-norm is called Archimedean if it is continuous and satisfies

x ∈ (0,1) ⇒ T (x,x) < x.

Due to its associativity, many-placed extensions Tn : [0,1]n → [0,1], n ∈ N, of a t-norm T are
uniquely determined by

Tn(x1, . . . ,xn) = T (x1,Tn−1(x2, . . . ,xn)).

Archimedean t-norms are characterized by the following representation theorem due to Ling (1965):

Theorem 4 Let T : [0,1]2 → [0,1] be a t-norm. Then T is Archimedean if, and only if, there is a
continuous, strictly decreasing function f : [0,1] → [0,∞] with f (1) = 0 such that for x,y ∈ [0,1],

T (x,y) = f−1(min( f (x)+ f (y), f (0))).

By setting g(x) = exp(− f (x)), Ling’s characterization yields an alternative representation with a
multiplicative generator function

T (x,y) = g−1(max(g(x)g(y),g(0))).

For g(x) = x we get the product TP(x,y) = xy. The setting f (x) = 1 − x yields the so-called
Łukasiewcz t-norm TL(x,y) = max(x + y−1,0). Due to Ling’s theorem 4 an Archimedean t-norm
T is isomorphic either to TL or TP, depending on whether the additive generator takes a finite value
at 0 or not. In the former case, the Archimedean t-norm is called non-strict, in the latter it is called
strict.
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A many-valued model of an implication is provided by the so-called residuum given by

→
T (a,b) = sup{c ∈ [0,1]|T (a,c) ≤ b} (2)

where T is a left-continuous t-norm. Equation (2) is uniquely determined by the so-called adjunction
property

∀a,b,c ∈ [0,1] : T (a,b) ≤ c ⇔ a ≤
→
T (b,c). (3)

Consequently, the operator
↔
T (a,b) = min

{→
T (a,b),

→
T (b,a)

}

(4)

models a biimplication. For details, for example, see Gottwald (1986) and Klement et al. (2000).

Tables 1 and 2 list examples of t-norms with their induced residuum
→
T . For further examples see,

for example, Klement et al. (2000).

Tcos(a,b) = max(ab−
√

1−a2
√

1−b2,0)
TL(a,b) = max(a+b−1,0)
TP(a,b) = ab
TM(a,b) = min(a,b)

Table 1: Examples of t-norms

→
T cos(a,b) =

{

cos(arccos(b)− arccos(a)) if a > b,

1 else
→
T L(a,b) = min(b−a+1,1)

→
T P(a,b) =

{

b
a if a > b,

1 else
→
T M(a,b) =

{

b if a > b,

1 else

Table 2: Examples of residuums

2.3 T -Equivalences

If we want to classify based on a notion of similarity or indistinguishability, we face the problem of
transitivity. For instance, let us consider two real numbers to be indistinguishable if and only if they
differ by at most a certain bound ε > 0, this is modeled by the relation ∼ε given by x ∼ε y :⇔|x−y|<
ε, ε > 0, x,y ∈ R. Note that the relation ∼ε is not transitive and, therefore, not an equivalence
relation. The transitivity requirement turns out to be too strong for this example. The problem of
identification and transitivity in the context of similarity of physical objects was early pointed out
and discussed philosophically by Poincaré (1902) and Poincaré (1904). In the framework of fuzzy
logic, the way to overcome this problem is to model similarity by fuzzy relations based on a many-
valued concept of transitivity, see Bodenhofer (2003), Höhle (1993), Höhle (1999), Klement et al.
(2000) and Zadeh (1971).
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Definition 5 A function E : X2 −→ [0,1] is called a fuzzy equivalence relation, or synonymously,
T -equivalence with respect to the t-norm T if it satisfies the following conditions:

(i) ∀x ∈ X : E(x,x) = 1 (reflexivity)
(ii) ∀x,y ∈ X : E(x,y) = E(y,x) (symmetry)
(iii) ∀x,y,z ∈ X : T (E(x,y),E(y,z)) ≤ E(x,z) (T-transitivity).

The value E(x,y) can be also looked at as the (quasi) truth value of the statement “x is equal to y”.
Following this semantics, T-transitivity can be seen as a many-valued model of the proposition, “If
x is equal to y and y is equal to z, then x is equal to z”. T -equivalences for Archimedean t-norms are
closely related to metrics and pseudo-metrics as shown by Klement et al. (2000) and Moser (1995).

Theorem 6 Let T be an Archimedean t-norm given by

∀a,b ∈ [0,1] : T (a,b) = f −1(min( f (a)+ f (b), f (0))),

where f : [0,1] → [0,∞] is a strictly decreasing, continuous function with f (1) = 0.
(i) If d : X2 → [0,∞[ is a pseudo-metric, then the function Ed : X2 → [0,1] defined by

Ed(x,y) = f−1(min(d(x,y), f (0)))

is a T -equivalence with respect to the t-norm T .
(ii) If E : X2 → [0,1] is a T -equivalence relation, then the function dE : X2 → [0,∞] defined by

dE(x,y) = f (E(x,y))

is a pseudo-metric.

Another way to construct T -equivalences is to employ
→
T -operators. The proof of the following

assertion can be found in Trillas and Valverde (1984), Kruse et al. (1993) and Kruse et al. (1994).

Theorem 7 Let T be a left-continuous t-norm,
↔
T its induced biimplication, µi : X → [0,1], i ∈ I, I

non-empty; then E : X ×X → [0,1] given by

E(x,y) = inf
i∈I

↔
T (µi(x),µi(y)) (5)

is a T -equivalence relation.

For further details on T -equivalences see also Boixader and Jacas (1999), Höppner et al. (2002),
Jacas (1988), Trillas et al. (1999) and Valverde (1985).

3. Representing Kernels by T -Equivalences

It is interesting that the concept of kernels, which is motivated by geometric reasoning in terms
of inner products and mappings to Hilbert spaces and which is inherently formulated by algebraic
terms, is closely related to the concept of fuzzy equivalence relations as demonstrated and discussed
in more detail in Moser (2006). In this section, we start with the result that any kernel k : X ×X →
[0,1] with k(x,x) = 1 for all x ∈ X is T -transitive and, therefore, a fuzzy equivalence relation. The
proof can be found in Moser (2006), see also Appendix A.1.
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Theorem 8 Any kernel k : X ×X → [0,1] with k(x,x) = 1 is (at least) Tcos-transitive, where

Tcos(a,b) = max{ab−
√

1−a2
√

1−b2,0}. (6)

The nomenclature is motivated by the fact that the triangular norm defined by Equation (6) is an
Archimedean t-norm which is generated by the arcosine function as its additive generator. From
this result, the following existence theorem can be derived, which guarantees that any kernel under
consideration can be represented by the fuzzy-logical formula given by (5). In fuzzy systems, this
formula is commonly used for modeling rule bases (see, for example, Kruse et al., 1993, 1994).

Theorem 9 Let X be a non-empty universe of discourse, k : X ×X → [0,1] a kernel in the sense of
Definition 1 and k(x,x) = 1 for all x ∈ X ; then there is a family of membership functions µi : X →
[0,1], i ∈ I, I non-empty and a t-norm T , such that

∀x,y ∈ X : k(x,y) = inf
i∈I

↔
T (µi(x),µi(y)). (7)

Proof. Let us set I := X , µx0(x) = k(x,x0) and let us choose Tcos as t-norm. For convenience let us
denote

h(x,y) = inf
x0∈X

↔
T cos(µx0(x),µx0(y)),

which is equivalent to

h(x,y) = inf
x0∈X

↔
T cos(k(x0,x),k(x0,y)).

According to Theorem 8, k is Tcos-transitive, that is,

∀x0,x,y ∈ X :
↔
T cos(k(x0,x),k(x0,y)) ≤ k(x,y).

This implies that h(x,y) ≤ k(x,y) for all x,y ∈ X . Now let us consider the other inequality. Due to
the adjunction property (3), we obtain

Tcos(k(x,y),k(x0,y)) ≤ k(x,x0) ⇔ k(x,y) ≤
→
T cos(k(x0,y),k(x,x0))

and
Tcos(k(x,y),k(x0,x)) ≤ k(y,x0) ⇔ k(x,y) ≤

→
T cos(k(x0,x),k(y,x0)),

from which it follows that

∀x,y,x0 ∈ X : k(x,y) ≤ min{
→
T cos(k(x0,y),k(x,x0)),

→
T cos(k(x0,x),k(y,x0))}.

Hence by Definition 4,
∀x,y ∈ X : k(x,y) ≤ h(x,y)

which ends the proof.
For an arbitrary choice of fuzzy membership functions, there is no necessity that the resulting re-
lation (7) implies positive-semidefiniteness and, therefore, a kernel. For an example of a Tcos-
equivalence which is not a kernel see Appendix A.4. Theorem 9 guarantees only the existence of a
representation of the form (5) but it does not tell us how to construct the membership functions µi.
In the following section, we provide examples of fuzzy equivalence relations which yield kernels
for any choice of membership functions.
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4. Constructing Kernels by Fuzzy Equivalence Relations

In the Boolean case, positive-definiteness and equivalence are synonymous, that is, a Boolean rela-
tion R : X ×X →{0,1} is positive-definite if and only if R is the indicator function of an equivalence
relation ∼=, that is, R(x,y) = 1 if x ∼= y and R(x,y) = 0 if x 6∼= y. For a proof, see Appendix A.2. This
relationship can be used to obtain an extension to fuzzy relations as given by the next theorem whose
proof can be found in the Appendix A.3.

Theorem 10 Let X be a non-empty universe of discourse, µi : X → [0,1], i ∈ I, I non-empty; then
the fuzzy equivalence relation EM : X ×X → [0,1] given by

EM(x,y) = inf
i∈I

↔
T M(µi(x),µi(y))

is positive-semidefinite.

In the following, the most prominent representatives of Archimedean t-norms, the Product TP

and the Łukasiewicz t-norm TL, are used to construct positive-semidefinite fuzzy similarity rela-
tions. Though the first part can also be derived from a result due to Yaglom (1957) that charac-
terizes isotropic stationary kernels by its spectral representation, here we prefer to present a direct,
elementary proof. Compare also Bochner (1955) and Genton (2001).

Theorem 11 Let X be a non-empty universe of discourse, ν : X → [0,1] and let h : [0,1] → [0,1]
be an isomorphism of the unit interval that can be expanded in the manner of Equation (1), that is
h(x) = ∑k ck xk with ck ≥ 0; then the fuzzy equivalence relations EL,h,EP,h : X ×X → [0,1] given by

EL,h(x,y) = h
(↔

T L
(

h−1 (ν(x)) ,h−1 (ν(y))
)

)

(8)

and
EP,h(x,y) = h

(↔
T P
(

h−1 (ν(x)) ,h−1 (ν(y))
)

)

(9)

are positive-semidefinite.

Proof. To prove the positive-definiteness of the two-placed functions EL,h and EP,h given by equa-
tions (8) and (9) respectively, we have to show that

n

∑
i, j=1

EL,h(xi,xi)cic j ≥ 0,
n

∑
i, j=1

EP,h(xi,x j)cic j ≥ 0

for any n ∈N and any choice of x1, . . . ,xn ∈ X , respectively. According to an elementary result from
Linear Algebra this is equivalent to the assertion that the determinants (1 ≤ m ≤ n)

Dm = det
[

(E(xi,x j))i, j∈{1,...,m}

]

of the minors of the matrix (E(xi,x j))i, j satisfy

∀m ∈ {1, . . . ,n} : Dm ≥ 0,

where E denotes either EL,h or EP,h. Recall that the determinant of a matrix is invariant with respect
to renaming the indices, that is, if σ : {1, . . . ,n}→ {1, . . . ,n} is a permutation then

det [(ai j)i, j] = det
[

(aσ(i)σ( j))i, j
]

.
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For convenience, let denote µi = h−1(ν(xi)). Then, without loss of generality, we may assume that
the values µi are ordered monotonically decreasing, that is,

µi ≥ µ j for i < j. (10)

Case TL: Note that
↔
T L(a,b) = min{

→
T L(a,b),

→
T L(b,a)} = 1− |a− b|. Then we have to show that

for all dimensions n ∈ N, the determinant of

E(n) = (1−|µi −µ j|)i, j∈{1,...,n}

is non-negative, that is
det[E(n)] ≥ 0.

Due to the assumption (10), we have

1−|µi −µ j| =
{

1− (µi −µ j) if i ≤ j,

1− (µ j −µi) else

which yields

E(n) =



















1 1− (µ1 −µ2) . . . 1− (µ1 −µn−1) 1− (µ1 −µn)
1− (µ1 −µ2) 1 . . . 1− (µ2 −µn−1) 1− (µ2 −µn)
1− (µ1 −µ3) 1− (µ2 −µ3) . . . 1− (µ3 −µn−1) 1− (µ3 −µn)

...
...

. . .
...

...
1− (µ1 −µn−1) 1− (µ2 −µn−1) . . . 1 1− (µn−1 −µn)
1− (µ1 −µn) 1− (µ2 −µn) . . . 1− (µn−1 −µn) 1



















.

Now let us apply determinant-invariant elementary column operations to simplify this matrix by
subtracting the column with index i−1 from the column with index i, i ≥ 2. This yields

Ẽ(n) =



















1 µ2 −µ1 . . . µn−1 −µn−2 µn −µn−1

1− (µ1 −µ2) −(µ2 −µ1) . . . µn−1 −µn−2 µn −µn−1

1− (µ1 −µ3) −(µ2 −µ1) . . . µn−1 −µn−2 µn −µn−1
...

...
. . .

...
...

1− (µ1 −µn−1) −(µ2 −µ1) . . . −(µn−2 −µn−1) µn −µn−1

1− (µ1 −µn) −(µ2 −µ1) . . . −(µn−2 −µn−1) −(µn−1 −µn)



















.

Therefore,

α =
n

∏
i=2

(µi−1 −µi) ≥ 0 (11)

det[E(n)] = det[Ẽ(n)] = αdet[Ên],

where

Ê(n) =



















1 −1 . . . −1 −1
1− (µ1 −µ2) +1 . . . −1 −1
1− (µ1 −µ3) +1 . . . −1 −1

...
...

. . .
...

...
1− (µ1 −µn−1) +1 . . . +1 −1
1− (µ1 −µn) +1 . . . +1 +1



















. (12)
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Let us apply Laplacian determinant expansion by minors to the first column of matrix (12), that is

det[A] =
n

∑
i=1

(−1)i+ jai jdet[Ai j]

where A = (ai j) is an n×n-matrix, j arbitrarily chosen from {1, . . . ,n} and Ai j is the matrix corre-
sponding to the cofactor ai j obtained by canceling out the i-th row and the j-th column from A (see,
for example, Muir, 1960). For n = 1, we get the trivial case det[Ê(1)] = 1. Note that the first and

the last rows of the matrices Ê(n)
i,1 for 1 < i < n only differ by their signum, consequently the minors

det[Ê(n)
i,1 ] for 1 < i < n, n ≥ 2, are vanishing, that is,

det[Ai,1] = 0, for 1 < i < n.

Therefore, according to the Laplacian expansion, we get

det[Ê(n)] = 1 ·det[Ê(n)
1,1 ]+ (−1)n(1− (µ1 −µn)) ·det[Ê(n)

1,n ]. (13)

Observe that

det[Ê(n)
1,1 ] = 2n−2

det[Ê(n)
1,n ] = (−1)n−12n−2.

Consequently, Equation (13) simplifies to

det[Ê(n)] = 2n−2 (1+(−1)n(−1)n−12n−2(1− (µ1 −µn))
)

= 2n−2 (1− (1− (µ1 −µn)))

= 2n−2 (µ1 −µn)

≥ 0

which together with (11) proves the first case.

Case TP: First of all, let us compute
↔
T P(a,b) = min{

→
T P(a,b),

→
T L(b,a)}. Hence,

↔
T P(a,b) =























min{ b
a , a

b} if a,b > 0,

0 if a = 0 and b > 0 ,

0 if b = 0 and a > 0 ,

1 if a = 0 and b = 0 .

Again, without loss of generality, let us suppose that the values µi, i ∈ {1, . . . ,n} are ordered mono-
tonically decreasing, that is µ1 ≥ µ2 ≥ . . . ≥ µn. Before checking the general case, let us consider
the special case of vanishing µ-values. For this, let us assume for the moment that

µi =

{

> 0 if i < i0 ,

0 else

which implies that
↔
T P(µi,µ j) = 0 for i < i0 and j ≥ i0 and

↔
T P(µi,µ j) = 1 for i ≥ i0 and j ≥ i0. This

leads to a decomposition of the matrix

E(n) =
(↔

T P(µi,µ j)
)

i j
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such that
det[E(n)] = det[E(i0−1)] ·det[In−i0−1]

where Ik denotes the k×k-matrix with constant entries 1, hence det[In−i0−1]∈ {0,1}. Therefore, we
may assume that

µ1 ≥ µ2 ≥ . . . ≥ µn > 0.

Then we have to show that for all dimensions n ∈ N, the determinant of

E(n) =

(

min

{

µi

µ j
,
µ j

µi

})

i, j∈{1,...,n}

is non-negative, that is
det[E(n)] ≥ 0.

Consider

E(n) =





















1 µ2
µ1

. . . µn−1
µ1

µn
µ1

µ2
µ1

1 . . . µn−1
µ2

µn
µ2

µ3
µ1

µ3
µ2

. . . µn−1
µ3

µn
µ3

...
...

. . .
...

...
µn−1
µ1

µn−1
µ2

. . . 1 µn
µn−1

µn
µ1

µn
µ2

. . . µn
µn−1

1





















. (14)

Now, multiply the i-th column by −µi+1/µi and add it to the (i + 1)-th column of matrix (14),
1 ≤ i < n, then we get

Ẽ(n) =



























1 0 . . . 0 0

∗ 1−
(

µ2
µ1

)2
. . . 0 0

∗ ∗ . . . 0 0
...

...
. . .

...
...

∗ ∗ . . . 1−
(

µn−1
µn−2

)2
0

∗ ∗ . . . ∗ 1−
(

µn
µn−1

)2



























(15)

where ∗ is a placeholder for any real value. By this, the determinant of the matrix in Equation (15)
readily turns out to be

det[E(n)] = det[Ẽ(n)] =
n−1

∏
i=1

(

1−
(

µi+1

µi

)2
)

≥ 0

which together with Theorem (2) ends the proof.
Note that relations (8) and (9) are T -transitive with respect to the corresponding isomorphic
Archimedean t-norms,

TL,h(x,y) = h(TL(h
−1(x),h−1(x))) and TP,h(x,y) = h(TP(h−1(x),h−1(x))),

respectively.
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Corollary 12 Let X be a non-empty universe of discourse, µi : X → [0,1], λi ∈ ]0,1] with ∑i λi = 1
where i ∈ {1, . . . ,n}, n ∈ N, then the fuzzy equivalence relations ẼL, ẼP : X ×X → [0,1] given by

ẼL(x,y) =
n

∑
i=1

λi
↔
T L(µi(x),µi(y)) (16)

and

ẼP(x,y) =
n

∏
i=1

(↔
T P(µi(x),µi(y))

)λi

(17)

are TL- and TP-equivalences, respectively, and kernels.

Proof. First of all, let us check the TL-transitivity of formula (16). This can readily be shown by

means of the definition of TL and the TL-transitivity of
↔
T L due to the following inequalities:

TL

(

n

∑
i=1

λi
↔
T L(µi(x),µi(y)),

n

∑
i=1

λi
↔
T L(µi(y),µi(yz)

)

=

max

{

n

∑
i=1

λi
↔
T L(µi(x),µi(y))+

n

∑
i=1

λi
↔
T L(µi(y),µi(z))−1,0

}

=

max

{

n

∑
i=1

λi

(

↔
T L(µi(x),µi(y))+

n

∑
i=1

λi
↔
T L(µi(y),µi(z))−1

)

,0

}

≤

max

{

n

∑
i=1

λiTL

(

↔
T L(µi(x),µi(y)),

n

∑
i=1

λi
↔
T L(µi(y),µi(z))

)

,0

}

≤

max

{

n

∑
i=1

λi
↔
T L(µi(x),µi(z)),0

}

=

λi
↔
T L(µi(x),µi(z)).

This, together with the TP-transitivity of
↔
T P, proves that the formulas given by (16) and (17) are TL-

and TP-equivalences, respectively.
Expanding the factors of formula (17) yields

(↔
T P(µi(x),µi(y))

)λi

=







1 if µi(x) = µi(y) = 0,

min(µ
λi
i (x),µ

λi
i (y))

max(µ
λi
i (x),µ

λi
i (y))

else
(18)

which by comparing case TP of the proof of Theorem 11 shows that the left-hand side of Equa-
tion (18) is positive-semidefinite.

As the convex combination and the product are special cases of positive-semidefiniteness pre-
serving functions according to Theorem 1, the functions defined by equations (16) and (17) prove
to be again positive-semidefinite and, therefore, kernels.
It is interesting to observe that both formulas (16) and (17) can be expressed in the form, f (‖τ(x)−
τ(y)‖1), where f : I → [0,1], I some interval, is a strictly decreasing function, τ : X → I n, I some
interval, τ(x) = (τ1(x), . . . ,τn(x)) and ‖τ(x)‖1 = ∑n

i=1 |τi(x)|. Indeed, for Equation (16) let us define

fL : [0,1] → [0,1], fL(a) = 1−a

τL : X → [0,1]n, τL(x) = (λ1µ1(x), . . . ,λnµn(x))
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and for Equation (17) and positive membership functions µi, µi(x) > 0 for all x ∈ X , let us define

fP : [0,∞[→ [0,1], fP(a) = e−a

τP : X → ]−∞,1]n, τP(x) = (λ1 ln(µ1(x)), . . . ,λn ln(µn(x)))

Therefore, we get

ẼL(x,y) = 1−‖τL(x)− τL(y)‖1 (19)

ẼP(x,y) = e−‖τP(x)−τP(y)‖1 . (20)

While formulas (19) and (20) provide a geometrical interpretation by means of the norm ‖.‖1, the
corresponding formulas (16) and (17) yield a semantical model of the assertion

“IF x is equal to y with respect to feature µ1 AND . . . AND x is equal to y with respect to feature µn

THEN x is equal to y”

as aggregation of biimplications in terms of fuzzy logic. While in the former case, the aggregation
has some compensatory effect, the latter is just a conjunction in terms of the Product triangular
norm. For details on aggregation operators see, for example, Saminger et al. (2002) and Calvo et al.
(2002).

The formulas (16) and (17) coincide for the following special case. If the membership functions
µi are indicator functions of sets Ai ⊆ X which form a partition of X , then the kernels (16) and
(17) reduce to the indicator function characterizing the Boolean equivalence relation induced by
this partition {A1, . . . ,An}.

The formulas (16) and (17) for general membership functions therefore provide kernels which
can be interpreted to be induced by a family of fuzzy sets and, in particular, by fuzzy partitions, that
is, families of fuzzy sets fulfilling some criteria which extend the axioms for a Boolean partition
in a many-valued logical sense. For definitions and further details on fuzzy partitions see, for
example, De Baets and Mesiar (1998), Demirci (2003) and Höppner and Klawonn (2003).

It is a frequently used paradigm that the decision boundaries for a classification problem lie
between clusters rather than intersecting them. Due to this cluster hypothesis, the problem of de-
signing kernels based on fuzzy partitions is closely related to the problem of learning kernels from
unlabeled data. For further details on semi-supervised learning see, for example, Seeger (2002),
Chapelle et al. (2003) and T. M. Huang (2006). It is left to future research to explore this relation-
ship to the problem of learning from labeled and unlabeled data and related concepts like covariance
kernels.

5. Conclusion

In this paper, we have presented a novel view on kernels from a fuzzy logical point of view. Par-
ticularly, the similarity-measure aspect of a kernel is addressed and investigated by means of the
so-called T -transitivity which is characteristic for fuzzy equivalence relations. As a consequence,
we derived that a large class of kernels can be represented in a way that is commonly used for
representing fuzzy rule bases. In addition to this proof for the existence of such a representation,
constructive examples are presented. It is the idea of this research to look for a combination of
knowledge-based strategies with kernel-based methods in order to facilitate a more flexible design-
ing process of kernels which also allows to incorporate prior knowledge. Further research aims at
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analyzing the behavior of kernels constructed in this way when applied in the various kernel meth-
ods like support vector machines, kernel principal components analysis and others. In particular,
it is intended to focus on the problem of learning kernels from unlabeled data where the fuzzy
partitions are induced by appropriate clustering principles.
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Appendix A.

For sake of completeness the following sections provide proofs regarding Theorem 8, the charac-
terization of kernels in the Boolean case and the construction of kernels by means of the minimum
t-norm TM. Furthermore, in Section A.4 an example of a non-positive-semidefinite Tcos-equivalence
is given.

A.1 Proof of Theorem 8

Let us start with the analysis of 3-dimensional matrices.

Lemma 13 Let M = (mi j)i j ∈ [0,1]3×3 be a 3× 3 symmetric matrix with mii = 1, i = 1,2,3; then
M is positive-semidefinite iff for all i, j,k ∈ {1,2,3} there holds

mi jm jk −
√

1−m2
i j

√

1−m2
jk ≤ mik

Proof. For simplicity, let a = m1,2, b = m1,3 and c = m2,3. Then the determinant of M, Det(M), is a
function of the variables a,b,c given by

D(a,b,c) = 1+2abc−a2 −b2 − c2.

For any choice of a,b, the quadratic equation D(a,b,c) = 0 can be solved for c, yielding two solu-
tions c1 = c1(a,b) and c2 = c2(a,b) as functions of a and b,

c1(a,b) = ab−
√

1−a2
√

1−b2

c2(a,b) = ab+
√

1−a2
√

1−b2.

Obviously, for all |a| ≤ 1 and |b| ≤ 1, the values c1(a,b) and c2(a,b) are real. By substituting
a = cosα and b = cos(β) with α,β ∈ [0, π

2 ], it becomes readily clear that

c1(a,b) = c1(cos(α),cos(β))

= cos(α)cos(β)− sin(α)sin(β)

= cos(α+β) ∈ [−1,1]
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and, analogously,

c2(a,b) = c2(cos(α),cos(β))

= cos(α)cos(β)+ sin(α)sin(β)

= cos(α−β) ∈ [−1,1].

As for all a,b ∈ [−1,1] the determinant function Da,b(c) := D(a,b,c) is quadratic in c with negative
coefficient for c2, there is a uniquely determined maximum at c0(a,b) = ab. Note that for all
a,b ∈ [−1,1], we have

c1(a,b) ≤ c0(a,b) ≤ c2(a,b)

and

D(a,b,c0(a,b)) = 1+2ab(ab)−a2 −b2 − (ab)2 = (1−a2)(1−b2) ≥ 0.

Therefore, D(a,b,c) ≥ 0 if and only if c ∈ [c1(a,b),c2(a,b)].
Recall from linear algebra that by renaming the indices, the determinant does not change. There-

fore, without loss of generality, we may assume that

a ≥ b ≥ c.

For convenience, let Q = {(x,y,z)∈ [0,1]3|x≥ y≥ z}. Then, obviously, for any choice of a,b∈ [0,1]
there holds (a,b,c1(a,b)) ∈ Q. Elementary algebra shows that (a,b,c2(a,b)) ∈ Q is only the case
for a = b = 1. As for a = b = 1 the two solutions c1, c2 coincide, that is, c1(1,1) = c2(1,1) = 1, it
follows that for any choice of (a,b,c) ∈ Q, there holds D(a,b,c) ≥ 0 if and only if

c1(a,b) = ab−
√

1−a2
√

1−b2 ≤ c. (21)

If (a,b,c) 6∈ Q, then the inequality (21) is trivially satisfied which together with (21) proves the
lemma

Now Theorem 8 immediately follows from Definition (1), Lemma (13) and the characterizing in-
equality (21).

A.2 Characterization of Kernels in the Boolean Case

The following lemma and proposition can also be found as an exercise in Schölkopf and Smola
(2002).

Lemma 14 Let ∼ be an equivalence relation on X and let k : X ×X →{0,1} be induced by ∼ via
k(x,y) = 1 if and only if x ∼ y; then k is a kernel.

Proof. By definition of positive-definiteness, let us consider an arbitrary sequence of elements
x1, . . . ,xn. Then there are at most n equivalence classes Q1, . . . ,Qm on the set of indices {1, . . . ,n},
m≤ n, where

S

i=1,...,m Qi = {1, . . . ,n} and Qi∩Q j = /0 for i 6= j. Note that k(xi,x j) = 0 if the indices
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i, j belong to different equivalence classes. Then, for any choice of reals c1, . . . ,cn, we obtain

∑
i, j

cic jk(xi,x j) =
m

∑
p=1

∑
i, j∈Qp

cic jk(xi,x j)

=
m

∑
p=1

∑
i, j∈Qp

cic j ·1

=
m

∑
p=1

(

∑
i∈Qp

ci

)2

≥ 0

Proposition 15 k : X ×X → {0,1} with k(x,x) = 1 for all x ∈ X is a kernel if and only if it is
induced by an equivalence relation.

Proof. It only remains to be shown that if k is a kernel, then it is the indicator function of an
equivalence relation, that is, it is induced by an equivalence relation. If k is a kernel, according to
Lemma 13, for all x,y,z ∈ X , it has to satisfy Tcos(k(x,y),k(y,z)) ≤ k(x,z), which implies,

k(x,y) = 1, k(y,z) = 1 =⇒ k(x,z) = 1.

Obviously, we have k(x,x) = 1 and k(x,y) = k(y,x) due to the reflexivity and symmetry assumption
of k, respectively.

A.3 Constructing Kernels by TM

For convenience let us recall the basic notion of an α-cut from fuzzy set theory:

Definition 16 Let X be a non-empty set and µ : X → [0,1]; then

[µ]α = {x ∈ X |µ(x) ≥ α}
is called the α-cut of the membership function µ.

Lemma 17 k : X ×X → [0,1] is a TM-equivalence if and only if all α-cuts of k are Boolean equiv-
alence relations.

Proof.

(i) Let us assume that k is a TM-equivalence. Let α ∈ [0,1], then by definition,

[k]α = {(x,y) ∈ X ×X |k(x,y) ≥ α}.
In order to show that [k]α is a Boolean equivalence, the axioms for reflexivity, symmetry
and transitivity have to be shown. Reflexivity and symmetry are trivially satisfied as for all
x,y ∈ X , there holds by assumption that k(x,x) = 1 and k(x,y) = k(y,x). In order to show
transitivity, let us consider (x,y),(y,z) ∈ [k]α, that means k(x,y) ≥ α and k(y,z) ≥ α; then by
the TM-transitivity assumption it follows that

α ≤ min(k(x,y),k(y,z)) ≤ k(x,z),

hence (x,z) ∈ [k]α.
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(ii) Suppose now that all α-cuts of k are Boolean equivalence relations. Then, in particular, [k]α
with α = 1 is reflexive, hence k(x,x) = 1 for all x ∈ X . The symmetry of k follows from the
fact that for all α ∈ [0,1] and pairs (x,y) ∈ [k]α, by assumption, we have (y,x) ∈ [k]α. In order
to show the TM-transitivity property, let us consider arbitrarily chosen elements x,y,z∈X . Let
α = min(k(x,y),k(y,z)); then by the transitivity assumption of [k]α, it follows that (x,z)∈ [k]α,
consequently

k(x,z) ≥ α = min(k(x,y),k(y,z)).

Proposition 18 If k : X ×X → [0,1] is a TM-equivalence then it is positive-semidefinite.

Proof. Choose arbitrary elements x1, . . . ,xn ∈ X and consider the set of values which are taken by
all combinations k(xi,x j), i, j ∈ {1, . . . ,n} and order them increasingly, that is

{

k(xi,x j)| i, j ∈ {1, . . . ,n}} = {α1, . . . ,αm
}

,

where 0 ≤ α1 ≤ ·· ·αm ≤ 1. Observe that for all pairs (xi,x j), i, j ∈ {1, . . . ,n} there holds

k(xi,x j) =
m

∑
v=2

(αv −αv−1)1[k]αv
(xi,x j)+α11[k]α1

(xi,x j)

showing that on the set {x1, . . . ,xn}×{x1, . . . ,xn}, the function k is a linear combination of indicator
functions of Boolean equivalences (which are positive-semidefinite by Proposition 15) with non-
negative coefficients and, consequently, it has to be positive semidefinite.

A.4 Example of a Non-Positive-Semidefinite Tcos-Equivalence

For dimensions n > 3, the Tcos-transitivity is no longer sufficient to guarantee positive semi-
definiteness. Consider, for example An = (a(n)

i j )i j where

a(n)
i j =











λ if min(i, j) = 1, max(i, j) > 1 ,

1 if i = j,

0 else .

(22)

Choose λ = 1/
√

2, then Tcos(λ,λ) = 0, hence we have Tcos(a
(n)
i j ,a(n)

jk ) ≤ a(n)
ik for all indices i, j,k ∈

1, . . . ,n. As det(An) < 0 for n > 3, the matrix An cannot be positive-semidefinite though the Tcos-
transitivity conditions are satisfied.
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