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Abstract

We introduce an algorithm that learns gradients from sasiplthe supervised learning framework.
An error analysis is given for the convergence of the gradistimated by the algorithm to the true
gradient. The utility of the algorithm for the problem of iable selection as well as determining
variable covariance is illustrated on simulated data a$ agetwo gene expression data sets. For
square loss we provide a very efficient implementation wapect to both memory and time.

Keywords: Tikhnonov regularization, variable selection, reprodgckernel Hilbert space, gen-
eralization bounds

1. Introduction

The advent of data sets with many variables or coordinates in the biologidgdteysical sciences
has driven the use of a variety of machine learning approaches basE&hmnov regularization
or global shrinkage such as support vector machines (SVMs) (Vab8#8) and regularized least
square classification (Poggio and Girosi, 1990). These algorithms lesre \lery successful in
both classification and regression problems. However, in a number G€atpms the classical
qguestions from statistical linear modelling of which variables are most rdlépahe prediction
and how the coordinates vary with respect to each other have begadeWn the context of high
dimensional data with few examples, the “large p, small n” paradigm (We88)2¢this leads to
foundational questions in constructing and interpreting statistical modelse Siatistical models
based on shrinkage or regularization (Vapnik, 1998; West, 2008) s success in the framework
of both classification and regression, we formulate the problem of leacoioglinate covariation
and relevance in this framework.

We first describe the Tikhonov regularization method for classification egieéssion in order
to define notation and basic concepts. We then introduce an algorithm thad padients of a
function. We also motivate the algorithm and give an intuition of how the gradembe used to
learn coordinate covariation and relevance.

(©2006 Sayan Mukherjee and Ding-Xuan Zhou.



MUKHERJEE ANDZHOU

1.1 Classification and Regression

Classification and regression problems can be addressed in the frada@earning or estimat-
ing functions from a hypothesis space given sample values. An effiganting method is the
Tikhonov regularization scheme. L&tbe a compact metric space and the hypothesis spacke
a set of functionsX — Y C R. If we assign a penalty function& : % — R, on # and choose
a loss functiorV : R? — R, the Tikhonov regularization scheme in associated wit{V, Q) is
defined for a sample = {(xi,yi)}im:1 € (XxY)MandA >0 as

m
- argfrg[n{rlnizlvm, () +AQ(f) . (1)
The efficiency of learning algorithms of type (1) in machine learning careba whery/ takes the
special choice of a reproducing kernel Hilbert space generatedMmsreer kernel.

LetK : X x X — R be continuous, symmetric and positive semidefinite, i.e., for any finite set of
distinct points{xa, - -+, Xm} C X, the matrix(K(x;,xj)){"j_; is positive semidefinite. Such a function
is called aMercer kernel

The reproducing kernel Hilbert spacéRKHS) # associated with the Mercer kernil is
defined (see Aronszajn (1950)) to be the completion of the linear sparedethof functions
{Kx:=K(x,-) : xe X} with the inner product:, - )k satisfying(Ky, Ky)x = K(x,y). The reproducing
property of# is

(Ky, Flk = f(X), vxe X, f € 7. 2

If # = 3 andQ(f) = || f||Z in (1), the reproducing property (2) tells us that

m

f;/ = i; Ci Kxi

and the coefficient§c; }|" ; can be found by solving an optimization problenif.
Assume thap is a probability distribution oZ := X x Y andz = {(xi,yi)}iril € ZMisarandom
sample independently drawn accordingto
When the loss function is the least-square Mggt) = (y—t)?, the algorithm (1) is least-square

regression and the objective is to learn the regression function

fo(x) = /Y ydo(y)x),  xeX 3)

from the random sample Herep(:|x) is the conditional distribution gb atx. Denotepy as the
marginal distribution op onX andL3, as thel. space with the metriftf||, := ( fx | f(x)|?dpx)*2.
There has been a vast literature (e.g. (Evgeniou et al., 2000; Zh@d8gj, ¥ito et al., 2005; Smale
and Zhou, 2006b)) in learning theory showing for this least-squaressmn algorithm the con-
vergence off) to f, in the metric|| - ||, under the assumption th§j lies in the closure of/k and
A =A(m) — 0 asm— co.

For the (binary) classification purpose, we take- {1, —1}. A real valued functiorf : X — R
induces a classifier sgf) : X — Y. In this case, one uses a (convex) loss funcgoR — R to
measure the empirical errg(t), t = yf(x), when sgiif (x)) is applied to predicy € Y. Examples
of such a convex loss functiapinclude the logistic loss

@t) =log(1+e™), teR (4)
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and the hinge losg(t) = max{0,1—t}. ForV(y, f(x)) = @(t) in (1) extensive investigation in
learning theory (e.g. (Cortes and Vapnik, 1995; Evgeniou et al., 2860pelkopf and Smola,
2001; Vapnik, 1998; Wu and Zhou, 2005)) has shown that §gnconverges to the Bayes rule
sgn(f,) with respect to the misclassification error:

& (sgr( f)) = Prob{sgr(f (x)) # y}.

1.2 Learning the Gradient

In this paper we are interested in learning the gradierfp, dfom the function sample values. Let
X C R". Denotex = (x},x?,...,x")T € R". The gradient off, is the vector of functions (if the

partial derivatives exist)
of, GI

The relevance of learning the gradient with respect to the problems iablaiselection and
estimating coordinate covariation is that the gradient provides the followingnvation:
(a) variable selection: the norm of a partial derivaqi\%éjtn indicates the relevance of this variable,
since a small norm implies a small change in the funcfipwith respect to thé-th coordinate,

afy fp\ ¢ o
W’ﬁ> indicates the

(b) coordinate covariation: the inner product between partial deréﬁaﬁ
covariance of thé-th andj-th coordinates with respect to variationfin
We now motivate the derivation of our gradient learning algorithm. Taylpasging a function

g(u) around the poink gives us

g(u) =~ g(x) + (Og, &%),
Axel x
where the inner product and a neighborhdqaf x are determined according to what is natural for
different settings. For example, in the manifold setting we know the margjnial concentrated on
a manifoldas and it is natural to formulate the following expansion

g(u) = g(x) + (0o 9,8%),
AXeMy

whereAx € afy are points on the manifold aroundwith respect to the intrinsic distance on the
manifold and the inner product Is> over the manifold (Belkin and Niyogi, 2004). In the graph
setting we are given a sparse sample on the manifold which can be thougbt\artices of
a graph and the distance between the points is the weight matrix of the graptatural for-
mulation in this setting is to sdiy to be vertices connected toand the inner product as the
weight matrix. Minimizing the empirical error (with regularization) betwegn) and its expan-
siong(X) + faxer, (09, A%) &~ g(x) + Og(x) - (u—x) for u~ x results in various learning algorithms.

For regression the algorithm to learn gradients will use least-square loggitnize the error
of the Taylor expansion at sample points. To learn vectors of functionasgethe hypothesis
spaces,] which is ann-fold of #: eachf € #,? can be written as a column vector of functions
f=(f,fa..., )7 with f, € 7. Define(f, Ry = S0, (f,,hy)k. Then||f||2 = S0, ||f/||2. The
empirical error on sample poinks= X, u = x; will be measured by the square loss

(9(u) —g(x) — Dg(x) - (U—x))% = (v —yj + F(x) - (x; — %)%
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The restrictionu =~ x will be enforced by weightsw; j = wi(j-) > 0 corresponding tdx;,X;) with

the requirement thanvi(j-) — 0 as|x —Xj|/s— . Forx= (x,x?,...,x")T € R", we denotex| =

(Z?:l(xj)z)l/z-
One possible choice of weights is given by a Gaussian with variandest w = wg be the
Ix2
function onR" given byw(x) = #e*?. Then this choice of weights is

1 b —xj |2

e 2 =Ww(X—Xj), i,j=1,...,m (6)

S

For regression we define the algorithm by the following optimization problem wéights

being arbitrary positive numbevg j = vvi(j-) which depend on an indesc> 0.

Definition 1 The least-square type learning scheme is defined for the sampf" as

7 [ 1
for = argﬁmm{rn2

fesy

m 2
> i (v 700 05-x) ) +AITIR ™)

i,j=1
wherel, s are two positive constants called the regularization parameters.

A similar algorithm can be defined for classification with a convex loss funagienlike the
hinge or logistic loss.

Definition 2 The regularization scheme for classification is defined for the samplg™ as

o —agmin{ % 5 wio(n(+ Fix)- (x—x0) ) =M ®

feay i,j=1

Remark 3 Some algorithms for computing numerical derivative by means of partitioa wwio-
duced in Wahba and Wendelberger (1980). They work well in low diomaisspaces. In high
dimensional spaces, patrtition is difficult. Our method can be regardeshadgorithm for numeri-
cal derivatives in high dimensional spaces.

At first thought, a natural approach to computing partial derivatives dae to estimate the
regression function and then compute partial derivatives. The problemtinglapproach is that
the partial derivatives are no longer in the RKHS of the regression funciibis. leaves us with the
problem of not having a norm or computable metric to work with. The aéggnof our method
is the derived functions are already approximations of the partial derivatarel they have RKHS
inner products which are computed in the estimation process. The inadugts reflect the nature
of the measure, which is often on a low dimensional manifold embedded igea danensional
space.

The hypothesis spacgg in the optimization problem (7) may be replaced by some other space
of vector-valued functions (Micchelli and Pontil, 2005) in order to learndredients.

Remark 4 Estimation of coordinate covariation is not possible in standard regressimaeis that
allow for variable selection such as: recursive feature elimination (RFEy(@BLet al., 2002), least
absolute shrinkage and selection operator (LASSO) (Tibshirani, 1886)basis pursuits denoising
(Chen et al., 1999).
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1.3 Overview

In Sections 2 and 3, we shall derive linear systems for solving the optimizataiem (7). In
particular, wherm << n, an efficient algorithm will be provided.

The regularization parameters in (7) dependmoi = A(m), s= s(m) and generally\(m),s(m) —
0 asm becomes large. In Section 4, we show for a Gaussian weight functidro{@p particular
choice of the two regularization parameters leads to rates of convergéce estimate of the
gradient to the true gradienf,  to Ofj.

The utility of the algorithm is demonstrated in Section 5 in applications to simulated slata a
well as gene expression data. We close with a brief discussion in Section 6.

2. Representer Theorem

The optimization problem defining the least-square algorithm (7) can bedsak/& linear sys-
tem of equations. Denof@P*9 as the space gb x g matrices,l,, the n x n identity matrix, and
diag{B1,By,- - ,Bm} them x mblock diagonal matrix with each; € R"™". To save space, we ex-
press amncolumn vector with blockgc; € R"} by the following abuse of notioo= (cy, Cp, ..., Cm)".

The following theorem is an analog of the standard representer theSamodlkopf and Smola,
2001) that states the minimizer of the optimization problem defined by (7) hasrthe f

m
foa=S CizKe %)
2,
Wlth CZ - (CLz, e ,Cm7z)T € Rmn.
Theorem5 Fori=1,...,m, let B,
m m
Bi =y wij(x —x)(xj —x)T € R™", Y= ZWi,j(Yj —¥i)(xj —x) € R". (10)
j=1 =

Then fﬂm =S, ciKy with ¢, = (Crz,... ,cm,z)T € RM satisfying the linear system

{n12)\lmn+diag{Bl,Bz, -, Bm} [K(xi,xj)ln]:‘j_l}c: (Y1, Yz,.... Ym) T (11)
Proof By projecting onto the span dfky }"; the reproducing property (2) ensures tﬁgx =
$M ;G zKy, with ¢, € R" for eachi. Note thatx-v =y ;X' = xTv for x,v € R". To find {c; .},
we considerf = 5, ciKy, € # with ¢; € R". Then

000 =x) = 3 Kl )cp- (0 =) = iK(xp,m(xj—mTcp
2

and
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It is a function ofmnvariables{c'c‘1 :1<g<m1<k< n} where theg-th coefficientcq € R" of f

is expressed a&§)i_; = (c},...,c))T. Forge {1,...,m}, ke {1,....n},

O £, (F)+I||I2 —2)\mK )l
s {7 D NIk =24 5 Ko

+%z i (yi —Yit Y KO x)(x; —Xi)TCp> K (%, %) (X =X,
=]

i,]=1

Notice from (2) that forg,h € span{Ky }" 1, () —h(x) = 0 fori = 1,...,m implies thatg — h
is orthogonal to eacKy,, and hencgy—h = 0. Then we know thaf;-,\ = zi”;lquXi wherec; =
{Ci’z}{ll is the solution to the linear system

1 m .
Acwﬁgwi,j (yiyj+leK(xp,xi)(xj xi)Tcp> (Xj—=x)=0,i=1,....m

Since(xj —X)Tcp is a scalar](xj — %) T¢p(X; — %) = (Xj — %) (X; — %) T cp. So the above system
can be expressed as

m
Bi 5 K(%,Xp)Cp+MPAG =Yi, i =1,...,m. (12)
p=1
This is exactly the system in (11). |

Remark 6 One might consider solving the optimization problem (7) by finding eaclpaoent of
f,) separately. However, to fingf; ), by minimizing over fc 74, one needs to replace y y;
by W —Yj + Skl f;x)k(xi)(x'-‘ —xK). So the optimization problems for componentfzgf are not

]
completely separable. It would be interesting to have a separable meth(g) fo

3. Reducing the Matrix Size

In some applications of variable selection, the nuntbef variables is much larger than the sample
sizem. In such a situation, the system (11) for implementing the learning algorithris {T)t
satisfactory, since the size of the linear system (1) x (mn).

Observe that each term in the summation defirngn (10) is a rank one matrix. Hence the
rank of then x n matrix B; is at mosimfor eachi. This raises the expectation of reducing the matrix
size in the linear system (11). In this section, we show how to reduce thiggizen) x (s m) with
s <m-—1. Moreover, an approximation algorithm will be introduced which is often imgleted
with § <<m.

We use the well known approach of singular value decomposition. It mappked to the
coefficient matrix of (11) to reduce the matrix size. Here we prefer to afpy@dyapproach to a
matrix involving the data only, leaving us flexibility for the weighs;.

Consider the matrix involving the daxagiven by

Mx = [X2 — Xm, X2 — Xm, - - - s Xm—1 — Xm, Xm — Xm] € R™™. (13)

Assume the rank ofly is d. Thend < min{m— 1,n} since the last column of the matrix is zero.
The theory of singular value decomposition tells us that there existsxan orthogonal matrix
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V = [V1,Va,...,Vy] and amx morthogonal matriXd = [U1,Ua, . ..,Uy] such that

uy
diag{o1,0,---,04} 07| Y2
szvzuTz[vlvz---vn][ VY . (14)
Un
Hereo; > 02 > -+ > 04 > Og11 = ... = Ominymny = O are the singular values dfx. The matrix

is nx mand has entries zero except tia}; ; = o; fori = 1,...,d. From expression (14), we see

that
d

My = ; oVU/.
=1

Note thatU = [U2,...,UM. The j-th column ofMy equalsx; —xn = 39_, o,V,U} and
d o
Xj — X :/Z oy (UZJ —Ué) V. (15)
=]

It follows thatY; = 3™, wi j(y; — i) 31 00 (UZJ — U}) V, and

m d d . i . '
B — J;wi’,glp;ofop (U -ul) (Ui-up vy, (16)

Now we can reduce the matrix size by solving an approximation to the lineansysaved
from the singular values. A strong correlation among the vedtosvould result in a large number
of small singular values. If we ignore the small singular valwes,, . .., 0g, the error is proportional
to 05.1. This follows from the idea of low-rank approximations in singular value dgmmsition.
The following theorem quantifies the above statement.

Theorem 7 Assumey| < M almost surely. Denote = supx v/K(X,X). Letl <s <d. Set

m . . . LS .
@i e JZ]-WLJ' |:O'£O'p (Uéj —Ué) (UFJJ _Uflj)j|g7p:l - R.SXS’ | = 1, .. .,m (17)
and "
. NS )
%:JZlWl,J(yJ_M) |:0-€ (UKJ_U(!):|621€R57 |:17"'7m' (18)

Solve the linear system
{szms +diag{31, -, Bm} [K(m,xj)lsmzl}ﬁz (91, 9m)" (19)

The solutionb, = (by 5,...,bm,)T € R™ gives an approximatiori,y s = 3™, bi ;Ky with by ; =
¥7_1b,Vi. The error between= (bi )™, and ¢ can be bounded as

AMa; 11
‘bZ - CZ‘@Z(Rmn) S rnz}\ { dAm +

2k20?
- 1\EAm}, (20)
whereAn, ;.= maxlgigm(z’j“:lwi,j)z + zﬂ‘j:l(ij)z.
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See Appendix B for the proof.

If we sets =d, we can solve fofu exactly with a linear system of reduced size. This is stated
in the following corollary.

Corollary 8 Leto; > 0, > --- > 04 > 0 be all the positive singular values ofMind U,V be the
orthogonal matrices in (14). Thefy, = Z{il{zgzléf’ZVg}K)q wherec; satisfies (19) withs; and
7; given by (17) and (18) witlh = d, respectively.

Theorem 7 provides a theoretical foundation for the following approximadigorithm with
reduced matrix size that accurately approximdigsby f, ;.
3.1 Reduced Matrix Size Algorithm

The following is an outline of the reduced matrix algorithm. See appendix C fattal® code
implementing this algorithm.

Algorithm 1 : Approximation algorithm with reduced matrix size to approximﬁge

input :inputs(x;)™,, labels(y;)",, kernelK, weights(w; j), eigenvalue threshokl> 0

return : coefficients(b; ;) ;

My = [X1 — Xm, X2 — Xm, - - - , Xm—1 — Xm, Xm — Xm| € R™™,

GivenMy compute the singular value decomposition (14) with orthogonal matricésand
singular valuesrl > 02> > 05 >§

tj=(0wU{,...,0U) T eRS for1< j<m

B = 3T Wi j(t —t)(t —t)Tfor1<i<m

2 =YW j(y; -yt —t) forl<i<m

B1K(x1,X1)  B1K(X1,X2) -+ B1K(Xg,Xm) 71
- BzK(Xz,X]_) BzK(Xz,Xz) cee @2K(X2,Xm) . Yo
K] = ; N : o=

E)Z - (61727 ey 6m72)T S Rmf Where

—

{WMW+W@&=y (21)

bz =y ,bf Vi andf,, ; = 3 bi Ky is an approximation of,;
return(bj 2)";
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4. Error Analysis

In what follows we use Gaussian weights (equation (6)) and estimatebeuods. We show that

fm — Ofy, asm — o for suitable choices of the regularization parameters going to 2eto,
A(m) — 0,s=s(m) — 0. Since we are learning gradients, some regularity conditions on both the
marginal distribution and the density are required. The following case iltestthe idea (this case
corresponds to the realizable setting in the PAC learning paradigm and vélicbeollary of the

error analysis that follows).

Proposition 9 Assumely| < M almost surely. Suppose that for soe: T < 2/3,¢, > 0, the
marginal distributionpy satisfies

D —x| <s}) <c2s™
px ({x e X uelﬂgrf\xw x| <s}) <cis™, Vs>, (22)

and the density (x) of dpx (x) exists and satisfies

supp(x) <o, [P(X) — p(V)| < Cplv—x",  YvxeX. (23)

xeX

Choose\ = A(m) = m w23 and s=s(m) = (ch)%m*inﬂlm. If Of, € 2, and the kernel K is €
then there is a constantG such that for any) < 6 < 1 and m> 1, with confidencd — o, we have

e
1) - (24)

. 2
[ fz0 —Ofollp < Cox |09<6> (m

The condition (23) means the density of the marginal distributiondklét . The condition
(22) is about the behavior @i near the boundary of. They are natural assumptions for learning
gradients of the regression function. When the boundary is piecewisatlsni@3) implies (22).

The idea behind the proof for the convergence of the gradient corsisisultaneously con-
trolling a sample or estimation error term and a regularization or approximationterm. The
first term, the sample error, is bounded using a concentration inequalityisis@ function of the
sample,z. The second term, the regularization error, does not depend on théesangpwe use
functional analysis to bound this quantity.

4.1 Sample Error

First we estimate the sample error by means of the sampling operator intradi&medle and Zhou
(2004, 2006b,a).

Definition 10 Thesampling operatorS; : #¢ — R™" associated with a discrete subset {x }{"
of X is defined by

—,

S(f)

T

(Fx))y = (Fxa), -, F(xm)

The adjoint of the sampling operat&), : R™ — 4,2, is given by

m

S-I(—C: ZCiKXi? C:(Ci)in;]_:(Cl,...,Cm)T ERmn
i=
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DenoteDy = diag{B1,B>, - ,Bm} andY = (Y1,Y2,...,Ym)".
Consider equation (12) satisfied by. The quantityzg“le(xi,xp)cp; equalsﬁx(xi). Then
(12) implies(S} DxSc+ PNl ) T, = SLY. Therefore,

- 1 11 4o
fop = (ﬁSIDXS(—ﬁ—)\I) SV (25)
We introduce ars-generalization error corresponding to the empirical error as follows.

Definition 11 The sgeneralization error £ = g is defined for vectors of functions as
B B 2
£(F)= [ e (y-v+ 700w ) dptydpv)

If we denoteogz/z/zw(x—u)(y— fo(x))2dp(x,y)dp(u,v), then

-,

B 2
£(f) =202+ [ | w(x—u)h(x)—fp<u>+f<x>-<u—x>] dpx(dpx (). (26)

A data independent limit of,, is

fy = arg min{= () +A| f|Z}. (27)
fes?

Taking the functional derivatives, we know from (26) tHatcan be expressed in terms of the
following integral operator on the spa¢e2, )" with norm | ||, = (| f||3) 12,

Proposition 12 Let Lk s: (L2,)" — (L2,)" be the integral operator defined by

Licsf = [ wix—u(u=0Ku(u=x)T F) dpx (x)dpx(w) (28)
Itis a positive operator offL2 )" and

f;\ = (LK,S+)\I)_1F|:),S- (29)

where

fosi= [ o= u) (=K fp(u) ~ o) dpx ()lpx (). (30)

The operatotg s has its range im. It can also be regarded as a positive operataor/@n\We
shall use the same notion for the operators on these two different domains.

To bound the sample errcﬁh — f), we shall introduce a McDiarmid-Bernstein type probability
inequality for vector-valued random variables.
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Proposition 13 Letz= {7z}, be i.i.d. draws from a probability distributiopon Z,(H, || -||) be a
Hilbert space, and F Z™ — H be measurable. If there i > 0 such that|F (z) — E;(F(z))|| <M
for eachl <i < m and almost everg € Z™, then for everg > 0,

82
Prob,czm {||F (2) —Ez(F(2))|| > €} <2expq ———— 7, 31
bz {1 (2) ~Ex(F @) = €} < 2exp{ 2} &
whereo? := 31 SUR, (1ezm 1 B4 {||[F (2) — B4 (F(2))|?}. For any0 < & < 1, with confidencé — 3,
there holds

IF@2) - E(F@)|| < 2Iogg{ﬂ +@}-

Ez..zF ] = 1,2,...,m+ 1}. Sofy =0 andfm+1_ (z) —Ez(F(z)). Note that]| f; — fj,1|| <M
almost surely anc{m+1 EZ] i — fj-1]|? < 6% The conditions of Theorem 3.3 of Pinelis (1994)
hold withB? = 02, T = M. As pointed out in a correction of Pinelis (1999), the probability should
be 2exd — rr+52+B\/W} which is bounded by 2 exXp-5 rr+52)} Inequality (31) follows from

the theorem.

Choosee such thatm log %. That is,e satisfies

~ 2 2
e2 =2M Iogfs+202logg.

e}
Therefore, with confidence at least-D, we have

|F(2) — Ez(F ())||<s<2Mlogé+\/202logé_2I096{M+\ﬁ}

This proves the proposition. |
Now we can give the main result on the sample efiior, — f,[|x. Denote the diameter &f as
Diam(X) = maxtex [X—t| and the moments of the Gaussian as

xI2
Jo ::/ e*%]x]pdx, p>0.
RN

In the following sample error estimates, the bounds are valid fomany ands, though they yield
reasonable learning rates only for suitable choiced ef A(m) ands = s(m) which we state in
Proposition 9.

Theorem 14 Assumay| < M almost surely.
1. For any0 < o < 1, with confidencd — o, we have

> - 16kDiam(X)log(2/d) : 2 1.2
[f20 — fallk < N T 2M +kDiam(X) [ fx[lk ¢+ — [ fallk. (32)

2. Ifthe density (x) of dpx (x) exists and satisfiesup,x p(x) < ¢, then for any0 < s < 1, with
confidencel — 9§, there holds

- > 8klog(2/d) Diam(X)
| for— fallk < W \/QJFW

(2v3+ k(Diam0 + VARl ) + k. (39)
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Proof By (25), we have

-

o= = (pSTouscrn) {8V - LD AR ).

Define a vector-valued functida : Z™ — 7' by

That is,

3

> K (Y —¥i)—— 3 wij (X — X)) Ky () — %) T F ().
& e,

By independence, the expected valud-¢f) equals

-

mzi ;Ezj{wlj Xi)Kx.[(y Yi)(XJXi)Tf)\(Xi)]}
_om- 12 {/W (U 5K [ () — ) — (u— )T (x)] dpx (u >}

It follows that m—1 m—1
EZ(F(Z)) — Fp,s_ m LK,S.F;\'

By (29), Lk sf +Afy = fos. Hencer fy = fos— Lk sfy = M E,(F(2)). Therefore,

S - 1 1 1 -
Hfzx = fillk < £ [IF(2) —mEz( (2)llk = 5 IF(@2) —E(F (@)l + I Tallk-

The reproducing property (2) together with the upper baudplies
[fllo < lIfllo <k|[fllk,  VFe . (34)

Then we apply Proposition 13 to the functibiiz) to get our error bound.
Leti € {1,...,m}. We know that (z) — E; (F(z)) equals

nl]zélw(m—xj')(xj—m{m[yj—yi—(Xj—m)Tf?(Xiﬂ
K Y — i — O =) f&(xjﬂ}
;/WX %5)( >{Kx[y—fp<> (% =0T ()]

g [y — To0) — (T ()] }dpx<x>.

Using (34) forf, and|x—x;| < Diam(X) for anyx € X, we see that

IF (@)~ Ea(F@lk < W = * D { o+ oiam() i .
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1. We first prove (32). Apply the trivial bounsf < mMZ2. Then Proposition 13 tells us that for
any 0< 0 < 1, with confidence % 9, there holds

IF(2) ~ Ex(F (2)« < 2log {Ni-+ ViTWi} < 4log =W

This proves (32).
2. To prove (33) we need to improve on our estimate of the variadceve bound||F (z) —
Ez (F(2))ll by

1 o
o 3,00l { 262M+ 2 x|
|

1 .
+— /W(x—xj)]xj—x| 2k2M + 2)x; — X[K?|| Ty ||k ¢dpx (X).
mZJ - Jx

It follows that (E;,(|[F (2) — E4 (F(2)) 1)) Y2

2 1/2
mz;{/ (X—Xj)) ‘XJ_X‘2{4KM+2’XJ—X’KZHf)\HK} dpx(x)}

2 —2(n+2) —@
Sﬁ; /XS € X

2n+2) T 42k2)2|| ;|12 v
ng_{/ 222 |x; — x|4(2¢?) ||fAHKdeX} '

Here we have used the assumptipx (x) = p(x)dxwith p(x) < c,. Bounding the above integrals
by those on the whole spai®, we see from the definition of the momes that

is bounded by

12
—x]2{4KM}2cpdx}

2(m—1 J - N/
EaIF ()~ ExF@NIR) < 2 {4 oy e + 20 Bl oy s |-

It follows then that fos< 1

2

o 16coK
0% <

- mg2

2
{2yl
The second statement (inequality (33)) follows from Proposition 13. |

4.2 Regularization Error

In this subsection, we shall bound the regularization efifar— Of,|| by a functional analysis
approach. To illustrate the idea, we state the result for a special caseliWpes 7. It is a
corollary of Theorem 17 and Theorem 19 with= 1/2.

Proposition 15 Assume (22) and (23). Denotg ¥ [, (p(x))?dx > 0. Suppose thdll f, € #,? and
for some g >0,

[ fo(u) — fo(x) = Ofp(x) - (U—X)| < cplu—X[%, Vu,x € X. (35)
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Then for anyA > 0 and0 < s < min{ {2k?cy (M2t + s+ CpJ2) }1/T)\1/T, 1}, there holds
- S ~1/2
15— DOfpllo < (KPcpda) 5 +{2(Von(2m™?) 2|l } V.
To estimate the regularization error, we need to consider the convergehggass — O.

Lemma 16 Assume that for sonfe< 1 < 1, conditions (22) and (23) hold. Theg ¥ ¢, and for
any0 < s< 1we have

1Lk s — VpN(21)™ 2L |15 .p < SK2Co (Mayx +Ja+ Cpda), (36)
where Ik is a positive operator on/y' defined by
Lk f = /X Kxf(x)pi(/ra)()dpx (). (37)
The operator k is also a positive operator oﬁ_gx)” satisfying
ILk,s — Vpn(2m) ™ 2L | 12 )n 1z, 0 < SKCp(Mapr +da+Cplp),  VO<S<L (38)

Proof Let f € (L2, )2. Denote

g= /X{/XW(X— u) (u—X) Ky (u— X)Tdu} p(x) F(x) dpx (X).
Then by (23) and the Cauchy-Schwartz inequality we sed]lhagf— d||x is bounded by

1 ,L Uu—xX,2
/{/ 22 \7\ 1Kl Cplu — x\Tdu}\f ()] dpx (%) < S"KeoMa || Fllp.

Observe thain(2m)"2 = J, and fpnW(u—x)(u' — x) (ul — x))du= 0 wheni # j. Then
Jan 5€ Tsf(“ X) (4=X)Tdu= Jpl,. Hence

u—X, u—X

R 1 7\u—x\2 T -
Vpn(2m)" 2Ly f :/X{ L se =2 () () dU}p(X)Kxf(X)dpx(X)-
It follows that

lg—Ven(2m™ Lk flik =

[ 5 B dul pook ety

mx S K

IN

;X}Zdu}}q ()| p()dpx (X).

L[ de
— 2s¢
x [ Jrmx S

Separate the domaiX into Xs := {x € X : infycrmx [u—X| < /8}, consisting of those points
whose distance to the boundary is at mgst and its complemenX \ Xs.
If x € X\ X, anyu € R"\ X satisfiegu— x| > \/Sand thereby K s| 4 \2. Hence

[ Lo uss] Lo
rmx S" rmx S"
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It follows from (23) that

/ {/ 15%
— 2
X\Xs | /rM\X S"

which is bounded bykc,Ma]| .
For the subseXs, we use the Cauchy-Schwartz inequality and (23) to obtain

{ 1 \u—x\z
/ / —e 22
xs [ /rRn\x §"

This is bounded bxcoMz+/px (Xs) | llp- By (22), px (Xs) < c3s™". Thus, for 0< s< 1,

u—X
S

dul ] F091p()dpx () < seesMa 7

S

‘J:“Zdu}KyF(x)|p(x)de(x) < /Xsu«;plvl2 f(x)|dpx ().

13— (2" 2Lk Fll < skep(Ma-+Cpd) | .
Combine the above two estimates. There holds for atysG< 1
Ik sF — Von(2m™ 2L ik < Skep(Masx +Ja+CoJ) | T
which proves (38) by (34). Whehe #,], we have from (34) again that
Lk sf —Ven(2m)" 2L fllk < s'K2Co (Mot + s+ Coda) || Tlk-

This verifies (36) and proves the lemma. |
The measuré%dpx is probability one onX. So we know (see Cucker and Smale (2001))

that the operatokk can be used to define the reproducing kernel Hilbert spaceljLee ther-th

power of the positive operatdrk on (Lgx)n having range ini. Thenz# is the range of_i/zz

| Fllp = IL*Fllx for any f € (L3 )",

Theorem 17 Under the assumption (35), we have
1F — Ofp+ A (Lics+ A1) D[l < ;KC;J}
Proof By (29), we find that
fr— Ofp+A(Ls+Al) 'Of, = (LK75—H\I)1{FP7S—LK7SDfp}.
Then
15— Dfp+A(Lis A1) Dfpllc < H(Lics+ M) g gl s = LisDpll

which is bounded b)}” fos— Lk sOfo|[k. Using (35) on the integral

—

fpVS—LKstp—/X/Xw(x—u)(u—x)Kx{fp(u)—fp(x)—(u—x)TDfp(x)}dpx(x)dpx(u),
we know that
1o — LicsO ol g//w(x—u)|u—xyHKXHch\u—x|2dpx(x)dpx(u)gs<c’pag.

X JX

This proves the theorem. |
Finally, we need to study(Lk s+ Al )*1Dfp in order to estimate the errgif — Of,||.
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Lemma 18 Assume (22) and (23). Denotg-€ (ZKZCF,(MZJrT +J4+cpJ2))1/T. Then

1

I (LK,S+M)‘1F|| < 2| (Von(2m)" 2Lk + A1) 1), V0 < s< min{cpAY", 1},

wheref is either in the spaces, or in (L3

ox )" and|| - || is the corresponding norm.

1

Proof Write (LK7S+)\I)*1fﬁ: {Vpn(2m)™2Lg +Al] — [n(2m)"2Lg — Lk 5]} ~fas

-1
{I — [Von(2m™2Lic + M [Von(2m" Lk — L] } Vpn(2m)™ 2Ly + M .

This in connection with Lemma 16 implies

-1
H (LK,S"‘)\I)_lFH S {1— %STKZCp(MZJrT +J4+ Csz) } H [Vpn(Zn)”/ZLK —|—)\|]_lﬂ|

This verifies the lemma. |
Lemma 18 yields the convergence|[f( Lk s+ Al )*1D fol|. The convergence rates require some

conditions onf, relative to the pair(L%X,J{K). The assumption we shall use jg¢"Ofp|p <

. It means thatlf, lies in the range oty. In particular, in the case = 1/2, the condition

||LE1/2Dfp||p < o meandlf, € 7. For more examples about this condition, see Smale and Zhou
(2006a).

Theorem 19 Assume (22), (23), and (35). L@k s < min{cyA/T, 1}. If || "Of, o < o for some
O0<r <1, then

IA(Lics+A1) " Ofgllp < 207 (Von(2m)™2) [l Dfpllo, YA >0,
If moreover r> 1/2, then we have for any > 0,

A (Lics+ A1) " Ofpllk < 202 (Von(2m)™2) L O |lp-

In the general situation, we can see tlhki(LK,s+)\l)_1Dfp||p — 0 asA — 0, provided that
is dense irLgX (Smale and Zhou, 2003). This can be seen from the following conveggestimate.

Proposition 20 Assume (22), (23), and (35). Then

_ A
Vpn

, 1
(2Tr)”/2>’ V0 <s<min{ciAY",1},

wherex (f,t) is the K-functional of the paif(L2, )", 7,?) defined as

K (F,t) = inf {||F—Q||p+tuun}, (>0 (39)
geA,

n
K
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The proof of Proposition 9 shows how our error analysis can be applied
Proof of Proposition 9. Since the kerneK is C® andOf, € 7, we know from Zhou (2003) that
% is C! for eachi. It follows that folis C? and condition (35) is satisfied for some conskag11> 0.
SinceA = (1/m) with y= I~ ands= (kc,)%/"A\Y/T, we see from the fack > 1 that form >
(KCp)2M2+30/T the restriction 6< s < min{ {2k2c, (Masr + Ja+ Cp o) }1/T)\1/T, 1} in Proposition
15 and Lemma 18 is satisfied. Then by Proposition 15, s}nea > % we have for some constant
Co > O that

2

£ s 2y (1
) DprpﬁCp()\Jr\ﬁ‘) < Cp(1+ (Kep) )<m> :
Applying Lemma 18, we know that
A (Lics+A1) T 0f [k < 2/ (Von(2m)™ 2Lk +A1) 0ol < 2/|0f ||k
This in connection with Theorem 17 implies that
> S
Il < 10fpll + 2 Dol + S kepds < 3Tk + (KCp)?/ ™K CpJs.

Finally, we apply (33) of Theorem 14 and know that for a cons@nt- 0, with confidence
1-5,

1 .y 1+D)
S log(2/8) 1 12 Y 2t _2q4my 1
HfZJ\_f)\”K SC&{\/W—'_ITI SC{,Iog(Z/é) a (ch) = Jrz)_|_a .

which is bounded b/ log(2) (&) 2727 with a constan€y. This is true foim > (ko) 2+30/T,
Replacing the constay by a new one enables us to bound errors for the finitely many terms with

m < (KCp)2(M2+30/T. Thus Proposition 9 is proved. u

5. Simulated Data and Gene Expression Data

In this section we apply the least-squares gradient algorithm (7) to thdasielection and variable
covariance problems. Our idea is to rank the importance of variablestigdo the norm of their

partial derivativeilg%ll, since a small norm implies small changes on the function with respect
to this variable. By our error analysis, we exp@gg ~ Ofp. So we shall use the norms of the
components of;A to rank the variables.

Definition 21 The relative magnitude of the norm for the variables is defined as

_ ||(FZ,)\)£HK
E - I )
(300l (Fan) 1) 2

In the same way, we can study coordinate covariances by the variaanesaifpirical matrix.

(=1,...,n.

Definition 22 Theempirical gradient matrix (EGM), F, is the nx m matrix whose columns are
f,a(xj) with j=1,...,m. Theempirical covariance matrix (ECM), =, is the nx n matrix of inner
products of the directional derivative of two coordinates

n m

Cov(f,y) == {<(Fz)\) 0 (Fz,)\)q>K} a1 Gi €] K (%, ;).
Ll i,]=1
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The ECM gives us the covariance between the coordinates while the E@Blgg information
as how the variables differ over different sections of the space.

We apply our idea to three data sets. The first data set is an artificial oicl wk use to
illustrate the procedure. The second is a cancer classification problémmath&een well studied
and serves as further confirmation of the utility of the method. The third daf@®ddes a gold
standard as to relevant variables.

5.1 Atrtificial Data

We construct a function in an = 80 dimensional space which consists of three linear functions
over different partitions of the space. We generate 30 samples as follows

1. For samplegx; }1%
X ~aC(1,0y), for j=1,...,10;  x) ~a((0,0y), for j =11,...,80.

2. For samplegx }2%,,
x) ~aC(1,0y), for j=11,...,20;  x ~a¢(0,0y), for j=1,...,10,21,...,80.
3. For samplegx }3%,,

x) ~aC(1,0y), for j=41,...,50;  x ~a¢(0,0y), for j=1,...,40,51,...,80.

A draw of thisx matrix is shown in figure (1a). Three vectors with support over diffiedénensions
were constructed as follows:

w; = 2-+.5sin(2ri/10) fori=1,...,10 and O otherwise
wy, = —2-.5sin(2m/10) fori=11,...,20 and O otherwise
w3 = —2-.5sin(2mi/10) fori=41,...,.50 and O otherwise

The values fofy; }3°, were given by the following linear equations

=
1. For samplegy; }1%;
Yi =X - W1+ (0,0y),

2. For samplesy; }?°,,
Vi = X ~W2+N(070-y)a

3. For samplegy; }3%,,

A draw of they values is shown in figure (1b).

In figure (1c) we plot the norm of each component of the estimate of thiega{ || ( fﬁz,A)gHK}?gl
for oy = .05 andoy = .30. The norm of each component gives an indication of the importance of a
variable and variables with small norms can be eliminated. Note that the caelimgéh nonzero
norm are the ones we expett=1,...,20,41 ...,50.

Perhaps more interesting is that we can evaluate the gradient at each $siiple This leads
to an estimate of the covariation of the variables. In figure (1d) we plot thd,Eile the ECM is
displayed in figure (1e). The blocking structure of the ECM indicates thedomates that covary.
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Figure 1: a) The data matrix where each sample corresponds to a column, b) the vectgr of
values generated by sampling the function, ¢) the RKHS norm for each siomerd)
an estimate of the gradient at each sample, the samples correspond to ¢aiires
empirical covariance matrix.
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5.2 Gene Expression Data

In computational biology, specifically in the subfield of gene expressialysis variable selection
and estimation of covariation is of fundamental importance. Microarray téobies enable ex-
perimenters to measure the expression level of thousands of genestitbgenome, at once. The
expression level of a gene is proportional to the number of copies of mRMA&cribed by that gene.
This readout of gene expression is considered a proxy of the state oeth The goals of gene
expression analysis include using the expression level of the genesdiotpriasses, for example
tissue morphology or treatment outcome, or real-valued quantities suchieitytox sensitivity.
Fundamental to understanding the biology giving rise to the outcome or toxicitgtégmining
which genes are most relevant for the prediction.

5.2.1 LEUKEMIA CLASSIFICATION

We apply our procedure to a well studied expression data set. The dasaaseesult of a study
using expression data to discriminate acute myeloid leukemia (AML) from acoiphgblastic
leukemia (ALL) (Golub et al., 1999; Slonim et al., 2000) and estimating thegyerwst relevant to
this discrimination. The data set contains 48 samples of AML and 25 sampldd oEXpression
levels ofn= 7,129 genes and expressed sequence tags (ESTSs) were measunaaligiaraucleotide
microarray for each sample. This data set was split into a training set @ii3gles and a test set of
35 samples.

Various variable selection algorithms have been applied to this data set Igytlisitraining set
specified in Golub et al. (1999) to select variables and build a classificatiolel and then compute
the classification error on the test set. We estmfg;efrom the training data and then select the
S variables with the Iargesf We then use a linear Support Vector Machine (SVM) to build a
classification model and compute the accuracy on the test set. Table tsrtesoerrors for various
values ofs. The classification accuracy is very similar to other feature selection algmrisach as
recursive feature elimination (RFE) (Guyon et al., 2002; Lee et al., 2804 radius-margin bound
(RMB) (Chapelle et al., 2002) both of which were developed specificallysVMs.

genes (S)| 5| 55| 105| 155| 205 | 255 | 305 | 355 | 405 | 455
testerrors| 1| 3 | 2 1 1 1 1 1 1 1

Table 1: Number of errors in classification for various values aging the genes corresponding to
dimensions with the largest norms. A linear SVM was used for classification.

In figure (2a-d) we plot the relative magnitude sequaﬁcﬁer the genes. On this data set the
decay in the ranked scorgs, is steeper than that for most statistics that have been previously used
on this data. To illustrate this we compared the gradient score to the FislrerSlomim et al.
(2000) for each gene

B ‘ﬁ?ML _ ﬁ?LL|
where)"" is the mean expression level for the AML samples in thb gene | is the mean
expression level for the ALL samples in theh gene 67" is the standard deviation of the expres-
sion level for the AML samples in theth gene, and'" is the standard deviation of the expression
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level for the ALL samples in thé-th gene. We then normalize these scores

t
g v
/ 12
(Ypoitd) /

Figure (2a-d) displays the relative decaysm ands(Fg) over various numbers of dimensions. In all

plots it is apparent that the decay rates?){ is much steeper. Plotting the decay of the elements for

the normalized hyperplarvévvg—H that is the solution of a linear SVM results in a plot much more like

that of the Fisher score than the gradient statistic. Whether and how thpsisgsg(sparsity) has an
implication on the generalization error is an open question.

| |
002 002 \

2000 300 4000 5000 G000 7000 8000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

@) (b)

500 600 700 800 900 1000

(©)

Figure 2: The decay cd?z) (blue) ands@) (red) over: a) all the genes/dimensions, b) the top 2000
genes/dimensions, c) the top 1000 genes/dimensions, d) the top 500 geaesidns.

We can also examine the EGM and the ECM. The EGM in this case,i$20% 38 matrix and
the ECM is 7129x 7,129 matrix. We plot the EGM in the space of the dimensions corresponding
to the top 50 norms ordered by a clustering metric in figure (3a). The ctiearia the coordinates
is plotted for the top 50 dimensions ordered in the same way as the EGM (se= (3dp)). The
blocking structure of the matrix gives us coordinate covariance.

5.2.2 GENDER: “A GOLD STANDARD”

In this section we assess the accuracy of the algorithm with respect to sed&ba which a priori
biological knowledge gives us a set of important variables. This sawagyold standard.
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Figure 3: The a) EGM for the top 50 dimensions ordered by clustering théd &@l b) the ECM
for the top 50 dimensions ordered in the same way.

We examine a gene expression data set with 15 male and 17 females samplbsrfpiblas-
toid cell lines (unpublished). Expression levelsnof 22,283 probes corresponding to genes and
expressed sequence tags (ESTs) were measured via an oligonualeotoleray for each sample.

In figure (4a-d) we plot the relative magnitude sequezﬁ’cmr the genes as compared to those
of the relative Fisher sco@ and we see again the quicker decay for the gradient norms.

@) (b)

\k

nnnnn

(©) (d)

Figure 4: The decay cﬂ‘&) (blue) ands(Fg) (red) over: a) all the genes/dimensions, b) the top 200
genes/dimensions, c) the top 100 genes/dimensions, d) the top 50 genesiaimsen

From a priori biological knowledge we would predict that the most discritiveagenes for
gender would be those on the Y chromosome as well as genes on the X sbrom&nown to
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escape X inactivation. The reason that all the genes on the X chromosmuietvot be expected to
be discriminative is due to dosage compensation in expression which takesesates for the fact
that women have two X chromosomes and men have one. The mechanism fmwrtigensation
is X inactivation. However, there are genes known to escape X inactivatid these should be
differentially expressed. We obtained a list of such genes by combiningdtsted in two sources
(Carrel et al., 1999; Disteche et al., 2002). There were 35 probeg i thactivation set and 66
probes corresponding to genes on the Y chromosome.

An important caveat is that while these 101 probes would be expected tiffdrertially ex-
pressed they would not all be expected to rank at the top of a list of geaeare differentially
expressed. This is due to the fact that in the cell line or tissue of questimrttey be other genes
that are more strongly differentially expressed due to local conditions i$hvhy the term gold
standard is quoted.

We first used a standard variation filter (Slonim et al., 2000) which rettive number of
probes to about 1200. This data set was then standardized (the expression valuegliogeae
was recentered and scaled to be zero mean and standard deviatior. dMerteen iteratively ran
our procedure 20 times, each time removing the bottom 10% of the probesoung that 16 of
the 101 probes appeared in the top ranked 500 probes. Ranking biskies §core we found 22
of the top 101 probes in the top ranked 500 probes. Using the logistic lossasay in more like
the Fisher score since it is a more appropriate model for classification.r&ailts are significant
with respect to a hypergeometric distribution as the model for the null hygisthelowever, the
assumptions of independence in the model which gives rise to the hypeggéodistribution are
completely inappropriate in this problem (the probes tend to be stronglylatead® There are
statistical tests that account for the correlations but this topic is beyoncctpe ©f this paper
(Sweet-Cordero et al., 2005; Subramanian et al., 2005).

6. Discussion

We introduce an algorithm that learns gradients from samples of functloasrand show its rele-
vance to variable selection. An error analysis is given for the conmeegef the estimated gradient
to the true gradient. This method also places the problem of variable seledtotihénpowerful
framework of Tikhonov regularization. There are many extensions efittements to this method
which we discuss below:

1. Logistic regression model: In Definition 2 we state an algorithm for claaidic. As many
applications of this method are for classification problems it is important to impleement
reduced matrix version of this algorithm as was done for regression bgrifigh 1. In
addition, an error analysis for the classification setting is also necessary.

2. Fully Bayesian model: The Tikhonov regularization framework couplghd the use of an
RKHS allows us to implement a fully Bayesian version of the procedure in theexbof
Bayesian radial basis (RB) models Liao et al. (2005); Liao (2005).Bé&yeesian RB frame-
work can be extended to develop a proper probability model for the gradarning problem.
The optimization procedures 1 and 2 would be replaced by Markov Chaimeviarlo meth-
ods and the full posterior rather than the maximum a posteriori estimate woualthigauted.
A very useful result of this is that in addition to the point estimates for theigmaae would
also be able to compute confidence intervals.
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3. Intrinsic dimension: In Proposition 9 the rate of convergence of théigmahas the form
of O(m~%") which can be extremely slow if is large. However, in most data sets and
when variable selection is meaningful the data are concentrated on a muidiovensional
manifold embedded in the high dimensional space. In this setting an analysisletes
the ambient dimension with the intrinsic dimension of the manifold,, would be of great
interest.

4. Semi-supervised setting: Intrinsic properties of the manXotéin be further studied by unla-
belled data. This is one of the motivations of semi-supervised learning. Iy apgotications,
it is much easier to obtain unlabelled data with a larger sampleusize m. For our purpose,
unlabelled data = (x;){™*. ; can be used to reduce the dimension or correlation. Since we
learn the gradient by, it is natural to use the unlabelled data to control the approximate norm
of f in some Sobolev spaces and introduce a semi-supervised learning algasithm

2
fz,x,)\.u = argminf”@{'g{nllz Zir,njzlwi(j) <Yi Y+ f(xi) : (Xj _Xi)>

b ZTFAWIT0) = ) B+ MITIR . (40)

where{W ; } are edge weights in the data adjacency gragpf another regularization param-
eter and often satisfids= o(j).
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Appendix A

Let s (X) denote the class of all sequendes: ( fo, f1,...) of Bochner-integrable random vectors in
X with fo =0, defined on a probability space. L#t(X) denote the class of all sequendgs s (X)
that are martingales. The following theorem can be found in (Pinelis, #9%heorem 3.3 with a
correction made in Pinelis (1999). Note that Hilbert spaceg2i@)-smooth Banach spaces with
D=1.

Theorem 23 (Pinelis, 1994) Suppose thatfar (X), X is a(2,D)-smooth separable Banach space
and

<mirm2g2/(2D?)

S Ejallfj— fia|™
=1

forsome > 0,B>0and m=2,3,... Then for all r> 0,

r2
Prob(sup|| fi|| > r) < 2exp| — .
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Appendix B

We give the proof for Theorem 7.
Proof We divide our approximation in three steps.

Step 1 Approximatec; by ¢; which is defined by

EZ:(mz)\lmn+diag{81,---,Bm}[ (%, X)In] 1) l(%,...im)T,

whereg; = ST (Y —Yi) 37—, 00 (Ué —U£>V4 For each,
~ m d . L2\ Y2
’9/] _Yi’[Z(Rn) < Z Wi,j2M0-5+l z (UZJ _U(E> .

=1 (=S+1

Since the matriXJ is orthogonal, we know that 1(U[j)2 = 1 for eachj andg’j“:l(ugj)2 =1
for each?. By the Schartz mequallty;)f. Y|z2 is bounded by

(4M05+1)2{§(Wi,j)2'z % (U2)2+<£Wi,j>25§ (Ue')z}

It follows that
1 m Y2 4M0 vd
~ -~ 2 1 /
’CZ*CZIZZ(Rmn) S M {IZ‘% Yi‘[Z(]Rn)} = S:nz)\ AI’l’]-

Step 2 Approximatec; by b, which is defined by

by = (Al diagBr. - B} [K.x)le] ) (T T

where

B = Zw. ,izl Z o (U! - Uf) (U - Ub) vivg.

Forb € R", the vector(B; — B;)b equals

d s d d m ‘ ‘ ‘ ‘
{ 2 22 2 }OE%ZlWi.,j (UJ—UE) (Ul —Ub) (VI bD)V.
i=

(=5+1p=1 (—1lp=s5+1

By the Schwartz inequality, the¢(R") norm of the first term above is bounded by

Zwo{ 5 (ui-u) (Zop VTb)>2}1/2

= =511
" q - o 1/2 S . . 1/2

< Wi,105+1{ > (UZ—UQ) } \bfzz(R”){zog(Ué_Ué) } :
=1 (=5+1 p=1

543



MUKHERJEE ANDZHOU

This is at most &; ;101 [b|2(gn) 3L Wi ;- The/?(R") norm of the second term in the expression of
(Bi— §i)b can be bounded in the same way and we thus have

-8

m
< 40;.,101|b|2gn Wi j.
gy < 20541 1] !eZ(R)JZl j

Then we have the following estimate for the operator norm of the differefhttee diagonal opera-
tors

Hdiag{Bl, B} [K O, %)) In] |,y — diag{Bu, -+, B} [K(6, X)) In] 1|

diag{By,-- ,Bn} —diag{By, - - ,Bm}

m
<40,,101 max ) w;i.
> S+1 1l§i§m;1 1]

It follows that

m
< 4k’mao; 101 max § wij.
1§|§mJ:

Notice that for two invertible operatots, L, on a Hilbert space, there holds
L= L - L)Lt
Hence
Lyt =L < Ik Y L2 = Lal| L5
Applying this to our setting, we have

4K°mo;s 1101 {

|BZ_62‘52(Rmn) < (m27\>2 maxzwi,j} H(&l)"-v&m)THﬁ(Rmn)-

1<i<m

For each, we have
S

y&iyﬁ(m <2M gwu{ </Z G%(U)V) 1/2+ (i og(u,i)z) 1/2}.
=1 1 ’ =1

It follows that ) Ve
~ 8MK“ M0 1107V
‘bZ_CZ}({Z(Rmn) S (rnz)\)z

Ap.

Step 3 Find the coefficientgz. The linear system it satisfies is
. m m S S . . . . ~ ~
A+ Y Y W 3 3 o0 (U! = U}) (U= Up) VT K (%, Xq)Bgz = 7,
og=1j=1 =1p=1

wherei =1,...,m. Since&i liesin spar{Vg}jzl, we know that eacELz also lies in this subspace of
R". That s, there is a vectds’, € R® such that
_ Ky
bil:; bioVe, i=1,...,m
=1
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Substituting this expression into the linear systemE‘Qrwe know thatb; can be solved by the
linear system

m m S . . . .
AL+ S Y wig Y 0rop (U] - Uf) (UL - UD) K xa)bed
o=1j=1 p=1

m ) .
ZZWi,j(yj—Yi)Ge<Ugj—Ué), 1<0<5,1<i<m
=1

This is exactly the linear system (19). Therefdiga = by, for eachi andb, = b, is the desired
coefficients for the functiori, ;. u

Appendix C

The following is Matlat® code that implements algorithm (1), the approximation algorithm with
reduced matrix size. The code could be made more efficient by exploitingettterwature of
Matlab. However, we include the version with loops for transparency.

% a matrix x that is dim by m where m is the number of samples
% a vector y that is m by 1

% eps is a constraint on the ratio of the top s eigenvalues to th e sum over
% all eigenvalues

% lambda is the regularization constant

% sigma is the variance of the weight matrix computed automat ically from the
% data

% F is the gradient evaluated at each sample again a dim by m mat rix

% nrm is the RKHS norm for each dimension

function  [F,nrm,sigma] =
solveder(x,y,lambda,eps)

[dim,m] = size(x);

% this subroutine computes distances between all pairs and s ets sigma to the
% median
a = zeros(m,m);
for i=l:m

for j=1:m

a(ij) = norm(x(:,i)-xC.J));

end

end

sigma = median(median(a));

% this subroutine computes the weight matrix
a = zeros(m,m);
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for i=lim
for j=Lim
a(i,)) = (U(sigma*sqrt(2*pi)))*exp(-norm(x(;,i)-x(:,
end
end

% the kernel matrix is computed will add nonlinear version
K = zeros(m,m); K = transpose(x)*x;

% constructs the matrix of differences between all points
M = zeros(dim,m); for i=l:m

M(C,D) = x(,i)-x(;,m);
end

% computes the eigenvalues and eigenvectors of Mt M
% and keeps s eigenvectors as specified by eps

d = eig(K);

W = transpose(M)*M;

[V.d] = eig(W);

d = diag(d);

vals = cumsum(d);

inds = find(vals/vals(m) < eps);

s = m-max(inds);

% since matlab indexes eigenvalues from smallest to largest
U = zeros(m,m);
dp = zeros(m,1);

for i=lim
ue,m-i) = V(,i);
dp() = d(m-i);
end

% projects of the paired differences into the subspace of the
t = zeros(s,m); for i=1:m

t(:,) = sqrt(dp(1:s)).*transpose(U(i,1:s));
end

Ktilde = zeros(m*s,m*s);
ytilde = zeros(m*s,1);

% computes the Ktilde matrix and the vector script Y
for i=lim

Bmat = zeros(s,s);

yv = zeros(s,1);
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for j=1:m
Bmat = Bmat+a(i,)* (t(.,j)-t(;,i))*(transpose(t(:,j)- t(,0));
yv = v+ ali ) (yQ)-y)) (.-

end

ytilde((i-1)*s+1:i*s,1) = yv;

for j=1:m
Ktilde((i-1)*s+1:i*s,(j-1)*s+1:j*s) = K(i,j)*Bmat;
end
end

% solves the linear system for coefficients ¢
| = eye(m*s);
¢ = (m"2*lambda*I+Ktilde) \ytilde;

% uwraps the coefficients into a vector for each sample
Cmat = zeros(dim,m);
for i =1m
vec=zeros(dim,1);
for j=1ls
vec = vec+(c((i-1)*s+j,1)/sqrt(dp(j,1)))*M*U(:,));
end
Cmat(:,i) = vec;
end

% computes the gradient for each sample
F = zeros(dim,m);
F = Cmat*K;

%computes the norm for each dimension
nrm = zeros(dim,1);
for i=l:.dim

nrm(i) = Cmat(i,.)*K*transpose(Cmat(i,:));
end
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