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Abstract

We introduce an algorithm that learns gradients from samples in the supervised learning framework.
An error analysis is given for the convergence of the gradient estimated by the algorithm to the true
gradient. The utility of the algorithm for the problem of variable selection as well as determining
variable covariance is illustrated on simulated data as well as two gene expression data sets. For
square loss we provide a very efficient implementation with respect to both memory and time.
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1. Introduction

The advent of data sets with many variables or coordinates in the biological and physical sciences
has driven the use of a variety of machine learning approaches based on Tikhonov regularization
or global shrinkage such as support vector machines (SVMs) (Vapnik, 1998) and regularized least
square classification (Poggio and Girosi, 1990). These algorithms have been very successful in
both classification and regression problems. However, in a number of applications the classical
questions from statistical linear modelling of which variables are most relevant to the prediction
and how the coordinates vary with respect to each other have been revived. In the context of high
dimensional data with few examples, the “large p, small n” paradigm (West, 2003), this leads to
foundational questions in constructing and interpreting statistical models. Since statistical models
based on shrinkage or regularization (Vapnik, 1998; West, 2003) have had success in the framework
of both classification and regression, we formulate the problem of learningcoordinate covariation
and relevance in this framework.

We first describe the Tikhonov regularization method for classification and regression in order
to define notation and basic concepts. We then introduce an algorithm that learns gradients of a
function. We also motivate the algorithm and give an intuition of how the gradient can be used to
learn coordinate covariation and relevance.
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1.1 Classification and Regression

Classification and regression problems can be addressed in the framework of learning or estimat-
ing functions from a hypothesis space given sample values. An efficientlearning method is the
Tikhonov regularization scheme. LetX be a compact metric space and the hypothesis space,H , be
a set of functionsX → Y ⊂ R. If we assign a penalty functionalΩ : H → R+ on H and choose
a loss functionV : R

2 → R+, the Tikhonov regularization scheme inH associated with(V,Ω) is
defined for a samplez =

{
(xi ,yi)

}m
i=1 ∈ (X×Y)m andλ > 0 as

fV
z = arg min

f∈H

{ 1
m

m

∑
i=1

V(yi , f (xi))+λΩ( f )
}
. (1)

The efficiency of learning algorithms of type (1) in machine learning can be seen whenH takes the
special choice of a reproducing kernel Hilbert space generated by aMercer kernel.

Let K : X×X → R be continuous, symmetric and positive semidefinite, i.e., for any finite set of
distinct points{x1, · · · ,xm} ⊂ X, the matrix(K(xi ,x j))

m
i, j=1 is positive semidefinite. Such a function

is called aMercer kernel.
The reproducing kernel Hilbert space(RKHS) HK associated with the Mercer kernelK is

defined (see Aronszajn (1950)) to be the completion of the linear span of the set of functions
{Kx := K(x, ·) : x∈X} with the inner product〈·, ·〉K satisfying〈Kx,Ky〉K = K(x,y). The reproducing
property ofHK is

〈Kx, f 〉K = f (x), ∀x∈ X, f ∈ HK . (2)

If H = HK andΩ( f ) = ‖ f‖2
K in (1), the reproducing property (2) tells us that

fV
z =

m

∑
i=1

ciKxi

and the coefficients{ci}m
i=1 can be found by solving an optimization problem inR

m.
Assume thatρ is a probability distribution onZ := X×Y andz=

{
(xi ,yi)

}m
i=1 ∈ Zm is a random

sample independently drawn according toρ.
When the loss function is the least-square lossV(y, t) = (y−t)2, the algorithm (1) is least-square

regression and the objective is to learn the regression function

fρ(x) =
Z

Y
ydρ(y|x), x∈ X (3)

from the random samplez. Hereρ(·|x) is the conditional distribution ofρ at x. DenoteρX as the
marginal distribution ofρ onX andL2

ρX
as theL2 space with the metric‖ f‖ρ := (

R

X | f (x)|2dρX)1/2.
There has been a vast literature (e.g. (Evgeniou et al., 2000; Zhang, 2003; Vito et al., 2005; Smale
and Zhou, 2006b)) in learning theory showing for this least-square regression algorithm the con-
vergence offV

z to fρ in the metric‖ · ‖ρ under the assumption thatfρ lies in the closure ofHK and
λ = λ(m) → 0 asm→ ∞.

For the (binary) classification purpose, we takeY = {1,−1}. A real valued functionf : X → R

induces a classifier sgn( f ) : X →Y. In this case, one uses a (convex) loss functionφ : R → R+ to
measure the empirical errorφ(t), t = y f(x), when sgn( f (x)) is applied to predicty∈Y. Examples
of such a convex loss functionφ include the logistic loss

φ(t) = log
(
1+e−t), t ∈ R (4)
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and the hinge lossφ(t) = max{0,1− t}. For V(y, f (x)) = φ(t) in (1) extensive investigation in
learning theory (e.g. (Cortes and Vapnik, 1995; Evgeniou et al., 2000;Schoelkopf and Smola,
2001; Vapnik, 1998; Wu and Zhou, 2005)) has shown that sgn( fV

z ) converges to the Bayes rule
sgn( fρ) with respect to the misclassification error:

R (sgn( f )) = Prob{sgn( f (x)) 6= y}.

1.2 Learning the Gradient

In this paper we are interested in learning the gradient offρ from the function sample values. Let
X ⊂ R

n. Denotex = (x1,x2, . . . ,xn)T ∈ R
n. The gradient offρ is the vector of functions (if the

partial derivatives exist)

∇ fρ =

(
∂ fρ

∂x1 , . . . ,
∂ fρ

∂xn

)T

. (5)

The relevance of learning the gradient with respect to the problems of variable selection and
estimating coordinate covariation is that the gradient provides the following information:

(a) variable selection: the norm of a partial derivative‖ ∂ fρ
∂xi ‖ indicates the relevance of this variable,

since a small norm implies a small change in the functionfρ with respect to thei-th coordinate,

(b) coordinate covariation: the inner product between partial derivatives
〈

∂ fρ
∂xi ,

∂ fρ
∂x j

〉
indicates the

covariance of thei-th and j-th coordinates with respect to variation infρ.
We now motivate the derivation of our gradient learning algorithm. Taylor expanding a function

g(u) around the pointx gives us

g(u) ≈ g(x)+
Z

∆x∈Γx

〈∇g,∆x〉,

where the inner product and a neighborhoodΓx of x are determined according to what is natural for
different settings. For example, in the manifold setting we know the marginalρX is concentrated on
a manifoldM and it is natural to formulate the following expansion

g(u) ≈ g(x)+
Z

∆x∈M x

〈∇M g,∆x〉,

where∆x∈M x are points on the manifold aroundx with respect to the intrinsic distance on the
manifold and the inner product isL2 over the manifold (Belkin and Niyogi, 2004). In the graph
setting we are given a sparse sample on the manifold which can be thought ofas vertices of
a graph and the distance between the points is the weight matrix of the graph. Anatural for-
mulation in this setting is to setΓx to be vertices connected tox and the inner product as the
weight matrix. Minimizing the empirical error (with regularization) betweeng(u) and its expan-
siong(x)+

R

∆x∈Γx
〈∇g,∆x〉 ≈ g(x)+∇g(x) · (u−x) for u≈ x results in various learning algorithms.

For regression the algorithm to learn gradients will use least-square loss tominimize the error
of the Taylor expansion at sample points. To learn vectors of functions weuse the hypothesis
spaceH n

K which is ann-fold of HK : each~f ∈ H n
K can be written as a column vector of functions

~f = ( f1, f2, . . . , fn)T with fℓ ∈ HK . Define〈~f ,~h〉K = ∑n
ℓ=1〈 fℓ,hℓ〉K . Then‖~f‖2

K = ∑n
ℓ=1‖ fℓ‖2

K . The
empirical error on sample pointsx = xi ,u = x j will be measured by the square loss

(
g(u)−g(x)−∇g(x) · (u−x)

)2
=
(
yi −y j +~f (xi) · (x j −xi)

)2
.
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The restrictionu ≈ x will be enforced by weights:wi, j = w(s)
i, j > 0 corresponding to(xi ,x j) with

the requirement thatw(s)
i, j → 0 as|xi − x j |/s→ ∞. For x = (x1,x2, . . . ,xn)T ∈ R

n, we denote|x| =
(
∑n

j=1(x
j)2
)1/2

.
One possible choice of weights is given by a Gaussian with variances. Let w = ws be the

function onR
n given byw(x) = 1

sn+2 e−
|x|2
2s2 . Then this choice of weights is

wi, j = w(s)
i, j =

1
sn+2e−

|xi−xj |2

2s2 = w(xi −x j), i, j = 1, . . . ,m. (6)

For regression we define the algorithm by the following optimization problem withweights
being arbitrary positive numberswi, j = w(s)

i, j which depend on an indexs> 0.

Definition 1 The least-square type learning scheme is defined for the samplez∈ Zm as

~fz,λ := arg min
~f∈H n

K

{
1

m2

m

∑
i, j=1

w(s)
i, j

(
yi −y j +~f (xi) · (x j −xi)

)2

+λ‖~f‖2
K

}
, (7)

whereλ,s are two positive constants called the regularization parameters.

A similar algorithm can be defined for classification with a convex loss functionφ(·) like the
hinge or logistic loss.

Definition 2 The regularization scheme for classification is defined for the samplez∈ Zm as

~fz,λ = arg min
~f∈H n

K

{
1

m2

m

∑
i, j=1

w(s)
i, j φ
(

yi
(
y j +~f (xi) · (xi −x j)

))
+λ‖~f‖2

K

}
. (8)

Remark 3 Some algorithms for computing numerical derivative by means of partition were intro-
duced in Wahba and Wendelberger (1980). They work well in low dimensional spaces. In high
dimensional spaces, partition is difficult. Our method can be regarded asan algorithm for numeri-
cal derivatives in high dimensional spaces.

At first thought, a natural approach to computing partial derivatives would be to estimate the
regression function and then compute partial derivatives. The problem withthis approach is that
the partial derivatives are no longer in the RKHS of the regression function.This leaves us with the
problem of not having a norm or computable metric to work with. The advantage of our method
is the derived functions are already approximations of the partial derivatives and they have RKHS
inner products which are computed in the estimation process. The inner products reflect the nature
of the measure, which is often on a low dimensional manifold embedded in a large dimensional
space.

The hypothesis spaceH n
K in the optimization problem (7) may be replaced by some other space

of vector-valued functions (Micchelli and Pontil, 2005) in order to learn thegradients.

Remark 4 Estimation of coordinate covariation is not possible in standard regression models that
allow for variable selection such as: recursive feature elimination (RFE) (Guyon et al., 2002), least
absolute shrinkage and selection operator (LASSO) (Tibshirani, 1996), and basis pursuits denoising
(Chen et al., 1999).
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1.3 Overview

In Sections 2 and 3, we shall derive linear systems for solving the optimizationproblem (7). In
particular, whenm<< n, an efficient algorithm will be provided.

The regularization parameters in (7) depend onm: λ = λ(m), s= s(m) and generallyλ(m),s(m)→
0 asm becomes large. In Section 4, we show for a Gaussian weight function (6)how a particular
choice of the two regularization parameters leads to rates of convergenceof our estimate of the
gradient to the true gradient,~fz,λ to ∇ fρ.

The utility of the algorithm is demonstrated in Section 5 in applications to simulated data as
well as gene expression data. We close with a brief discussion in Section 6.

2. Representer Theorem

The optimization problem defining the least-square algorithm (7) can be solved as a linear sys-
tem of equations. DenoteRp×q as the space ofp× q matrices,In the n× n identity matrix, and
diag{B1,B2, · · · ,Bm} them×m block diagonal matrix with eachBi ∈ R

n×n. To save space, we ex-
press anmncolumn vector with blocks{ci ∈R

n} by the following abuse of notionc= (c1,c2, . . . ,cm)T .
The following theorem is an analog of the standard representer theorem (Schoelkopf and Smola,

2001) that states the minimizer of the optimization problem defined by (7) has the form

~fz,λ =
m

∑
i=1

ci,zKxi (9)

with cz = (c1,z, . . . ,cm,z)
T ∈ R

mn.

Theorem 5 For i = 1, . . . ,m, let Bi

Bi =
m

∑
j=1

wi, j(x j −xi)(x j −xi)
T ∈ R

n×n, Yi =
m

∑
j=1

wi, j(y j −yi)(x j −xi) ∈ R
n. (10)

Then~fz,λ = ∑m
i=1ci,zKxi with cz = (c1,z, . . . ,cm,z)

T ∈ R
mn satisfying the linear system

{
m2λImn+diag{B1,B2, · · · ,Bm}

[
K(xi ,x j)In

]m
i, j=1

}
c = (Y1,Y2, . . . ,Ym)T . (11)

Proof By projecting onto the span of{Kxi}m
i=1 the reproducing property (2) ensures that~fz,λ =

∑m
i=1ci,zKxi , with ci,z ∈ R

n for eachi. Note thatx · v = ∑n
i=1xivi = xTv for x,v∈ R

n. To find{ci,z},
we consider~f = ∑m

i=1ciKxi ∈ H n
K with ci ∈ R

n. Then

~f (xi) · (x j −xi) =
m

∑
p=1

K(xp,xi)cp · (x j −xi) =
m

∑
p=1

K(xp,xi)(x j −xi)
Tcp

and

‖~f‖2
K =

m

∑
i, j=1

K(xi ,x j)ci ·c j .

Define theempirical error E z as

E z(~f ) =
1

m2

m

∑
i, j=1

w(s)
i, j

(
yi −y j +~f (xi) · (x j −xi)

)2

.
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It is a function ofmnvariables{ck
q : 1≤ q≤ m,1≤ k≤ n} where theq-th coefficientcq ∈ R

n of ~f
is expressed as(ck

q)
n
k=1 = (c1

q, . . . ,c
n
q)

T . Forq∈ {1, . . . ,m} , k∈ {1, . . . ,n},

∂
∂ck

q

{
E z(~f )+λ‖~f‖2

K

}
= 2λ

m

∑
i=1

K(xq,xi)c
k
i

+
2

m2

m

∑
i, j=1

wi, j

(
yi −y j +

m

∑
p=1

K(xp,xi)(x j −xi)
Tcp

)
K(xq,xi)(x

k
j −xk

i ).

Notice from (2) that forg,h ∈ span{Kxi}m
i=1, g(xi)− h(xi) = 0 for i = 1, . . . ,m implies thatg− h

is orthogonal to eachKxi , and henceg−h = 0. Then we know that~fz,λ = ∑m
i=1 c̃i,zKxi wherec̃z =

{c̃i,z}m
i=1 is the solution to the linear system

λci +
1

m2

m

∑
j=1

wi, j

(
yi −y j +

m

∑
p=1

K(xp,xi)(x j −xi)
Tcp

)
(x j −xi) = 0, i = 1, . . . ,m.

Since(x j − xi)
Tcp is a scalar,[(x j − xi)

Tcp](x j − xi) = (x j − xi)(x j − xi)
Tcp. So the above system

can be expressed as

Bi

m

∑
p=1

K(xi ,xp)cp +m2λci = Yi , i = 1, . . . ,m. (12)

This is exactly the system in (11).

Remark 6 One might consider solving the optimization problem (7) by finding each component of
~fz,λ separately. However, to find(~fz,λ)ℓ by minimizing over f∈ HK , one needs to replace yi − y j

by yi − y j + ∑k6=ℓ(~fz,λ)k(xi)(xk
j − xk

i ). So the optimization problems for components of~fz,λ are not
completely separable. It would be interesting to have a separable method for (7).

3. Reducing the Matrix Size

In some applications of variable selection, the numbern of variables is much larger than the sample
size m. In such a situation, the system (11) for implementing the learning algorithm (7)is not
satisfactory, since the size of the linear system (11) is(mn)× (mn).

Observe that each term in the summation definingBi in (10) is a rank one matrix. Hence the
rank of then×n matrixBi is at mostm for eachi. This raises the expectation of reducing the matrix
size in the linear system (11). In this section, we show how to reduce this sizeto (Sm)× (Sm) with
S ≤ m−1. Moreover, an approximation algorithm will be introduced which is often implemented
with S << m.

We use the well known approach of singular value decomposition. It may beapplied to the
coefficient matrix of (11) to reduce the matrix size. Here we prefer to applythe approach to a
matrix involving the data only, leaving us flexibility for the weightswi, j .

Consider the matrix involving the datax given by

Mx = [x1−xm,x2−xm, . . . ,xm−1−xm,xm−xm] ∈ R
n×m. (13)

Assume the rank ofMx is d. Thend ≤ min{m−1,n} since the last column of the matrix is zero.
The theory of singular value decomposition tells us that there exists ann× n orthogonal matrix
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V = [V1,V2, . . . ,Vn] and am×morthogonal matrixU = [U1,U2, . . . ,Um] such that

Mx = VΣUT = [V1 V2 · · · Vn]

[
diag{σ1,σ2, · · · ,σd} 0

0 0

]



UT
1

UT
2
...

UT
m


 . (14)

Hereσ1 ≥ σ2 ≥ ·· · ≥ σd > σd+1 = . . . = σmin{m,n} = 0 are the singular values ofMx. The matrixΣ
is n×m and has entries zero except that(Σ)i,i = σi for i = 1, . . . ,d. From expression (14), we see
that

Mx =
d

∑
ℓ=1

σℓVℓU
T
ℓ .

Note thatUT
ℓ = [U1

ℓ , . . . ,Um
ℓ ]. The j-th column ofMx equalsx j −xm = ∑d

ℓ=1 σℓVℓU
j
ℓ and

x j −xi =
d

∑
ℓ=1

σℓ

(
U j

ℓ −U i
ℓ

)
Vℓ. (15)

It follows thatYi = ∑m
j=1wi, j(y j −yi)∑d

ℓ=1 σℓ

(
U j

ℓ −U i
ℓ

)
Vℓ and

Bi =
m

∑
j=1

wi, j

d

∑
ℓ=1

d

∑
p=1

σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
VℓV

T
p . (16)

Now we can reduce the matrix size by solving an approximation to the linear system derived
from the singular values. A strong correlation among the vectors{xi} would result in a large number
of small singular values. If we ignore the small singular valuesσS+1, . . . ,σd, the error is proportional
to σS+1. This follows from the idea of low-rank approximations in singular value decomposition.
The following theorem quantifies the above statement.

Theorem 7 Assume|y| ≤ M almost surely. Denoteκ = supx∈X

√
K(x,x). Let1≤ S ≤ d. Set

B i =
m

∑
j=1

wi, j

[
σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)]S
ℓ,p=1

∈ R
S×S , i = 1, . . . ,m (17)

and

Y i =
m

∑
j=1

wi, j(y j −yi)
[
σℓ

(
U j

ℓ −U i
ℓ

)]S
ℓ=1

∈ R
S , i = 1, . . . ,m. (18)

Solve the linear system
{

m2λImS +diag{B1, · · · ,Bm}
[
K(xi ,x j)IS

]m
i, j=1

}
b̂ = (Y1, . . . ,Ym)T . (19)

The solutionb̂z = (b̂1,z, . . . , b̂m,z)
T ∈ R

mS gives an approximation~fz,λ,S = ∑m
i=1bi,zKxi with bi,z =

∑Sℓ=1 b̂ℓ
i,zVℓ. The error between bz = (bi,z)

m
i=1 and cz can be bounded as

∣∣bz−cz
∣∣
ℓ2(Rmn)

≤ 4MσS+1

m2λ

{√
d∆m+

2κ2σ2
1

mλ
√
S ∆m

}
, (20)

where∆m := max1≤i≤m
(
∑m

j=1wi, j
)2

+∑m
i, j=1

(
wi, j
)2

.
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See Appendix B for the proof.

If we setS = d, we can solve for~fz,λ exactly with a linear system of reduced size. This is stated
in the following corollary.

Corollary 8 Let σ1 ≥ σ2 ≥ ·· · ≥ σd > 0 be all the positive singular values of Mx and U,V be the
orthogonal matrices in (14). Then~fz,λ = ∑m

i=1

{
∑d

ℓ=1 c̃ℓ
i,zVℓ

}
Kxi wherec̃z satisfies (19) withB i and

Y i given by (17) and (18) withS = d, respectively.

Theorem 7 provides a theoretical foundation for the following approximation algorithm with
reduced matrix size that accurately approximates~fz,λ by ~fz,λ,S .

3.1 Reduced Matrix Size Algorithm

The following is an outline of the reduced matrix algorithm. See appendix C for Matlabr code
implementing this algorithm.

Algorithm 1 : Approximation algorithm with reduced matrix size to approximate~fz,λ

input : inputs(xi)
m
i=1, labels(yi)

m
i=1, kernelK, weights(wi, j), eigenvalue thresholdε > 0

return : coefficients(bi,z)
m
i=1

Mx = [x1−xm,x2−xm, . . . ,xm−1−xm,xm−xm] ∈ R
n×m;

GivenMx compute the singular value decomposition (14) with orthogonal matricesU,V and
singular valuesσ1 ≥ σ2 ≥ ·· · ≥ σS > ε;
t j =

(
σ1U

j
1 , . . . ,σSU

j
S

)T ∈ R
S for 1≤ j ≤ m;

B i = ∑m
j=1wi, j(t j − ti)(t j − ti)T for 1≤ i ≤ m;

Y i = ∑m
j=1wi, j(y j −yi)(t j − ti) for 1≤ i ≤ m;

[
K̃
]
=




B1K(x1,x1) B1K(x1,x2) · · · B1K(x1,xm)
B2K(x2,x1) B2K(x2,x2) · · · B2K(x2,xm)

...
.. . · · · ...

BmK(xm,x1) BmK(xm,x2) · · · BmK(xm,xm)


 , ~Y =




Y1

Y2
...
Ym




b̂z = (b̂1,z, . . . , b̂m,z)
T ∈ R

mS where

{
m2λImS +

[
K̃
]}

b̂z = ~Y (21)

bi,z = ∑Sℓ=1 b̂ℓ
i,zVℓ and~fz,λ,S = ∑m

i=1bi,zKxi is an approximation of~fz,λ;
return(bi,z)

m
i=1
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4. Error Analysis

In what follows we use Gaussian weights (equation (6)) and estimate errorbounds. We show that
~fz,λ → ∇ fρ as m→ ∞ for suitable choices of the regularization parameters going to zero,λ =
λ(m) → 0,s= s(m) → 0. Since we are learning gradients, some regularity conditions on both the
marginal distribution and the density are required. The following case illustrates the idea (this case
corresponds to the realizable setting in the PAC learning paradigm and will bea corollary of the
error analysis that follows).

Proposition 9 Assume|y| ≤ M almost surely. Suppose that for some0 < τ ≤ 2/3,cρ > 0, the
marginal distributionρX satisfies

ρX
(
{x∈ X : inf

u∈Rn\X
|u−x| ≤ s}

)
≤ c2

ρs4τ, ∀s> 0, (22)

and the density p(x) of dρX(x) exists and satisfies

sup
x∈X

p(x) ≤ cρ, |p(x)− p(v)| ≤ cρ|v−x|τ, ∀v,x∈ X. (23)

Chooseλ = λ(m) = m− τ
n+2+3τ and s= s(m) = (κcρ)

2
τ m− 1

n+2+3τ . If ∇ fρ ∈ H n
K and the kernel K is C3,

then there is a constant Cρ,K such that for any0 < δ < 1 and m≥ 1, with confidence1−δ, we have

‖~fz,λ −∇ fρ‖ρ ≤Cρ,K log

(
2
δ

)(
1
m

)− τ
2(n+2+3τ)

. (24)

The condition (23) means the density of the marginal distribution is Hölder τ. The condition
(22) is about the behavior ofρX near the boundary ofX. They are natural assumptions for learning
gradients of the regression function. When the boundary is piecewise smooth, (23) implies (22).

The idea behind the proof for the convergence of the gradient consistsof simultaneously con-
trolling a sample or estimation error term and a regularization or approximation error term. The
first term, the sample error, is bounded using a concentration inequality since it is a function of the
sample,z. The second term, the regularization error, does not depend on the sample and we use
functional analysis to bound this quantity.

4.1 Sample Error

First we estimate the sample error by means of the sampling operator introducedin Smale and Zhou
(2004, 2006b,a).

Definition 10 Thesampling operatorSx :H n
K →R

mn associated with a discrete subsetx = {xi}m
i=1

of X is defined by

Sx(~f ) =
(
~f (xi)

)m
i=1 =

(
~f (x1), . . . , ~f (xm)

)T
.

The adjoint of the sampling operator,ST
x : R

mn→ H n
K , is given by

ST
x c =

m

∑
i=1

ciKxi , c = (ci)
m
i=1 = (c1, . . . ,cm)T ∈ R

mn.
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DenoteDx = diag{B1,B2, · · · ,Bm} and~Y = (Y1,Y2, . . . ,Ym)T .
Consider equation (12) satisfied bycz. The quantity∑m

p=1K(xi ,xp)cp,z equals~fz,λ(xi). Then

(12) implies
(
ST

x DxSx +m2λI
)
~fz,λ = ST

x
~Y. Therefore,

~fz,λ =
( 1

m2ST
x DxSx +λI

)−1 1
m2ST

x
~Y. (25)

We introduce ans-generalization error corresponding to the empirical error as follows.

Definition 11 The s-generalization error E = E s is defined for vectors of functions as

E (~f ) =
Z

Z

Z

Z
w(x−u)

(
y−v+~f (x) · (u−x)

)2

dρ(x,y)dρ(u,v).

If we denoteσ2
s =

Z

Z

Z

Z
w(x−u)(y− fρ(x))

2dρ(x,y)dρ(u,v), then

E (~f ) = 2σ2
s +

Z

X

Z

X
w(x−u)

[
fρ(x)− fρ(u)+~f (x) · (u−x)

]2

dρX(x)dρX(u). (26)

A data independent limit of~fz,λ is

~fλ = arg min
~f∈H n

K

{
E (~f )+λ‖~f‖2

K

}
. (27)

Taking the functional derivatives, we know from (26) that~fλ can be expressed in terms of the

following integral operator on the space
(
L2

ρX

)n
with norm‖~f‖ρ =

(
‖ fℓ‖2

ρ
)1/2

.

Proposition 12 Let LK,s :
(
L2

ρX

)n →
(
L2

ρX

)n
be the integral operator defined by

LK,s~f =
Z

X

Z

X
w(x−u)(u−x)Kx(u−x)T~f (x)dρX(x)dρX(u). (28)

It is a positive operator on
(
L2

ρX

)n
and

~fλ =
(
LK,s+λI

)−1~fρ,s. (29)

where
~fρ,s :=

Z

X

Z

X
w(x−u)(u−x)Kx

(
fρ(u)− fρ(x)

)
dρX(x)dρX(u). (30)

The operatorLK,s has its range inH n
K . It can also be regarded as a positive operator onH n

K . We
shall use the same notion for the operators on these two different domains.

To bound the sample error~fz,λ−~fλ, we shall introduce a McDiarmid-Bernstein type probability
inequality for vector-valued random variables.
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Proposition 13 Letz= {zi}m
i=1 be i.i.d. draws from a probability distributionρ on Z,(H,‖ ·‖) be a

Hilbert space, and F: Zm → H be measurable. If there is̃M ≥ 0 such that‖F(z)−Ezi (F(z))‖ ≤ M̃
for each1≤ i ≤ m and almost everyz∈ Zm, then for everyε > 0,

Probz∈Zm{‖F(z)−Ez(F(z))‖ ≥ ε} ≤ 2exp

{
− ε2

2(M̃ε+σ2)

}
, (31)

whereσ2 := ∑m
i=1supz\{zi}∈Zm−1 Ezi{‖F(z)−Ezi (F(z))‖2}. For any0< δ < 1, with confidence1−δ,

there holds

‖F(z)−Ez(F(z))‖ ≤ 2log
2
δ
{

M̃ +
√

σ2
}
.

Proof Apply Theorem 3.3 of Pinelis (1994) (see Appendix A) to the finite sequence{ f j = Ezm,...,zj F−
Ezm,...,z1F : j = 1,2, . . . ,m+1}. So f1 = 0 and fm+1 = F(z)−Ez(F(z)). Note that‖ f j − f j−1‖ ≤ M̃
almost surely and∑m+1

j=2 Ezj−1‖ f j − f j−1‖2 ≤ σ2. The conditions of Theorem 3.3 of Pinelis (1994)

hold with B2 = σ2, Γ = M̃. As pointed out in a correction of Pinelis (1999), the probability should
be 2exp

{
− r2

rΓ+B2+B
√

B2+2rΓ

}
, which is bounded by 2exp

{
− r2

2(rΓ+B2)

}
. Inequality (31) follows from

the theorem.
Chooseε such that ε2

2M̃ε+2σ2 = log 2
δ . That is,ε satisfies

ε2 = 2M̃ log
2
δ

ε+2σ2 log
2
δ
.

Therefore, with confidence at least 1−δ, we have

‖F(z)−Ez(F(z))‖ ≤ ε ≤ 2M̃ log
2
δ

+

√
2σ2 log

2
δ
≤ 2log

2
δ
{

M̃ +
√

σ2
}
.

This proves the proposition.
Now we can give the main result on the sample error‖~fz,λ −~fλ‖K . Denote the diameter ofX as

Diam(X) = maxx,t∈X |x− t| and the moments of the Gaussian as

Jp :=
Z

Rn
e−

|x|2
2 |x|pdx, p≥ 0.

In the following sample error estimates, the bounds are valid for anym,λ, ands, though they yield
reasonable learning rates only for suitable choices ofλ = λ(m) ands = s(m) which we state in
Proposition 9.

Theorem 14 Assume|y| ≤ M almost surely.

1. For any0 < δ < 1, with confidence1−δ, we have

‖~fz,λ −~fλ‖K ≤ 16κDiam(X) log(2/δ)√
mλsn+2

{
2M +κDiam(X)‖~fλ‖K

}
+

1
m
‖~fλ‖K . (32)

2. If the density p(x) of dρX(x) exists and satisfiessupx∈X p(x)≤ cρ, then for any0< s≤ 1, with
confidence1−δ, there holds

‖~fz,λ −~fλ‖K ≤ 8κ log(2/δ)√
mλs1+n/2

(
√

cρ +
Diam(X)√

ms1+n/2

)

(
2M

√
J2 +κ(Diam(X)+

√
J4)‖~fλ‖K

)
+

1
m
‖~fλ‖K . (33)
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Proof By (25), we have

~fz,λ −~fλ =
( 1

m2ST
x DxSx +λI

)−1
{

1
m2ST

x
~Y− 1

m2ST
x DxSx~fλ −λ~fλ

}
.

Define a vector-valued functionF : Zm → H n
K by

F(z) =
1

m2ST
x
~Y− 1

m2ST
x DxSx~fλ.

That is,

F(z) =
1

m2

m

∑
i=1

m

∑
j=1

wi, j(x j −xi)Kxi (y j −yi)−
1

m2

m

∑
i=1

m

∑
j=1

wi, j(x j −xi)Kxi (x j −xi)
T~fλ(xi).

By independence, the expected value ofF(z) equals

1
m2

m

∑
i=1

Ezi ∑
j 6=i

Ez j

{
wi, j(x j −xi)Kxi

[
(y j −yi)− (x j −xi)

T~fλ(xi)
]}

=
m−1

m2

m

∑
i=1

Ezi

{
Z

X
w(xi −u)(u−xi)Kxi

[
( fρ(u)−yi)− (u−xi)

T~fλ(xi)
]
dρX(u)

}
.

It follows that

Ez(F(z)) =
m−1

m
~fρ,s−

m−1
m

LK,s~fλ.

By (29),LK,s~fλ +λ~fλ = ~fρ,s. Henceλ~fλ = ~fρ,s−LK,s~fλ = m
m−1Ez(F(z)). Therefore,

‖~fz,λ −~fλ‖K ≤ 1
λ
‖F(z)− m

m−1
Ez(F(z))‖K ≤ 1

λ
‖F(z)−Ez(F(z))‖K +

1
m
‖~fλ‖K .

The reproducing property (2) together with the upper boundκ implies

‖ f‖ρ ≤ ‖ f‖∞ ≤ κ‖ f‖K , ∀ f ∈ HK . (34)

Then we apply Proposition 13 to the functionF(z) to get our error bound.
Let i ∈ {1, . . . ,m}. We know thatF(z)−Ezi (F(z)) equals

1
m2 ∑

j 6=i

w(xi −x j)(x j −xi)

{
Kxi

[
y j −yi − (x j −xi)

T~fλ(xi)
]

+Kx j

[
y j −yi − (x j −xi)

T~fλ(x j)
]}

− 1
m2 ∑

j 6=i

Z

X
w(x−x j)(x j −x)

{
Kx
[
y j − fρ(x)− (x j −x)T~fλ(x)

]

+Kx j

[
y j − fρ(x)− (x j −x)T~fλ(x j)

]}
dρX(x).

Using (34) for~fλ and|x−x j | ≤ Diam(X) for anyx∈ X, we see that

‖F(z)−Ezi (F(z))‖K ≤ M̃ =
4κDiam(X)

msn+2

{
2M +κDiam(X)‖~fλ‖K

}
.
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1. We first prove (32). Apply the trivial boundσ2 ≤ mM̃2. Then Proposition 13 tells us that for
any 0< δ < 1, with confidence 1−δ, there holds

‖F(z)−Ez(F(z)‖K ≤ 2log
2
δ
{

M̃ +
√

mM̃
}
≤ 4log

2
δ
√

mM̃.

This proves (32).
2. To prove (33) we need to improve on our estimate of the varianceσ2, we bound‖F(z)−

Ezi (F(z))‖K by

1
m2 ∑

j 6=i

w(xi −x j)|x j −xi |
{

2κ2M +2|x j −xi |κ2‖~fλ‖K

}

+
1

m2 ∑
j 6=i

Z

X
w(x−x j)|x j −x|

{
2κ2M +2|x j −x|κ2‖~fλ‖K

}
dρX(x).

It follows that
(
Ezi (‖F(z)−Ezi (F(z))‖2

K)
)1/2

is bounded by

2
m2 ∑

j 6=i

{
Z

X

(
w(x−x j)

)2|x j −x|2
{

4κM +2|x j −x|κ2‖~fλ‖K

}2

dρX(x)

}1/2

≤ 2
m2 ∑

j 6=i

{
Z

X
s−2(n+2)e−

|x−xj |2

s2 |x j −x|2
{

4κM
}2

cρdx

}1/2

+
2

m2 ∑
j 6=i

{
Z

X
s−2(n+2)e−

|x−xj |2

s2 |x j −x|4(2κ2)2‖~fλ‖2
Kcρdx

}1/2

.

Here we have used the assumptiondρX(x) = p(x)dx with p(x) ≤ cρ. Bounding the above integrals
by those on the whole spaceR

n, we see from the definition of the momentsMr that

Ezi (‖F(z)−Ezi (F(z))‖2
K) ≤ 2(m−1)

m2

{
4κM

√
cρ

√
J2

sn+221+n/2
+2κ2‖~fλ‖K

√
cρ

√
J4

sn22+n/2

}
.

It follows then that fors≤ 1

σ2 ≤ 16cρκ2

msn+2

{
21/4M

√
J2 +κ‖~fλ‖K

√
J4

}2

.

The second statement (inequality (33)) follows from Proposition 13.

4.2 Regularization Error

In this subsection, we shall bound the regularization error‖~fλ − ∇ fρ‖ by a functional analysis
approach. To illustrate the idea, we state the result for a special case when ∇ fρ ∈ H n

K . It is a
corollary of Theorem 17 and Theorem 19 withr = 1/2.

Proposition 15 Assume (22) and (23). Denote Vρ =
R

X(p(x))2dx> 0. Suppose that∇ fρ ∈ H n
K and

for some c′ρ > 0,

| fρ(u)− fρ(x)−∇ fρ(x) · (u−x)| ≤ c′ρ|u−x|2, ∀ u,x∈ X. (35)
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Then for anyλ > 0 and0 < s≤ min
{{

2κ2cρ
(
M2+τ +J4 +cρJ2

)}1/τλ1/τ,1
}

, there holds

‖~fλ −∇ fρ‖ρ ≤
(
κ2c′ρJ3

) s
λ

+
{

2
(
Vρn(2π)n/2)−1/2‖∇ fρ‖K

}√
λ.

To estimate the regularization error, we need to consider the convergenceof Lk,s ass→ 0.

Lemma 16 Assume that for some0 < τ < 1, conditions (22) and (23) hold. Then Vρ ≤ cρ and for
any0 < s≤ 1 we have

‖LK,s−Vρn(2π)n/2LK‖H n
K→H n

K
≤ sτκ2cρ

(
M2+τ +J4 +cρJ2

)
, (36)

where LK is a positive operator onH n
K defined by

LK~f =
Z

X
Kx~f (x)

p(x)
Vρ

dρX(x). (37)

The operator LK is also a positive operator on(L2
ρX

)n satisfying

‖LK,s−Vρn(2π)n/2LK‖(L2
ρX

)n→(L2
ρX

)n ≤ sτκ2cρ
(
M2+τ +J4 +cρJ2

)
, ∀ 0 < s≤ 1. (38)

Proof Let ~f ∈ (L2
ρX

)2. Denote

~g =
Z

X

{
Z

X
w(x−u)(u−x)Kx(u−x)Tdu

}
p(x)~f (x)dρX(x).

Then by (23) and the Cauchy-Schwartz inequality we see that‖LK,s~f −~g‖K is bounded by

Z

X

{
Z

X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2‖Kx‖Kcρ|u−x|τdu

}∣∣~f (x)
∣∣dρX(x) ≤ sτκcρM2+τ‖~f‖ρ.

Observe thatn(2π)n/2 = J2 and
R

Rn w(u−x)(ui −xi)(u j −x j)du= 0 wheni 6= j. Then
R

Rn
1
sn e−

|u−x|2
2s2
(

u−x
s

)(
u−x

s

)T
du= J2In. Hence

Vρn(2π)n/2LK~f =
Z

X

{
Z

Rn

1
sne−

|u−x|2
2s2
(u−x

s

)(u−x
s

)T
du

}
p(x)Kx~f (x)dρX(x).

It follows that

‖~g−Vρn(2π)n/2LK~f‖K =

∥∥∥∥
Z

X

{
Z

Rn\X

1
sne−

|u−x|2
2s2
(u−x

s

)(u−x
s

)T
du

}
p(x)Kx~f (x)dρX(x)

∥∥∥∥
K

≤
Z

X

{
Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2du

}
κ|~f (x)|p(x)dρX(x).

Separate the domainX into Xs := {x ∈ X : infu∈Rn\X |u− x| ≤ √
s}, consisting of those points

whose distance to the boundary is at most
√

s, and its complementX \Xs.

If x∈ X \Xs, anyu∈ R
n\X satisfies|u−x| ≥ √

s and thereby 1≤ s
∣∣u−x

s

∣∣2. Hence

Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2du≤ s
Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣4du≤ sJ4.
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It follows from (23) that
Z

X\Xs

{
Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2du

}
κ|~f (x)|p(x)dρX(x) ≤ sκcρM4

Z

X\Xs

|~f (x)|dρX(x)

which is bounded bysκcρM4‖~f‖ρ.
For the subsetXs, we use the Cauchy-Schwartz inequality and (23) to obtain

Z

Xs

{
Z

Rn\X

1
sne−

|u−x|2
2s2
∣∣u−x

s

∣∣2du

}
κ|~f (x)|p(x)dρX(x) ≤

Z

Xs

κcρM2|~f (x)|dρX(x).

This is bounded byκcρM2
√

ρX(Xs)‖~f‖ρ. By (22),ρX(Xs) ≤ c2
ρs2τ. Thus, for 0< s≤ 1,

‖~g−n(2π)n/2LK~f‖K ≤ sτκcρ
(
M4 +cρJ2

)
‖~f‖ρ.

Combine the above two estimates. There holds for any 0< s≤ 1

‖LK,s~f −Vρn(2π)n/2LK~f‖K ≤ sτκcρ
(
M2+τ +J4 +cρJ2

)
‖~f‖ρ

which proves (38) by (34). When~f ∈ H n
K , we have from (34) again that

‖LK,s~f −Vρn(2π)n/2LK~f‖K ≤ sτκ2cρ
(
M2+τ +J4 +cρJ2

)
‖~f‖K .

This verifies (36) and proves the lemma.
The measurep(x)

Vρ
dρX is probability one onX. So we know (see Cucker and Smale (2001))

that the operatorLK can be used to define the reproducing kernel Hilbert space: LetLr
K be ther-th

power of the positive operatorLK on (L2
ρX

)n having range inH n
K . ThenH n

K is the range ofL1/2
K :

‖~f‖ρ = ‖L1/2
K

~f‖K for any~f ∈ (L2
ρX

)n.

Theorem 17 Under the assumption (35), we have

‖~fλ −∇ fρ +λ
(
LK,s+λI

)−1∇ fρ‖K ≤ s
λ

κc′ρJ3.

Proof By (29), we find that

~fλ −∇ fρ +λ
(
LK,s+λI

)−1∇ fρ =
(
LK,s+λI

)−1
{

~fρ,s−LK,s∇ fρ

}
.

Then

‖~fλ −∇ fρ +λ
(
LK,s+λI

)−1∇ fρ‖K ≤ ‖
(
LK,s+λI

)−1‖H n
K→H n

K
‖~fρ,s−LK,s∇ fρ‖K

which is bounded by1λ‖~fρ,s−LK,s∇ fρ‖K . Using (35) on the integral

~fρ,s−LK,s∇ fρ =
Z

X

Z

X
w(x−u)(u−x)Kx

{
fρ(u)− fρ(x)− (u−x)T∇ fρ(x)

}
dρX(x)dρX(u),

we know that

‖~fρ,s−LK,s∇ fρ‖K ≤
Z

X

Z

X
w(x−u)|u−x|‖Kx‖Kc′ρ|u−x|2dρX(x)dρX(u) ≤ sκc′ρJ3.

This proves the theorem.
Finally, we need to studyλ

(
LK,s+λI

)−1∇ fρ in order to estimate the error‖~fλ −∇ fρ‖.
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Lemma 18 Assume (22) and (23). Denote c′′
ρ =

(
2κ2cρ

(
M2+τ +J4 +cρJ2

))1/τ
. Then

‖
(
LK,s+λI

)−1~f‖ ≤ 2‖
(
Vρn(2π)n/2LK +λI

)−1~f‖, ∀0 < s≤ min
{

c′′ρλ1/τ,1
}
,

where~f is either in the spaceH n
K or in (L2

ρX
)n, and‖ · ‖ is the corresponding norm.

Proof Write
(
LK,s+λI

)−1~f =
{[

Vρn(2π)n/2LK +λI
]
−
[
n(2π)n/2LK −LK,s

]}−1~f as

{
I −
[
Vρn(2π)n/2LK +λI

]−1[
Vρn(2π)n/2LK −LK,s

]}−1[
Vρn(2π)n/2LK +λI

]−1~f .

This in connection with Lemma 16 implies

∥∥(LK,s+λI
)−1~f

∥∥≤
{

1− 1
λ

sτκ2cρ
(
M2+τ +J4 +cρJ2

)}−1∥∥[Vρn(2π)n/2LK +λI
]−1~f

∥∥.

This verifies the lemma.
Lemma 18 yields the convergence of‖λ

(
LK,s+λI

)−1∇ fρ‖. The convergence rates require some
conditions on∇ fρ relative to the pair(L2

ρX
,HK). The assumption we shall use is‖L−r

K ∇ fρ‖ρ <
∞. It means that∇ fρ lies in the range ofLr

K . In particular, in the caser = 1/2, the condition

‖L−1/2
K ∇ fρ‖ρ < ∞ means∇ fρ ∈ H n

K . For more examples about this condition, see Smale and Zhou
(2006a).

Theorem 19 Assume (22), (23), and (35). Let0< s≤ min
{

c′′ρλ1/τ,1
}

. If ‖L−r
K ∇ fρ‖ρ < ∞ for some

0 < r ≤ 1, then

‖λ
(
LK,s+λI

)−1∇ fρ‖ρ ≤ 2λr(Vρn(2π)n/2)−r‖L−r
K ∇ fρ‖ρ, ∀λ > 0.

If moreover r≥ 1/2, then we have for anyλ > 0,

‖λ
(
LK,s+λI

)−1∇ fρ‖K ≤ 2λr−1/2(Vρn(2π)n/2)−r‖L−r
K ∇ fρ‖ρ.

In the general situation, we can see that‖λ
(
LK,s+λI

)−1∇ fρ‖ρ → 0 asλ → 0, provided thatHK

is dense inL2
ρX

(Smale and Zhou, 2003). This can be seen from the following convergence estimate.

Proposition 20 Assume (22), (23), and (35). Then

‖λ
(
LK,s+λI

)−1∇ fρ‖ρ ≤ 2K

(
∇ fρ,

√
λ

Vρn(2π)n/2

)
, ∀ 0 < s≤ min

{
c′′ρλ1/τ,1

}
,

whereK (~f , t) is the K-functional of the pair
(
(L2

ρX
)n,H n

K

)
defined as

K (~f , t) = inf
~g∈H n

K

{
‖~f −~g‖ρ + t‖~g‖K

}
, t > 0. (39)
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The proof of Proposition 9 shows how our error analysis can be applied.
Proof of Proposition 9. Since the kernelK is C3 and∇ fρ ∈ H n

K , we know from Zhou (2003) that
∂ fρ
∂xi is C1 for eachi. It follows that fρ is C2 and condition (35) is satisfied for some constantc′ρ > 0.

Sinceλ =
(
1/m

)γ
with γ = τ

n+2+3τ ands= (κcρ)
2/τλ1/τ, we see from the factJ2 > 1 that form≥

(κcρ)
2(n+2+3τ)/τ, the restriction 0< s≤ min

{{
2κ2cρ

(
M2+τ +J4 +cρJ2

)}1/τλ1/τ,1
}

in Proposition
15 and Lemma 18 is satisfied. Then by Proposition 15, since1

τ −1≥ 1
2, we have for some constant

Cρ > 0 that

‖~fλ −∇ fρ‖ρ ≤Cρ

( s
λ

+
√

λ
)
≤Cρ(1+(κcρ)

2/τ)

(
1
m

) γ
2

.

Applying Lemma 18, we know that

‖λ
(
LK,s+λI

)−1∇ fρ‖K ≤ 2‖λ
(
Vρn(2π)n/2LK +λI

)−1∇ fρ‖K ≤ 2‖∇ fρ‖K .

This in connection with Theorem 17 implies that

‖~fλ‖K ≤ ‖∇ fρ‖K +2‖∇ fρ‖K +
s
λ

κc′ρJ3 ≤ 3‖∇ fρ‖K +(κcρ)
2/τκc′ρJ3.

Finally, we apply (33) of Theorem 14 and know that for a constantC′
ρ > 0, with confidence

1−δ,

‖~fz,λ −~fλ‖K ≤C′
ρ

{
log(2/δ)√
mλs1+n/2

+
1
m

}
≤C′

ρ log(2/δ)

{(
1
m

) 1
2−γ− γ

2(1+ n
2)

(κcρ)
− 2

τ (1+ n
2) +

1
m

}
.

which is bounded byC′′
ρ log

(
2
δ
)(

1
m

)− τ
2(n+2+3τ) with a constantC′′

ρ . This is true form≥ (κcρ)
2(n+2+3τ)/τ.

Replacing the constantC′′
ρ by a new one enables us to bound errors for the finitely many terms with

m< (κcρ)
2(n+2+3τ)/τ. Thus Proposition 9 is proved.

5. Simulated Data and Gene Expression Data

In this section we apply the least-squares gradient algorithm (7) to the variable selection and variable
covariance problems. Our idea is to rank the importance of variables according to the norm of their

partial derivatives‖ ∂ fρ
∂xℓ ‖, since a small norm implies small changes on the function with respect

to this variable. By our error analysis, we expect~fz,λ ≈ ∇ fρ. So we shall use the norms of the
components of~fz,λ to rank the variables.

Definition 21 The relative magnitude of the norm for the variables is defined as

sρ
ℓ =

‖
(
~fz,λ
)
ℓ
‖K

(
∑n

j=1‖
(
~fz,λ
)

j‖2
K

)1/2
, ℓ = 1, . . . ,n.

In the same way, we can study coordinate covariances by the variance ofan empirical matrix.

Definition 22 Theempirical gradient matrix (EGM), Fz, is the n×m matrix whose columns are
~fz,λ(x j) with j = 1, . . . ,m. Theempirical covariance matrix (ECM),Ξz, is the n×n matrix of inner
products of the directional derivative of two coordinates

Cov(~fz,λ) :=
[
〈
(
~fz,λ
)

p,
(
~fz,λ
)

q〉K

]n

p,q=1
=

m

∑
i, j=1

ci,zc
T
j,zK(xi ,x j).

535



MUKHERJEE ANDZHOU

The ECM gives us the covariance between the coordinates while the EGM gives us information
as how the variables differ over different sections of the space.

We apply our idea to three data sets. The first data set is an artificial one which we use to
illustrate the procedure. The second is a cancer classification problem that has been well studied
and serves as further confirmation of the utility of the method. The third data set provides a gold
standard as to relevant variables.

5.1 Artificial Data

We construct a function in ann = 80 dimensional space which consists of three linear functions
over different partitions of the space. We generate 30 samples as follows:

1. For samples{xi}10
i=1

x j ∼ N (1,σx), for j = 1, . . . ,10; x j ∼ N (0,σx), for j = 11, . . . ,80.

2. For samples{xi}20
i=11

x j ∼ N (1,σx), for j = 11, . . . ,20; x j ∼ N (0,σx), for j = 1, . . . ,10,21, . . . ,80.

3. For samples{xi}30
i=21

x j ∼ N (1,σx), for j = 41, . . . ,50; x j ∼ N (0,σx), for j = 1, . . . ,40,51, . . . ,80.

A draw of thisx matrix is shown in figure (1a). Three vectors with support over different dimensions
were constructed as follows:

w1 = 2+ .5sin(2πi/10) for i = 1, ...,10 and 0 otherwise,

w2 = −2− .5sin(2πi/10) for i = 11, ...,20 and 0 otherwise,

w3 = −2− .5sin(2πi/10) for i = 41, ...,50 and 0 otherwise.

The values for{yi}30
i=1 were given by the following linear equations

1. For samples{yi}10
i=1

yi = xi ·w1 +N (0,σy),

2. For samples{yi}20
i=11

yi = xi ·w2 +N (0,σy),

3. For samples{yi}30
i=21

yi = xi ·w3 +N (0,σy).

A draw of they values is shown in figure (1b).
In figure (1c) we plot the norm of each component of the estimate of the gradient,{‖(~fz,λ)ℓ‖K}80

ℓ=1
for σx = .05 andσy = .30. The norm of each component gives an indication of the importance of a
variable and variables with small norms can be eliminated. Note that the coordinates with nonzero
norm are the ones we expect,ℓ = 1, . . . ,20,41, . . . ,50.

Perhaps more interesting is that we can evaluate the gradient at each sample{xi}m
i=1. This leads

to an estimate of the covariation of the variables. In figure (1d) we plot the EGM, while the ECM is
displayed in figure (1e). The blocking structure of the ECM indicates the coordinates that covary.
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Figure 1: a) The data matrixx where each sample corresponds to a column, b) the vector ofy
values generated by sampling the function, c) the RKHS norm for each dimension, d)
an estimate of the gradient at each sample, the samples correspond to columns, e) the
empirical covariance matrix.
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5.2 Gene Expression Data

In computational biology, specifically in the subfield of gene expression analysis variable selection
and estimation of covariation is of fundamental importance. Microarray technologies enable ex-
perimenters to measure the expression level of thousands of genes, the entire genome, at once. The
expression level of a gene is proportional to the number of copies of mRNAtranscribed by that gene.
This readout of gene expression is considered a proxy of the state of the cell. The goals of gene
expression analysis include using the expression level of the genes to predict classes, for example
tissue morphology or treatment outcome, or real-valued quantities such as toxicity or sensitivity.
Fundamental to understanding the biology giving rise to the outcome or toxicity isdetermining
which genes are most relevant for the prediction.

5.2.1 LEUKEMIA CLASSIFICATION

We apply our procedure to a well studied expression data set. The data set is a result of a study
using expression data to discriminate acute myeloid leukemia (AML) from acute lymphoblastic
leukemia (ALL) (Golub et al., 1999; Slonim et al., 2000) and estimating the genes most relevant to
this discrimination. The data set contains 48 samples of AML and 25 samples of ALL. Expression
levels ofn= 7,129 genes and expressed sequence tags (ESTs) were measured via an oligonucleotide
microarray for each sample. This data set was split into a training set of 38 samples and a test set of
35 samples.

Various variable selection algorithms have been applied to this data set by using the training set
specified in Golub et al. (1999) to select variables and build a classificationmodel and then compute
the classification error on the test set. We estimate~fz,λ from the training data and then select the
S variables with the largestsρ

ℓ . We then use a linear Support Vector Machine (SVM) to build a
classification model and compute the accuracy on the test set. Table 1 reports test errors for various
values ofS . The classification accuracy is very similar to other feature selection algorithms such as
recursive feature elimination (RFE) (Guyon et al., 2002; Lee et al., 2004) and radius-margin bound
(RMB) (Chapelle et al., 2002) both of which were developed specifically for SVMs.

genes (S) 5 55 105 155 205 255 305 355 405 455
test errors 1 3 2 1 1 1 1 1 1 1

Table 1: Number of errors in classification for various values ofS using the genes corresponding to
dimensions with the largest norms. A linear SVM was used for classification.

In figure (2a-d) we plot the relative magnitude sequencesρ
ℓ for the genes. On this data set the

decay in the ranked scoressρ
(ℓ) is steeper than that for most statistics that have been previously used

on this data. To illustrate this we compared the gradient score to the Fisher score Slonim et al.
(2000) for each gene

tℓ =
|µ̂AML

ℓ − µ̂ALL
ℓ |

σ̂AML
ℓ + σ̂ALL

ℓ

,

whereµ̂AML
ℓ is the mean expression level for the AML samples in theℓ-th gene, ˆµALL

ℓ is the mean
expression level for the ALL samples in theℓ-th gene,σ̂AML

ℓ is the standard deviation of the expres-
sion level for the AML samples in theℓ-th gene, and̂σALL

ℓ is the standard deviation of the expression
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level for the ALL samples in theℓ-th gene. We then normalize these scores

sF
ℓ =

tℓ(
∑n

p=1 t2
p

)1/2
.

Figure (2a-d) displays the relative decay ofsρ
(ℓ) andsF

(ℓ) over various numbers of dimensions. In all

plots it is apparent that the decay rate ofsρ
(ℓ) is much steeper. Plotting the decay of the elements for

the normalized hyperplanew
0

‖w0‖ that is the solution of a linear SVM results in a plot much more like
that of the Fisher score than the gradient statistic. Whether and how this steepness (sparsity) has an
implication on the generalization error is an open question.
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Figure 2: The decay ofsρ
(ℓ) (blue) andsF

(ℓ) (red) over: a) all the genes/dimensions, b) the top 2000
genes/dimensions, c) the top 1000 genes/dimensions, d) the top 500 genes/dimensions.

We can also examine the EGM and the ECM. The EGM in this case is a 7,129×38 matrix and
the ECM is 7,129×7,129 matrix. We plot the EGM in the space of the dimensions corresponding
to the top 50 norms ordered by a clustering metric in figure (3a). The covariation in the coordinates
is plotted for the top 50 dimensions ordered in the same way as the EGM (see figure (3b)). The
blocking structure of the matrix gives us coordinate covariance.

5.2.2 GENDER: “A G OLD STANDARD”

In this section we assess the accuracy of the algorithm with respect to a dataset for which a priori
biological knowledge gives us a set of important variables. This servesas a gold standard.
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Figure 3: The a) EGM for the top 50 dimensions ordered by clustering the EGM and b) the ECM
for the top 50 dimensions ordered in the same way.

We examine a gene expression data set with 15 male and 17 females samples from lymphblas-
toid cell lines (unpublished). Expression levels ofn = 22,283 probes corresponding to genes and
expressed sequence tags (ESTs) were measured via an oligonucleotidemicroarray for each sample.

In figure (4a-d) we plot the relative magnitude sequencesρ
ℓ for the genes as compared to those

of the relative Fisher scoresF
ℓ and we see again the quicker decay for the gradient norms.
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Figure 4: The decay ofsρ
(ℓ) (blue) andsF

(ℓ) (red) over: a) all the genes/dimensions, b) the top 200
genes/dimensions, c) the top 100 genes/dimensions, d) the top 50 genes/dimensions.

From a priori biological knowledge we would predict that the most discriminative genes for
gender would be those on the Y chromosome as well as genes on the X chromosome known to
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escape X inactivation. The reason that all the genes on the X chromosome would not be expected to
be discriminative is due to dosage compensation in expression which takes compensates for the fact
that women have two X chromosomes and men have one. The mechanism for thiscompensation
is X inactivation. However, there are genes known to escape X inactivation and these should be
differentially expressed. We obtained a list of such genes by combining listsreported in two sources
(Carrel et al., 1999; Disteche et al., 2002). There were 35 probes in the X inactivation set and 66
probes corresponding to genes on the Y chromosome.

An important caveat is that while these 101 probes would be expected to be differentially ex-
pressed they would not all be expected to rank at the top of a list of genesthat are differentially
expressed. This is due to the fact that in the cell line or tissue of question there may be other genes
that are more strongly differentially expressed due to local conditions. This is why the term gold
standard is quoted.

We first used a standard variation filter (Slonim et al., 2000) which reduced the number of
probes to about 12,000. This data set was then standardized (the expression values for each gene
was recentered and scaled to be zero mean and standard deviation of one). We then iteratively ran
our procedure 20 times, each time removing the bottom 10% of the probes. We found that 16 of
the 101 probes appeared in the top ranked 500 probes. Ranking by the Fisher score we found 22
of the top 101 probes in the top ranked 500 probes. Using the logistic loss mayresult in more like
the Fisher score since it is a more appropriate model for classification. Bothresults are significant
with respect to a hypergeometric distribution as the model for the null hypothesis. However, the
assumptions of independence in the model which gives rise to the hypergeometric distribution are
completely inappropriate in this problem (the probes tend to be strongly correlated). There are
statistical tests that account for the correlations but this topic is beyond the scope of this paper
(Sweet-Cordero et al., 2005; Subramanian et al., 2005).

6. Discussion

We introduce an algorithm that learns gradients from samples of function values and show its rele-
vance to variable selection. An error analysis is given for the convergence of the estimated gradient
to the true gradient. This method also places the problem of variable selection into the powerful
framework of Tikhonov regularization. There are many extensions and refinements to this method
which we discuss below:

1. Logistic regression model: In Definition 2 we state an algorithm for classification. As many
applications of this method are for classification problems it is important to implementa
reduced matrix version of this algorithm as was done for regression by Algorithm 1. In
addition, an error analysis for the classification setting is also necessary.

2. Fully Bayesian model: The Tikhonov regularization framework coupled with the use of an
RKHS allows us to implement a fully Bayesian version of the procedure in the context of
Bayesian radial basis (RB) models Liao et al. (2005); Liao (2005). TheBayesian RB frame-
work can be extended to develop a proper probability model for the gradient learning problem.
The optimization procedures 1 and 2 would be replaced by Markov Chain Monte-carlo meth-
ods and the full posterior rather than the maximum a posteriori estimate would becomputed.
A very useful result of this is that in addition to the point estimates for the gradient we would
also be able to compute confidence intervals.
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3. Intrinsic dimension: In Proposition 9 the rate of convergence of the gradient has the form
of O(m−1/n) which can be extremely slow ifn is large. However, in most data sets and
when variable selection is meaningful the data are concentrated on a much lower dimensional
manifold embedded in the high dimensional space. In this setting an analysis thatreplaces
the ambient dimensionn with the intrinsic dimension of the manifoldnM would be of great
interest.

4. Semi-supervised setting: Intrinsic properties of the manifoldX can be further studied by unla-
belled data. This is one of the motivations of semi-supervised learning. In many applications,
it is much easier to obtain unlabelled data with a larger sample sizeu>> m. For our purpose,
unlabelled datax = (xi)

m+u
i=m+1 can be used to reduce the dimension or correlation. Since we

learn the gradient by~f , it is natural to use the unlabelled data to control the approximate norm
of ~f in some Sobolev spaces and introduce a semi-supervised learning algorithmas

~fz,x,λ,µ = argmin~f∈H n
K

{
1

m2 ∑m
i, j=1w(s)

i, j

(
yi −y j +~f (xi) · (x j −xi)

)2

+ µ
(m+u)2 ∑m+u

i, j=1Wi, j |~f (xi)−~f (x j)|2ℓ2(Rn)
+λ‖~f‖2

K

}
, (40)

where{Wi, j} are edge weights in the data adjacency graph,µ is another regularization param-
eter and often satisfiesλ = o(µ).
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Appendix A

Let S (X) denote the class of all sequencesf = ( f0, f1, ...) of Bochner-integrable random vectors in
X with f0 ≡ 0, defined on a probability space. LetM (X) denote the class of all sequencesf j ∈ S (X)
that are martingales. The following theorem can be found in (Pinelis, 1994)as Theorem 3.3 with a
correction made in Pinelis (1999). Note that Hilbert spaces are(2,D)-smooth Banach spaces with
D = 1.

Theorem 23 (Pinelis, 1994) Suppose that f∈M (X), X is a(2,D)-smooth separable Banach space
and ∥∥∥∥

∞

∑
j=1

E j−1‖ f j − f j−1‖m

∥∥∥∥
∞
≤ m!Γm−2B2/(2D2)

for someΓ > 0,B > 0 and m= 2,3, ... Then for all r≥ 0,

Prob(sup
j
‖ f j‖ ≥ r) ≤ 2exp

(
− r2

Γr +B2 +B
√

B2 +2Γr

)
.
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Appendix B

We give the proof for Theorem 7.
Proof We divide our approximation in three steps.

Step 1. Approximatecz by c̃z which is defined by

c̃z =
(

m2λImn+diag{B1, · · · ,Bm}
[
K(xi ,x j)In

]m
i, j=1

)−1
(Ỹ1, . . . , Ỹm)T ,

whereỸ i = ∑m
j=1wi, j(y j −yi)∑Sℓ=1 σℓ

(
U j

ℓ −U i
ℓ

)
Vℓ. For eachi,

∣∣Ỹ i −Yi
∣∣
ℓ2(Rn)

≤
m

∑
j=1

wi, j2MσS+1

(
d

∑
ℓ=S+1

(
U j

ℓ −U i
ℓ

)2
)1/2

.

Since the matrixU is orthogonal, we know that∑m
ℓ=1

(
U j

ℓ

)2
= 1 for eachj and∑m

j=1

(
U j

ℓ

)2
= 1

for eachℓ. By the Schartz inequality,
∣∣Ỹ i −Yi

∣∣2
ℓ2(Rn)

is bounded by

(4MσS+1)
2

{
m

∑
j=1

(
wi, j
)2 ·

m

∑
j=1

d

∑
ℓ=S+1

(
U j

ℓ

)2
+

( m

∑
j=1

wi, j

)2 d

∑
ℓ=S+1

(
U i

ℓ

)2

}
.

It follows that

∣∣cz− c̃z
∣∣
ℓ2(Rmn)

≤ 1
m2λ

{
m

∑
i=1

∣∣Ỹ i −Yi
∣∣2
ℓ2(Rn)

}1/2

≤ 4MσS+1
√

d− S
m2λ

√
∆m.

Step 2. Approximatẽcz by b̃z which is defined by

b̃z =
(

m2λImn+diag{B̃1, · · · , B̃m}
[
K(xi ,x j)In

]m
i, j=1

)−1
(Ỹ1, . . . , Ỹm)T ,

where

B̃i =
m

∑
j=1

wi, j

S

∑
ℓ=1

S

∑
p=1

σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
VℓV

T
p .

Forb∈ R
n, the vector

(
Bi − B̃i

)
b equals

{
d

∑
ℓ=S+1

S

∑
p=1

+
d

∑
ℓ=1

d

∑
p=S+1

}
σℓσp

m

∑
j=1

wi, j

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
(VT

p b)Vℓ.

By the Schwartz inequality, theℓ2(Rn) norm of the first term above is bounded by

m

∑
j=1

wi, jσS+1





d

∑
ℓ=S+1

(
U j

ℓ −U i
ℓ

)2
(
S

∑
p=1

σp
(
U j

p−U i
p

)
(VT

p b)

)2




1/2

≤
m

∑
j=1

wi, jσS+1

{
d

∑
ℓ=S+1

(
U j

ℓ −U i
ℓ

)2
}1/2

|b|ℓ2(Rn)

{
S

∑
p=1

σ2
p

(
U j

p−U i
p

)2

}1/2

.
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This is at most 2σS+1σ1|b|ℓ2(Rn) ∑m
j=1wi, j . Theℓ2(Rn) norm of the second term in the expression of(

Bi − B̃i
)
b can be bounded in the same way and we thus have

∥∥∥
(
Bi − B̃i

)
b
∥∥∥

ℓ2(Rn)
≤ 4σS+1σ1|b|ℓ2(Rn)

m

∑
j=1

wi, j .

Then we have the following estimate for the operator norm of the differenceof the diagonal opera-
tors ∥∥∥∥diag{B1, · · · ,Bm}−diag{B̃1, · · · , B̃m}

∥∥∥∥≤ 4σS+1σ1 max
1≤i≤m

m

∑
j=1

wi, j .

It follows that
∥∥∥∥diag{B1, · · · ,Bm}

[
K(xi ,x j)In

]m
i, j=1−diag{B̃1, · · · , B̃m}

[
K(xi ,x j)In

]m
i, j=1

∥∥∥∥

≤ 4κ2mσS+1σ1 max
1≤i≤m

m

∑
j=1

wi, j .

Notice that for two invertible operatorsL1,L2 on a Hilbert space, there holds

L−1
1 −L−1

2 = L−1
1 (L2−L1)L

−1
2 .

Hence
‖L−1

1 −L−1
2 ‖ ≤ ‖L−1

1 ‖ ‖L2−L1‖ ‖L−1
2 ‖.

Applying this to our setting, we have

∣∣b̃z− c̃z
∣∣
ℓ2(Rmn)

≤ 4κ2mσS+1σ1

(m2λ)2

{
max

1≤i≤m
∑

j

wi, j

}
∥∥(Ỹ1, . . . , Ỹm)T

∥∥
ℓ2(Rmn)

.

For eachi, we have

∣∣Ỹ i
∣∣
ℓ2(Rn)

≤ 2M
m

∑
j=1

wi, j

{( S
∑
ℓ=1

σ2
ℓ

(
U j

ℓ

)2
)1/2

+

( S
∑
ℓ=1

σ2
ℓ

(
U i

ℓ

)2
)1/2}

.

It follows that
∣∣b̃z− c̃z

∣∣
ℓ2(Rmn)

≤ 8Mκ2mσS+1σ2
1

√
S

(m2λ)2 ∆m.

Step 3. Find the coefficients̃bz. The linear system it satisfies is

m2λb̃i,z +
m

∑
q=1

m

∑
j=1

wi, j

S

∑
ℓ=1

S

∑
p=1

σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
VℓV

T
p K(xi ,xq)b̃q,z = Ỹ i ,

wherei = 1, . . . ,m. SinceỸ i lies in span{Vℓ}Sℓ=1, we know that each̃bi,z also lies in this subspace of
R

n. That is, there is a vectorb∗i,z ∈ R
S such that

b̃i,z =
S

∑
ℓ=1

b∗ℓi,zVℓ, i = 1, . . . ,m.
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Substituting this expression into the linear system forb̃z, we know thatb∗z can be solved by the
linear system

m2λb∗ℓi,z +
m

∑
q=1

m

∑
j=1

wi, j

S

∑
p=1

σℓσp

(
U j

ℓ −U i
ℓ

)(
U j

p−U i
p

)
K(xi ,xq)b

∗p
q,z

=
m

∑
j=1

wi, j(y j −yi)σℓ

(
U j

ℓ −U i
ℓ

)
, 1≤ ℓ ≤ S ,1≤ i ≤ m.

This is exactly the linear system (19). Therefore,b̂i,z = b∗i,z for eachi and b̃z = bz is the desired

coefficients for the function~fz,λ,S .

Appendix C

The following is Matlabr code that implements algorithm (1), the approximation algorithm with
reduced matrix size. The code could be made more efficient by exploiting the vector nature of
Matlab. However, we include the version with loops for transparency.

% a matrix x that is dim by m where m is the number of samples
% a vector y that is m by 1
% eps is a constraint on the ratio of the top s eigenvalues to th e sum over
% all eigenvalues
% lambda is the regularization constant
% sigma is the variance of the weight matrix computed automat ically from the
% data
% F is the gradient evaluated at each sample again a dim by m mat rix
% nrm is the RKHS norm for each dimension

function [F,nrm,sigma] =
solveder(x,y,lambda,eps)

[dim,m] = size(x);

% this subroutine computes distances between all pairs and s ets sigma to the
% median
a = zeros(m,m);

for i=1:m
for j=1:m

a(i,j) = norm(x(:,i)-x(:,j));
end

end
sigma = median(median(a));

% this subroutine computes the weight matrix
a = zeros(m,m);
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for i=1:m
for j=1:m

a(i,j) = (1/(sigma*sqrt(2*pi)))*exp(-norm(x(:,i)-x(:, j))ˆ2/(2*sigmaˆ2));
end

end

% the kernel matrix is computed will add nonlinear version
K = zeros(m,m); K = transpose(x)*x;

% constructs the matrix of differences between all points
M = zeros(dim,m); for i=1:m

M(:,i) = x(:,i)-x(:,m);
end

% computes the eigenvalues and eigenvectors of Mˆt M
% and keeps s eigenvectors as specified by eps
d = eig(K);
W = transpose(M)*M;
[V,d] = eig(W);
d = diag(d);
vals = cumsum(d);
inds = find(vals/vals(m) < eps);
s = m-max(inds);

% since matlab indexes eigenvalues from smallest to largest we reverse
U = zeros(m,m);
dp = zeros(m,1);
for i=1:m

U(:,m-i) = V(:,i);
dp(i) = d(m-i);

end

% projects of the paired differences into the subspace of the s eigenfunctions
t = zeros(s,m); for i=1:m

t(:,i) = sqrt(dp(1:s)).*transpose(U(i,1:s));
end

Ktilde = zeros(m*s,m*s);
ytilde = zeros(m*s,1);

% computes the Ktilde matrix and the vector script Y
for i=1:m

Bmat = zeros(s,s);
yv = zeros(s,1);

546



LEARNING COORDINATE COVARIANCES VIA GRADIENTS

for j=1:m
Bmat = Bmat+a(i,j)* (t(:,j)-t(:,i))*(transpose(t(:,j)- t(:,i)));
yv = yv + a(i,j)*(y(j)-y(i))*(t(:,j)-t(:,i));

end

ytilde((i-1)*s+1:i*s,1) = yv;

for j=1:m
Ktilde((i-1)*s+1:i*s,(j-1)*s+1:j*s) = K(i,j)*Bmat;

end
end

% solves the linear system for coefficients c
I = eye(m*s);
c = (mˆ2*lambda*I+Ktilde) \ytilde;

% uwraps the coefficients into a vector for each sample
Cmat = zeros(dim,m);
for i = 1:m

vec=zeros(dim,1);
for j=1:s

vec = vec+(c((i-1)*s+j,1)/sqrt(dp(j,1)))*M*U(:,j);
end
Cmat(:,i) = vec;

end

% computes the gradient for each sample
F = zeros(dim,m);
F = Cmat*K;

%computes the norm for each dimension
nrm = zeros(dim,1);
for i=1:dim

nrm(i) = Cmat(i,:)*K*transpose(Cmat(i,:));
end
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