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Abstract

We introduce an algorithm that simultaneously estimates a classification function as well as its
gradient in the supervised learning framework. The motivation for the algorithm is to find salient
variables and estimate how they covary. An efficient implementation with respect to both memory
and time is given. The utility of the algorithm is illustrated on simulated data as well as a gene ex-
pression data set. An error analysis is given for the convergence of the estimate of the classification
function and its gradient to the true classification function and true gradient.
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1. Introduction

The advent of data sets with many variables or coordinates in the biological and physical sciences
has driven the use of a variety of machine learning approaches based on Tikhonov regularization
(global shrinkage estimators in the statistics literature) such as support vector machines (SVMs)
(Vapnik, 1998) and regularized least square classification (Poggio and Girosi, 1990). These algo-
rithms have been very successful in classification (binary regression) problems.

In a number of applications, such as the analysis of gene expression data, classical questions
from statistical modeling of which variables are of relevance and how these variables interact arise.
In the context of genomic data an objective of the analysis is to build an interpretable model of
the biological process giving rise to the data. An example of this is that genes co-regulated by a
biological pathway may be modeled as features that covary. Estimation of feature covariation is
not considered in standard regression or classification methods that allow for variable selection:
recursive feature elimination (RFE) (Guyon et al., 2002), least absolute shrinkage and selection
operator (LASSO) (Tibshirani, 1996), and basis pursuits denoising (Chen et al., 1999). Gradient
information was used in Hermes and Buhmann (2000) and Evgeniou et al. (2000a) to select features
via a sensitivity analysis on the gradient of the SVM solution. This approach does not directly
estimate the gradient and its shortcomings will be described in Remark 3. Statistical models based
on shrinkage or regularization were applied to the problem of learning coordinate covariation and
relevance for regression problems in Mukherjee and Zhou (2006). We extend this approach to the
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binary regression or classification setting by simultaneously estimating the classification function
as well as its gradient.

1.1 Review on Convex Risk Minimization Approach for Classification

In this subsection we review the convex risk minimization approach.
Let X be a compact metric space and Y = {1,−1}. Let ρ(x,y) be a probability distribution on

Z := X×Y and z =
{

(xi,yi)
}m

i=1 ∈ Zm a random sample independently drawn according to ρ(x,y).
Convex risk minimization methods, which include support vector machines (SVMs) and boost-

ing as typical examples, have been successful in a variety of classification problems. This approach
involves a convex loss function φ and learns a real-valued classification function from a given sam-
ple z =

{

(xi,yi)
}m

i=1 by minimizing the convex empirical risk functional in a hypothesis space H
(often with a regularization or penalty term):

fz = arg min
f∈H

{ 1
m

m

∑
i=1

φ(yi f (xi))
}

. (1)

The loss function may take the form of the hinge loss φ(t) = (1− t)+ in SVMs and logistic loss
φ(t) = log(1+ e−t) in boosting. Define the expected error of a function f as

R ( f ) =
Z

φ(y f (x))dρ(x,y),

and the real-valued classification function as the function in L2
ρX

, where ρX is the marginal distribu-
tion on x, that minimizes

fφ = arg min
f∈L2

ρX

R ( f ).

Under certain conditions (Vapnik, 1998; Bartlett et al., 2005) sgn[ fφ] is a Bayes optimal classifier.
Extensive investigation in learning theory (Cortes and Vapnik, 1995; Vapnik, 1998; Evgeniou et al.,
2000b; Schoelkopf and Smola, 2001; Zhang, 2004; Bartlett et al., 2005; Wu and Zhou, 2005) has
shown that R ( fz)→R ( fφ), which implies that the error of sgn( fz) converges to the error of a Bayes
optimal classifier with respect to the misclassification error:

C (sgn( f )) = Prob{sgn( f (x)) 6= y}.

This forms the theoretical foundation of the convex risk minimization method.

1.2 Learning the Classification Function and Gradient

In this paper we are interested in simultaneously learning fφ and its gradient from the sample values,
z =

{

(xi,yi)
}m

i=1. Denote x = (x1,x2, . . . ,xn)T ∈ R
n. The gradient of fφ is the vector of functions (if

the partial derivatives exist)

∇ fφ =

(

∂ fφ

∂x1 , . . . ,
∂ fφ

∂xn

)T

.

Note that gradient learning is meaningful for classification problems in this sense because fφ is
real-valued and may be smooth. For example, in the case of the logistic function (Hastie et al.,
2001)

φ(y f (x)) = log
(

1+ e−y f (x)).
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the classification function has a clear statistical interpretation (modeling the conditional probability
ρ(y|X) as a Bernoulli random variable)

Prob(y =±1|x) =
1

1+ e−y fφ(x)
.

In this case the classification function is

fφ(x) = ln

[

Prob(y = 1|x)
Prob(y =−1|x)

]

and the gradient of fφ exists under very mild conditions on the underlying distribution ρ. This is one
of the reasons we use a logistic model rather than learning the gradient of a {−1,1} classification
function. In addition, the logistic model incorporates the uncertainty of the conditional probability
at each x which the binary classification function does not.

The relevance of learning the gradient with respect to the problems of variable selection and
estimating coordinate covariation is that the gradient provides the following information:

(a) variable selection: the norm of a partial derivative ‖ ∂ fφ
∂x j ‖L2

ρX
indicates the relevance of this vari-

able, since a small norm implies a small change in the discriminative function fφ with respect to the
j-th coordinate,

(b) coordinate covariation: the inner product between partial derivatives
〈

∂ fφ
∂x j ,

∂ fφ
∂x`

〉

indicates the

covariance of the j-th and `-th coordinates with respect to variation in fφ.
At first glance, the problem of estimating the gradient is equivalent to that of computing clas-

sical numerical derivatives in inverse problems. This is the case if we know the sample pair
{(xi, fφ(xi)}m

i=1. But we face the difficulty that what we have in hand is the set of samples z where
yi ∈ {±1} is not an approximation of the value fφ(xi) but only its sign. So the classical methods
for numerical derivatives fail for learning gradients in the classification setting. Instead, we will
motivate a new approach.

The derivation of our gradient learning algorithm can be motivated by the Taylor expansion of
fφ, assuming it exists:

fφ(x)≈ fφ(u)+∇ fφ(x) · (x−u), for x≈ u.

Our objective will be to estimate fφ by a function g and its gradient ∇ fφ by a vector valued
function ~f = ( f1, f2, . . . , fn)

T : X →R
n. If the estimates are accurate then the following should hold

fφ(x)≈ g(u)+ ~f (x) · (x−u), for x≈ u.

The optimization given in (1) suggests a method for estimating g and ~f : we minimize a quantity that
is like the convex empirical risk but with f (xi) replaced by g(u)+ ~f (xi) · (xi−u) with some u≈ xi.
As for the choice of u, a natural idea is to set u = x j and take a weighted average with the weights
being chosen to enforce the locality constraints x j ≈ xi implicit in the Taylor expansion. Various
weights may play the same role whenever they satisfies wi, j → 0 as |xi− x j| → 0. Throughout this
paper we will use a Gaussian with variance s as our weight function:1

wi, j = w(s)
i, j =

1
sn+2 e−

|xi−x j |2

2s2 = w(xi− x j), i, j = 1, . . . ,m.

1. In standard problems such as density estimation the Gaussian is normalized by a term of the form 1
sn since the

following integral should be invariant with respect to dimension

1
sn

Z

Rn
e−|x|

2/s2
dx = constant.
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Other weight functions can be used as long as the bandwidth of the weight function decreases with
the number of samples. Using the Gaussian weight function leads to the following empirical error
functional.

Definition 1 Given a sample z∈ Zm, a function g : X→R, and a vector-valued function ~f : X→R
n,

we define the empirical error as follows:

Ez(g, ~f ) =
1

m2

m

∑
i, j=1

w(s)
i, j φ
(

yi(g(x j)+ ~f (xi) · (xi− x j))
)

.

We may expect that minimizing this error functional using functions in a hypothesis space H n+1

leads to gz and ~fz such that

gz(u)+ ~fz(x) · (x−u)≈ fz(x)≈ fφ(x)≈ fφ(u)+∇ fφ(x) · (x−u), for x≈ u.

This in general leads to gz ≈ fφ and ~fz ≈ ∇ fφ.

To formulate the algorithm, we need to specify the hypothesis space. In this paper we will
restrict H to be a Reproducing Kernel Hilbert Space (RKHS) HK with an associated Mercer kernel
K : X × X → R that is continuous, symmetric and positive semidefinite. The RKHS is defined
(Aronszajn, 1950) to be the completion of the linear span of the set of functions {Kx := K(·,x) : x ∈
X} with the inner product 〈·, ·〉K satisfying 〈Ku,Kv〉K = K(u,v). The reproducing property of HK is

〈Kx, f 〉K = f (x), ∀x ∈ X , f ∈HK . (2)

This implies that every function f ∈HK is continuous and bounded. Hence HK ⊂C(X)⊂ L2
ρX

(X).

Regularizing or shrinking the empirical error Ez(g, ~f ) with respect to the RKHS norm defines
the following optimization problem.

Definition 2 Given a sample z∈ Zm we can estimate the classification function, gz, and its gradient,
~fz, as follows:

(gz, ~fz) = argmin
(g,~f )∈H n+1

K

{

Ez(g, ~f )+
λ
2
(‖g‖2

K +‖~f‖2
K)

}

, (3)

where s,λ > 0 are the regularization parameters and, for ~f = ( f 1, . . . , f n)∈H n
K , ‖~f‖2

K = ∑n
i=1 ‖ f i‖2

K .

The immediate advantages of this technique are preventing overfitting and easy computability
due to a representer theorem (see Section 2). Another advantage of our method is the derived
functions are already approximations of the partial derivatives and they have RKHS inner products
which are computed in the estimation process. The inner products reflect the nature of the measure,
which is often on a low dimensional manifold embedded in a high dimensional space.

In our paper for technical reasons that will become apparent in the proofs the following quantity should be invariant
with respect to dimension

1
sn+2

Z

Rn
e−|x|

2/s2 |x|2dx = constant.
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Remark 3 One may consider a natural approach of finding an approximation of fφ (for example
by (1)) and then computing partial derivatives. But recall our aim is feature (or variable) selection.
The problem with this approach is that the partial derivatives may no longer be in the RKHS of the
classification function. This leaves us with the problem of not having a norm or computable metric
to work with.

The hypothesis space H n
K in the optimization problem (3) may be replaced by some other space

of vector-valued functions (Micchelli and Pontil, 2005) in order to learn the gradients.
The distance between points in the Taylor expansion as well as in the weighting function are

in the input space and not the feature space of the kernel. This is a natural formulation and an
argument for this formulation is that with this distance the algorithms can be extended to a manifold
setting without any changes (Mukherjee et al., 2006).

1.3 Overview

In Section 2, we show that the minimizer of the optimization problem (3) satisfies a representer
theorem and then provide a procedure to compute the parameters. In Section 3, we prove the
convergence of our estimate of the gradient, ~fz, to the true gradient of the classification function,
∇ fφ. The utility of the algorithm is illustrated in Section 4 on simulated data as well as gene
expression data. We close with a brief discussion in Section 5.

2. Representer Theorem and Parameter Computation

The optimization problem defined by Equation (3) is a convex optimization problem because φ(·),
‖g‖2

K , and ‖~f‖2
K are all convex functionals. Denote R

p×q as the space of p× q matrices. The
algorithm that implements the optimization procedure is given in Section 2.1.

The following theorem is an analog of the standard representer theorem (Wahba, 1990; Schoelkopf
and Smola, 2001) that states the minimizer of the optimization problem defined by Equation (3) has
a finite dimensional representation.

Proposition 4 Given a sample z ∈ Zm the solution of (3) exists and takes the form

gz(x) =
m

∑
i=1

αi,zK(x,xi) and ~fz(x) =
m

∑
i=1

ci,zK(x,xi) (4)

with cz = (c1,z, . . . ,cm,z) ∈ R
n×m and αz = (α1,z, ...,αm,z)

T ∈ R
m.

Proof The existence follows from the convexity of φ and functionals ‖g‖2
K and ‖~f‖2

K . Suppose
(gz, ~fz) is a minimizer. We can write functions gz ∈HK and ~fz ∈H n

K as

gz = g‖+g⊥ and ~fz = ~f‖+~f⊥

where g‖ and each element of ~f‖ is in the span of {Kx1 , , ...,Kxm}, and g⊥ and ~f⊥ are functions in the

orthogonal complement. By the reproducing property gz(xi) = g‖(xi) and ~f (xi) = ~f‖(xi) for all xi.

So the functions g⊥ and ~f⊥ do not have an effect on Ez(g, ~f ). But ‖gz‖2
K = ‖g‖+ g⊥‖2

K > ‖g‖‖2
K

and ‖~fz‖2
K = ‖~f‖+ ~f⊥‖2

K > ‖~f‖‖2
K unless g⊥, ~f⊥ = 0. This implies that gz = g‖ and ~fz = ~f‖. This

results in the representations in Equation (4).
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The optimization in Equation (3) can be written in terms of the coefficients cz and αz. We
define a matrix C = (c1,c2, . . . ,cm) ∈ R

n×m (when optimized these will be the coefficients cz in the
gradient expansion) and the vector α ∈ R

m (when optimized the vector will be αz). We denote the
kernel matrix K where Ki j = K(xi,x j) for i, j = 1, ...,m and the i-th row of the matrix as ki. The
optimization function can be written in matrix form as

Φ(C,α) =
1

m2

m

∑
i, j=1

wi, jφ
(

yi(k jα+ kiC
T (xi− x j))

)

+
λ
2

(

αT Kα+Tr(CKCT )
)

, (5)

where Tr(M) is the trace of a matrix M.

Proposition 5 If φ is differentiable, then the coefficients cz and αz can be computed from the equa-
tion ∇Φ(α,C) = 0.

We can optimize (5) by using Newton’s method to solve ∇Φ(α,C) = 0. The matrix C however
is an n×m matrix and optimizing in R

mn is problematic for applications where n� m. We will
show that the coefficients can be computed by the optimization of an m×d matrix, where typically
d� m. We will then apply Newton’s method in this reduced space.

Define a vector-valued function

h = ((h0)T ,(h1)
T , . . . ,(hm)T )T : R

(n+1)m→ R
(n+1)m

with

h0 = (h0
1, . . . ,h

0
m)T , h0

j(α,C) =
1

m2

m

∑
i=1

wi, jφ′
(

yi(k jα+ kiC
T (x j− xi))

)

yi +λα j

and, for i = 1, . . . ,m,

hi(α,C) =
1

m2

m

∑
j=1

wi, jφ′
(

yi(k jα+ kiC
T (x j− xi))

)

yi(xi− x j)+λci.

By direct computation, we have

∇Φ(α,C) =

(

K 0
0 K⊗ In

)

h(α,C) (6)

where In is the n×n identity matrix. Solving for the coefficients will give us the following proposi-
tion.

Proposition 6 If the solution to the equation h(α,C) = 0 exists, then the coefficients cz in the repre-
sentation of ~fz satisfy the constraint for every i = 1, . . . ,m ci,z ∈Vx = span

{

xi− x j : i, j = 1, . . . ,m
}

.

Proof By the assumption, there exists (αz,cz) solving the equation h(α,C) = 0. So ∇Φ(αz,cz) = 0
and (αz,cz) gives the representation of gz and ~fz. By the definition of h, we have hi(αz,cz) = 0
which implies ci,z ∈Vx. This proves the proposition.
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Remark 7 We know the solution (gz, ~fz) exists and even is unique. This implies the existence of the
solution to ∇Φ(α,C) = 0. But the existence of the solution to h(α,C) = 0 is not clear. In fact, this
may not be always the case when K is not invertible.

Proposition 6 states that the coefficients ci,z are in the span of the pairwise differences of the
input data, which is a low dimensional subspace of R

n. This allows us to reduce the dimension of
the optimization problem of solving for the coefficients cz. We apply the well known approach of
singular value decomposition to the matrix involving the data x given by

Mx = (x1− xm,x2− xm, . . . ,xm−1− xm,xm− xm) ∈ R
n×m.

Assume the rank of Mx is d. The theory of singular value decomposition tells us that there exists an
n×n orthogonal matrix V = (V1,V2, . . . ,Vn) and an m×m orthogonal matrix U = (U1,U2, . . . ,Um)
such that

Mx = V ΣUT = (V1 V2 · · · Vn)

(

diag{σ1,σ2, · · · ,σd} 0
0 0

)











UT
1

UT
2
...

UT
m











.

Here σ1 ≥ σ2 ≥ ·· · ≥ σd > σd+1 = . . . = σmin{m,n} = 0 are the singular values of Mx. The matrix

Σ is n×m and has entries of zero except for Σi,i = σi for i = 1, . . . ,d. The vectors {Vi}d
i=1 form an

orthonormal basis for Vx and denote V = (V1, . . . ,Vd).
Set βi ∈ R

d to satisfy xi− xm = V βi for i = 1, . . . ,m. For γ0 ∈ R
m and γ = (γ1, . . . ,γm) ∈ R

d×m,
define the vector-valued function

u = ((u0)T ,(u1)
T , . . . ,(um)T )T : R

m(d+1)→ R
m(d+1)

by

u0 = (u0
1, . . . ,u

0
m)T , u0

j(γ
0,γ) =

1
m2

m

∑
i=1

wi, jφ′
(

yi(k jγ0 + kiγT (βi−β j))
)

yi +λγ0
j ,

and, for i = 1, . . . ,m,

ui(γ0,γ) =
1

m2

m

∑
j=1

wi, jφ′
(

yi(k jγ0 + kiγT (βi−β j))
)

yi(βi−β j)+λγi.

Proposition 8 If γ0
z ∈R

m and γz = (γ1,z, . . . ,γm,z)∈R
d×m are solutions of the equation u(γ0,γ) = 0,

then cz and αz defined by

αz = γ0
z , ci,z = V γi,z for i = 1, . . . ,m,

solve ∇Φ(α,C) = 0 and hence yield a representation of gz and ~fz respectively.

Proof By the facts that ci = V γi for i = 1, . . . ,m defines a one-to-one mapping from Vx onto R
d and

V TV = Id the d-dimensional identity matrix, direct computation shows that u(γ0
z ,γz) = 0 implies

h(αz,cz) = 0. Then the conclusion follows from Proposition 5 and Equation (6).
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We now use Proposition 8 to derive the update rule in Newton’s method to optimize the coeffi-
cients γ0 and γ. Let η = ((γ0)T ,(γ1)

T , ...,(γm)T )T ∈R
m(d+1) and consider the map u(η) on R

m(d+1)

defined as u = ((u0)T ,(u1)
T , ...,(um)T )T . When φ is twice differentiable, we can use Newton’s

method to solve the equation u(η) = 0 by the following iterative update rule

ηt+1 = ηt − (∇u(ηt))
−1u(ηt).

2.1 The Optimization Algorithm

The results of the previous section are summarized here to formulate the algorithm that implements
the optimization procedure. Before we state the algorithm we restate the matrices and vectors
involved in the optimization:

1. the input data (xi)
m
i=1

2. the kernel matrix K given the kernel function

Ki, j = K(xi,x j) for i, j = 1, ..,m

3. the elements of the weight matrix given the parameter s

wi, j = exp(−‖xi− x j‖2/2s2) for i, j = 1, ..,m

4. the label vector computed from the output variables y = (y1, . . . ,ym)T

5. Mx = [x1− xm,x2− xm, . . . ,xm−1− xm,xm− xm] ∈ R
n×m

6. V = (v1,v2, . . . ,vd) the d left eigenvectors of MT
x Mx

7. βi = V T (xi− xm) for i = 1 to m

8. at iteration t we have the vector ηt = ((γ0)T ,(γ1)
T , ...,(γm)T )T ∈R

m(d+1) with γ0 := ηt(1 : m),
γi := ηt(m+(i−1)d +1 : m+ id), and γ := (γ1, . . . ,γm)

9. at each iteration the matrix a ∈ R
m×m is defined by its components

ai, j = wi, jφ′
(

yi(k jγ0 + kiγT (βi−β j))
)

where ki is the i-th column of the kernel matrix

10. at each iteration the matrix A ∈ R
m×m is defined by its components

Ai, j = wi, jφ′′
(

yi(k jγ0 + kiγT (βi−β j))
)

11. given the matrix a we define the vectors b0 = aT y and

bi = yi

m

∑
j=1

ai, j(βi−β j) where i = 1, . . . ,m

2488



COORDINATE COVARIATION IN CLASSIFICATION

12. given the matrix A we define the m×m matrix

K0 = diag(A1m)K where 1m = (1,1, . . . ,1)T

13. from the matrices

K1( j, `) =
m

∑
i=1

Ai, jK(xi,x`)(βi−β j)
T where j, ` = 1, ..,m

construct the matrix

K̃1 =







K1(1,1) . . . K1(1,m)
...

. . .
...

K1(m,1) . . . K1(m,m)







14. from the matrices

K2(i, `) =
m

∑
j=1

Ai, jK(x j,x`)(βi−β j) where i, ` = 1, ..,m

construct the matrix

K̃2 =







K2(1,1) . . . K2(1,m)
...

. . .
...

K2(m,1) . . . K2(m,m)







15. from the matrices

Bi =
m

∑
j=1

Ai, j(βi−β j)(βi−β j)
T where i = 1, ..,m

construct the matrix

K̃3 =











B1K(x1,x1) B1K(x1,x2) . . . B1K(x1,xm)
B2K(x2,x1) B2K(x2,x2) . . . B2K(x2,xm)

...
...

. . .
...

BmK(xm,x1) BmK(xm,x2) . . . BmK(xm,xm)











.

16. the coefficents of the classification function estimate, αz ∈ R
m and gz = ∑m

i=1 αi,zK(x,xi)

17. the coefficents of the gradient estimate (ci,z)
T ∈R

p for i = 1, . . . ,m and ~fz = ∑m
i=1 ci,zK(x,xi).

Given the above quantities we now state the algorithm for solving the optimization problem for
learning gradients.
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Algorithm 1: Algorithm for computing gz and ~fz

input : inputs x = (xi, . . . ,xm), labels y = (y1, . . . ,ym)T , kernel K, weights (wi, j),
regularization parameter s, λ > 0 and threshold ε > 0

return: coefficients αz and (ci,z)
m
i=1

Mx = [x1− xm,x2− xm, . . . ,xm−1− xm,xm− xm];
[V,Σ,U ] = svd(Mx);

η0 = 0; stop← false; t← 0;
repeat

u(ηt) =
1

m2 (bT
0 ,bT

1 , . . . ,bT
m)T +ληt ;

∇u(ηt) = λIm(d+1) +
1

m2

(

K0 K̃1

K̃2 K̃3

)

;

∆ηt = (∇u(ηt))
−1u(ηt);

ηt+1 = ηt −∆ηt ;
t← t +1
If ‖∆ηt‖ ≤ ε stop← true

until stop=true ;

αz = ηt(1 : m);
γi,z = ηt(m+(i−1)d +1 : m+ id) for i = 1, . . . ,m;
ci,z = V γi,z for i = 1, . . . ,m;

3. Error Analysis

In this section, we investigate the statistical performance of the algorithm. We will show that under
certain conditions, gz→ fφ and ~fz → ∇ fφ as λ,s→ 0. Let us first illustrate this by a specific case
where φ(·) is the logistic loss and ( fφ,∇ fφ) ∈ H n+1

K (this case corresponds to the realizable setting
in the PAC learning paradigm). Denote as ∂X the boundary of X and d(x,∂X) the distance of x ∈ X
from ∂X .

Theorem 9 Let φ be the logistic loss. Assume that for some constants cρ > 0 and 0 < θ ≤ 1 the
marginal distribution ρX satisfies

ρX ({x ∈ X : d(x,∂X) < s})≤ cρs, (7)

and the density p(x) of ρX exists and satisfies

sup
x∈X

p(x)≤ cρ and |p(x)− p(u)| ≤ cρ|x−u|θ, ∀u,x ∈ X . (8)
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Suppose that K ∈C2 and ( fφ,∇ fφ)∈H n+1
K . Choose λ = λ(m) = m−

2θ
3(n+2+2θ) and s = s(m) = m−

1
3(n+2+2θ) .

Then there exists a constant C > 0 such that for any 0 < η < 1 with confidence 1−η

‖gz− fφ‖L2
ρX
≤ C log

4
η

(

1
m

) θ
6(n+2+2θ)

,

‖~fz−∇ fφ‖L2
ρX
≤ C log

4
η

(

1
m

) θ
6(n+2+2θ)

.

Condition (8) means the density of the marginal distribution is Hölder θ. Condition (7) is about
the behavior of ρX near the boundary of X . When the boundary is piecewise smooth, (8) implies (7).

Theorem 9 is a consequence of the more general Theorem 10 which we prove in Section A.3.
We first define two quantities that will be used extensively.

κ = sup
x∈X

√

K(x,x); D = max
x,u∈X

|x−u|.

Note that the reproducing property (2) of the RKHS HK implies ‖ f‖∞ ≤ κ‖ f‖K for f ∈ HK . This
will be used constantly in the following.

For a convex loss function φ and r > 0, define

Lr = max
{

|φ′(κ(1+D)r)|, |φ′(−κ(1+D)r)|
}

,

Mr = max{φ(κ(1+D)r),φ(−κ(1+D)r)} .

By convexity of φ both Lr and Mr increase with r.

Theorem 10 Let the convex loss function φ be twice differentiable and satisfy

q1(T ) = inf
|t|≤T

φ′′(t) > 0, q2(T ) = sup
|t|≤T

φ′′(t) < ∞.

Assume ρ satisfies (7) and (8), K ∈C2, ( fφ,∇ fφ) ∈ H n+1
K . Then there exists a constant C̃ such that

for 0 < δ < 1/2, 0 < s,λ≤ 1 with probability at least 1−2δ

max

{

‖gz− fφ‖2
L2

ρX
,‖~fz−∇ fφ‖2

L2
ρX

}

≤ C̃

{

r2sθ +Br

(

Lrr +Mr log 2
δ√

msn+2 + s2 +λ

)

s−θ

}

,

where

r = c̃

{

1+
s2

λ
+

(

Lλ,s√
λsn+2

+Mλ,s log
2
δ

)

1√
mλsn+2

}1/2

(9)

with some c̃≥ 1, Lλ,s = L√
2φ(0)/λsn+2 , and Mλ,s = M√

2φ(0)/λsn+2 and Br = min
{

1
q1(c0r) ,r

}

with some

c0 > 0.

Remark 11 Theorem 10 applies only to the loss functions satisfying φ′′(t) > 0 because of the re-
quirements on q1, which excludes the SVM hinge loss. As for the quantity Br, we note that it does
not increase very quickly with r. One can take Br = r for logistic loss and exponential loss where
q1(T ) decays exponentially fast with T. While for the square loss, Br = 1 for q1(T )≡ 1.
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Since the entire proof is rather complicated it has been postponed to the appendix. We now
prove Theorem 9 using Theorem 10.
Proof of Theorem 9. Note that for logistic loss, φ′(t) = −e−t

1+e−t ∈ (−1,1). So Lr ≤ 1 and Lλ,s ≤ 1.
Since φ(t) ≤ φ(0)+ |t| < 1 + |t|, we have Mr ≤ (1 + κ(1 + D))r when r ≥ 1 and so Mλ,s ≤ 2(1 +

κ(1 + D))(λsn+2)−1. Also, φ′′(t) = 2e−t

(1+e−t)2 implies 1
q1(r)
≥ c0r, q2(c0r) ≤ 1/2. Substitute Lλ,s and

Mλ,s into (9). The choice of λ,s ensures that r≤ r0 with r0 > 1 an absolute constant. Since Br,Lr,Mr

are increasing with respect to r, so is the upper bound in Theorem 10. Substituting r0 into this upper
bound and by the choice of λ,s, we obtain with confidence at least 1−2δ

max

{

‖gz− fφ‖2
L2

ρX
,‖~fz−∇ fφ‖2

L2
ρX

}

≤C log
2
δ

(

1
m

) θ
3(n+2+2θ)

,

where
C = C̃

(

(r0)
2 +Br0(Lr0r0 +Mr0 +2)

)

.

Setting δ = η
2 finishes the proof. �

Remark 12 In order to calculate the learning rate, we have imposed a rigid assumption on fφ:
both fφ and each element of ∇ fφ are in HK . But the convergence may hold under milder conditions,
say, they lie in the closure of HK in L2

ρX
. This is in general true if HK is dense in L2

ρX
, for example

the case of a Gaussian kernel.

4. Simulated Data and Gene Expression Data

In this section we apply the gradient learning algorithm (3) to the problem of estimating a classifica-
tion function and simultaneously selecting relevant variables and measuring their covariance. The

idea is to rank the importance of variables according to the norm of their partial derivatives ‖ ∂ fφ
∂x` ‖,

since a small norm implies small changes of the classification function with respect to this variable.
By our error analysis, we expect ~fz ≈ ∇ fφ. So we shall use the norms of the components of ~fz to
rank the variables.

Definition 13 The relative magnitude of the norm for the variables is defined as

sφ
` =

‖
(

~fz
)

`
‖K

(

∑n
j=1 ‖

(

~fz
)

j‖2
K

)1/2
, ` = 1, . . . ,n.

In the same way, we can study coordinate covariances by an empirical matrix.

Definition 14 The empirical gradient matrix (EGM), Fz, is the n×m matrix whose columns are
~fz(x j) with j = 1, . . . ,m. The empirical covariance matrix (ECM), Ξz, is the n×n matrix of inner
products of the directional derivative of two coordinates

Cov(~fz) :=
[

〈
(

~fz
)

p,
(

~fz
)

q〉K
]n

p,q=1
= czKcT

z =
m

∑
i, j=1

ci,zcT
j,zK(xi,x j).
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The ECM gives us the covariance between the coordinates while the EGM gives us information
as how the variables differ over different sections of the space.

We apply our idea to three data sets. The first two data sets are artificial ones which we use to
illustrate the procedure. The third is a cancer classification problem that has been well studied and
serves as further confirmation of the utility of the method. For all three the parameter s of the Gaus-
sian was set as the median of all pairwise distances between points in the data. More experiments
including data sets for more challenging classification problems can be found in Mukherjee et al.
(2006) where we also developed a novel feature selection procedure via learning gradients.

4.1 Linearly Separable Simulation

Linearly separable data is drawn from two classes in an n = 80 dimensional space. Samples from
class −1 were drawn from

x j ∼ No(1.5,1), for j = 1, . . . ,10,

x j ∼ No(−3,1), for j = 11, . . . ,20,

x j ∼ No(0,σnoise), for j = 21, . . . ,80,

where No(µ,σ) is the normal distribution with mean µ and standard deviation σ. Samples from class
+1 were drawn from

x j ∼ No(1.5,1), for j = 41, . . . ,50,

x j ∼ No(−3,1), for j = 51, . . . ,60,

x j ∼ No(0,σnoise)), for j = 1, . . . ,40,61, . . . ,80.

We ran our algorithm on draws of the above data using a linear kernel and report both the results
of the gradient estimate as well as the classification function passed through a logistic function.

Drawing twenty samples from the two respective classes results in a design matrix x that is
80×40 where the first twenty samples belong to class −1 and the remaining to class +1. Figure 1
contains results for data where we set σnoise = .1. A draw of this matrix is displayed in Figure 1a.
In Figure 1d we display the conditional likelihoods obtained by the classification function on the
training data. A leave-one-out analysis yields similar results. For Figure 2 the data was generated
with σnoise = 1. Note that in the this case standard methods such as PCA would not find the correct
features since the variance in all dimensions is equal. The plots corresponding to Figures 2a-d are
analogous to those in Figure 1.

In Figures 1b and 2b we plot the norm of each component of the estimate of the gradient,
{‖(~fz)`‖K}80

`=1. The norm of each component gives an indication of the importance of a variable
and variables with small norms can be eliminated. Note that the coordinates with large norms are
the ones we expect, ` = 1, . . . ,20,41, . . . ,60. Figures 1c and 2c display the empirical covariance
matrix. The blocking structure of this matrix indicates the covariance of coordinates.

4.2 Nonlinearly Separable Simulation

Data is drawn from two classes in an n = 200 dimensional space that are nonlinearly separable in
the first two dimensions. Samples from class +1 were drawn from

(x1,x2) = (r sin(θ),r cos(θ)), where r ∼U [0,1] and θ∼U [0,2π],

x j ∼ No(0.0, .2), for j = 3, . . . ,200,
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Figure 1: a) The data matrix x where each sample corresponds to a column and the first twenty
samples correspond to class −1 and the second twenty to class +1, b) the RKHS norm
for each dimension, c) the empirical covariance matrix, d) the predicted class probabilities
on the training data.
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Figure 2: a) The data matrix x where each sample corresponds to a column and the first twenty
samples correspond to class −1 and the second twenty to class +1, b) the RKHS norm
for each dimension, c) the empirical covariance matrix, d) the predicted class probabilities
on the training data.

where U [a,b] is the uniform distribution with support on the interval [a,b]. Samples from class −1
were drawn from

(x1,x2) = (r sin(θ),r cos(θ)), where r ∼U [2,3] and θ∼U [0,2π],

x j ∼ No(0.0, .2), for j = 3, . . . ,200.

Note that the data can be separated by a circle in the first two dimensions.
Drawing thirty samples from the two respective classes results in a design matrix x that is

200× 60 where the first thirty samples belong to class −1 and the remaining to class +1. A draw
of the first two dimensions of the data is displayed in Figure 3a. Since a linear function cannot
accurately classify the data we used a Gaussian kernel

K(u,v) = e−|u−v|2/2σ2
,

where σ was set to the median pairwise distances between points. In the following we report both
the results of the gradient estimate as well as the classification function passed through a logistic
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function. In Figure 3c,d we plot the norm of each component of the estimate of the gradient. The
norm of first two coordinates are much larger than the norm of any of the other coordinates,

mini=1,2 ‖
(

~fz
)

i‖K

maxi=3,...,200 ‖
(

~fz
)

i‖K
> 90.

In Figure 3b we plot the ECM. The blocking structure of the ECM indicates the covariance of the
first two coordinates. In Figure 3e we display the conditional likelihoods obtained by the classifica-
tion function on the training data without any feature selection. The classification accuracy improves
when we rerun our algorithm using only the dimensions with nonzero norms (3f). The classification
results are comparable to what would be obtained by using regularized logistic regression.

4.3 Gene Expression Data

In computational biology, specifically in the subfield of gene expression analysis variable selection
and estimation of covariation is of fundamental importance. Microarray technologies enable exper-
imenters to measure the expression level of thousands of genes, the entire genome, at once. The
expression level of a gene is proportional to the number of copies of mRNA transcribed by that
gene. This readout of gene expression is considered a proxy of the state of the cell. The goals
of gene expression analysis include using the expression level of the genes to predict classes, for
example tissue morphology or treatment outcome, or real-valued quantities such as drug toxicity
or sensitivity. Fundamental to understanding the biology giving rise to the outcome or toxicity is
determining which genes are most relevant for the prediction.

4.4 Leukemia Classification

We apply our procedure to a well studied expression data set. The data set is a result of a study
using expression data to discriminate acute myeloid leukemia (AML) from acute lymphoblastic
leukemia (ALL) (Golub et al., 1999; Slonim et al., 2000) and estimating the genes most relevant to
this discrimination. The data set contains 48 samples of AML and 25 samples of ALL. Expression
levels of n = 7,129 genes and expressed sequence tags (ESTs) were measured via an oligonucleotide
microarray for each sample. This data set was split into a training set of 38 samples and a test set of
35 samples.

Various variable selection algorithms have been applied to this data set by using the training set
specified in Golub et al. (1999) to select variables and build a classification model and then compute
the classification error on the test set. In the same spirit as recursive feature elimination (RFE) we
iteratively run our procedure on the training data and remove all variables except for the S with
the largest norm, sφ

` . In Table 1 we report test errors for various values of S that result from the
following procedure:

1. given training data z7129 and test data tz7129 compute the number of errors on the test data
ter7129(tz7129) = |sign[gz7129(tz7129)] 6= ty| and the vector of norms {sφ

`}7129
`=1

2. for S = 3000,1000,500,400,300,200,100,50 repeat steps 3,4

3. project the test and training data into the dimensions corresponding to the top S values of
{sφ

`} : zS and tzS
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Figure 3: a) The first two dimensions of the data matrix class +1 are the circles and class −1 are
the stars, b) the empirical covariance matrix for the first 10 dimensions, c) the RKHS
norm for the first 100 dimensions , d) the RKHS norm for the first 10 dimensions, e) the
predicted class probabilities on the training data with no feature selection again circles
are class +1 and stars are class −1, f) the predicted class probabilities on the training
data with feature selection.

2497



MUKHERJEE AND WU

4. given the training data zS and test data tzS compute the number of errors on the test data
terS (tzS ) = |sign[gzS (tzS )] 6= ty| and the vector of norms {sφ

`}.

The classification accuracy is very similar to other feature selection algorithms such as recursive
feature elimination (RFE) (Guyon et al., 2002; Lee et al., 2004) and radius-margin bound (RMB)
(Chapelle et al., 2002) both of which were developed specifically for SVMs. In this context we
are doing as well as state of the art methods. However, it is important to note that many methods
will do very well on this data set and the previously mentioned methods cannot address the issue of
covariation.

genes (S) 50 100 200 300 400 500 1,000 3,000 7,129
test errors 2 1 1 1 1 1 1 1 2

Table 1: Number of errors in classification for various values of S using the genes corresponding
to dimensions with the largest norms. The predictions were made using the sign of the
classification function output by our method evaluated at each test sample.

In Figure 4a-d we plot the relative magnitude sequence sφ
` for the genes. On this data set the

decay in the ranked scores sφ
(`) is steeper than that for most statistics that have been previously used

on this data. To illustrate this we compared the gradient score to the Fisher score (Slonim et al.,
2000) for each gene

t` =
|µ̂AML

` − µ̂ALL
` |

σ̂AML
` + σ̂ALL

`

,

where µ̂AML
` is the mean expression level for the AML samples in the `-th gene, µ̂ALL

` is the mean
expression level for the ALL samples in the `-th gene, σ̂AML

` is the standard deviation of the expres-
sion level for the AML samples in the `-th gene, and σ̂ALL

` is the standard deviation of the expression
level for the ALL samples in the `-th gene. We then normalize these scores

sF
` =

t`
(

∑n
p=1 t2

p

)1/2
.

Figure 4a-d displays the relative decay of sφ
(`) and sF

(`) over various numbers of dimensions. In all

plots it is apparent that the decay rate of sφ
(`) is much steeper. Plotting the decay of the elements for

the normalized hyperplane w0

‖w0‖ that is the solution of a linear SVM or the solution of regularized
linear logistic regression results in a plot much more like that of the Fisher score than the gradient
statistic. Whether and how this steepness (sparsity) has an implication on the generalization error is
an open question.

We can also examine the EGM and the ECM. The EGM in this case is a 7,129×38 matrix and
the ECM is 7,129×7,129 matrix. In Figure 5 we plot the ECM for the 50 dimensions that resulted
from the iterative procedure outlined above. This matrix indicates how the dimensions covary and
can be used to construct clusters of genes.
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Figure 4: The decay of sφ
(`) (dashed line) and sF

(`) (solid line) over: a) all the genes/dimensions,
b) the top 3000 genes/dimensions, c) the top 1000 genes/dimensions, d) the top 500
genes/dimensions.

5. Discussion

We introduce an algorithm that learns a classification function and its gradient from sample data in
the logistic regression framework. The relevance of this method for variable selection is motivated.
An error analysis is given for the convergence of the estimated classification function and gradient
to the true ones respectively. This method also places the problem of variable selection into the
powerful framework of Tikhonov regularization. There are many extensions and refinements and
open questions regarding this method which we discuss below:

1. Accuracy of classification function: It seems intuitive that the classification function obtained
by our method should be strictly worse than that obtained by standard regularized logistic
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Figure 5: The ECM for the top 50 dimensions.

regression. This is simply a corollary of very useful dictum proposed by Vladimir Vapnik
(Vapnik, 1998), “When solving a a given problem, try to avoid solving a more general problem
as an intermediate step.” Although we strongly expect our classification function to be less
accurate than that provided by regularized logistic regression we need to do more empirical
work to confirm this.

2. Logistic regression models: An alternative optimization problem was proposed in Mukherjee
and Zhou (2006) for estimating the gradient ~fz in the binary regression problem

~fz,λ = arg min
~f∈H n

K

{

1
m2

m

∑
i, j=1

w(s)
i, j φ
(

yi
(

y j +~f (xi) · (xi− x j)
)

)

+λ‖~f‖2
K

}

.

This optimization problem does not follow from the Taylor expansion since in general y j need
not be close to fφ(x j), only the signs of the two functions need agree. This formulation does
have an interesting interpretation for variable selection in that variables that are relevant in the
classification problem will have large gradient norms and those not relevant will have norms
near zero. In practice, for large values of λ the gradient estimates of the above formulation
will be similar to those given by the optimization in (3).

3. Fully Bayesian model: The Tikhonov regularization framework coupled with the use of an
RKHS allows us to implement a fully Bayesian version of the procedure in the context of
Bayesian radial basis (RB) models (Liang et al., 2006). The Bayesian RB framework can
be extended to develop a proper probability model for the gradient learning problem. The
optimization procedure (3) would be replaced by Markov Chain Monte-carlo methods and
the full posterior rather than the maximum a posteriori estimate would be computed. A very
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useful result of this is that in addition to the point estimates for the gradient we would also be
able to compute credible (confidence) intervals.

4. Intrinsic dimension: In Theorem 9 the rate of convergence of the gradient has the form of
O(m−1/n) which can be extremely slow if n is large. However, in most data sets and when
variable selection is meaningful the data are concentrated on a much lower dimensional man-
ifold embedded in the high dimensional space. In this setting an analysis that replaces the
ambient dimension n with the intrinsic dimension of the manifold nM would be of great in-
terest.

5. Semi-supervised setting: Intrinsic properties of the manifold X can be further studied by unla-
beled data. This is one of the motivations of semi-supervised learning. In many applications,
it is much easier to obtain unlabeled data with a larger sample size u� m. For our purpose,
unlabeled data x = (xi)

m+u
i=m+1 can be used to reduce the dimension or correlation. Since we

learn the gradient by ~f , it is natural to use the unlabeled data to control the approximate
norm of ~f in some Sobolev spaces and introduce a semi-supervised learning algorithm as
minimizing over (g, ~f ) ∈H n+1

K

{

Ez(g, ~f )+
µ

(m+u)2

m+u

∑
i, j=1

Wi, j|~f (xi)−~f (x j)|2`2(Rn) +λ‖~f‖2
K

}

,

where {Wi, j} are edge weights in the data adjacency graph, µ is another regularization param-
eter and often satisfies λ = o(µ).

6. Conclusion

The practical motivation for this work came from a problem in computational biology: pathway ex-
traction. The basic problem is given model systems with known genetic or molecular perturbations
infer gene expression “signatures of pathways” (sets of genes that characterize the perturbation in
the model system). The term pathway has both a biological and statistical connotation. A statis-
tical definition of a pathway is a set of genes that given a perturbation coordinately differentially
co-express with respect to the perturbation. This statistical definition allows us to formulate the
biological problem in the mathematical and computational framework of variable (gene) selection.
A variety of methods have been proposed for variable selection (Tibshirani, 1996; Chen et al., 1999;
Golub et al., 1999; Tusher et al., 2001; Chapelle et al., 2002; Guyon et al., 2002). However, all of
these methods have the shortcoming that they cannot determine which variables covary in addition
to being salient. This is the primary motivation for the method we propose.

Our proposal is that by studying the gradient of the classification function we can determine
which variables are salient with respect to the classification problem and how these variables covary.
The conceptual key is that an estimate of the gradient allows us to measure coordinate covariation

since the inner product between partial derivatives
〈

∂ fφ
∂x j ,

∂ fφ
∂x`

〉

indicates the covariance of the j-th

and `-th coordinates with respect to variation in the classification function fφ. This information
is of central importance when an understanding is required of the effect of perturbing a salient
explanatory variables (input features) on the other explanatory variables in addition to the response
variable (the output). The method proposed in this paper gives an estimate of this covariation
quantity. We implemented the method and tested it on a variety of simulated and real data sets,
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further testing is provided in Mukherjee et al. (2006). These simulations suggest that the method
does work for variable selection and some degree of covariation can be estimated. The efficacy
of the method was clearly demonstrated on the simulated data and applying the method to gene
expression data as well as images of digits (Mukherjee et al., 2006) gave an indication of its utility
in understanding models of real data.

The method as currently implemented is designed for the setting of few samples and many
dimensions. In this context it is more computationally intensive than methods that consider dimen-
sions separately (Golub et al., 1999; Tusher et al., 2001) and of a similar complexity as methods
based upon penalized loss (Tibshirani, 1996; Chen et al., 1999; Chapelle et al., 2002; Guyon et al.,
2002). The method as is will scale very poorly as the number of examples increases. This can be
addressed by using a basis set different than the difference between data points, for example the
bases proposed in Lin and Zhang (2006).

To realize the objective of providing methodology and software to be used by biologists and
clinicians for pathway extraction a system that works “right out of the box” is required. This means
that the setting of the parameters of our algorithm (see Section 2.1) as well as decisions as to
which variables are salient and which covary need to be automated. In addition finding blocks
in the covariance matrix is a problem that needs to be addressed. We provide matlab code for the
method—http://www.stat.duke.edu/˜sayan/covar1.html.
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Appendix A. Proof of Theorem 10

The idea behind the proof is to first bound the L2
ρX

differences by the excess error in Section A.1 and
then bound the excess error in Section A.2. The proof is finished in Section A.3.

A.1 Bounding L2
ρX

Differences by the Excess Error

Recall the empirical error (Definition 1) for (g, ~f ) : X → R
n+1

Ez(g, ~f ) =
1

m2

m

∑
i, j=1

w(s)
i, j φ
(

yi(g(x j)+ ~f (xi) · (xi− x j))
)

.

One can similarly define the expected error

E(g, ~f ) =
Z

Z

Z

X
w(x−u)φ(y(g(u)+ ~f (x) · (x−u)))dρX (u)dρ(x,y).

Unlike the standard setting of classification and regression E(g, ~f ) and Ez(g, ~f ) are not respectively
the expected and empirical mean of a random variable. This is due to the extra dρX in the expected
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error term. However, since

Ez[Ez(g, ~f )] =
1

msn+2 R (g)+
m−1

m
E(g, ~f ),

the empirical and expected errors should be close to each other if the empirical error concentrates
with m increasing.

Define

Rs =
Z

X

Z

Z
w(x−u)φ(y fφ(x))dρ(x,y)dρX (u).

We will use the excess error, E(g, ~f )−Rs, to bound the L2
ρX

differences.
For r > 0, denote

Fr =
{

(g, ~f ) ∈H n+1
K : ‖g‖2

K +‖~f‖2
K ≤ r2

}

.

Theorem 15 Assume ρX satisfies the conditions (7) and (8) and ( fφ,∇ fφ) ∈ H n+1
K . For (g, ~f ) ∈ Fr

with some r > 1, there exist constants C0,C1 > 0 such that

‖g− fφ‖2
L2

ρX
≤C0

(

sθr2 + s2−θBr(E(g, ~f )−Rs)
)

and
‖ f −∇ fφ‖2

L2
ρX
≤C1

(

sθr2 + s−θBr(E(g, ~f )−Rs)
)

,

where Br = min
{

1
q1(c0r) ,r

}

with some c0 > 0.

To prove Theorem 15 we will need the following several lemmas which require the definition
of the following quantities.

Definition 16 Define for (g, ~f ) : X → R
n+1 the square error functional

Q (g, ~f ) =
Z

X

Z

X
w(x−u)

(

g(x)− fφ(x)+(~f (x)−∇ fφ(x)) · (x−u)
)2

dρX (u)dρX (x),

the border set
Xs =

{

x ∈ X : d(x,∂X) > s and p(x)≥ (1+ cρ)s
θ
}

,

and the moments for 0≤ p < ∞,

Np =
Z

{t∈Rn:|t|≤1}
e−

|t|2
2 |t|pdt, and Ñp =

Z

Rn
e−

|t|2
2 |t|pdt.

Note that Xs is nonempty when s is small enough.

Lemma 17 Under assumptions of Theorem 15

N0

s2−θ

Z

Xs

(g(x)− fφ(x))
2dρX (x)+

N2sθ

n

Z

Xs

|~f (x)−∇ fφ(x)|2dρX (x)≤ Q (g, ~f ).
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Proof For x ∈ Xs, {u ∈ X : |u− x| ≤ s} ⊂ X since d(x,∂X) > s. For u ∈ X such that |u− x| ≤ s

p(u) = p(x)− (p(x)− p(u))≥ (1+ cρ)s
θ− cρ|u− x|θ ≥ sθ.

Therefore,

Q (g, ~f ) ≥
Z

Xs

Z

|u−x|≤s
w(x−u)

(

g(x)− fφ(x)+(~f (x)−∇ fφ(x)) · (x−u)
)2

p(u)dudρX (x)

≥ sθ
Z

Xs

Z

|u−x|≤s
w(x−u)

(

g(x)− fφ(x)+(~f (x)−∇ fφ(x)) · (x−u)
)2

dudρX (x)

= sθ
Z

Xs

Z

|u−x|≤s
w(x−u)(g(x)− fφ(x))

2dudρX (x)

+2sθ
Z

Xs

Z

|u−x|≤s
w(x−u)(g(x)− fφ(x))((~f (x)−∇ fφ(x)) · (x−u))dudρX (x)

+sθ
Z

Xs

Z

|u−x|≤s
w(x−u)((~f (x)−∇ fφ(x)) · (x−u))2dudρX (x)

: = J1 + J2 + J3.

It can be verified that

J1 =
1

s2−θ

Z

Xs

(g(x)− fφ(x))
2

Z

|t|≤1
e−

|t|2
2 dtdρX (x) =

N0

s2−θ

Z

Xs

|g(x)− fφ(x)|2dρX (x) .

In the following, denote by the superscripts of x,u, t ∈R
n the corresponding coordinate indices.

For every i ∈ {1, . . . ,n}
Z

|u−x|≤s
w(x−u)(xi−ui)du =

1
s

Z

|t|≤1
e−

|t|2
2 t idt = 0.

It follows that J2 = 0.
Note that ((~f (x)−∇ fφ(x)) · (x−u))2 equals

n

∑
i=1

n

∑
j=1

(

f i(x)− ∂ fφ

∂xi (x)

)(

f j(x)− ∂ fφ

∂x j (x)

)

(xi−ui)(x j−u j).

But when j 6= i,
Z

|u−x|≤s
w(x−u)(xi−ui)(x j−u j)du =

Z

|t|≤1
e−

|t|2
2 t it jdt = 0.

Therefore

J3 = sθ
n

∑
i=1

Z

Xs

( f i(x)− ∂ fφ

∂xi (x))
2

Z

|t|≤1
e−

|t|2
2 (t i)2dtdρX (x) =

N2sθ

n

Z

Xs

|~f (x)−∇ fφ(x)|2dρX (x).

Plugging J1 and J3 into the inequality completes the proof.

In Lemma 20 below we will bound Q (g, ~f ) by the excess error E(g, ~f )−Rs. For this purpose,
we prove two facts which we state in Lemmas 18 and 19 and define the local error function of t ∈R

at x ∈ X as
errx(t) = Ey∼Y [φ(yt)] = φ(t)P(1|x)+φ(−t)P(−1|x),

which is a twice differentiable, univariate convex function for every x ∈ X .
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Lemma 18 For almost every x ∈ X , the following hold

(i) fφ(x) is a minimizer of the function errx(t), i.e., fφ(x) = argmin
t∈R

errx(t).

(ii) If T > max
{

|t|,‖ fφ‖∞
}

, then

1
2 q1(T )(t− fφ(x))

2 ≤ errx(t)− errx( fφ(x))≤ 1
2 q2(T )(t− fφ(x))

2.

(iii) If T ≥
{

|t|,3‖ fφ‖∞
}

there exists a constant c1 > 0 such that

errx(t)− errx( fφ(x))≥ c1 max

{

q1(T ),
1
T

}

(t− fφ(x))
2.

Proof The first conclusion is a direct consequence of the fact

R ( f ) =
Z

X
errx( f (x))dρX (x).

Note that (errx)
′( fφ(x)) = 0 since fφ(x) is a minimizer of errx(t). By a Taylor series expansion,

there exists t0 between t and fφ(x) such that

errx(t)− errx( fφ(x)) =
1
2
(errx)

′′(t0)(t− fφ(x))
2.

Since (errx)
′′(t0) = φ′′(t0)P(1|x)+φ′′(−t0)P(−1|x) and |t0| ≤ T the following holds

q1(T )≤ φ′′(t0),φ′′(−t0)≤ q2(T ).

It follows q1(T )≤ (errx)
′′(t0)≤ q2(T ) which proves (ii).

To show (iii), write

errx(t)− errx( fφ(x)) =
Z t

fφ(x)

Z r

fφ(x)
(errx)

′′(a)dadr.

Since (errx)
′′(a) is positive, if t ≥ 3‖ fφ‖∞ := 3Mφ, then

errx(t)− errx( fφ(x))≥
Z t

2Mφ

Z 2Mφ

| fφ(x)|
(errx)

′′(a)dadr ≥ q1(2Mφ)Mφ(|t|−2Mφ)

and, if t ≤−3Mφ, then

errx(t)− errx( fφ(x))≥
Z t

−2Mφ

Z −2Mφ

−| fφ(x)|
(errx)

′′(a)dadr ≥ q1(2Mφ)Mφ(|t|−2Mφ).

So, if |t|> 3Mφ,

errx(t)− errx( fφ(x))≥ q1(2Mφ)Mφ(|t|−2Mφ)≥
3q1(2Mφ)Mφ

16T
(t− fφ(x))

2,
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where we have used the facts |t|−2Mφ ≥ 1
4 |t− fφ(x)| and |t− fφ(x)| ≤ T +Mφ ≤ 4

3 T. On the other
hand, by (ii), if |t| ≤ 3Mφ

errx(t)− errx( fφ(x))≥
1
2

q1(3Mφ)(t− fφ(x))
2 ≥ 3q1(3Mφ)Mφ

2T
(t− fφ(x))

2.

Hence for all |t| ≤ T,

errx(t)− errx( fφ(x))≥
3q1(3Mφ)Mφ

16T
(t− fφ(x))

2.

Together with (ii), we obtain

errx(t)− errx( fφ(x))≥ c1 max

{

q1(T ),
1
T

}

(t− fφ(x))
2

with c1 = min
{

1
2 ,

3q1(3Mφ)Mφ
16

}

.

Lemma 19 If K ∈C2, then there exists a constant cK > 0 depending only on K such that

| f (x)− f (u)| ≤ cK‖ f‖K |x−u|, ∀ f ∈HK , x,u ∈ X .

Proof It follows from the reproducing property that

| f (x)− f (u)|= |〈 f ,K(x, ·)−K(u, ·)〉| ≤ ‖ f‖K

√

K(x,x)−2K(x,u)+K(u,u).

Denote ∇1K(x,u) as the gradient of K(x,u) with respect to the first variable x. Since K ∈ C2, we
have

K(x,x)−2K(x,u)+K(u,u)

=
Z 1

0
(∇1(K(u+ t(x−u),x)−∇1K(u+ t(x−u),y)) · (x−u)dt

≤
Z 1

0
|∇1(K(u+ t(x−u),x)−∇1K(u+ t(x−u),y)| |x−u|dt

≤ (cK)2|x−u|2

with

(cK)2 = max

{∥

∥

∥

∥

∂2K
∂xi∂u j

∥

∥

∥

∥

∞
, i, j = 1, . . . ,n

}

.

Hence the conclusion is true.

Lemma 20 Under the assumptions of Theorem 15, there exists a constant c2 > 0 such that

Q (g, ~f )≤ c2

(

r2s2 +Br(E(g, ~f )−Rs)
)

,

were Br is defined as in Theorem 15 with c0 = κmax
{

3‖ fφ‖K ,(1+D)
}

.
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Proof For (g, ~f ) ∈ Fr and u,x ∈ X , we have

|g(u)+ ~f (x)(x−u)| ≤ κ‖g‖K +κD‖~f‖K ≤ c0r.

Since c0r ≥ 3κ‖ fφ‖K ≥ 3‖ fφ‖∞, by Lemma 18 (iii),

E(g, ~f )−Rs =
Z

X

Z

X
w(x−u)

(

errx
(

g(u)+ ~f (x) · (x−u)
)

− errx
(

fφ(x)
)

)

dρX (x)dρX (u)

≥ c1

c0

1
Br

Z

X

Z

X
w(x−u)

(

g(u)+ ~f (x) · (x−u)− fφ(x)
)2

dρX (x)dρX (u),

Denote

t1 = g(u)− fφ(u)+(~f (u)−∇ fφ(u)) · (x−u),

t2 =
(

fφ(u)− fφ(x)+∇ fφ(u) · (x−u)
)

+(~f (x)− ~f (u)) · (x−u).

We have
Q (g, ~f ) =

Z

X

Z

X
w(x−u)(t1)

2dρX (x)dρX (u).

Note that
(

g(u)+ ~f (x) · (x−u)− fφ(x)
)2

= (t1 + t2)
2 ≥ (t1)

2 +2t1t2 ≥ (t1)
2−2|t1||t2|.

There holds

c0

c1
Br(E(g, ~f )−Rs)≥ Q (g, ~f )−2

Z

X

Z

X
w(x−u)|t1||t2|dρX (x)dρX (u).

By the fact ∇ fφ ∈H n
K and Lemma 19, we have

|t2| ≤ cK(‖∇ fφ‖K +‖~f‖K)|x−u|2 ≤ cK(‖∇ fφ‖K + r)|x−u|2.

Together with the assumption p(x)≤ cρ we obtain

Z

X

Z

X
w(x−u)|t1||t2|dρX (x)dρX (u)≤

√

Q (g, ~f )

(

Z

X

Z

X
w(x−u)|t2|2dρX (x)dρX (u)

)1/2

≤ cK
(

‖∇ fφ‖K + r
)

√

Q (g, ~f )

(

cρ

Z

X

Z

Rn
w(x−u)|x−u|4dxdρX (u)

)1/2

≤ cK
(

‖∇ fφ‖K + r
)

√

cρÑ4s
√

Q (g, ~f ).

Combining the above arguments we obtain

Q (g, ~f )−2cK
(

‖∇ fφ‖K + r
)

√

cρÑ4s
√

Q (g, ~f )≤ 1
c1

min

{

1
q1(c0r)

,c0r

}

(E(g, ~f )−Rs).

Solving this inequality gives

√

Q (g, ~f )≤ 2cK
(

‖∇ fφ‖K + r
)

√

cρÑ4s+

√

1
c1

min

{

1
q1(c0r)

,c0r

}

(E(g, ~f )−Rs).
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This implies the conclusion with c2 = 2max
{

2(cK)2
(

‖∇ fφ‖K +1
)2

cρÑ4,
c0
c1

}

.

Proof of Theorem 15. Write

‖g− fφ‖2
L2

ρX
=

Z

X\Xs

(g(x)− fφ(x))
2dρX (x)+

Z

Xs

(g(x)− fφ(x))
2dρX (x). (10)

We have

ρX (X\Xs)≤ cρs+(1+ cρ)cρ|X |sθ ≤ (cρ +(1+ cρ)cρ|X |)sθ,

where |X | is the Lebesgue measure of X . So the first term on the right of (10) is bounded by

κ2(r +‖ fφ‖K)2(cρ +(1+ cρ)cρ|X |)sθ.

By Lemmas 17 and 20, the second term on the right of (10) is bounded by

s2−θ

N0
c2

(

r2s2 +Br
(

E( f , ~f )−Rs
)

)

Combing these two estimates finishes the proof of the first claim with

C0 = κ2(1+‖ fφ‖K)2(cρ +(1+ cρ)cρ|X |)+
c2

N0
.

Similarly, we can show the second claim with

C1 = κ2(1+‖∇ fφ‖K)2(cρ +(1+ cρ)cρ|X |)+
nc2

N2
. �

In order to apply Theorem 15 to (gz, ~fz), we need a bound on ‖gz‖2
K + ‖~fz‖2

K . We first state a
rough bound.

Lemma 21 For every s > 0 and λ > 0, ‖gz‖2
K +‖~fz‖2

K ≤
2φ(0)
λsn+2 .

Proof The conclusion follows from the fact

λ
2

(

‖gz‖2
K +‖~fz‖2

K

)

≤ Ez(gz, ~fz)+
λ
2

(

‖gz‖2
K +‖~f‖2

K

)

≤ Ez(0,~0)+0 =
φ(0)

sn+2 .

Remark 22 Using this quantity the bound in Theorem 15 is at least of order O( 1
λsn+2−θ ) which tends

to ∞ as s→ 0 and λ→ 0. So a sharper bound is needed. We will obtain such a bound in Section
A.3.
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A.2 Bounding the Excess Error

In this section, we bound the quantity E(gz, ~fz)−Rs. Let

(gλ, ~fλ) = argmin
(g,~f )∈H n+1

K

{

E(g, ~f )+
λ
2
(‖g‖2

K +‖~f‖2
K)
}

.

Theorem 23 If ( fφ,∇ fφ) ∈ H n+1
K , (gz, ~fz) and (gλ, ~fλ) are in Fr for some r ≥ 1, then with confi-

dence 1−δ

E(gz, ~fz)−Rs ≤C2

(

Lrr +Mr log 2
δ√

msn+2 + s2 +λ

)

,

where C2 > 0 is a constant depending on φ and ρ but not on r,s and λ.

By a standard decomposition procedure, we have the following result.

Proposition 24 The following hold

E(gz, ~fz)−Rs +
λ
2

(

‖gz‖2
K +‖~fz‖2

K

)

≤S (z)+A (λ)

where
S (z) =

(

E(gz, ~fz)−Ez(gz, ~fz)
)

+
(

Ez(gλ, ~fλ)−E(gλ, ~fλ)
)

and

A (λ) = inf
(g,~f )∈H n+1

K

{

E(g, ~f )−Rs +
λ
2

(

‖g‖2
K +‖~f‖2

K

)

}

.

The quantity S (z) is called the sample error and can be bound by controlling

S(z,r) := sup
(g,~f )∈Fr

|Ez(g, ~f )−E(g, ~f )|.

In fact, if both (gz, ~fz) and (gλ, ~fλ) are in Fr for some r > 0, then

S (z)≤ 2S(z,r). (11)

Again Ez(g, ~f ) and E(g, ~f ) are not the empirical and expected means of a random variable. We will
use McDiarmid’s inequality (McDiarmid, 1989) to bound S(z,r).

Lemma 25 For every r > 0

Prob{|S(z,r)−ES(z,r)|> ε} ≤ 2exp

(

−mε2s2(n+2)

2M2
r

)

.

Proof Denote by z′i the sample which coincides with z except for the i-th pair (xi,yi) replaced by
(x′i,y

′
i). It is easy to verify that

S(z,r)−S(z′i,r) = sup
(g,~f )∈Fr

(

Ez(g, ~f )−E(g, ~f )
)

− sup
(g,~f )∈Fr

(

Ez′i
(g, ~f )−E(g, ~f )

)

≤ sup
(g,~f )∈Fr

(

Ez(g, ~f )−Ez′i
(g, ~f )

)

≤ 2m−1
m2

Mr

sn+2 .
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Interchanging the roles of z and z′i gives |S(z,r)−S(z′i,r)| ≤ 2Mr
msn+2 . By McDiarmid’s inequality we

obtain the desired estimate.

Lemma 26 For every r > 0

ES(z,r)≤ 8Lr(κ(1+2D)r +φ(0))

sn+2
√

m
+

2Mr

msn+2 .

In order to prove this lemma, we need Rademacher complexities. We refer to Koltchinskii and
Panchenko (2000) and van der Vaart and Wellner (1996) for definitions and properties.
Proof Denote ξ(x,y,u) = w(x− u)φ(y(g(u) + ~f (x) · (x− u))) for simplicity. Then E(g, ~f ) =
Eu E(x,y) ξ(x,y,u) and Ez(g, ~f ) = ∑m

i, j=1 ξ(xi,yi,x j). One can easily check that

S(z,r) ≤ sup
(g,~f )∈Fr

∣

∣

∣

∣

∣

E(g, ~f )− 1
m

m

∑
j=1

E(x,y) ξ(x,y,x j)

∣

∣

∣

∣

∣

+ sup
(g,~f )∈Fr

∣

∣

∣

∣

∣

1
m

m

∑
j=1

E(x,y) ξ(x,y,x j)−Ez(g, ~f )

∣

∣

∣

∣

∣

≤ E(x,y) sup
(g,~f )∈Fr

∣

∣

∣

∣

Eu ξ(x,y,u)− 1
m

m

∑
i=1

ξ(x,y,x j)

∣

∣

∣

∣

+
1
m

m

∑
j=1

sup
(g,~f )∈Fr

sup
u∈X

∣

∣

∣

∣

E(x,y) ξ(x,y,u)− 1
m−1

m

∑
i=1
i6= j

ξ(xi,yi,u)

∣

∣

∣

∣

+
1
m

m

∑
j=1

(

1
m

ξ(x j,y j,x j)+
1

m(m−1)

m

∑
i=1
i6= j

ξ(xi,yi,x j)

)

:= S1 +S2 +S3.

Let εi, i = 1, . . . ,m be independent Rademacher variables. Denote

G(x,y) =
{

h(u) = y(g(u)+ ~f (x) · (x−u)) : (g, ~f ) ∈ Fr

}

for every (x,y) ∈ Z. For S1, by using the properties of Rademacher complexities, we have

ES1(z) = E(x,y) E sup
h∈Gx,y

∣

∣

∣

∣

∣

Eu[w(x−u)φ(h(u))]− 1
m

m

∑
j=1

w(x− x j)φ(h(x j))

∣

∣

∣

∣

∣

≤ 2 sup
(x,y)∈Z

E sup
h∈G(x,y)

∣

∣

∣

∣

∣

1
m

m

∑
j=1

ε jw(x− x j)φ(h(x j))

∣

∣

∣

∣

∣

≤ 4
sn+2 sup

(x,y)∈Z
E sup

h∈G(x,y)

∣

∣

∣

∣

∣

1
m

m

∑
j=1

ε jφ(h(x j))

∣

∣

∣

∣

∣

≤ 4Lr

sn+2

(

sup
(x,y)∈Z

E sup
h∈G(x,y)

∣

∣

∣

∣

∣

1
m

m

∑
j=1

ε jh(x j)

∣

∣

∣

∣

∣

+
φ(0)√

m

)

≤ 4Lr

sn+2

(

E sup
‖g‖2

K≤r2

∣

∣

∣

∣

∣

m

∑
j=1

ε jg(x j)

∣

∣

∣

∣

∣

+2κr sup
x∈X

E

∣

∣

∣

∣

∣

m

∑
j=1

ε j‖x− x j‖
∣

∣

∣

∣

∣

+
φ(0)√

m

)

≤ 4Lr
(

κ(1+2D)r +φ(0))

sn+2
√

m
.
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Similarly, we can verify

ES2(z)≤
4Lr(κ(1+2D)r +φ(0))

sn+2
√

m−1
.

Obviously S3 ≤ 2Mr
msn+2 . Combining the estimates for S1, S2, and S3 completes the proof.

Proposition 27 Assume r > 1. There exists a constant c2 > 0 such that with confidence at least
1−δ

S (z)≤ c3
Lrr +Mr log 2

δ√
msn+2 .

Proof The result is a direct application of inequality (11) and Lemmas 25 and 26.

We now bound the approximation error A (λ).

Proposition 28 If ( fφ,∇ fφ) ∈H n+1
K , then A (λ)≤ c4(s2 +λ) for some c4 > 0.

Proof By the definition of A (λ) and the fact that ( fφ,∇ fφ) ∈H n+1
K

A (λ)≤ E( fφ,∇ fφ)−Rs +
λ
2
(‖ fφ‖2

K +‖∇ fφ‖2
K).

By Lemma 18 (ii), we have

E( fφ,∇ fφ)−Rs =
Z

X

Z

X
w(x−u)

(

errx( fφ(u)+∇ fφ(x) · (x−u))− errx( fφ(x)
)

dρX (u)dρX (x)

≤ q2(M̃φ)
Z

X

Z

X
w(x−u)

(

fφ(u)− fφ(x)+∇ fφ(x) · (x−u)
)2

dρX (u)dρX (x)

≤ q2(M̃φ)(cK)2‖∇ fφ‖2
Kcρ

Z

X

Z

X
w(x−u)|x−u|4dudρX (x)≤ q2(M̃φ)(cK)2‖∇ fφ‖2

KcρÑ4s2,

where M̃φ = κ‖ fφ‖K +κD‖∇ fφ‖K . Taking

c4 = max{q2(M̃φ)(cK)2‖∇ fφ‖2
KcρÑ4,

1
2(‖ fφ‖2

K +‖∇ fφ‖2
K)},

the result follows.

Theorem 23 follows directly from Propositions 24, 27 and 28.

A.3 Proof of Theorem 10

We will use Theorems 15 and 23 to prove Theorem 10.
Notice that both theorems need a bound r so that (gz, ~fz) and (gλ, ~fλ) are in Fr. In Lemma 21

we have shown

‖gz‖2
K +‖~fz‖2

K ≤
2φ(0)

λsn+2 .
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Similarly we can show ‖gλ‖2
K +‖~fλ‖2

K is also bounded by 2φ(0)
λsn+2 . So

√

2φ(0)
λsn+2 is a universal bound for

r such that (gz, ~fz) and (gλ, ~fλ) are in Fr. However, this bound is not sharp enough to be useful for
Theorem 15 (see Remark 22).

A sharper bound will be given below. This bound also improves the sample error estimate and
the estimate in Theorem 23.

Lemma 29 Under the assumptions of Theorem 10

‖gλ‖2
K +‖~fλ‖2

K ≤ 2c4

(

s2

λ
+1

)

.

Proof Since E(g, ~f )−Rs is non-negative for all pairs (g, ~f ), we have

λ
2 (‖gλ‖2

K +‖~fλ‖2
K)≤ E(gλ, ~fλ)−Rs + λ

2 (‖gλ‖2
K +‖~fλ‖2

K) = A (λ).

This in conjunction with Proposition 28 implies the conclusion.

Lemma 30 Under the assumptions of Theorem 10 with confidence at least 1−δ

‖gz‖2
K +‖~fz‖2

K ≤ c5

{

1+
s2

λ
+

(

Lλ,s√
λsn+2

+Mλ,s log
2
δ

)

1√
mλsn+2

}

for some c5 > 0.

Proof By the fact E(gz, ~fz)−Rs > 0 and Proposition 24 we have

λ
2

(

‖gz‖2
K +‖~fz‖2

K

)

≤S (z)+A (λ).

Since both (gz, ~fz) and (gλ, ~fλ) are in F√
2φ(0)/λsn+2 , we apply Proposition 27 to get with probability

at least 1−δ

S (z)≤ c3

(

Lλ,s

√

2φ(0)

λsn+2 +Mλ,s log
2
δ

)

1√
msn+2 .

Together with Proposition 28, we obtain the desired estimate with c5 = 2max{c3,c4} .

We now prove Theorem 10.
Proof of Theorem 10. By Theorems 15 and 23 we have with probability at least 1− δ both ‖gz−
fφ‖L2

ρX
and ‖|~fz−∇ fφ|‖2

L2
ρX

are bounded by

max{C0,C1}
{

r2sθ +C2Br

(

Lrr +Mr log 2
δ√

msn+2 + s2 +λ

)

s−θ

}

, (12)

if both (gz, ~fz) and (gλ, ~fλ) are in Fr for some r > 1. By Lemmas 29 and 30 we can state that both
{(gz, ~fz) ∈ Fr} and {(gλ, ~fλ) ∈ Fr} with probability at least 1−δ if

r2 = max(c4,c5,1)

{

1+
s2

λ
+

(

Lλ,s√
λsn+2

+Mλ,s log
2
δ

)

1√
mλsn+2

}

.

Substituting the above r into (12) gives us the desired bound with confidence at least 1−2δ. �
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