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Abstract

Policy search is a method for approximately solving an ogticontrol problem by performing

a parametric optimization search in a given class of paramzed policies. In order to process
a local optimization technique, such as a gradient methedwish to evaluate the sensitivity of
the performance measure with respect to the policy paramebe so-callegolicy gradient This
paper is concerned with the estimation of the policy gradiencontinuous-time, deterministic
state dynamics, in eeinforcement learningramework, that is, when the decision maker does not
have a model of the state dynamics.

We show that usual likelihood ratio methods used in disetiate, fail to proceed the gradient
because they are subject to variance explosion when theetimtion time-step decreases to 0.
We describe an alternative approach based on the appréaindithe pathwise derivative, which
leads to a policy gradient estimate that converges almeoslysto the true gradient when the time-
step tends to 0. The underlying idea starts with the deawadif an explicit representation of the
policy gradient using pathwise derivation. This derivatinakes use of the knowledge of the state
dynamics. Then, in order to estimate the gradient from tisendable data only, we use a stochastic
policy to discretize the continuous deterministic systaio ia stochastic discrete process, which
enables to replace the unknown coefficients by quantitissgblely depend on known data. We
prove the almost sure convergence of this estimate to tegublicy gradient when the discretization
time-step goes to zero.

The method is illustrated on two target problems, in digcegtd continuous control spaces.

Keywords: optimal control, reinforcement learning, policy search, sensitivity arsmlysra-
metric optimization, gradient estimate, likelihood ratio method, pathwise derivation

1. Introduction and Statement of the Problem

We consider an optimal control problem with continuous state RY)~o whose state dynamics
is defined according to the controlled differential equation:

dx
At 1
where the controlw )i>0 iS @ Lebesgue measurable function with values in a control dpabiote

that the state-dynamick may also depend on time, but we omit this dependency in the notation,
for simplicity. We intend to maximize a functionalthat depends on the trajectopy )o<t<T Over

a finite-time horizonT > 0. For simplicity, in the paper, we illustrate the case of a terminal reward
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only:
J(X; (U)i=0) = r(xT), (2)
wherer : RY — R s the reward function. Extension to the case of general functional dditice

.
306 (whso) = [ r(tx)dt+ROx), ©

with r and R being current and terminal reward functions, would easily follow, as atdat in
Remark 1.

The optimal control problem of finding a contr@k ):>o that maximizes the functional is re-
placed by a parametric optimization problem for which we search for a gaemtitback control law
in a given class of parameterized policigs : [0, T] x R — U4, wherea € R™is the parameter.
The controlu; € U (or action) at timet is uy = Ty (t,%), and we may write the dynamics of the
resulting feed-back system as g

%

wherefy (%) := f(x, T4(t,X)). In the paper, we will make the assumption thais ¢ 2, with bounded
derivatives. Let us define thmerformance measure

V(a) == (X T (t, % )t=0),

where its dependency with respect to (w.r.t.) the paraneigemphasized. One may also consider
an average performance measure according to some distriqufianthe initial state:V(a) :=
E[I(6 T (t, % )e=0) [X ~ W].
In order to find a local maximum of (a), one may perform a local search, such as a gradient
ascent method
a—a+nqV(a), (5)

with an adequate step(see for example (Polyak, 1987; Kushner and Yin, 1997)). The ctatipa
of the gradient]yV (a) is the object of this paper.

A first method would be to approximate the gradient by a finite-differenotieput for each of
them components of the parameter:

8V (0) ~ V(a +seo,s) V(a)
for some small value of (we use the notatiod, instead ofl], to indicate that it is a single-
dimensional derivative). This finite-difference method requires the stinalaf m+ 1 trajectories
to compute an approximation of the true gradient. When the number of pararisetarge, this
may be computationally expensive. However, this simple method may be efifdieathumber of
parameters is relatively small.

In the rest of the paper we will not consider this approach, and will anoraputing the gradient
using one trajectory only.

)
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PoLicy GRADIENT IN CONTINUOUS TIME

Pathwise estimation of the gradient. We now illustrate that if the decision-maker has access to
a model of the state dynamics, then a pathwise derivation would directly leagl poliby gradient.
Indeed, let us define the gradient of the state with respect to the parameterdyx (i.e. z is
defined as @ x m-matrix whose(i, j)-component is the derivative of thilh component ok; w.r.t.

a;). Our smoothness assumption fnallows to differentiate the state dynamics (4) wattwhich
provides the dynamics afz; ):

C:T? = Ua fa (%) + Oxfa (%) (6)
where the coefficient8l, fq and Oy fy are, respectively, the derivatives bfw.r.t. the parameter
(matrix of sized x m) and the state (matrix of siz#¢x d). The initial condition forz is zg = 0.
When the reward functionis smooth (i.e. continuously differentiable), one may apply a pathwise
differentiation to derive a gradient formula (see e.g. (Bensouss&8)1# (Yang and Kushner,
1991) for an extension to the stochastic case):

DGV(G) = [yr (XT)ZT. (7)

Remark 1 In the more general setting of a functional (3), the gradient is dedubgdirfearity)
from the above formula:

T
OuV(a) = /0 Oxr (t, %)z dt + OxR(xt) 7.

What is known from the agent? The decision maker (call it the agent) that intends to design a
good controller for the dynamical system may or may not know a model oft#ite dynamicd .

In case the dynamics is known, the state gradiert (qx may be computed from (6) along the
trajectory and the gradient of the performance measure w.r.t. the paramistdeduced at tim&

from (7), which allows to perform the gradient ascent step (5).

However, in this paper we consideR&inforcement LearninBSutton and Barto, 1998) setting
in which the state dynamics is unknown from the agent, but we still assume ¢hatatte is fully
observable. The agent knows only the response of the system to itslcGntbe more precise, the
available information to the agent at tihés its own control policyr, and the trajectoryxs)o<s<t
up to timet. At time T, the agent receives the rewantkr) and, in this paper, we assume that the
gradientCr (x7) is available to the agent.

From this point of view, it seems impossible to derive the state gradidémm (6), sincelly f
andxf are unknown. The terii f (%) may be approximated by a least squares method from the
observation of past statéss)s<t, as this will be explained later on in subsection 3.2. However the
termq f (%) cannot be calculated analogously.

In this paper, we introduce the idea of using stochastic policies to approxtheatate(x;)
and the state gradiefit;) by discrete-time stochastic procesg¥$) and(z2) (with A being some
discretization time-step). We show h@&§ can be computed without the knowledgel@f f, but
only from information available to the agent.

We prove the convergence (with probability one) of the gradient estimate<?)z2 derived
from the stochastic processesligV (a) whenA — 0. Here, almost sure convergence is obtained
using theconcentration of measure phenomer§dalagrand, 1996; Ledoux, 2001).
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Figure 1: A trajectory(X2)o<n<n and the state dynamics vectdg of the continuous process
(X )o<t<T-

Likelihood ratio method? It is worth mentioning that this strong convergence result contrasts
with the usualikelihood ratio methodalso calledscore methoplin discrete time (see e.g. (Reiman
and Weiss, 1986; Glynn, 1987) or more recently in the reinforcememtifepliterature (Williams,
1992; Sutton et al., 2000; Baxter and Bartlett, 2001; Marbach and TsitstkIgs3)) for which the
policy gradient estimate is subject to variance explosion when the discretizatio-stepA tends
to 0. The intuitive reason for that problem lies in the fact that the numbez@$itbns before getting
the reward grows to infinity whefA — 0 (the variance of likelihood ratio estimates being usually
linear with the number of decisions).

Let us illustrate this problem on a simple 2 dimensional process. Consideetbenihistic
continuous process )o<t<1 defined by the state dynamics:

dx o o
cit:fo"_(l—cx>’ ®

(0 < a < 1) with initial conditionxg = (00)’ (where’ denotes the transpose operator). The per-
formance measuré(a) is the reward at the terminal state at tifie= 1, with the reward function
being the first coordinate of the statgxy)’) := x. ThusV(a) =r(xr-1) = a and its derivative is
OV (a) =1.

Let (Xtﬁ)ogngN € R? be a discrete time stochastic process (the discrete times Being
nA}n—o..n With the discretization time-stefy = 1/N) that starts from initial statxoA =Xp = (00)
and makedN random moves of length towards the right (actiom;) or the top (actionu,) (see
Figure 1) according to the stochastic policy (i.e., the probability of choosieagttions in each
statex) Ty (u1|X) = a, Ty (uz|X) =1—a.

The process is thus defined according to the dynamics:

Un
><$+1=><$+< 1-U, )A, ()

where(Up)o<n<n areN independent Bernoulli random variables that equal 1 with probalkiléaynd
0 with probability 1— a. The stochastic discrete proce3§*) is consistent with the deterministic
continuous ongx;) in the sense that the jump average direction of the former equals the state
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dynamics vector of the latter:

P ] (3 eminn($)- (1%, )

Thus, when the discretization time-st&gends to 0, the proce$¥) converges almost surely
to (x ) (this statement will be proved in Section 2).

Now, writeV2(a) the performance measure of the discrete process, taken as the expestet]
at the terminal statev2(a) := E[r(X8)] = & yN-3'Un. The likelihood ratio estimatg(A) of the
gradientdqV2(a) = E[g(A)] is

"o DTl (U, %5)

A = r(X{ o~

9= 1D 2 T, x8)
1N Nt U 1-Uy

TP RPN Car (10)

The expectation and variance of this estimate are given now (a proofviedoin Appendix
A).

Proposition 2 The expectation and variance of the estimate (10) are

E[gd)] = 1,

_5(1— _ 2N2
Varlg()] — 1-5(1 a);zl(z_a?cl\xl)aNJrcxN. (1)

Thusg(4) is an unbiased estimated of the true gradiég¥ (a) = 1. However we notice that
the dominant term (wheN is large) of the variance ig"; N, with N being the number of decisions
before getting the reward, which grows to infinity when the discretization tiegss= 1/N tends
to 0. Therefore it is impossible to use this likelihood ratio estimate whenever the iSaretization
is too fine. In contrast, the gradient estimate introduced in this paper haigaocgthat decreases
to 0 whenA tends to O (this will be illustrated on this same example in subsection 3.4).

Outline of the paper. The paper is organized as follows: in Section 2, we state a generakkappro
imation result of a continuous deterministic process by a consistent stocttiastiete process and
apply it to prove the convergence of the discretized state and state drpdieasses when using

a stochastic policy. In Section 3, we establish the convergence of the podidient estimate and
describe a reinforcement learning algorithm that replaces the unknoefficients about the state
dynamics by information available to the agent. In the last Section, we illustratedtied on two

(6 dimensional) target problems in both a discrete and a continuous cqueicd sases. All proofs
are in the Appendices.

2. Discretized Stochastic Processes

In this section, we start with a general result for approximating a determipmtitnuous process
by a stochastic discrete one. This is subsequently applied to the converealysis of processes
(the statex? and the state gradiedf*) related to the introduction of stochastic policies.
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2.1 A General Convergence Result

Let (% )o<t<T be a deterministic continuous process defined by some dynamics

dx _

dt
with some initial conditiorx,. We assume that is of classc? with bounded derivatives. The
following result state the almost sure convergence of a consistenttéistoehastic process.

f(%)

Theorem 3 Let A = T/N be a discretization time-step (with N being the number of steps) and
write {t, = nA}o<n<n the discrete times. Ldl; )o<n<n be a sequence of independent random
variables with values in a set U. We define a discrete stochastic pré¥g$s<n<n, starting at
X = %o, according to some discrete state dynamiés RY x U — RY, assumed to be bounded:
fort € {tn}o<n<n

Xa =X+ P40, W), (12)

If {2 satisfies theonsistency property
E[f4(x,Ur)] = f(x)A+0(8), (13)

and the following bounding condition:
2 =0(n), (14)

(where the notation Q) is to be understood in the sense uniformly w.r.t. the variable®tien,
the random variable X converges almost surely to (the deterministie)whenA — 0. We write

LimOXTA = x7, with probability 1.

Appendix B gives a proof of this result. Note that a weaker convergessult (i.e. convergence
in probability) may be obtained from general results in approximation of gidfu processes by
Markov chains (Kloeden and Platen, 1995). Here, almost sure gewet is obtained using the
concentration of measure phenomeridalagrand, 1996; Ledoux, 2001), detailed in Appendix B.

Remark 4 If we assume a slightly better consistency error ¢A€) instead of ¢A) in (13), then
we may prove (straightforwardly from the Appendix) tR8%] = xr + O(A) andE[|| X2 —x7||2] =
O(h).

2.2 Discretization of the State

Let us go back to our initial control problem (1). We consider the casefifite control spact)
(extension to a continuous control space is straightforward and is datagaetdsection 3.5). Laty
be astochastic policy, i.e. T (ult,x) denotes the probability of choosing actior U at timet in
statex. We writeu ~ 1y (- |t, X) @ random choice of an actianaccording to such a policy.

Now, we define thestochastic discrete state proces(é(tAn Jo<n<n (Where we use the same no-
tations for the time-stepd,) as in the previous subsection), starting at a 9@(& X, as follows:

At time t € {(tn)o<n<n}, We select an action; ~ T4 (-[t, X?). Then, X4, is the state at time
t + A resulting from keeping the actiar constant for a period of tim&. We write:

Uxn = X e 49
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where f2(x,u) represents the jump in the state resulting from the state dynamics (1) with initial
conditionxg = X, using a constant contralfor a period of timeA.

The next proposition states the convergence of the discrete stochastisg(ix”) to the con-
tinuous deterministic ongx).

Proposition 5 Convergence of the discrete state process (XtA). When the discretization time-step
A — 0, the random variable ¥ converges almost surely to the statedefined according to the
state dynamics (4) with

fu):= 3 Ta(Ut0T(xW).
uc
and initial condition x = X.

Proof This is an immediate consequence of Theorem 3 with the discrete state dyrf&mias).
From Taylor’s formula,
fA(X7 ut) = f(x,u)A+ O(A2)7

to derive the property on the average jumps:

E[fA(x,w)] = }D Tl (U[t, X) f (X, U)A + O(A?) = fo(X)A+ O(A?),

and the consistency conditions (13) holds, as well as the bound on the (i#)ps |

2.3 Discretization of the State Gradient

Now, we build an approximation of the state gradignt OyX. We define thestochastic discrete
state gradient procesgZ{ Jo<n<n, starting withZ§ = 0, as follows:
Attimet € {(th)o<n<n’, let () and(X{) be defined according to (15). Then define

Z8 0 =728+ (X8 w) [Ia(t7X1A7Ut)/+|X(t,XtA,Ut)/ZtA]A+Dxf<XtA,Ut)Z[AA, (16)
where . t : t
o u ,X X u ,X
la (t, %, 1) := TJ&E“)Q) andly(t,x,u) := M

are the likelihood ratios afy w.r.t. a andx (defined as vectors of size andd respectively).

Proposition 6 Convergence of the discrete state gradient process (Z%):
The random variable Z converges almost surely tg vhenA — 0.

Proof The discrete state dynamics (12) {@") is defined by the right hand side of (16). Now,
from the property

E[ZTA+A _ZtA|X1A =X ZtA = Z] = ZJ Tl'g(U|t,X){f(X, U) [Id(tvxa U),—|— IX(taXa u)lz]

+0x (X, u)z}A
= [Oafa(¥) + Oxfa(x)Z)4,
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we deduce that the coupled procéX8,Z>) is consistent with{x, z) in the sense of (13):

. [(thi) - (>Z<t§> ‘ <)Z<{§) - ()z()] - <Dufa(x;oi|§)gxfa(x)z)A+o(A) 17)

andXf , — XA = O(A) andZA , — Z& = O(A). Thus, as a consequence of Theorem 3, the random
variablez? converges almost surely # whenA — 0. |

3. Model-Free Reinforcement Learning Algorithm

We show how to use the approximation results of the previous section to desigdel-free rein-
forcement learning algorithm for estimating the policy gradiggV¥ (o) using one trajectory only.
First, we state the convergence of the policy gradient estimate computedHhfeadiscretized pro-
cess, then show how to approximate the unknown coefficigmtusing least-squares regression
from the observed trajectory, and finally describe the reinforcememtitgpalgorithm.

3.1 Convergence of the Policy Gradient Estimate

One may use formula (7) to define a gradient estimate of the performancameast. the param-
etera based on the discrete procé¥¢, Z2):

g(A) = Our (X£)ZF. (18)
This estimate converges almost surely to the true gradient, as stated now.
Proposition 7 Assume that r is continuously differentiable. Then

Limog(A) = gV (a) with probability 1.
Proof This is a direct consequence of the almost sure convergen¢&af?) to (xr,zr) and the
continuity of Oxr. [ ]

Now, let us illustrate howZ? may be approximated with information available to the agent.
The definition (16) oz requires the terniy f (X2, u). We now explain how to built a consistent
approximatioriy f (X2, u) of this term from the past of the trajectof}%)o<s<t.

3.2 Least-Squares Approximation ofJy f (X2, u)

For clarity, in this subsection, we omit referencedor example writingXs instead ofX2. Write
DX = Xi1a — X the jump of the state. Let> 0 be a constant (independent®f DefineS(t) :=
{se [t —cAt]|us = w} the set of past discrete timés- cA < s <t when actionu; have been
chosen. Note that the cardinality 8ft) is independent from, and solely depends anand the
actual sequence of controls chosen according to the stochastic pglicy

From Taylor’s formula, for all discrete ting

AZ
DX =Xsia = Xs = f (Xs, u) B+ D f (X, i) F (X6, ) < + o(A3). (19)
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Now, fors € S(t) we haveX; — Xs = O(A), thus

f(Xs,U) = f (X, ) + Oy (X, U) (Xs — X)) + O(A2),

from which we deduce (using the fact thatf (Xs,u;) = Oxf (%, w) + O(A)) that

2
DX = O+ (D 006, ) (X6, ) — D 04, £ (% )]
0y F (X, Ur) (Xs — X)A + O(A%)
= X D (X )X~ X+ 5 (A% — AX))A-+ O(8Y) (20)

1
= b+AX+50%)A+ o(A3)

with b= AX; — Ox f (X, up) (% + %AXI)A andA = [0y f (X, w). Based on the observation of several
jumps {AXs}scst), one may derive an approximation o f (X, u) by solving the least-squares

problem:
2

1
AXs—b— A(Xe+ 50%)4| (21)

wheren; is the cardinality ofS(t). Write X := Xs+ 3AXs = 3(Xs+ Xs1a) and use the simplified
notations:X, X X/, AX, andAX X/, to denote the average values, wheen S(t), of X", X5 (XJ")’,
AXs, andAXs(XS)', respectively. For example,

- 1
X:== XS
"t se;t)

The optimality condition for (21) holds when the matf)x := XX —XX'is invertible, and in
that case, the least squares solution provides the approximatidd, u;) of Oy f (X, w):

O (X w) = £ (BXX - 8XX) (XX - XX) (22)
This optimality condition does not hold when the set of po{iX$ ). lies in a vector space

of dimension< d (then, Q; is degenerate). In order to circumvent this problem, we assume that

the eigenvalues of the matri@® are bounded away from 0O, in the sense given in the following

proposition (whose proof in provided in Appendix C).

Proposition 8 The matrix Q= XX —XX'is symmetric non-negative. LetA) > 0 be the smallest
eigenvalue of Qforall 0 <t <T. Then, ifv(A) > 0 andv(A) satisfies

5 =0, (23)

then, for all0 <t < T, the least squares estimafftgff (%, w) defined by (22) is consistent with the
gradient[y f (X, w), that is:

—

Jim Dhcf (%, U) = Dxf O, W)
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The condition (23) is not easy to check since it depends on the state dgnangi¢he policy.
Note however that, when we use a strict stochastic policy tiue> 0), a sufficient condition for the
set of pointg X" )scs1) to Span a vector space of dimensibis that the system be (at least locally)
controllable. In the case of linear systethgdt = Ax+ Bu, whereu € U = RY, andA andB being
d x d andd x g-matrices respectively, a necessary and sufficient condition foraltaitility is that
thed x (qd) controllability matrix[B: AB: A?B: - - - : A9~1B] has ranld (this is the so-calle&alman
rank condition(Kalman et al., 1969)). In more general settings, for example whena linear
combination of vector fields; (x) weighted by the control components, iféx,u) = S hi(X)u;, a
sufficient condition for controllability is that the dimension of the Lie algebrzegated by the fields
{hi} isd (see e.g. (LaValle, 2006)). Intuitively, this dimension represents the eupflpossible
independent directions of movement when following any sequence tioten

In our numerical experiments, we observed the convergence afithestimate.

Remark 9 A simple on-line way for approximatingyf is to consider a weighted least-squares
problem using an exponential weight (with some coeffidieat(0, 1)) instead of the rectangular
window se [t — cA,t]. The piece of information related to a timecg is weighted byP, where p

is the number of times the control u has been chosen between s andéaslyiso adapt the proof
of Proposition 8 to derive that a such weighted least squares estimaiig fais consistent, for any
A € (0,1), under the same condition (23).

An on-line update rule would consider tables for the average vatifes (whereY meansX,
XX/, AX, or AX X) for all u € U. The values are initialized (at the first time t each action u is
encountered) by;Ywhere Y means X, X (X")’, AX, and A% (X")’, respectively. Then, the
values are updated at time t, according to

Yu) —AY(u)+(1-A)Y; for u=u,

Y (u) stays unchanged for # u;.

The quantitieX, X X', AX, andAX X’ are easily updated and the estimaigf may advanta-
geously be computed from (22) by using an iterative matrix inversion, asietith the Sherman-
Morrison formula (see for example (Golub and Loan, 1996)).

Note that for the first discrete timas the matrixX X’ — XX’ may not be invertible, simply
because there is not enough poifXs)s-: to form a subspace of dimensidn We may simply set

ﬁﬁ to 0, which has no impact on the general convergence result.

3.3 The Reinforcement Learning Algorithm

Here, we derive a convergent policy gradient estimate in which all infaomaequired to build the
state gradienz? is the past trajectorgX®)o<s<t.
Choose a time stefy. For a given stochastic poliay, the algorithm proceeds as follows:

1. Attimet = 0, initialise X} = x andz5 = 0.

2. For each discrete timec {(tn)o<n<n}, Choose an actiom; ~ T (t,X*) according to the
stochastic policyt, and keep this action for a period of tildewhich moves the system from
X{ to XA 5 (summarized by the dynamics (15)).
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3. Update the average valuésX X', AX, or AX X/, for all u € U, as described in subsection 3.2,
for example by using an exponential trace with parameter0, 1) as mentioned in Remark
9.

4. Compute the state dynamics gradient approxima[ﬁ/ﬁi'(xtﬂ, U ) according to

Oxf (X, ) = % (BXX —BXX') (XX —XX) 7+,

5. Updatez® according to

A oA A [de(ut’t’)QA)]/ [DXT[G(Ut“inA)]/ A
Zha = 2+ Yo

+O,F (8%, w)ZPA. (24)
6. Repeat steps 2-5 until= T. Then return the policy gradient estimatgr (X4)z4.

This algorithm returns a consistent approximation of the policy gradigkita), as stated now.

Proposition 10 Assume that the property (23) of Proposition 8 holds, and that the tefuaiction
is continuously differentiable. Then the estimatg (X£)Z2 returned by the RL algorithm is a
consistent approximation of the policy gradientV (a), in the sense thaflyr (X£)Z2 converges
almost surely td14V (a) whenA — 0.

Proof From Proposition Sﬁx\f is a consistent approximation ok f, thus the proces{sZtA) built
from (24) also satisfies the consistency condition (17), and the prbofviolike in Proposition ‘M

3.4 lllustration on a Simple Example

Let us illustrate this algorithm on the simple example described in the introductiom(ifich we
observed the infinite variance of the likelihood ratio estimate in the continuous time limit).

The continuous process is defined by (8) and the discrete time stochastispihy (9). With
the notations used in the introduction, the state gradient dynamics (24) is:

OaTl (W, [t,X5)  _a Un/a
Tha (U, £, X)) =4 +< (1-Un)/(a—1) )A'

Thus the gradient estimate (18) is

ZtAn+1 = Zﬁ + ()(tﬁ-#l - ﬁ)

1 N—-1
D) =0r(Xf_)Z8_11=—=(F Un).
9(8) r(Xr=1)Z7-11 aN (nZO n)
SinceE[g(A)] = 1, this is an unbiased estimate of the true gradiégW (a) = Oqr(x1) = 1.
Moreover, its variance Vig(A)] = 0(%NVar[Un] = 10(;,3‘ decreases to 0 whéxhgoes to infinity, which
contrast with the variance of the likelihood ratio estimate (11).
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Figure 2: A stochastic policy; = h (t,X2) + & with & ~ A (0,v(A)).

3.5 The Continuous Control Space Case

So far, we have used notations for a finite control sphceowever, the same results hold in the case
of a continuous control spatke RY. Let us illustrate a simple way for defining a stochastic policy
based on a parameterized deterministic policy. et [0, T] x RY — U = RY be a deterministic
policy parameterized by (which may be implemented by a neural network, or with any other
function approximator). We search for a value of the parantetbat maximizes the performance
of the corresponding policy.

We build a stochastic policy by perturbirg with a centered Gaussian noise of covariance
matrix v(A) (i.e. which depends on the discretization time-sép Thusu, = hg (t,X2) + & with
& ~ N (0,v(A)). See Figure 2. We assume thatAinyv(A) = 0.

This stochastic policy admits a probability density representatjgnlt, x):

1 1 / _
i L 2 el v(®) ()]

T (U[t, X) =
The stochastic proce$X) built according to (15) from this stochastic poliny is consistent
with the continuous procegg;) defined by the parameterized deterministic pohigy

dx
— = f(X, hq(t,X)).
dt ( ) U( ) ))
Indeed, from the continuity off, and the assumption thafA) a9 0, the average state dynamics
vector using the stochastic polity tends to the state dynamics vector using the deterministic policy
hq:

lim f (X, u)Ty (uft,x)du= f (X, hy(t,X)),
A—0JRa

and the consistency property (13) as well as the bound (14) hold @osame reasons as those
invoked in subsection 2.2). Thus, the reinforcement learning algorithsuladection 3.3 applies
directly.

Note that from the specific form of the poliay (ult,x), the likelihood ratios are easily com-

puted: for each parametay, 1 <i <m, %w = 8¢ N (1, X)V(A) 1 (u— hg(t,x)), and for each

. . Oy t, _
coordinates, 1< i < d, 7l — gy h (£, x)V(A) L (u— ha(t,)).
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4. Numerical Experiments

We provide two experiments, a target problem and an inverted pendulunilluktrate the rein-
forcement learning algorithm described in subsection 3.3 in the case dfeadimd a continuous
control space, respectively.

4.1 A Target Problem

This is a 6 dimensional syste(®o, Yo, X, Y, Vx, Vy) that represents a han¢kq, yo) position) holding

a spring to which is attached a mass (defined by its positioy) and velocity(vy, vy)) subject to

gravitation. The control is the movement of the hand, in any 4 possible dinsdfigp, down, left,
right). The goal is to reach a targets, yg) with the mass at a specific tinTe(see Figure 3a), while
keeping the hand close to the origin. For that purpose, the terminal réwartibn is defined by

r= G- ¥~ (X=%)* = (y—¥o)*.

TargeH» +
ST
;’/
Haid . +
|
Mass
N
(a) The physical system (b) A trajectory (the mass and the hand) starting from

the origin

Figure 3: (a) the physical system. (b) A trajectory obtained after 1088ignt steps. For that
specific trajectory, the performance (terminal reward) w8<87.

The state dynamics is:

Xo=U, X=Vx, Vx=—X(x—xp),

Yo=Uy, Y=V, Vy=—x(Y—Yo)—,
with k being the spring constant) the massg the gravitational constant, arfdy,uy) = u e

U :={(1,0),(0,1),(—1,0),(0,—1)} the control. We consider a Boltzmann-like stochastic policy
expQq (t, X, u)

Y uweu eXpQu(t, X, u')

Ty (Ult,x) =
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Figure 4: Performance of successive parameterized controllers.

with a linear parameterization of tiig, values:Qq (t, X, u) = ag+ ajt + abxg + agyo + 03X+ agy +
advy -+ advy, for each 4 possible actiomse U. Thus the parameter € R®2. We initializeda with
uniform random values in the ran§e0.01,0.01]. In our experiments we choke=1,m=1,g=1,
X6 =Ys=2,A=0.9,A=001T=10.

At each iteration, we run one trajecto(¥)o<t<t using the stochastic policy, and calculate
the policy gradient estimate according to the RL algorithm described in didis&c3. We then
perform a gradient ascent step (5) (with a fixed sfep 0.01). Figure 4 shows the performance of
the parameterized controller as a function of the number of gradient itesation

For that problem, we chose initial states uniformly distributed over the dofadrd, 0.1]°.
We found that the randomness introduced in the choice of the initial statedhielpet getting
stuck in local minima. Here, convergence of the gradient method occursdateoller close to
optimality (for whichr = 0). We illustrate in Figure 3b the trajectory (where only the hand and
the mass positions are shown) obtained after 1000 gradient steps, sfeostinghe initial state

(X07y07 X, Y, VXavy)t:O =0.

4.2 Double Inverted Pendulum

We illustrate the approach described in subsection 3.5 on this continuotrslpace problem.
This is an double inverted pendulum defined in the 6-dimensions: the posititbe oart, its ve-
locity, the two angles, and their angular velocity: (y,v, 01,1, 0>, 0,)" € R® (see Figure 5). The
controlu € U = R (continuous variable) is the force applied to the cart. The state dynamids-are
scribed in (Bogdanov, 2004). The goal is to reach the unstable equililfsiw, 61, w;, 02, 0,) =0
attimeT = 5. We consider the quadratic reward functigr) = —(y? 4+ V2 + 02 + o2 + 63+ 33).

Like in subsection 3.5, we build a stochastic policy by adding a Gaussian obisgiance
v(A) = Al (wherel is the identity matrix) to a linearly parameterized (time independent) determin-
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y y=0

Figure 5: The double inverted pendulum. Current position and targéiqros

istic policy hy(t,X) = 01 + 02y + 03V + 0401 + a5 + 0602 + 0703, i.e. the control at time is
U ~ ha (t, %) +2¢ (0,v(A)).

We wish to find a local maximum of the performance meast(ge) = r(xt) in the space of the
policy parameters € R’. We initializeda with uniform random values in the ran§e0.01,0.01],
and perform a stochastic gradient algorithm (5) where the grafdigvifa) is computed according
to the reinforcement learning algorithm defined in subsection 3.3.

A gradient step update (5) is performed (with= 1) at the end of each sample trajectory
starting from an initial state, chosen uniformly randomly in the domain defineg éy—1,1],
6, € [-0.3,0.3], 62 € [-0.3,0.3], andv =0, wq = 0, up = 0. We use a discretization time-step
A =103 which is low enough to provide a very good approximation of the true gradtet is the
gradient that would be obtained from the continuous (but unknown fhamagent) state dynamics
by using the deterministic polidyy (t,X).

Figure 6 shows (in bold) the performance measure (terminal rewardg arith of each tra-
jectory as a function of the number of gradient iterations. The other sive the values of the
(ag,...,07) during simulations.

After 1000 gradient iterations, the obtained policyhigt,x) = —0.0023— 5.31y — 1.74v +
11,1661 +0.92w; — 7.778, — 3.94u),, and the resulting average performance 65097 for trajecto-
ries starting randomly from the same domain as during learning. In this proalimear controller
is sufficient to derive a controller close to optimality. However, we shouldtimehat for initial
states in another domain (say, if the angles were not close to 0, and loafmsheaequired to reach
the target position), the problem would not possibly be solved with such desatgss of policies.

5. Conclusion

We described a reinforcement learning method for approximating the gtaufiehe performance
measure of a continuous-time deterministic problem, with respect to the coateshpters. This
was obtained by using a stochastic policy to approximate the continuous slygtanconsistent
stochastic discrete process. We showed how using a perturbated teraeuedeterministic policy
enables to process a consistent (when the perturbation goes to Ongeestienate only from the
observable data.
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Figure 6: The bold curve shows the performance meag(mg, and the other curves the values of
(ag,...,07), as a function of the number of gradient iterations.

In future work, it would be interesting to extend this method to the case ofasticldynamics,
and to non-smooth reward functions (or in case the reward gradienkimown from the agent), by
using integration-by-part formula for the gradient estimate, such alk#igmood ratio methodbf
(Yang and Kushner, 1991) or timeartingale approactof (Gobet and Munos, 2005).

Appendix A. Proof of Proposition 2

The likelihood ratio estimate (10) may be rewritten

1 N-1 N-1
g<A) - G(l—G)N (H;Un) nZO (Un_a)

N-1 N—-1
= G(l_la)N [( n;)Vn)zﬂxN nZOVn] :

with V, := U, — a. From the fact thalE[V,?] = a(1— a), the expectation of the estimate is

1 N-1 5
Elga)] = mlﬁ:[(n;vn)]zl.

Now its variance Vdg(A)] is
1 N-1 N-1 N-1  N-1 N-1 N-1
GNP G)N]ZCOV[( 3 o) pZovp) +aN 3 Vo, (3 Vo) ICyzovp) +aN n;vn/] . (25)

786



PoLicy GRADIENT IN CONTINUOUS TIME

Notice that from the independence of the Bernoulli random varidblgs all terms CoWy, Viy) =
0 forn#n', and CoW,,Vy) = E[(Uyn—a)?] = a(1—a).

The terms CoWn, Vo Vy) = E[Va(VwVpy — E[ViVy])] = E[VaVirVy] (becausey, is centered)
equal 0 whenevan# ' orn# p'. And CoV;,,V2) =EV3] = a(1—a)(1-20a).

Now, CouVnVp, VwVy) =0whenn=n', n# p/, p#n', andp # p’ (because the variabl®gV,
andVyyVy are independent). The terms QuWp, ViVy ) = E[(ViVp —E[VaVp]) (VaVy —E[VaVy])] =
E[VaVpVaVp] =0forn= p,n# p/, andp +# p’ (independence &f, andVi2Vy). Now, CouViVp, ViVp) =
E[(VaVp)?] = 0%(1—a)? whenn # p. Finally, CoWV,2,V2) = EV;] — (IE[VHZ])2 =a(l-a)(1-
30+30%) —a?(1—a)?>=a(l—a)(l-4a+4a?).

Thus, the covariance term in (25) is

No(1—a)(1—4a +4a?) +N(N - 1)a?(1—a)?+aN?a(1—a)(1-2a) + a®N3a(1—a)
and the variance of the likelihood ratio estimate is

1-5(1—a)+(2—3a)aN + a?N?

Varlg(A)] = a—a)N

Appendix B. Proof of Theorem 3

For convenience, we writ, for x;,, X, for Xtﬁ, up for w,,, andU, for Uy, 0 < n < N. Let us define the
average approximation erran§ = E[||X, — X»||] and the squared errov§ = E[||X, — xn|[%]. Here,
we prove the convergence at the terminal time.e. thatXt — x7 almost surely whed — 0.

B.1 Convergence of the Squared Errof[|| X2 — xr||2:

We use the decomposition:

Virr = ElXara—XallZ1+E[[ % — %ol ] + E[| X0 — Xn11]1%]
+2E[(Xn — %n)' (Xat1 — Xn+ X0 — Xni1)] (26)
+2E[(Xnt1 — Xn)' (X0 — Xns1)]-

From the bounded jumps property (1&J]| X1 — Xn|[?] = O(A?). From Taylor’s formula,
Xni1 =X = f(x)A+O(8%), (27)

thus E[||%, — Xn11/|?] = O(A?) (since f is Lipschitz, andx, and f(x) are uniformly bounded on
[0,T]) and from Cauchy-Schwarz inequalitii[(Xns1 — Xn)' (Xn — Xn11)]| = O(A?). From (13) and
(27),

E X1~ Xo+ %0 —Xn11%] = [f (%) — f(0)JA+0(8). (28)
Now, from (14) we deduced thdiX, — xo|| = O(1) thusX, is bounded (for alh andN), as well as
Xn. Let B a constant such thafX,|| < B and||x,|| < Bfor all n <N, N > 0. Sincef is c2, from
Taylor's formula, there exists a constdnsuch that, for alh <N,

1 (%n) = f (%) — Dxf (%) (% — Xn) | < KI[ X0 —Xa 2. (29)
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We deduce that

[E[(Xa —%n)' (Xnt1 = Xn+ %0 — Xn+1)]| = [E[ (%0 —%0)' (T (%0) — T (xa))] [ A+ 0(B)
< |E[(Xn — %) Oxf (%) (X0 — Xn) ] | A+ 2kBWA + 0(A)
< MVAA +0(D)

with M = sup,<g||Exf (X)|| +2kB. Thus, (26) leads to the recurrent bound
Vi1 < (1 MANV, +0(A).

This actually means that there exists a functég) — 0 whenA — 0, such that4 ; < (1+
MAWA + e(A)A. Thus,

(1+MAN -1

WS rma) 1

e(A)A < (eMA 1) —e(n)

1
M
thusv} = o(1), that isE[|[X —xr[2) =2 0.

B.2 Convergence of the MearE[||X& — x7||]:

From (28), we have

EXni1—Xn1Xn] = X0 =X +[f (%) — (Xn)]A+-0(4).
Thus from (29),

M1 = ElXar1—xnal[] < (14 10cF O A)E[| X — Xl [] + kVRA + 0(8)

<
< (14+MD)mE +0o(h),

sinceVi = o(1) (with M’ = supjy<g ||Oxf(X)[). Using the same deduction as above, we obtain that

m& = o(1), that isE[||X2 —xr||] 2=20.

B.3 Almost Sure Convergence

Here, we use theoncentration-of-measure phenomer{@alagrand, 1996; Ledoux, 2001), which
states that under mild conditions, a function (say Lipschitz or with boundésteliices) of many
independent random variables concentrates around its mean, in tieetsanthe tail probability
decreases exponentially fast.

From the definition of the discrete state process (12), one may write thegtatea functiorh
of the independent random variablgs,)o<n<n; I.€.

N-1
XN_XOZ h(U07"‘7UN—1) = Z}(Xn—&-l—xn) (30)
n=
Observe thah —E[h] = N3 dn With dy = X1 — X0 — E[Xn11 — X0 being a martingale differ-
ence sequence (thatlisd,|Uo,...,Un_1] = 0). Now, from (Ledoux, 2001, lemma 4.1), one has:

P(||h—E[h)|| > &) < 2¢¢7/(®°) (31)
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for anyD? > S N"4{|dn|[2. Thus, from (14), and sincé®(X,) is bounded (for alh < N and all
N > 0), there exists a consta@tthat does not depend disuch thad, < C/N. Thus we may take

=C?/N.

Now, from the previous paragraphE[Xn] — xn|| < €(N), with e(N) — 0 whenN — co. This
means thath— E[h]|| +e(N) > || Xy — xn||, thus

P([lh—E[h[|| > e+e(N)) = P([[Xny —xnl[ = €),
and we deduce from (31) that
P(||Xn —Xn|| > €) < 2~ N(e+e(N))?/(2C%)

Thus, for alle > 0, the series \~oP(||Xn — Xn|| > €) converges. Now, from Borel-Cantelli

lemma, we deduce that for a&lt> 0, there existd\; such that for alN > Ng, || Xy — Xn|| < €, which
. A—0

proves the almost sure convergencé&gfto xy asN — o (i.e. Xr — xt almost surely).

Appendix C. Proof of Proposition 8

First, note that) = X X’ ~XX'isa symmetric, non-negative matrix, since it may be rewritten as

LY 06 -X0E X'
seS(t)

In solving the least squares problem (21), we dedueeAX + AXA, thus

2

AXs—b AX5+;AXS)A — min© ZHAXS—H—A(XJ—Y)AHZ

w3

nt A ntseS(t)
1 — — -
< 2T [[ A% BX- Oy f (X, ) (%= X)), (32)
M)
Now, sinceXs = X +O(A) one may obtain like in (19) and (20) (by replaciXgby X) that:
DXs— BX — Oy (X, u) (X — X)A = O(A%). (33)

We deduce from (32) and (33) that
1 — _ 2
=3 ||IBF 06 w) - B (w06 - Xa||” = 0(a).
™ )

By developing each component,

d _
.Z[Dxf(xt’ut)_DXf(X’“‘ﬂrowiQt[Dxf(xt’ut)_ f(X ut”rom O<A4)

Now, from the definition of/(A), for all vectoru € RY, U'Quu > v(A)||u||?, thus
V(D)1 T (%, t) — O (X, ) 2 = O(a%).

Condition (23) yleldsDx (X, W) = Oxf (X, ) +0(1), and sincedy f (X, u) = Oxf (X, ) +O(A),
we deduce

I|m DX (X, ur) = OxF (X%, W).
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