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Abstract
We apply a type of generative modelling to the problem of blind source separation in which
prior knowledge about the latent source signals, such as time-varying auto-correlation and quasi-
periodicity, are incorporated into a linear state-space model. In simulations, we show that in terms
of signal-to-error ratio, the sources are inferred more accurately as a result of the inclusion of
strong prior knowledge. We explore different schemes of maximum-likelihood optimization for
the purpose of learning the model parameters. The Expectation Maximization algorithm, which
is often considered the standard optimization method in this context, results in slow convergence
when the noise variance is small. In such scenarios, quasi-Newton optimization yields substantial
improvements in a range of signal to noise ratios. We analyze the performance of the methods on
convolutive mixtures of speech signals.
Keywords: blind source separation, state-space model, independent component analysis, convo-
lutive model, EM, speech modelling

1. Introduction

We are interested in blind source separation (BSS) in which unknown source signals are estimated
from noisy mixtures. Real world application of BSS techniques are found in as diverse fields as
audio (Yellin and Weinstein, 1996; Parra and Spence, 2000; Anemüller and Kollmeier, 2000), brain
imaging and analysis (McKeown et al., 2003), and astrophysics (Cardoso et al., 2002). While most
prior work is focused on mixtures that can be characterized as instantaneous, we will here inves-
tigate causal convolutive mixtures. The mathematical definitions of these classes of mixtures are
given later in this introductory section. Convolutive BSS is relevant in many signal processing ap-
plications, where the instantaneous mixture model cannot possibly capture the latent causes of the
observations due to different time delays between the sources and sensors. The main problem is
the lack of general models and estimation schemes; most current work is highly application specific
with the majority focused on applications in separation of speech signals. In this work we will
also be concerned with speech signals, however, we will formulate a generative model that may be
generalizable to several other application domains.

One of the most successful approaches to convolutive BSS is based on the following assump-
tions: 1) The mixing process is linear and causal, 2) the source signals are statistically independent,
3) the sources can be fully characterized by their time variant second order statistics (Weinstein
et al., 1993; Parra and Spence, 2000). The last assumption is defining for this approach. Keeping
to second order statistics we simplify computations but have to pay the price of working with time-
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variant statistics. It is well-known that stationary second order statistics, that is, covariances and
correlation functions, are not informative enough in the convolutive mixing case.

Our research concerns statistical analysis and generalizations of this approach. We formulate
a generative model based on the same statistics as the Parra-Spence model. The benefit of this
generative approach is that it allows for estimation of additional noise parameters and injection of
well-defined a priori information in a Bayesian sense (Olsson and Hansen, 2005). Furthermore, we
propose several algorithms to learn the parameters of the proposed models.

The linear mixing model reads

xt =
L−1

∑
k=0

Akst−k +wt . (1)

At discrete time t, the observation vector, xt , results from the convolution sum of the L time-lagged
mixing matrices Ak and the source vector st . The individual sources, that is, the elements of st , are
assumed to be statistically independent. The observations are corrupted by additive i.i.d. Gaussian
noise, wt . BSS is concerned with estimating st from xt , while Ak is unknown. It is apparent from
(1) that only filtered versions of the elements of st can be retrieved, since the inverse filtering can be
applied to the unknown Ak. As a special case of the filtering ambiguity, the scale and the ordering
of the sources is unidentifiable. The latter is evident from the fact that various permutation applied
simultaneously to the elements of st and the columns of At produce identical mixtures, xt .

Equation (1) collapses to an instantaneous mixture in the case of L = 1 for which a variety
of Independent Component Analysis (ICA) methods are available (e.g., Comon, 1994; Bell and
Sejnowski, 1995; Hyvarinen et al., 2001). As already mentioned, however, we will treat the class of
convolutive mixtures, that is L > 1.

Convolutive Independent Component Analysis (C-ICA) is a class of BSS methods for (1) where
the source estimates are produced by computing the ‘unmixing’ transformation that restores statis-
tical independence. Often, an inverse linear filter (e.g., FIR) is applied to the observed mixtures.
Simplistically, the separation filter is estimated by minimizing the mutual information, or ‘cross’
moments, of the ‘separated’ signals. In many cases non-Gaussian models/higher-order statistics are
required, which require a relatively long data series for reliable estimation. This can be executed in
the time domain (Lee et al., 1997; Dyrholm and Hansen, 2004), or in the frequency domain (e.g.,
Parra and Spence, 2000). The transformation to the Fourier domain reduces the matrix convolu-
tion of (1) to a matrix product. In effect, the more difficult convolutive problem is decomposed
into a number of manageable instantaneous ICA problems that can be solved independently using
the mentioned methods. However, frequency domain decomposition suffers from permutation over
frequency which is a consequence of the potential different orderings of sources at different fre-
quencies. Many authors have explored solutions to the permutation-over-frequency problem that
are based on measures of spectral structure (e.g., Anemüller and Kollmeier, 2000), where amplitude
correlation across frequency bands is assumed and incorporated in the algorithm.

The work presented here forges research lines that treat instantaneous ICA as a density estima-
tion problem (Pearlmutter and Parra, 1997; Højen-Sørensen et al., 2002), with richer source priors
that incorporate time-correlation, non-stationarity, periodicity and the convolutive mixture model to
arrive at an C-ICA algorithm. The presented algorithm, which operates entirely in the time-domain,
relies on a linear state-space model, for which estimation and exact source inference are available.
The states directly represent the sources, and the transition structure can be interpreted as describ-
ing the internal time-correlation of the sources. To further increase the audio realism of the model,
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Olsson and Hansen (2005) added a harmonic excitation component in the source speech model
(Brandstein, 1998); this idea is further elaborated and tested here.

Algorithms for the optimization of the likelihood of the linear state-space model are devised and
compared, among them the basic EM algorithm, which is used extensively in latent variable models
(Moulines et al., 1997). In line with Bermond and Cardoso (1999), the EM-algorithm is shown to
exhibit slow convergence in good signal to noise ratios.

It is interesting that the two ‘unconventional’ aspects of our generative model: the non-stationarity
of the source signals and their harmonic excitation, do not change the basic quality of the state-space
model, namely that exact inference of the sources and exact calculation of the log-likelihood and its
gradient are still possible.

The paper is organized as follows: First we introduce the state-space representation of the con-
volutive mixing problem and the source models in Section 2, in Section 3 we briefly recapitulate the
steps towards exact inference for the source signals, while Section 4 is devoted to a discussion of
parameter learning. Sections 5 and 6 present a number of experimental illustrations of the approach
on simulated and speech data respectively.

2. Model

The convolutive blind source separation problem is cast as a density estimation task in a latent
variable model as was suggested in Pearlmutter and Parra (1997) for the instantaneous ICA problem

p(X|θ) =
Z

p(X|S,θ1)p(S|θ2)dS.

Here, the matrices X and S are constructed as the column sets of xt and st for all t. The functional
forms of the conditional likelihood, p(X|S,θ1), and the joint source prior, p(S|θ2), should ideally
be selected to fit the realities of the separation task at hand. The distributions depend on a set of
tunable parameters, θ ≡ {θ1,θ2}, which in a blind separation setup is to be learned from the data. In
the present work, p(X|S,θ1) and p(S|θ2) have been restricted to fit into a class of linear state-space
models, for which effective estimation schemes exist (Roweis and Ghahramani, 1999)

st = Fnst−1 +Cnut +vt , (2)

xt = Ast +wt . (3)

Equations (2) and (3) describe the state/source and observation spaces, respectively. The parameters
of the former are time-varying, indexed by the block index n, while the latter noisy mixing process
is stationary. The randomness of the model is enabled by i.i.d. zero mean Gaussian variables,
vt ∼ N (0,Qn), and wt ∼ N (0,R) The ‘input’ or ‘control’ signal ut ≡ ut(ψn) deterministically
shifts the mean of st depending on parameters ψn. Various structures can be imposed on the model
parameters, θ1 = {A,R} and θ2 = {Fn,Cn,Qn,ψn}, in order to create the desired effects. For
equations (2) and (3) to pose as a generative model for the instantaneous mixture of first-order
autoregressive, AR(1), sources it need only be assumed that Fn and Qn are diagonal matrices and
that Cn = 0. In this case, A functions as the mixing matrix. In Section 2.1, we generalize to AR(p)
and convolutive mixing.
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Figure 1: The dynamics of the linear state space model when it has been constrained to describe
a noisy convolutive mixture of P = 2 autoregressive (AR) sources. This is achieved by
augmenting the source vector to contain time-lagged signals. In a is shown the corre-
sponding source update, when the order of the AR process is p = 4. In b, the sources are
mixed through filters (L = 4) into Q = 2 noisy mixtures. Blanks signify zeros.

2.1 Auto-Regressive Source Prior

The AR(p) source prior for source i in frame n is defined as follows,

si,t =
p

∑
k=1

f n
i,ksi,t−k + vi,t

where t ∈ {1,2, ..,T}, n ∈ {1,2, ..,N} and i ∈ {1,2, ..,P}. The excitation noise is i.i.d. zero mean
Gaussian: vi,t ∼ N (0,qn

i ). It is an important point that the convolutive mixture of AR(p) sources
can be contained in the linear state-space model (2) and (3), this is illustrated in Figure 1. The
enabling trick, which is standard in time series analysis, is to augment the source vector to include
a time history so that it contains L time-lagged samples of all P sources

st =
[

(s1,t)
> (s2,t)

> . . . (sP,t)
>

]>

where the i’th source is represented as

si,t =
[

si,t si,t−1 . . . si,t−L+1
]>

.

2588



LINEAR STATE-SPACE MODELS FOR BLIND SOURCE SEPARATION

Furthermore, constraints are enforced on the matrices of θ

Fn =











Fn
1 0 · · · 0

0 Fn
2 · · · 0

...
...

. . .
...

0 0 · · · Fn
P











,

Fn
i =















f n
i,1 f n

i,2 · · · f n
i,p−1 f n

i,p

1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0















,

Qn =











Qn
1 0 · · · 0

0 Qn
2 · · · 0

...
...

. . .
...

0 0 · · · Qn
P











,

(Qn
i ) j j′ =

{

(q2
i )

n j = j′ = 1
0 j 6= 1

W

j′ 6= 1
,

Cn = 0,

where Fn
i was defined for p = L. In the interest of the simplicity of the presentation, it is assumed

that Fn
i has L row and columns. We furthermore assume that p ≤ L; in the case of p < L, zeros

replace the affected (rightmost) coefficients. Hence, the dimensionality of A is Q× (p×P),

A =











a>11 a>12 .. a>1P
a>21 a>22 .. a>2P
...

...
. . .

...
a>Q1 a>Q2 .. a>QP











where ai j = [ai j,1,ai j,2, ..,ai j,L]
> can be interpreted as the impulse response of the channel filter

between source i and sensor j. Overall, the model can described can be described as the generative,
time-domain equivalent of Parra and Spence (2000).

2.2 Harmonic Source Prior

Many classes of audio signals, such as voiced speech and musical instruments, are approximately
piece-wise periodic. By the Fourier theorem, such sequences can be represented well by a harmonic
series. In order to account for colored noise residuals and noisy signals in general, a harmonic and
noise (HN) model is suggested (McAulay and Quateri, 1986). The below formulation is used

si,t =
p

∑
t ′=1

f n
i,t ′si,t−t ′ +

K

∑
k=1

[

cn
i,2k−1 sin(ωn

0,it)+ cn
i,2k cos(ωn

0,it)
]

+ vi,t

where ωn
0,i’ is the fundamental frequency of source i in frame n and the Fourier coefficients are

contained in cn
i,2k−1 and cn

i,2k. The harmonic model is represented in the state space model (2) & (3)
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through the definitions

Cn =















(cn
1)

> 0 · · · 0
0 0 · · · 0
0 (cn

2)
> · · · 0

...
...

. . .
...

0 0 · · · (cn
P)>















,

cn
i =

[

cn
i,1 cn

i,2 · · · cn
i,2K

]>
,

un
t =

[

(un
1,t)

> (un
2,t)

> . . . (un
P,t)

>
]>

,

where the k’th harmonics of source i in frame n are defined as (un
i,t)2k−1 = sin(kωn

0,it) and (un
i,t)2k =

cos(kωn
0,it), implying the following parameter set for the source mean: ψn =

[

ωn
0,1 ωn

0,2 . . . ωn
0,P

]

.

Other parametric mean functions could, of course, be used, for example, a more advanced speech
model.

3. Source Inference

In a maximum a posteriori sense, the sources, st , can be optimally reconstructed using the Kalman
filter/smoother (Kalman and Bucy, 1960; Rauch et al., 1965). This is based on the assumption
that the parameters θ are known, either a priori or have been estimated as described in Section 4.
While the filter computes the time-marginal moments of the source posterior conditioned on past
and present samples, that is, 〈st〉p(S|x1:t ,θ) and

〈

sts>t
〉

p(S|x1:t ,θ)
, the smoother conditions on samples

from the entire block: 〈st〉p(S|x1:T ,θ) and
〈

sts>t
〉

p(S|x1:T ,θ)
. For the Kalman filter/smoother to compute

MAP estimates, it is a precondition due that the model is linear and Gaussian. The computational
complexity is O(T L3) due to a matrix inversion occurring in the recursive update. Note that the
forward recursion also yields the exact log-likelihood of the parameters given the observations,
L(θ). A thorough review of linear state-space modelling, estimation and inference from a machine
learning point of view can be found in Roweis and Ghahramani (1999).

4. Learning

The task of learning the parameters of the state-space model from data is approached by maximum-
likelihood estimation, that is, the log-likelihood function, L(θ), is optimized with respect to the
parameters, θ. The log-likelihood is defined as a marginalization over the hidden sources

L(θ) = logp(X|θ) = log
Z

p(X,S|θ)dS.

A closed-form solution, θ = argmaxθ′ L(θ′), is not available, hence iterative algorithms that opti-
mize L(θ) are employed. In the following sections three such algorithms are presented.

4.1 Expectation Maximization Algorithm

Expectation Maximization (EM) (Dempster et al., 1977), has been applied to latent variable models
in, for example, Shumway and Stoffer (1982) and Roweis and Ghahramani (1999). In essence, EM
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is iterative optimization of a lower bound decomposition of the log-likelihood

L(θ) ≥ F (θ, p̂) = J (θ, p̂)−R (p̂) (4)

where p̂(S) is any normalized distribution and the following definitions apply

J (θ, p̂) =
Z

p̂(S) logp(X,S|θ)dS,

R (p̂) =
Z

p̂(S) log p̂(S)dS.

Jensen’s inequality leads directly to (4). The algorithm alternates between performing Expectation
(E) and Maximization (M) steps, guaranteeing that L(θ) does not decrease following an update.
On the E-step, the Kalman smoother is used to compute the marginal moments from the source
posterior, p̂ = p(S|X,θ), see Section 3. The M-step amounts to optimization of J (θ, p̂) with respect
to θ (since this is the only F (θ, p̂) term which depends on θ. Due to the choice of a linear Gaussian
model, closed-form estimators are available for the M-step (see appendix A for derivations).

In order to improve on the convergence speed of the basic EM algorithm, the search vector
devised by the M-step update is premultiplied by an adaptive step-size η. A simple exponentially
increase of η from 1 was used until a decrease in L(θ) was observed at which point η was reset
to 1. This speed-up scheme was applied successfully in Salakhutdinov and Roweis (2003). Below
follow the M-step estimators for the AR and HN models. All expectations 〈·〉 are over the source
posterior, p(S|X,θ):

4.1.1 AUTOREGRESSIVE MODEL

For source i in block n:

fn
i,new =

[
T+t0(n)

∑
t=2+t0(n)

〈si,t−1s>i,t−1〉
]−>[

T+t0(n)

∑
t=2+t0(n)

〈si,tsi,t−1〉
]

,

qn
i,new =

1
T −1

T+t0(n)

∑
t=2+t0(n)

[

〈s2
i,t〉−

(

fn
i,new

)>
〈si,tsi,t−1〉

]

,

where t0(n) = (n−1)T . Furthermore:

Anew =
[ NT

∑
t=1

xt〈st〉
>
][ NT

∑
t=1

〈st(st)
>〉

]−1
,

Rnew =
1

NT

NT

∑
t=1

diag[xt(xt)
>−Anew〈st〉(xt)

>],

where the diag[·] operator extracts the diagonal elements of the matrix. Following an M-step, the
solution corresponding to ||Ai|| = 1 ∀i is chosen, where || · || is the Frobenius norm and Ai =
[

ai1 ai2 · · · aiQ
]>

, meaning that A and Qn are scaled accordingly.

4.1.2 HARMONIC AND NOISE MODEL

The linear source parameters and signals are grouped as

dn
i ≡

[

(fn
i )

> (cn
i )

>
]>

, zi ≡
[

(si,t−1)
> (ui,t)

>
]>

,
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where

fn
i ≡

[

f n
i,1 f n

i,2 . . . f n
i,p

]>
, cn

i ≡
[

ci,1 cn
i,2 . . . cn

i,p

]>
.

It is in general not trivial to maximize J (θ, p̂) with respect to ωn
i,0, since several local maxima exist,

for example, at multiples of ωn
i,0 (McAulay and Quateri, 1986). However, simple grid search in a

region provided satisfactory results. For each point in the grid we optimize J (θ, p̂) with respect to
dn

i :

dn
i,new =

[

NT

∑
t=2

〈

zi,t(zi,t)
>
〉

]−1 NT

∑
t=2

〈

zi,t(si,t)
>
〉

.

The estimators of A, R and qn
i are similar to those in the AR model.

4.2 Gradient-based Learning

The derivative of the log-likelihood, dL(θ)
dθ , can be computed and used in a quasi-Newton (QN)

optimizer as is demonstrated in Olsson et al. (2006). The computation reuse the analysis of the
M-step. This can be realized by rewriting L(θ) as in Salakhutdinov et al. (2003):

dL(θ)

dθ
=

Z

p(S|X,θ)
d logp(X,S|θ)

dθ
dS =

dJ (θ, p̂)

dθ
. (5)

Due to the definition of J (θ, p̂), the desired gradient in (5) can be computed following an E-step
at relatively little effort. Furthermore, the analytic expressions are available from the derivation of
the EM algorithm, see appendix A for details. A minor reformulation of the problem is necessary
in order to maintain non-negative variances. Hence, the reformulations Ω2 = R and (φn

i )
2 = qn

i are
introduced. Updates are devised for Ω and φn

i . The derivatives are

dL(θ)

dA
= −R−1A

NT

∑
t=1

〈

sts>t
〉

+R−1
N

∑
t=1

xt

〈

s>t
〉

,

dL(θ)

dΩ
= Ω−3

NT

∑
t=1

[

xtx>t +A
〈

sts>t
〉

A>−2xt

〈

s>t
〉

A>
]

,

dL(θ)

dfn
i

=
T+t0(n)

∑
t=2+t0(n)

[

〈si,tsi,t−1〉−
〈

si,t−1s>i,t−1

〉

fn
i /qn

i

]

,

dL(θ)

dφn
i

= (1−T )/φn
i +

φ−3
i

T−1+t0(n)

∑
t=2+t0(n)

[〈

si,ts
>
i,t

〉

+(fn
i )

>
〈

si,t−1s>i,t−1

〉

fn
i −2(fn

i )
>

〈

si,ts>i,t−1

〉]

.

In order to enforce the unit L2 norm on Ai, a Lagrange multiplier is added to the derivative of A. In
this work, the QN optimizer of choice is the BFGS optimizer of Nielsen (2000).
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4.3 Stochastic Gradient Learning

Although quasi-Newton algorithms often converge rapidly with a high accuracy, they do not scale
well with the number of blocks, N. This is due to the fact that the number of parameters is asymp-
totically proportional to N, and therefore the internal inverse Hessian approximation becomes in-
creasingly inaccurate. In order to be able to efficiently learn θ2 (A and R) for large N, a stochastic
gradient approach (SGA), (Robbins and Monro, 1951), is employed.

It is adapted here to estimation in block-based state-space models, considering only a single
randomly and uniformly sampled block, n, at any given time. The likelihood term corresponding to
block n is L(θn

1,θ2), where θn
1 = {Fn,Cn,Qn,ψn}. The stochastic gradient update to be applied is

computed at the current optimum with respect to θn
1,

∆θ2 = η
dL(θ̂n

1,θ2)

dθ2
,

θ̂n
1 = argmax

θn
1

L(θn
1,θ2).

where θ̂n
1 is estimated using the EM algorithm. Employing an appropriate ‘cooling’ of the learning

rate, η, is mandatory in order to ensure convergence: one such, devised by Robbins and Monro
(1951), is choosing η proportional to 1

k where k is the iteration number. In our simulations, the SGA
seemed more robust to the initial parameter values than the QN and the EM algorithms.

5. Learning from Synthetic Data

In order to investigate the convergence of the algorithms, AR(2) processes with time-varying pole
placement were generated and mixed through randomly generated filters. For each signal frame,
T = 200, the poles of the AR processes were constructed so that the amplification, r, was fixed
while the center frequency was drawn uniformly from U (π/10,9π/10). The filter length was L = 8
and the coefficients of the mixing filters, that is, the ai j of A, were generated from i.i.d. Gaussians
weighted by an exponentially decaying function. Quadratic mixtures with Q = P = 2 were used: the
first 2 elements of a12 and a21 were set to zero to simulate a situation with different channel delays.
All channel filters were normalized to ||ai j||2 = 1. Gaussian i.i.d. noise was added in each channel,
constructing the desired signal to noise ratio.

For evaluation purposes, the signal-to-error ratio (SER) was computed for the inferred sources.
The true and estimated sources were mapped to the output by filtering through the direct channel
so that the true source at the output is s̃i,t = aii ∗ si,t . Similarly defined, the estimated source at the
sensor is ŝi,t . Permutation ambiguities were resolved prior to evaluating the SER,

SERi =
∑t s̃2

i,t

∑t (s̃i,t − ŝi,t)
2 .

The EM and QN optimizers were applied to learn the parameters from N = 10 frames of samples
with SNR = 20dB, r = 0.8. The algorithms were restarted 5 times with random initializations,
Ai j ∈ N (0,1), the one that yielded the maximal likelihood was selected. Figure 2 shows the results
of the EM run: the close match between the true and learned models confirms that the parameters
can indeed be learned from the data using maximum-likelihood optimization. In Table 1, the gen-
erative approach is contrasted with a stationary finite impulse response (FIR) filter separator that
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Figure 2: The true (bold) and estimated models for the first 3 frames of the synthetic data based
on the autoregressive model. The amplitude frequency responses of the combined source
and channel filters are shown: for source i, this amounts to the frequency response of
the filter, with the scaling and poles of θ1,i and zeros of the direct channel aii. For the
mixtures, the responses across channels were summed. The EM algorithm provided the
estimates.

Estimated Generative MSE FIR
AR 9.1±0.4 9.7±0.4 7.5±0.2
HN 11.8±0.7 13.2±0.4 7.9±0.5

Table 1: The signal-to-error ratio (SER) performance on synthetic data based on the autoregressive
(AR) and harmonic-and-noise (HN) source models. Mean and standard deviation of the
mean are shown for 1) the EM algorithm applied to the mixtures, 2) inferences from data
and the true model, and, 3) the optimal FIR filter separator. The mean SER and the standard
deviation of the mean were calculated from N = 10 signal frames, SNR = 20dB.

in a supervised fashion was optimized to minimize the squared error between the estimated and
true sources, LFIR = 25. Depending on the signal properties, the generative approach, which re-
sults in a time-varying filter, results in a clear advantage over the time-invariant FIR filter, which
has to compromise across the signal’s changing dynamics. As a result, the desired signals are only
sub-optimally inferred by methods that apply a constant filter to the mixtures. The performance of
the learned model is upper-bounded by that of the generative model, since the maximum likelihood
estimator is only unbiased in the limit.

The convergence speed of the EM scheme is highly sensitive to the signal-to-noise ratio of
the data, as was documented in Olsson et al. (2006), whereas the QN algorithm is more robust to
this condition. In Bermond and Cardoso (1999), it was shown that the magnitude of the update
of A scales inversely with the SNR. By varying the SNR in the synthetic data and applying the
EM algorithm, it was confirmed that the predicted convergence slowdown occurs at high SNR. In
contrast, the QN algorithm was found to be much more robust to the noise conditions of the data.
Figure 3 shows the SER performance of the two algorithms as computed following a fixed number
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Figure 3: Convergence properties of the EM and QN algorithms as measured on the synthetic data
(autoregressive sources). The signal-to-error ratio (SER) was computed in a range of SNR
following 300 iterations. As the SNR increases, more accurate estimates are provided by
all algorithms, but the number of iterations required increases more dramatically for the
EM algorithm. Results are shown for the basic EM algorithm as well as for the step-size
adjusted version.

of iterations (imax = 300). It should be noted that the time consumption per iteration is similar for the
two algorithms, since a similar number of E-step computations is used (and E-steps all but dominate
the cost).

For the purpose of analyzing the HN model, a synthetic data set was generated. The fundamental
frequency of the harmonic component was sampled uniformly in a range, see Figure 4, amplitudes
and phases, K = 4, were drawn from a Gaussian distribution and subsequently normalized such that
||ci|| = 1. The parameters of the model were estimated using the EM algorithm on data, which was
constructed as SNR = 20dB, HNR = 20dB. The fundamental frequency search grid was defined
by 101 evenly spaced points in the generative range. In Figure 4, true and learned parameters are
displayed. A close match between the true and estimated harmonics is observed.

In cases when the sources are truly harmonic and noisy, it is expected that the AR model per-
forms worse than the HN model. This is due to the fact that a harmonic mean structure is required
for the model to be unbiased. The AR model will compensate by estimating a larger variance, qi,
leading to suboptimal inference. In Figure 5, the bias is quantified by measuring the performance
gap between the HN and AR models for varying HNR. The source parameters were estimated by
the EM algorithm, whereas the mixing matrix, A, was assumed known.

2595



OLSSON AND HANSEN

PSfrag replacements

ω0

ω̂
0

0.08 0.09 0.1 0.11 0.12
0.08

0.09

0.1

0.11

0.12

PSfrag replacements

250
300
350
400
250
300
350
400
250
300
350
400
250
300
350
400
250
300
350
400
250
300
350
400

-2
0
2

-2
0
2

-2
0
2

-2
0
2

-2
0
2

-1
0
1

n = 1

n = 2

n = 3

src. 1 src. 2
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PSfrag replacements

HNR (dB)

SE
R

(d
B

)

HN (30dB)

AR (10dB)
AR (20dB)
AR (30dB)
HN (10dB)
HN (20dB)
HN (30dB)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

-20 -10 0 10 20 30

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10

15

20

25

Figure 5: The signal-to-error ratio (SER) performance of the autoregressive (AR) and harmonic-
and-noisy (HN) models for the synthetic data set (N = 100) in which the harmonic-to-
noise ratio (HNR) was varied. Results are reported for SNR = 10,20,30dB. The results
indicate that the relative advantage of using the correct model (HN) can be significant.
The error-bars represent the standard deviation of the mean.

6. Speech Mixtures

The separation of multiple speech sources from room mixtures has potential applications in hearing
aids and speech recognition software (see, for example, Parra and Spence, 2000). For this purpose,
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Figure 6: The separation performance (SER) on test mixtures as a function of the training data
duration for the autoregressive (AR) and harmonic-and-noisy (HN) priors. Using the
stochastic gradient (SG) algorithm, the parameters were estimated from the training data.
Subsequently, the learned filters, A, were applied to the test data, reestimating the source
model parameters. The noise was constructed at 40dB and assumed known. For ref-
erence, a frequency domain (FD) blind source separation algorithm was applied to the
data.

we investigate the models based on the autoregressive (AR) and harmonic-and-noisy source (HN)
priors and compare with a standard frequency domain method (FD). More specifically, a learning
curve was computed in order to illustrate that the inclusion of prior knowledge of speech benefits
the separation of the speech sources. In Figure 6 is shown the relationship between the separation
performance on test mixtures and the duration of the training data, confirming the hypothesis that
the AR and HN models converge faster than the FD method. Furthermore it is seen that the HN
model can obtain a larger SER than the AR model.

The mixtures were constructed by filtering speech signals (sampled at 8Hz) through a set of
simulated room impulse responses, that is, ai j, and subsequently adding the filtered signals. The
room impulse responses were constructed by simulating Q = 2 speakers and P = 2 microphones
in an (ideal) anechoic room, the cartesian coordinates in the horizontal plane given (in m) by
{(1,3) ,(3,3)} and {(1.75,1) ,(2.25,1)} for the speakers and microphones, respectively.1. This
corresponds to a maximum distance of 1.25m between the speakers and the microphones, and a set
of room impulse responses that are essentially Kronecker delta functions well represented using a
filter length of L = 8.

1. A Matlab function, rir.m, implementing the image method (Allen and Berkley, 1979) is available at
http://2pi.us/rir.html.
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The SG algorithm was used to fit the model to the mixtures and subsequently infer the source
signals. The speech data, divided into blocks of length T = 200, was preprocessed with a standard
pre-emphasis filter, H(z) = 1−0.95z−1, and inversely filtered prior to the SER calculations. From
initial conditions (qn

i = 1, f n
i, j = 0, cn

i, j = 0 and ai, j,k normally distributed, variance 0.01, for all
i, j,n,k except a1,1,1 = 1, a2,2,1 = 1; ωn

0,i was drawn from a uniform distribution corresponding to
the interval 50− 200Hz), the algorithm was allowed imax = 500 iterations to converge and restarts
were not necessary. The source model order was set to p = 1 (autoregression order) and in the
case of the harmonic-and-noise model, the number of harmonics was set to K = 6. The complex
JADE algorithm was employed in the frequency domain as the reference method (Cardoso and
Souloumiac, 1993). In order to correct the permutations across the 101 frequencies, amplitude
correlation between the bands was maximized (see, for example, Olsson and Hansen, 2006).

In order to qualitatively assess the effect of the two priors, a mixture of speech signals was
constructed using P = 2 speech signals (a female and a male, shown in Figure 7a and b). They were
mixed through artificial channels, A, which were generated as in Section 5. Noise was added up to
a level of 20dB. The EM algorithm was used to fit the source models to the mixtures. It is clear
from Figure 7 c-f that the estimated harmonic model to a large extent explains the voiced parts of the
speech signals, and the unvoiced parts to a lesser extent. In regions of rapid fundamental frequency
variation, the harmonic part cannot be fitted as well (the frames are too long here). In Figure 7 g
and h, the separation performances of the AR and HN models are contrasted. Most often, the HN
performs better than the AR model. A notable exception occurs in the case when either speaker is
silent, in which case the misfit of the HN model is more severe, suggesting that the performance can
be improved by model control.

7. Conclusion

It is demonstrated that careful generative modelling is a viable approach to convolutive source sepa-
ration and can yield improved results. Noisy observations, non-stationarity of the sources and small
data volumes are examples of scenarios which benefit from the higher level of modelling detail.

The performance of the model was shown to depend on the choice of optimization scheme
when the signal-to-noise ratio is high. In this case, the EM algorithm, which is often preferable for
its conceptual and analytical simplicity, experiences a substantial slowdown, and alternatives must
be employed. Such an alternative is a gradient-based quasi-Newton algorithm, which is shown to
be particularly useful in low-noise settings. Furthermore, the required gradients are obtained in the
process of deriving the EM algorithm.

The harmonic-and-noise model was investigated as a means to estimating more accurately a
number of speech source signals from the their mixtures. Although a substantial improvement is
shown to result when the sources are truly harmonic, the overall model is vulnerable to overfitting
when the energy of one or more sources is locally near-zero. An improvement of the existing
framework would be a model control scheme, such as variational Bayes, which could potentially
cancel the negative impact of speaker silence. This is a topic for future research.
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Figure 7: The source parameters of the autoregressive (AR) and harmonic-and-noisy (HN) models
were estimated from Q = 2 convolutive mixtures using the EM algorithm. Spectrograms
show the low-frequent parts of the original female (a) and male (b) speech sources. The
appropriateness of the HN model can be assessed in c and d, which displays the re-
synthesization of the two sources from the parameters (K = 6), as well as e and f, where
the estimated ratio of harmonics to noise (HNR) is displayed. Overall the fit seem good,
except at rapid variations of the fundamental frequency, for example, at (I), where the
analysis frames are too long. The relative separation performance of the AR and HN
models, which is shown in g and h for the two sources, confirms that the HN model is
superior in most cases, with a notable exception in regions such as (II), where one of the
speakers is silent. This implies a model complexity mismatch which is more severe for
the more complex HN model.

Appendix A.

Below, an example of an M-step update derivation is shown for Fn. As a by-product of the analy-
sis, the derivative for the gradient-based optimizers appears. Care must be devised in obtaining the
derivatives, since Fn is a structured matrix, for example, certain elements are one and zero. There-
fore, the cost-function is expressed in terms of fn

i rather than Fn. Since all variables, which are here
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indexed by the block identifier, n, are Gaussian, we have that:
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∑
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The vector derivative of J (θ) with respect to fn
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This was the desired gradient, which is directly applicable in a gradient-based algorithm. By equat-
ing to zero and solving, the M-step update is derived:
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