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Abstract
We develop kernels for measuring the similarity between relational instances using background
knowledge expressed in first-order logic. The method allowsus to bridge the gap between tradi-
tional inductive logic programming (ILP) representationsand statistical approaches to supervised
learning. Logic programs are first used to generate proofs ofgiven visitor programs that use predi-
cates declared in the available background knowledge. A kernel is then defined over pairs of proof
trees. The method can be used for supervised learning tasks and is suitable for classification as well
as regression. We report positive empirical results on Bongard-like andM-of-N problems that are
difficult or impossible to solve with traditional ILP techniques, as well as on real bioinformatics
and chemoinformatics data sets.

Keywords: kernel methods, inductive logic programming, Prolog, learning from program traces

1. Introduction

Within the fields of automated program synthesis, inductive logic programming (ILP) and machine
learning, several approaches exist that learn from example-traces.An example-trace is a sequence of
steps taken by a program on a particular example input. For instance, Biermann and Krishnaswamy
(1976) have sketched how to induce Turing machines from example-traces (in this case sequences of
primitive actions and assertions). Mitchell et al. (1983) have developed the LEX system that learned
how to solve symbolic integration problems by analyzing traces (or search trees) for particular ex-
ample problems. Ehud Shapiro’s Model Inference System (1983) inductively infers logic programs
by reconstructing the proof-trees and traces corresponding to particular facts. Zelle and Mooney
(1993) show how to speed-up the execution of logic programs by analyzing example-traces of the
underlying logic program. Finally, De Raedt et al. (2005) proposed a method for learning stochastic
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logic programs using proof trees as training examples. The diversity of these applications as well as
the difficulty of the learning tasks considered illustrate the power of learningfrom example-traces
for a wide range of applications.

In this paper, we generalize the idea of learning from example-traces. Rather than explicitly
learning a target program from positive and negative example-traces,we assume that a particular—
so-calledvisitor program—is given and that our task consists of learning from the associated traces.
The advantage is that in principle any programming language can be used to model the visitor pro-
gram and that any machine learning system able to use traces as an intermediate representation can
be employed. In particular, this allows us to combine two frequently employed frameworks within
the field of machine learning: ILP and kernel methods. Logic programs will be used to generate
traces corresponding to specific examples and kernels to quantify the similarity between traces. This
combination yields an appealing and expressive framework for tackling complex learning tasks in-
volving structured data in a natural manner. We calltrace kernelsthe resulting broad family of
kernel functions obtainable as a result of this combination. The visitor program is a set of clauses
that can be seen as theinterfacebetween the available background knowledge and the kernel itself.
Intuitively, the visitor program plays a role that is similar to that of declarativebias in inductive
logic programming systems (Nédellec et al., 1996) (see also Section 6).

Kernels methods have been widely used in many relational learning contexts.Starting from the
seminal work of Haussler (1999) (briefly reviewed in Section 4.1) several researchers have proposed
kernels over discrete data structures such as sequences (Lodhi et al., 2002; Jaakkola and Haussler,
1999; Leslie et al., 2002; Cortes et al., 2004), trees (Collins and Duffy,2002; Viswanathan and
Smola, 2003), annotated graphs (Gärtner, 2003; Scḧolkopf and Warmuth, 2003; Kashima et al.,
2003; Mah́e et al., 2004; Horv́ath et al., 2004; Menchetti et al., 2005), and complex individuals
defined using higher order logic abstractions (Gärtner et al., 2004). Constructing kernels over struc-
tured data types, however, is not the only aim of the proposed framework. In many symbolic ap-
proaches to learning, logic programs allow us to define background knowledge in a natural way.
Similarly, in the case of kernel methods, the notion of similarity between two instances expressed
by the kernel function is the main tool for exploiting the available domain knowledge. It seems
therefore natural to seek a link between logic programs and kernels, alsoas a means for embedding
knowledge into statistical learning algorithms in aprincipledandflexibleway. This aspect is one of
the main contributions of this paper as few alternatives exist to achieve this goal. Propositionaliza-
tion, for example, transforms a relational problem into one that can be solved by an attribute-value
learner by mapping data structures into a finite set of features (Kramer et al., 2000). Although it is
known that in many practical applications propositionalization works well, its flexibility is gener-
ally limited. A remarkable exception is the method proposed by Cumby and Roth (2002) that uses
description logic to specify features and that has been subsequently extended to specify kernels
(Cumby and Roth, 2003). Muggleton et al. (2005) have proposed an approach where the feature
space is spanned by a set of first order clauses induced by an ILP learning algorithm. Declarative
kernels (Frasconi et al., 2004) are another possible solution towards the above aim. A declarative
kernel is essentially based on a background-knowledge dependent relation that allows us to extract
parts from instances. Instances are reduced in this way to “bags-of-parts”and a combination of
sub-kernels between parts is subsequently used to obtain the kernel between instances.

The guiding philosophy of trace kernels is very different from all the above approaches. In-
tuitively, rather than comparing two given instances directly, these kernelscompare the execution
traces of a program that takes instances as its input. Similar instances shouldproduce similar traces
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when probed with programs that express background knowledge and examine characteristics they
have in common. These characteristics can be more general than parts. Hence, trace kernels can
be introduced with the aim of achieving a greater generality and flexibility with respect to various
decomposition kernels (including declarative kernels). In particular,anyprogram to be executed on
data can be exploited within the present framework to form a valid kernel function, provided one
can give a suitable definition of thevisitor program to specify how to obtain relevant traces and
proofs to compare examples. Although in this paper we only study trace kernels for logic programs,
similar ideas could be used in the context of different programming paradigmsand in conjunction
with alternative models of computation such as finite state automata or Turing machines.

In this paper, we focus on a specific learning framework for Prolog programs. The execution
trace of a Prolog program consists of a set of search trees associatedwith a given goal. To avoid
feature explosion due to failed paths, which are typically much more numerousand less informative
than successful ones, we resort to a reduced representation of traces based on proof trees (Russell
and Norvig, 2002) that only maintain successful search paths. Proof trees can be conveniently repre-
sented as Prolog ground terms. Thus, in this case, kernels over traces reduce to Prolog ground terms
kernels (PGTKs) (Passerini and Frasconi, 2005). These kernels (which are reviewed in Section 4.3)
can be seen as a specialization to Prolog of the kernels between higher order logic individuals earlier
introduced by G̈artner et al. (2004). Because of the special nature of terms in the present context,
we also suggest some proper choices for comparing logical terms that represent proofs. One central
advantage of the proposed method, as compared to inductive logic programming, is that it naturally
applies to both classification and regression tasks.

The remainder of this paper is organized as follows. In Section 2 we reviewthe traditional
frameworks of statistical learning and ILP. In Section 3 we develop a new framework for statistical
learning in the ILP setting and introduce visitor programs and their traces. InSection 4 we de-
rive kernel functions over program traces represented as Prolog proof trees. In Section 5 we report
an empirical evaluation of the methodology on some classic ILP benchmarks including Bongard
problems,M-of-N problems on sequences, and real world problems in bioinformatics and chemoin-
formatics. Section 6 contains a discussion on the relations between our approach and traditional
ILP methods, as well as explanation based learning (Mitchell et al., 1986).Finally, conclusions are
drawn in Section 7.

2. Notation and Background

In this section, we briefly review some concepts related to supervised learning (from both the sta-
tistical and the ILP perspective) that will be used for defining the framework of learning from proof
trees presented in the paper.

2.1 Statistical Learning and Kernels

In the usual statistical learning framework (see, e.g., Cucker and Smale, 2002, for a thorough math-
ematical foundation) a supervised learning algorithm is given a training setof input-output pairs
D = {(x1,y1), . . . ,(xm,ym)}, with xi ∈ X andyi ∈ Y . The setX is called the input (or instance)
space and can be any set. The setY is called the output (or target) space; in the case of binary
classificationY = {−1,1} while the case of regressionY is the set of real numbers. A fixed (but
unknown) probability distribution onX ×Y links input objects to their output target values. The
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learning algorithm outputs a functionf : X 7→ Y that approximates the probabilistic relation be-
tween inputs and outputs. The class of functions that is searched is called thehypothesis space.

A (Mercer) kernel is a positive semi-definite symmetric function1 K : X ×X 7→ IR that general-
izes the notion of inner product to arbitrary domains (see, e.g., Shawe-Taylor and Cristianini, 2004,
for details). When using kernel methods in supervised learning, the hypothesis space, denotedFK ,
is the so-called reproducing kernel Hilbert space (RKHS) associated with K. Learning consists of
solving the following Tikhonov regularized problem:

f = arg min
h∈FK

C
m

∑
i=1

V(yi ,h(xi))+‖h‖K (1)

whereV(y,h(x)) is a positive function measuring the loss incurred in predictingh(x) when the target
is y,C is a positive regularization constant, and‖·‖K is the norm in the RKHS. Popular algorithms in
this framework include support vector machines (SVM) (Cortes and Vapnik, 1995) and kernel ridge
regression (Poggio and Smale, 2003; Shawe-Taylor and Cristianini, 2004). The representer theorem
(Kimeldorf and Wahba, 1970) shows that the solution to the above problem can be expressed as a
linear combination of the kernel between individual training examplesxi andx as follows:

f (x) =
m

∑
i=1

ciK(x,xi). (2)

The above form also encompasses the solution found by other algorithms such as the kernel percep-
tron (Freund and Schapire, 1999).

2.2 Inductive Logic Programming

Within the field of inductive logic programming, the standard framework is that of learning from
entailment. In this setting, the learner is given a set of positive and negativeexamplesD+ and
D−, respectively (in the form of ground facts), and a background theory B (as a set of definite
clauses) and has to induce a hypothesisH (also a set of definite clauses) such thatB ∪H covers all
positive examples and none of the negative ones. More formally,∀p(x) ∈D+ : B ∪H |= p(x) and
∀p(x) ∈D− : B ∪H 6|= p(x). In this paper, as in the work by Lloyd (2003), we shall use examples
that are individuals, i.e., first-order logic objects or identifiers. This meansthat we shall effectively
refer to the examples by their identifierx rather than usep(x). The traditional definition of inductive
logic programming does not explicitly—as is the case of regularized empirical risk minimization—
account for noisy data and the possibility that a complete and consistent hypothesis might not exist.
Even though various noise handling techniques exist in inductive logic programming, they are not
as principled as those offered by statistical learning theory.

Example 1 As an illustration of the above concepts, consider the famous mutagenicity benchmark
by Srinivasan et al. (1996). There the examples are of the formmutagenic(id) whereid is a
unique identifier of the molecule and the background knowledge contains information about the
atoms, bonds and functional groups in the molecule. A hypothesis in this case could be

mutagenic(ID) ← nitro(ID,R),lumo(ID,L), L<-1.5.

1. A symmetric functionK : X × X 7→ IR is called a positive semi-definite kerneliff ∀m ∈ IN,∀x1, . . . ,xm ∈
X ,∀a1, . . . ,am∈ IR, ∑m

i, j=1 aia jK(xi ,x j )≥ 0.
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mutagenic(d26).

lumo(d26, -2.072).
logp(d26, 2.17).
atm(d26,d26_1,c,22,-0.093).
atm(d26,d26_2,c,22,-0.093).
atm(d26,d26_3,c,22,-0.093).
atm(d26,d26_4,c,22,-0.093).
atm(d26,d26_5,c,22,-0.093).
atm(d26,d26_6,c,22,-0.093).
atm(d26,d26_7,h,3,0.167).
atm(d26,d26_8,h,3,0.167).

atm(d26,d26_9,h,3,0.167).
atm(d26,d26_10,cl,93,-0.163).
atm(d26,d26_11,n,38,0.836).
atm(d26,d26_12,n,38,0.836).
atm(d26,d26_13,o,40,-0.363).
atm(d26,d26_14,o,40,-0.363).
atm(d26,d26_15,o,40,-0.363).
atm(d26,d26_16,o,40,-0.363).
bond(d26,d26_1,d26_2,7).
bond(d26,d26_2,d26_3,7).
bond(d26,d26_3,d26_4,7).
bond(d26,d26_4,d26_5,7).

bond(d26,d26_5,d26_6,7).
bond(d26,d26_6,d26_1,7).
bond(d26,d26_1,d26_7,1).
bond(d26,d26_3,d26_8,1).
bond(d26,d26_6,d26_9,1).
bond(d26,d26_10,d26_5,1).
bond(d26,d26_4,d26_11,1).
bond(d26,d26_2,d26_12,1).
bond(d26,d26_13,d26_11,2).
bond(d26,d26_11,d26_14,2).
bond(d26,d26_15,d26_12,2).
bond(d26,d26_12,d26_16,2).

nitro(X,[Atom0,Atom1,Atom2,Atom3]) :-
atm(X,Atom1,n,38,_),
bondd(X,Atom0,Atom1,1),
bondd(X,Atom1,Atom2,2),
atm(X,Atom2,o,40,_),
bondd(X,Atom1,Atom3,2),
Atom3 @> Atom2,
atm(X,Atom3,o,40,_).

bondd(X,Atom1,Atom2,Type) :-
bond(X,Atom1,Atom2,Type).

bondd(X,Atom1,Atom2,Type) :-
bond(X,Atom2,Atom1,Type).

�

��

�

�

�
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Figure 1: Example from the mutagenesis domain. Top:extensionalrepresentation of an instance
(a molecule). Left: sample fragment ofintensionalbackground theory. Right: chemical
structure of the molecule.

It entails (covers) the molecule listed in Figure 1. It will be convenient to distinguishextensional
predicates, such asatm, logp, lumo andbond, which specify information aboutspecificexamples,
from the intensionalones, such asbbond and nitro, which specify general properties about all
examples.

Regression can be introduced in ILP in different ways. For example in theFirst-Order Re-
gression System (Karalič and Bratko, 1997) some arguments of the target predicate (called con-
tinuous attributes) are real-valued. For instance, in our example one could use examples of the
form mutagenic(d26, -2.072, 2.17, 6.3) where the arguments would be the lumo and logp
values as well as the target activity. FORS then learns from “positive” examples only, covering
subsets of examples on which linear regression between the continuous arguments is solved in a
numerical way. An interesting alternative is Structural Regression Trees, a method based on divide-
and-conquer, similar to regression trees (Kramer, 1996).

3. A Framework for Statistical Learning in the ILP Setting

In this section we introduce the logical framework for defining program traces and, in particular, the
concepts of visitor programs and proof trees.
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3.1 General Assumptions

The methods described in this paper are based on a framework that combines some of the advantages
of the statistical and the ILP settings, in particular noise robustness and the possibility of describing
background knowledge in a flexible declarative language. First, we assume that the instance space
X is a set of first-order logic objects (i.e., individuals in the universe of discourse), each having a
unique identifierx. As in the ILP setting, we assume that a background theoryB is available in
the form of a set of definite clauses. This background theory is dividedinto intensionalpredicates,
which are relevant to all examples, andextensionalones, which specify facts about specific exam-
ples. As in the statistical setting, we assume that a fixed and unknown distribution is defined on
X ×Y and that training dataD consist of input-output pairs(xi ,yi) (for classification or regression).
Rather than having to find a set of clausesH , the learning algorithm outputs a functionf that maps
instances into their targets and whose general form is given by Equation (2). In this sense, our
setting is close to statistical learning and predictions on new instances will be essentially opaque.
However, we make the fundamental assumption thatf also depends on the available background
theory via the kernel function.

3.2 Visitors

A second key difference with respect to the traditional ILP setting is that in addition to dataD and
background knowledgeB, the learner is given an additional set of clauses forming the so-called
visitor program. Clauses in this program should be designed to “inspect” examplesusing other
predicates declared inB. In facts, as detailed in Section 4, the kernel function to be plugged in
Equation (2) will be defined by means of the trace of this program. To this aim, we are not only
interested in determining whether certain clauses succeed or fail on a particular example. In our
approach, the execution traces of the visitor programs are recorded and compared, on the ratio-
nale that examples having similar traces should be mapped to similar representations in the feature
space associated with the kernel. The purpose of visitors is thus to construct useful features during
their execution. This is a major difference with respect to other approaches in which features are
explicitly constructed by computing the truth value for predicates (Muggleton et al., 2005).

Definition 1 (Visitor programs) A visitor program for a background theoryB and domainX is
a setV of definite clauses that contains at least one special clause (called avisitor) of the form
V← B1, . . . ,BN and such that

• V is a predicate of arity 1

• for each j= 1, . . . ,N, Bj is declared inB ∪V ;

Intuitively, if visit/1 is a visitor inV , by answering the queryvisit(x)? we explore the features
of the instance whose constant identifierx is passed to the visitor. Having multiple visitors in the
programV allows us to explore different aspects of the examples and include multiple sources of
information.

Some examples of visitor programs are introduced in the remainder of this section and when
presenting empirical results in Section 5.
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3.3 Traces and Proof Trees

A visitor program trace for a given domain instance is obtained by recording proofs of visitor goals
called on that instance. There are alternative options for choosing the kind of proof to be employed.
Therefore in order to give a precise definition of traces, we now need tomake a specific design
choice. In this paper, we are committed to Prolog-based representations. Hence, a natural option
would be the use of SLD-trees, whose paths correspond to execution sequences of the Prolog in-
terpreter. A drawback of this choice is that an SLD-tree is a very complex and rather unstructured
representation and also contains information about failed paths, potentially leading to an explosion
of redundant and irrelevant features for the purpose of learning. For these reasons we prefer to resort
to proof trees (Russell and Norvig, 2002), defined as follows:

Definition 2 (Proof tree) 2 LetP be a program and G a goal. IfP 6|= G then theproof treefor G is
empty. Otherwise, it is a tree t recursively defined as follows:

• if there is a fact f inP and a substitutionθ such that Gθ = f θ, then Gθ is a leaf of t.

• otherwise there must be a clause H←B1, ...,Bn∈ P and a substitutionθ′ such that Hθ′= Gθ′
andP |= B jθ′ ∀ j, Gθ′ is the root of t and there is a subtree of t for each Bjθ′ which is a proof
tree for Bjθ′.

The kernels used in this paper work on ground proof trees. In general, however, proof trees or
SLD-trees need not be ground. If they are not, they can however always be made ground by skolem-
ization, i.e., by substituting all variables by different constants not yet appearing in the program and
goal. The skolemized proof will then still logically follow from the program. Alternatively, one
could impose the requirement that all clauses are range-restricted, a requirement that is often im-
posed in the logic programming community. Range-restrictedness requires that all variables that
appear in the head of a clause also appear in its body. It is a sufficient requirement for guaranteeing
that all proofs will be ground. Finally, ground proofs can be also obtained by making specific as-
sumptions about the mode of head variables not occurring in the body, so that these variables will
be instantiated in proving the goal. All the visitor programs presented in our empirical evaluation
(see Section 5) yield ground proofs thanks to such assumptions.

Example 2 For the sake of illustration, consider again the mutagenesis domain. Consider the atom
bond representation of the simple molecule in Figure 1. By looking at the molecule as a graph where
atoms are nodes and bonds are edges, we can introduce the common notions of pathandcycle:

1 : cycle(X,A):- 2 : path(X,A,B,M):- 3 : path(X,A,B,M):-
path(X,A,B,[A]), atm(X,A,_,_,_), atm(X,A,_,_,_),
bond(X,B,A,_). bond(X,A,B,_), bond(X,A,C,_),

atm(X,B,_,_,_), not(member(C,M)),
not(member(B,M)). path(X,C,B,[C|M]).

The following simple visitor may be used to inspect cycles in the molecule:

4 : visit(X):
cycle(X,A).

2. Such trees are sometimes also namedand-trees.
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Note that we numbered each clause inV and the intensional part of the background theoryB
(but not in the extensional part3) with a unique identifier. This will allow us to take into account
information about the clauses that are used in a proof. The corresponding proof tree for this example
is shown in Figure 2.

In general, a goal can be satisfied in more than one way. Therefore, each query generates a
(possibly empty) set of proof trees. Since multiple visitors may be available, thetrace of an instance
is a tuple of sets of proof trees, as formalized in the following definition:

Definition 3 (Trace) Let N be the number of visitors inV and for each l= 1, . . . ,N let Tl j ,x denote
the proof tree that represents the j-th proof of the goal Vl (x), i.e., a proof thatB ∪V |= Vl (x). Let

Tl ,x = {Tl1,x, . . . ,Tlsl ,x,x} (3)

where sl ,x ≥ 0 is the number of alternative proofs of goal Vl (x). The trace of an instance x is the
tuple

Tx = [T1,x, . . . ,TN,x]. (4)

3.4 Pruning Proof Trees

In many situations, the proof tree for a given goal will be unnecessary complex in that it may contain
several uninteresting subtrees. In these cases, we will often work withprunedproof trees, which
are trees where subtrees rooted at specific predicates (declared asleaf predicates by the user) are
turned into leafs. This will reduce the complexity of the feature space associated with the kernel
by selectively ignoring subproofs. For instance, consider again the mutagenesis domain described
in Srinivasan et al. (1996) where a theory of rings and functional groups is included as background
knowledge (see Figure 1). In this domain, it may be useful to define visitorsthat explore groups
such as benzene rings:

atoms(X,[]). visit_benzene(X):-
atoms(X,[H|T]):- benzene(X,Atoms),

atm(X,H,_,_,_), atoms(X,Atoms).
atoms(X,T).

If we believe that the presence of the ring and the nature of the involved atoms represent a sufficient
set of features, we may want to ignore details about the proof of the predicatebenzene by pruning
the corresponding proof subtree. This can be accomplished by includingthe following fact in the
visitor program:

leaf(benzene(_,_)).

3.5 Bridging the Gap

We are finally able to give a complete formalization of our framework for learning from example-
traces. The learner is given a data setD = {(x1,y1), . . . ,(xm,ym)}, background knowledgeB, and
visitor programV . For each instancexi , a traceTxi is obtained by running the visitor program

3. The numbers in the extensional part would change from example to example and hence, would not carry any useful
information.
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4 : visit(d26)

1 : cycle(d26,d26 1)

3 : path(d26, d26 1, d26 6, [d26 1])

atm(d26, d26 1, c, 22, -0.093)

bond(d26, d26 1, d26 2, 7)

not(member(d26 2, [d26 1]))

3 : path(d26, d26 2, d26 6, [d26 2, d26 1])

atm(d26, d26 2, c, 22, -0.093)

not(member(d26 3, [d26 2, d26 1]))

3 : path(d26, d26 3, d26 6, [d26 3, d26 2, d26 1])

atm(d26, d26 3, c, 22, -0.093)

bond(d26, d26 3, d26 4, 7)

not(member(d26 4, [d26 3, d26 2, d26 1]))

3 : path(d26, d26 4, d26 6, [d26 4, d26 3, d26 2, d26 1])

atm(d26, d26 4, c, 22, -0.093)

bond(d26, d26 4, d26 5, 7)

not(member(d26 5, [d26 4, d26 3, d26 2, d26 1]))

2 : path(d26, d26 5, d26 6, [d26 5, d26 4, d26 3, d26 2, d26 1])

atm(d26, d26 5, c, 22, -0.093)

bond(d26, d26 5, d26 6, 7)

atm(d26, d26 6, c, 22, -0.093)

not(member(d26 6, [d26 5, d26 4, d26 3, d26 2, d26 1]))

bond(d26, d26 6, d26 1, 7)

bond(d26, d26 2, d26 3, 7)

Figure 2: Proof tree resulting from the goalvisit(d26) in the mutagenesis example.
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according to Definition 3. A kernel machine (e.g., an SVM) is then trained to form the function
f : X 7→ Y defined as

f (x) =
m

∑
i=1

ciK(Txi ,Tx).

The only missing ingredient is the kernel functionK for comparing two visitor traces. The definition
of this function is detailed in the next section.

4. Kernels over Visitor Traces

In this section, we derive kernel functions for comparing traces of visitor programs. We begin by
reviewing some preliminary concepts about convolution kernels (Haussler, 1999), a very general
family of kernels on discrete structures that will be used in the rest of the paper to define kernels
over the logical structures of interest.

4.1 Kernels for Discrete Structures

For the purposes of this subsection, letX be a set of composite structures and forx∈ X let x1, . . . ,xD

denote the “parts” ofx, with xd ∈ Xd for all i ∈ [1,D]. This decomposition can be formally repre-
sented by a relationR on X1× ·· ·×XD×X such thatR(x1, . . . ,xD,x) is true iff x1, . . . ,xD are the
parts ofx. We also write(x1, . . . ,xD) = R−1(x) if R(x1, . . . ,xD,x) is true. Note that the relation
R used in this definition is very general and does not necessarily satisfy anaxiomatic theory for
parts and wholes such as those studied in knowledge representation (Varzi, 1996). For example
if X1 = · · · = XD = X are sets containing all finite strings over a finite alphabet, we can define a
relationR(x1, . . . ,xD,x) which is true iffx = x1 ◦ · · · ◦xD, with ◦ denoting concatenation of strings.
Note that in this examplex can be decomposed in multiple ways. We say that the relationR is finite
if the number of such decompositions is finite. Given a set of kernelsKd : Xd×Xd→ IR, one for
each of the parts ofx, theR-convolutionkernel is defined as

KR,⊗(x,z) = ∑
(x1,...,xD)∈R−1(x)

∑
(z1,...,zD)∈R−1(z)

D

∏
d=1

Kd(xd,zd) (5)

where the sums run over all the possible decompositions ofx andz. Similarly, one could use direct
sum obtaining

KR,⊕(x,z) = ∑
(x1,...,xD)∈R−1(x)

∑
(z1,...,zD)∈R−1(z)

D

∑
d=1

Kd(xd,zd). (6)

For finite relationsR, these functions can be shown to be valid kernels:

Theorem 4 (Haussler 1999)For any finite R on a spaceX , the functions KR,⊗ : X ×X 7→ IR (de-
fined by Equation (5)) and KR,⊕ : X ×X 7→ IR (defined by Equation (6)) are positive semi-definite
kernels onX ×X .

Proof: Follows from closure properties of tensor product and direct sum. See Haussler (1999) for
details.

Theset kernel(Shawe-Taylor and Cristianini, 2004) is a special case of convolution kernel that
will prove useful in defining kernels between visitor traces. Suppose instances are sets and let us
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define the part-of relation as the usual set-membership. The kernel oversetsKset is then obtained
from kernels between set membersKmemberas follows:

Kset(x,z) = ∑
ξ∈x

∑
ζ∈z

Kmember(ξ,ζ). (7)

In order to reduce the dependence on the dimension of the objects, kernels over discrete structures
are often normalized. A common choice is that of using normalization in feature space, i.e., given a
convolution kernelKR:

Knorm(x,z) =
KR(x,z)

√

KR(x,x)
√

KR(z,z)
. (8)

In the case of set kernels, an alternative is that of dividing by the cardinalities of the two sets, thus
computing the mean value between pairwise comparisons:4

Kmean(x,z) =
Kset(x,z)
|x||z|

. (9)

Richer families of kernels on data structures can be formed by applying composition to the feature
mapping induced by a convolution kernel. For example, a convolution kernel KR can be combined
with a Gaussian kernel as follows:

K(x,z) = exp
(

−γ
(

KR(x,x)−2KR(x,z)+KR(z,z)
))

. (10)

4.2 Kernels over Visitor Programs

Going back to the framework defined in Section 3, letX be a set of first-order logic objects and
for x,z∈ X consider the program tracesTx andTz defined by Equations (3) and (4). In order to
define the kernel over program traces we follow a top-down approach. We begin by decomposing
traces into parts associated with different visitors (i.e., the elements of the tuplein Equation (4)) and
applying a decomposition kernel based on direct sum as defined by Equation (6):

K(Tx,Tz) =
N

∑
l=1

Kl (Tl ,x,Tl ,z). (11)

Note that there is a unique decomposition ofTx andTy, that is we just compare proofs of the same
visitor. According to Definition 3 for eachl = 1, . . . ,N, the arguments toKl are sets of proof trees.
Hence, using the set kernel of Equation (7) we further obtain:

Kl (Tl ,x,Tl ,z) =
sl ,x

∑
p=1

sl ,z

∑
q=1

Ktree(Tl p,x,Tlq,z). (12)

In this way, we have shown that the problem boils down to defining a kernelKtree over individual
proof trees. This will be detailed in the remainder of this section. Note that we can define different
kernels for proof trees originating from different visitors.

4. Note that normalizations such as those of Equations (8) and (9) can give indefinite results iff one of the two arguments
(sayx) is the null vector of the feature space associated to the original kernel (i.e.,KR or Kset). In such a case, we will
defineKnorm(x,z) = Kmean(x,z) = 0∀z∈ X ,z 6= x.
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At the highest level of kernel between visitor programs (Equation (11)), it is advisable to employ
a feature space normalization using Equation (8). In some cases it may also be useful to normalize
lower-level kernels, in order to rebalance contributions of individual parts. In particular, the mean
normalization of Equation (9) can be applied to the kernel over individual visitors (Equation (12))
and it is also possible to normalize kernels between individual proof trees,in order to reduce the
influence of the proof size.

4.3 Representing Proof Trees as Prolog Ground Terms

Proof trees are discrete data structures and, in principle, existing kernels on trees could be applied
(e.g. Collins and Duffy, 2002; Viswanathan and Smola, 2003). However, we can gain more expres-
siveness by representing individual proof trees as typed Prolog ground terms. In so doing we can
exploit type information on constants and functors so that different sub-kernels can be applied to
different object types. In addition, while traditional tree kernels would typically compareall pairs
of subtrees between two proofs, the kernel on ground terms presentedbelow results in a more se-
lective approach that compares certain parts of two proofs only when reached by following similar
inference steps (a distinction that would be difficult to implement with traditional tree kernels).
We will use the following procedure to represent a proof tree as a Prologground term:

• Base step: if a node contains a fact, this is already a ground term.

• Induction: if a node contains a clause, then letn be the number of arguments in the head and
m the number of atoms in the body (corresponding to them children of the node). A ground
compound termt havingn+1 arguments is then formed as follows:

– the functor name oft is the functor name of the head of the clause;

– the firstn arguments oft are the arguments of the clause head;

– the last argument oft is a compound term whose functor name is a Prolog constant
obtained from the clause number,5 and whosem arguments are the ground term repre-
sentations of them children of the node.

Example 3 Consider the proof tree of Figure 2 in the mutagenesis domain. The transformation
outlined above yields the following representation as a Prolog ground term:

visit(d26,
cbody4(cycle(d26,

d26_1,
cbody1(path(d26,

d26_1,
d26_6,
[d26_1],
cbody3(...)),

bond(d26,d26_6,d26_1,7))))).

where we skipped the representation of the children ofpathfor the sake of readability.

We are now able to employ kernels on Prolog ground terms as defined in Passerini and Frasconi
(2005) to compute kernels over individual proof trees.

5. Since numbers cannot be used as functor names, this constant canbe simply obtained by prefixing the clause number
by ’cbody’.
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4.4 Kernels on Prolog Ground Terms

We begin with kernels on untyped terms. LetC be a set of constants andF a set of functors, and
denote byU the corresponding Herbrand universe (the set of all ground terms that can be formed
from constants inC and functors inF ). Let f /n ∈ F denote a functor having namef and arityn.

Definition 5 (Sum kernels on untyped terms)The kernel between two terms t and s is a function
K : U×U 7→ IR defined inductively as follows:

• if s∈ C and t∈ C then
K(s, t) = κ(s, t) (13)

whereκ : C ×C 7→ IR is a valid kernel on constants;

• else if s and t are compound terms and have different functors, i.e., s= f (s1, . . . ,sn) and
t = g(t1, . . . , tm), then

K(s, t) = ι( f /n,g/m) (14)

whereι : F ×F 7→ IR is a valid kernel on functors;

• else if s and t are compound terms and have the same functor, i.e., s= f (s1, . . . ,sn) and
t = f (t1, . . . , tn), then

K(s, t) = ι( f /n, f /n)+
n

∑
i=1

K(si , ti) (15)

• in all other cases K(s, t) = 0.

Functionsκ andι are calledatomickernels as they operate on non-structured symbols. A special
but useful case is the atomic delta kernelδ defined asδ(x,z) = 1 if x = z andδ(x,z) = 0 if x 6= z.

Example 4 Consider the two lists s= [a,b,c] and t= [a,c]. Recall that in Prolog[a,b] is a short-
hand for.(a, .(b, [])) where the functor./2 is a data constructor for lists and[] is the data constructor
for the empty list. Supposeι(./2, ./2) = 0.25andκ(x,z) = δ(x,z) for all x,z∈ C . Then

K(s, t) = K(.(a, .(b, .(c, []))), .(a, .(c, [])))

= ι(./2, ./2)+K(a,a)+K(.(b, .(c, [])), .(c, []))

= ι(./2, ./2)+κ(a,a)+ ι(./2, ./2)+κ(b,c)+K(.(c, []), [])

= 0.25+1+0.25+0+0 = 1.5

The result obtained in the above example is similar to what would be achieved withthe kernel on
higher-order logic basic terms defined in Gärtner et al. (2004). The following examples illustrate
the case of two other common data structures.

Example 5 Consider the two tuples simulated via a predicater: s = r(a,b,c) and t= r(d,b,a).
Supposeι(r/3,r/3) = 0 andκ(x,z) = δ(x,z) for all x,z∈ C . Then it immediately follows from the
definition that K(s, t) = 1.
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Example 6 As a last example consider data structures intended to describe scientific references:

r = article("Kernels on Gnus and Gnats",journal(ggj,2004))

s = article("The Logic of Gnats",conference(icla,2004))

t = article("Armadillos in Hilbert space",journal(ijaa,2004))

Using κ(x,z) = δ(x,z) for all x,z∈ C and ι(x,z) = δ(x,z) for all x,z∈ F , we obtain K(r,s) = 1,
K(r, t) = 3, and K(s, t) = 1. The fact that all papers are published in the same year does not
contribute to K(r,s) or K(s, t) since these pairs have different functors describing the venue of the
publication; it does contribute to K(r, t) as they are both journal papers. Note that strings have
been treated as constants (as standard in Prolog). Under our above definition the kernel cannot
recognize the fact that r and s share a word in the title.

A finer level of granularity in the definition of ground term kernels can be gained from the
use of typed terms. This extra flexibility may be necessary to specify different kernel functions
associated with constants of different type (e.g., numerical vs categorical). Types are also useful to
specify different kernels associated to different arguments of compound terms. As detailed below,
this allows us to distinguish different roles played by clauses in a proof tree.

Our approach for introducing types is similar to that proposed by Lakshmanand Reddy (1991).
We denote byT the ranked set of type constructors, which contains at least the nullary constructor
⊥. The type signature of a function of arityn has the formτ1×, . . . ,×τn 7→ τ′ wheren≥ 0 is the
number of arguments,τ1, . . . ,τk ∈ T are their types, andτ′ ∈ T is the type of the result. Functions
of arity 0 have signature⊥ 7→ τ′ and can therefore be interpreted as constants of typeτ′. The
type of a function is the type of its result. The type signature of a predicate ofarity n has the form
τ1×, . . . ,×τn 7→Ω whereΩ∈ T is the type of Booleans, and is thus a special case of type signatures
of functions. We writet : τ to assert thatt is a term of typeτ. We denote byG the set of all typed
ground terms, byC ⊂ G the set of all typed constants, and byF the set of typed functors. Finally
we introduce a (possibly empty) set ofdistinguishedtype signaturesD ⊂ T that can be useful to
specify ad-hoc kernel functions on certain compound terms.

Definition 6 (Sum kernels on typed terms)The kernel between two typed terms t and s is defined
inductively as follows:

• if s∈ C , t ∈ C , s : τ, t : τ then

K(s, t) = κτ(s, t) (16)

whereκτ : C ×C 7→ IR is a valid kernel on constants of typeτ;

• else if s and t are compound terms that have the same type but different functors or signatures,
i.e., s= f (s1, . . . ,sn) and t= g(t1, . . . , tm), s : σ1×, . . . ,×σn 7→ τ′, t : τ1×, . . . ,×τm 7→ τ′, then

K(s, t) = ιτ′( f /n,g/m) (17)

whereιτ′ : F ×F 7→ IR is a valid kernel on functors that construct terms of typeτ′
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• else if s and t are compound terms and have the same functor and type signature, i.e., s=
f (s1, . . . ,sn), t = f (t1, . . . , tn), and s, t : τ1×, . . . ,×τn 7→ τ′, then

K(s, t) =















κτ1×,...,×τn 7→τ′(s, t)
if (τ1×, . . . ,×τn 7→ τ′) ∈D

ιτ′( f /n, f /n)+
n

∑
i=1

K(si , ti) otherwise
(18)

whereκτ1×,...,×τn 7→τ′ : U×U 7→ IR is a valid kernel on terms having distinguished type signa-
ture τ1×, . . . ,×τn 7→ τ′ ∈D.

• in all other cases K(s, t) = 0.

Versions of the kernels which combine arguments using products instead ofsums can be easily
defined as follows.

Definition 7 (Product kernels on untyped terms) Use Definition 5 replacing Equation (15) with

K(s, t) = ι( f /n, f /n)
n

∏
i=1

K(si , ti) (19)

Definition 8 (Product kernels on typed terms) Use Definition 6 replacing Equation (18) with

K(s, t) =















κτ1×,...,×τn 7→τ′(s, t)
if (τ1×, . . . ,×τn 7→ τ′) ∈D

ιτ′( f /n, f /n)
n

∏
i=1

K(si , ti) otherwise
(20)

The families of functions in Definitions 5–8 are special cases of Haussler’s decomposition ker-
nels and therefore they are positive semi-definite (see Appendix A for formal results).

4.5 Kernels on Prolog Proof Trees

In order to employ full typed term kernels (as in Definitions 6 and 8) on proof trees, we need a
typed syntax for their ground term representation. We will assume the following default types for
constants:num (numerical) andcat (categorical). Types for compounds terms will be eitherfact,
corresponding to leaves in the proof tree,clause in the case of internal nodes, andbody when
containing the body of a clause. Note that regardless of the specific implementation of kernels
between types, such definitions imply that we actually compare the common subpart of proofs
starting from the goal (the visitor clause), and stop whenever the two proofs diverge.

A number of special cases of kernels can be implemented with appropriate choices of the kernel
for compound and atomic terms. Theequivalencekernel outputs one iff two proofs are equivalent,
and zero otherwise:

Kequiv(s, t) =

{

1 if s≡ t
0 otherwise

(21)

We say that two proofs are equivalent if the same sequence of clauses isproven in the two cases,
and the head arguments in corresponding clauses satisfy a given equivalence relation. A trivial
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implementation of proof equivalence can be obtained using the product kernel on typed terms (Def-
inition 8) in combination with the delta kernel on constants and functors.

In many cases, we will be interested in ignoring some of the arguments of a pairof ground terms
when computing the kernel between them. As an example, consider the atom bond representation of
a molecule shown in the upper part of Figure 1. The first arguments ofatm andbond predicates are
simply molecule and atom identifiers, and we would like to ignore their values whencomparing two
molecules together. This can be implemented using a specialignore type for arguments that should
be ignored in comparisons, and a correspondingconstantkernel which always outputs a constant
value:

Kη(s, t) = η.

It is straightforward to see thatKη is a valid kernel providedη ≥ 0. The constantη should be set
equal to the identity element of the operation used to combine results for the different arguments of
the term under consideration, that isη = 0 for the sum kernel andη = 1 for the product one.

The extreme use for this kernel is that of implementing the notion offunctor equalityfor proof
tree nodes, where two nodes are the same iff they share the same functor,regardless of the specific
values taken by their arguments. Given two ground termss= f (s1, . . . ,sn) andt = g(t1, . . . , tm) the
functor equality kernel is given by:

K f (s, t) =















0 if type(s) 6= type(t)
δ( f /n,g/m) if s, t : fact
δ( f /n,g/m)?K(sn, tm) if s, t : clause
K(s, t) if s, t : body

(22)

whereK is a kernel on ground terms as defined in Section 4.4, and the operator? can be either
sum or product. Note that ifs and t represent clauses (i.e., internal nodes of the proof tree), the
comparison skips clause head arguments, represented by the firstn− 1 (resp. m− 1) arguments
of the terms, and compares the bodies (the last argument, see Section 4.3) thus proceeding on the
children of the nodes. This kernel allows to define a non trivial equivalence between proofs (or parts
of them) checking which clauses are proved in sequence and ignoring thespecific values of their
head arguments.

Moreover, it will often be useful to define custom kernels for specific terms by using distin-
guished type signatures. Appendix B contains details of possible kernel configurations as sets of
Prolog clauses, while Appendix C contains the Prolog code for all visitors and kernel configurations
employed in the experimental section.

5. Experiments

We run a number of experiments in order to demonstrate the possibilities of the proposed method.
In particular, we aim to empirically show that

1. statistical learning in the ILP setting can be addressed, scaling better thantypical ILP algo-
rithms with the complexity of the target hypothesis;

2. problems which are difficult for traditional ILP algorithms can be solved;

3. both classification and regression tasks can be effectively handled;

322



KERNELS ONPROLOG PROOFTREES

4. significant improvements on real world applications can be achieved.

For classification tasks, we employed SVM (Cortes and Vapnik, 1995) using the Gist6 imple-
mentation, which permits to separate kernel calculation from training by accepting the complete
kernel matrix as input. We compared our method with two popular and diverseILP algorithms:
Tilde (Blockeel and De Raedt, 1998), which upgrades C4.5 to induction oflogical decision trees,
and Progol (Muggleton, 1995), which learns logical theories using inverse entailment.

Regression is quite a difficult task for ILP techniques, and few algorithms currently exist which
are able to address it. Conversely, our definition of kernel over prooftrees allows us to apply
standard kernel methods for regression, such as kernel ridge regression (KRR, (Poggio and Smale,
2003)) and support vector regression (Vapnik, 1995). We reportresults using the former approach,
as training was more stable and no significant difference in performance could be noted. However,
when dealing with large data sets, the latter method would be preferable for efficiency reasons. In
Section 5.4 we report regression experiments comparing our approach toa number of propositional
as well as relational learners.

5.1 Bongard Problems

In order to provide a full basic example of visitor program construction and exploitation of the
proof tree information, we created a very simple Bongard problem (Bongard, 1970). The concept
to be learned can be represented with the simple patterntriangle-Xn-triangle for a givenn, meaning
that a positive example is a scene containing two triangles nested into one another with exactlyn
objects (possibly triangles) in between. Figure 3 shows a pair of examples of such scenes with their
representation as Prolog facts and their classification according to the pattern for n = 1.

A possible example of background knowledge introduces the concepts ofnestingin containment
andpolygonas a generic object, and can be represented as follows:

inside(X,A,B):- in(X,A,B). % clause nr 1
inside(X,A,B):- % clause nr 2

in(X,A,C),
inside(X,C,B).

polygon(X,A) :- triangle(X,A). % clause nr 3
polygon(X,A) :- rectangle(X,A). % clause nr 4
polygon(X,A) :- circle(X,A). % clause nr 5

A visitor exploiting such background knowledge, and having hints on the target concept, could be
looking for two polygons contained one into the other. This can be represented as:

visit(X):- % clause nr 6
inside(X,A,B),polygon(X,A),polygon(X,B).

Figure 4 shows the proofs trees obtained running such a visitor on the first Bongard problem in
Figure 3.

A very simple kernel can be employed to solve such a task, namely an equivalence kernel with
functor equality for nodewise comparison. For any value ofn, such a kernel maps the examples
into a feature space where there is a single feature discriminating between positive and negative

6. The Gist package by W. Stafford Noble and P. Pavlidis is available from
http://microarray.genomecenter.columbia.edu/gist/.
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Figure 3: Graphical and Prolog facts representation of two Bongard scenes. The left and right
examples are positive and negative, respectively, according to the pattern triangle-X-
triangle.

examples, while the simple use of ground facts without intensional background knowledge would
not provide sufficient information for the task.

The data set was generated by creatingm scenes each containing a series of` randomly chosen
objects nested one into the other, and repeating the procedure for` varying from 2 to 20. Moreover,
we generated two different data sets by choosingm = 10 andm = 50 respectively. Finally, for
each data set we obtained 15 experimental settings denoted byn∈ [0,14]. In each setting, positive
examples were scenes containing the patterntriangle-Xn-triangle. We run an SVM with the above
mentioned proof tree kernel and a fixed valueC = 10 for the regularization parameter, on the basis
that the data set is noise free. We evaluated its performance with a leave-one-out (LOO) procedure,
and compared it to the empirical error of Tilde and Progol trained on the samedata and background
knowledge (including the visitor). Here we focus on showing that ILP algorithms have troubles
finding a consistent hypothesis for this problem, hence we did not measuretheir generalization.

Figure 5(a) plots results form = 10. Both Tilde and Progol stopped learning the concept for
n > 4. Progol found the trivial empty hypothesis for alln > 4 apart fromn = 6, and Tilde for all
n > 9. While never learning the concept with 100% generalization accuracy, the SVM performance
was much more stable when increasing the nesting level corresponding to positive examples. Figure
5(b) plots results form = 50. Progol was extremely expensive to train with respect to the other
methods. It successfully learned the concept forn≤ 2, but we stopped training forn = 3 after more
than one week training time on a 3.20 GHz PENTIUM IV. Tilde stopped learning the concept for
n > 8, and found the trivial empty hypothesis forn > 12. Conversely, the SVM was almost always
able to learn the concept with 100% generalization accuracy, regardlessof its complexity level.

Note that in order for the ILP algorithms to learn the target concept regardless of the nesting
level, it would be necessary to provide a more informedinside predicate, which explicitly contains
such nesting level as one of its arguments. The ability of the kernel to extract information from the
predicate proof, on the other hand, allows our method to be employed when only partial background
knowledge is available, which is typically the case in real world applications.

5.2 M-of-N Problems

The possibility to plug background knowledge into the kernel allows addressing problems that are
notoriously hard for ILP approaches. An example of such concepts is theM-of-N one, which expects
the model to be able to count and make the decision accordingly.
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Figure 4: Proof trees obtained by running the visitor on the first Bongardproblem in Fig. 3.

Figure 5: Comparison between SVM leave-one-out error, Progol andTilde empirical error in learn-
ing thetriangle-Xn-trianglefor different values ofn, for data sets corresponding tom= 10
(a) andm= 50 (b).
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-1 1
-1 528 0

True
1 94 833

Predicted

Table 1: Contingency table for the strings task with default regularization parameter. Predicted
class is on columns, true class on rows.

We represented this kind of tasks with a toy problem. Examples are strings of integersi ∈ [0,9],
and a string is positive iff more than a half of its pairs of consecutive elementsis ordered, where
we employ the partial ordering relation≤ between numbers. In this task,M andN are example
dependent, while their ratio is fixed.

As background knowledge, we introduced the concepts of “length two substring” and “pairwise
ordering”:

substr([A,B],[A,B|_T]).
substr([A,B],[_H|T]):-

substr([A,B],T).

comp(A,B):- A @> B.
comp(A,B):- A @=< B.

We then designed a visitor which looks for a substring of length two in the example, and compares
its elements:

visit(X):-
string(X,S),substr([A,B],S),comp(A,B).

We also declaredsubstr to be a leaf predicate, thus pruning the proof tree as explained in Section
3.4, because we are not interested in where the substring is located within theexample.

The kernel we employed for this task is a sum kernel with functor equality for nodewise compar-
ison. This kernel basically counts the number of clauses proved in the common subpart of two proof
trees, where common means that the same clauses were proved regardlessof the specific values of
their head arguments.

The data set was created in the following way: the training set was made of 150 randomly
generated strings of length 4 and 150 strings of length 5; the test set was made of 1455 randomly
generated strings of length from 6 to 100. This allowed to verify the generalization performance of
the algorithm for lengths very different from the ones it was trained on.

Accuracy on the test set for a default value of the regularization parameter C = 1 was 93.5%,
with a contingency table as in Table 1. Moreover, false negatives were thenearest to the decision
threshold, and slightly modifying the regularization parameter led to 100% accuracy. On the other
hand, neither Tilde nor Progol were able to induce any approximation of thetarget concept with the
available background knowledge. A number of problems prevented them from learning:

1. All proofs of a given predicate (substr) were necessary ingredients for the target concept.

2. Counting such proofs was needed, conditioned on the proof details.
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3. Gain measures were useless in guiding Tilde hypothesis search, as single atoms forming the
target concept had no discriminative power if taken alone.

These problems are due to the need for an aggregation predicate (in this case count) to correctly
define the target concept. Dealing with aggregation is known to be difficult for relational learning
(Perlich and Provost, 2003; Knobbe et al., 2002).

In order for Progol to learn the target concept, two explicit conditioned counting predicates had
to be provided, counting the number of ordered (resp. unordered) length two substrings of a given
string. Tilde was still unable to learn the concept with such background knowledge, due the above
mentioned problem with gain at intermediate steps of the search, and full lookahead of all building
predicates was needed. Again, this is a known problem for decision tree learners (Van de Velde,
1989).

5.3 Protein Fold Classification

In this experiment, we tested our methodology on the protein fold classification problem studied by
Turcotte et al. (2001). The task consists of classifying proteins into SCOP folds, given their high-
level logical descriptions about secondary structure and amino acid sequence. SCOP is a manually
curated database of proteins hierarchically organized according to theirstructural properties. At the
top level SCOP groups proteins into four main classes (all-α, all-β, α/β, andα + β). Each class
is then divided into folds that group together proteins with similar secondary structures and three-
dimensional arrangements. We used the data set made available as a supplement to the paper by
Turcotte et al. (2001)7 that consists of the five most populated folds from each of the four main
SCOP classes. This setting yields 20 binary classification problems. The data sets for each of the
20 problems are relatively small (from about 30 to about 160 examples perfold, totaling 1143
examples).

We relied on the background knowledge provided in Turcotte et al. (2001), to design a set of
visitors managing increasingly complex information. A global visitor was used toextract protein
level information, such as its length and the number of itsα or β secondary structure segments.
A local visitor explored the details of each of such segments, while a connection visitor looked
for pairs of adjacent segments within the protein. Numerical values were normalized within each
top level fold class. The kernel configuration mainly consisted of type signatures aiming to ignore
identifiers and treat some of the numerical features as categorical ones.A functor equality kernel
was employed for those nodes of the proofs which did not contain valuableinformation in their
arguments. Code details for visitors and kernel configuration can be found in Appendix-C.3.
Following Turcotte et al. (2001), we measured prediction accuracy by 10-fold cross-validation,
micro-averaging the results over the 20 experiments by summing contingency tables. The proof-
tree kernel was combined with a Gaussian kernel (see Equation (10)) in order to model nonlinear
interactions between the features extracted by the visitor program. Model selection (i.e., choice
of the Gaussian widthγ and the SVM regularization parameterC) was performed for each binary
problem with a LOO procedure before running the 10-fold cross validation. Table 2 shows com-
parisons between the best setting for Progol (as reported by Turcotte et al. (2001)), which uses both
propositional and relational background knowledge, results for Tilde using the same setting, and
SVM with our kernel over proof trees. The difference between Tilde and Progol is not significant,
while our SVM achieves significantly higher overall accuracy with respect to both methods.

7. http://www.bmm.icnet.uk/ilp/data/ml 2000.tar.gz.
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Tilde Progol SVM
All- α:

Globin-like 97.4 95.1 94.9
DNA-binding 3-helical bundle 81.1 83.0 88.9
4-helical cytokines 83.3 70.7 86.7
lambda repressor-like DNA-binding domains 70.0 73.4 83.3
EF Hand-like 71.4 77.6 85.7

All- β:
Immunoglobulin-like beta-sandwich 74.1 76.3 85.2
SH3-like barrel 91.7 91.4 93.8
OB-fold 65.0 78.4 83.3
Trypsin-like serine proteases 95.2 93.1 93.7
Lipocalins 83.3 88.3 92.9

α/β:
beta/alpha (TIM)-barrel 69.7 70.7 73.3
NAD(P)-binding Rossmann-fold domains 79.4 71.6 84.1
P-loop containing nucleotide triphosphate hydrolases 64.3 76.0 76.2
alpha/beta-Hydrolases 58.3 72.2 86.1
Periplasmic binding protein-like II 79.5 68.9 79.5

α+β:
Interleukin 8-like chemokines 92.6 92.9 96.3
beta-Grasp 52.8 71.7 88.9
Ferredoxin-like 69.2 83.1 76.9
Zincin-like 51.3 64.3 79.5
SH2-like 82.1 76.8 66.7

Micro average: 75.2 78.3 83.6
±2.5 ±2.4 ±2.2

Table 2: Protein fold classification: 10-fold cross validation accuracy (%) for Tilde, Progol and
SVM for the different classification tasks, and micro averaged accuracies with 95% confi-
dence intervals. Results for Progol are taken from Turcotte et al. (2001).
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5.4 QSAR Regression Tasks

Quantitative structure activity relationship (QSAR) tasks deal with the problem of predicting the
biological activity of a molecule given its chemical structure. They can thus be naturally represented
as regression problems. The chemical structure of molecules is typically represented by atom and
bond predicates, possibly specifying also non topological attributes suchas atom and bond detailed
types and atom partial charge. Additional features include molecule physico-chemical properties,
such as its weight, its hydrophobicity (logP) andlumo, which is the energy of the molecule lowest
unoccupied orbital. Intensional background knowledge can be represented by predicates looking for
ring structures and functional groups within the molecule, such as benzene, anthracene and nitro.
Relational features can also be propositionalized in different ways in order to employ propositional
learners.

In the following we focused on two well known QSAR data sets, mutagenesis and biodegrada-
bility, and compared to published results for different relational and propositional learners, always
attaining to their same experimental settings. In both cases we run a preliminary model selec-
tion phase (optimizing Gaussian width and regularization parameter) on an additional 10 fold cross
validation procedure. We employed the Pearson correlation coefficient as a standard performance
measure, and two tailed Fisherz tests at 0.05 significance level in order to verify if the performance
difference between pairs of methods was statistically significant.

5.4.1 MUTAGENESIS

The mutagenicity problem is a standard benchmark for ILP approaches. The problem is treated in
Srinivasan et al. (1996) as a binary classification task (mutagenic vs. non-mutagenic). Here we
focused on its original formulation as a regression task, and compared to the results presented in
Kramer (1999) for the regression friendly data set.

We employed a global visitor exploring physico-chemical properties of the molecule, that is
logp, lumo, ind1 and inda. We then developed a set of visitors exploiting the ring theory for nitro
aromatic and heteroaromatic compounds, each looking for compounds of a certain type, and ex-
tracting the properties of the atoms belonging to it. We employed pruned trees for such visitors,
as described in the example shown in Section 3.4. Kernel configuration wasmostly made of type
signatures as for the protein fold classification task (Section 5.3, see Appendix-C.4 for code details).
Competing algorithms included S-CART (Kramer, 1999), which is an upgradeof CART to first
order logic, and M5’ (Quinlan, 1993; Wang and Witten, 1997), a propositional regression-tree in-
duction algorithm. Propositionalization was conducted either by (P) counting occurrences of differ-
ent functional groups (together to physico-chemical global properties), or (SP) running a supervised
stochastic propositionalization algorithm as described in Kramer (1999). Table 3 reports experimen-
tal comparisons on four 10 fold cross validation procedures. Our methodconsistently outperforms
all other learners, and such difference is significant on four out of five cases.

5.4.2 BIODEGRADABILITY

Degradation is the process by which chemicals are transformed into components which are not con-
sidered pollutants. A number of different pathways are responsible forsuch process, depending on
environmental conditions. Blockeel et al. (2004) conducted a study focused on aqueous biodegra-
dation under aerobic conditions. Low and high estimates of half life time degradation rate were
collected for 328 molecules. The regression task consisted in predicting thenatural logarithm of the
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System r
KRR 0.898(0.002)
S-CART 0.830 (0.020)
P + S-CART 0.834 (0.010)
P + M5’ 0.893(0.001)
P + SP + S-CART 0.767 (0.038)
P + SP + M5’ 0.835 (0.012)

Table 3: Pearson correlation coefficient for the different learners on the regression friendly muta-
genesis data set. Results are averaged over four 10-fold cross validation procedures, and
standard deviations over the four procedures are reported. Boldface numbers are signif-
icantly better than plain ones. All other differences are not significant. Results for all
systems except for KRR are taken from Kramer (1999).

arithmetic mean of the low and high estimate for a given molecule. A comprehensivebackground
knowledge of rings and functional groups was available as for the mutagenesis data set. Moreover,
relational features had been propositionalized in two different ways. Four sets of features were thus
made available to learning algorithms (Blockeel et al., 2004):

• Global consisted of molecule physico-chemical properties, namely weight and logP.

• P1were counts of rings and functional groups defined in the backgroundtheory.

• P2 were counts of small substructures of molecules (all connected substructures of two or
three atoms, those of four with a star topology).

• Rcontained full relational features: atoms, bonds, ring and functional structures described by
their constituent atoms and those connecting them to the rest of the molecule.

We developed appropriate visitors for each of these feature sets. Visitors for full relational
features (R) explored atoms within rings and functional structures as in the mutagenesis task, addi-
tionally including information about atoms connecting each compound to the restof the molecule.
Numerical features8 were normalized. The kernel configuration was again similar to that in the
protein fold classification task (Section 5.3), but we also modified the defaultcombining operator
for a few type signatures in order to compared substructures of the same type only (code details in
Appendix-C.5).

A number of relational and propositional learners were compared in Blockeel et al. (2004) on
different feature sets: apart from S-CART and M5’, already introduced for the mutagenesis data set,
simple linear regression (LR) and the version of Tilde learning regressiontrees (Blockeel and De
Raedt, 1998). Table 4 reports average and standard deviation of Pearson correlation coefficient on
five 10-fold cross validation procedures, for different combinations of the feature sets. Our kernel
outperforms all other methods on four out of five scenarios, and in two cases results are significantly
better than any competitor (see Figure 6).

8. Apart from those inP1which had a small range ([0,4]).
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System G G+P1 G+P2 G+R G+P1+P2+R
KRR 0.472 (0.005) 0.701 (0.005) 0.683 (0.006) 0.694 (0.005) 0.695 (0.005)
Tilde 0.487 (0.020) 0.596 (0.029) 0.615 (0.014) 0.616 (0.021) 0.595 (0.020)
S-CART 0.476 (0.031) 0.563 (0.010) 0.595 (0.032) 0.605 (0.023) 0.606 (0.032)
M5’ 0.503 (0.012) 0.579 (0.024) 0.646 (0.013)
LR 0.436 (0.004) 0.592 (0.014) 0.443 (0.026)

Table 4: Pearson correlation coefficient for the different learners for various combinations of fea-
tures on the biodegradability data set. Results are averaged over five 10-fold cross valida-
tion procedures, and standard deviations over the five procedures are reported. Results for
all systems except for KRR are taken from Blockeel et al. (2004).

Figure 6: Significance of performance difference between learners for the biodegradability data set.
A black box indicates that the learner on the row is significantly better than thaton the
column for the given feature setting.
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System G G+P1 G+P2 G+R G+P1+P2+R
KRR 0.498 (0.004) 0.700 (0.005) 0.683 (0.006) 0.694 (0.005) 0.695 (0.005)
Tilde 0.495 (0.015) 0.612 (0.022) 0.619 (0.021) 0.635 (0.018) 0.618 (0.022)
S-CART 0.478 (0.016) 0.581 (0.015) 0.636 (0.015) 0.659 (0.019) 0.631 (0.026)
M5’ 0.502 (0.014) 0.592 (0.013) 0.646 (0.014)
LR 0.437 (0.005) 0.592 (0.013) 0.455 (0.022)

Table 5: Pearson correlation coefficient for the different learners for various combinations of fea-
tures on the biodegradability data set (second batch). Results are averaged over five 10-fold
cross validation procedures, and standard deviations over the five procedures are reported.
Results for all systems except for KRR are taken from Blockeel et al. (2004).

Figure 7: Significance of performance difference between learners for the biodegradability data set
(second batch). A black box indicates that the learner on the row is significantly better
than that on the column for the given feature setting.

In a second batch of experiments, Blockeel et al. (2004) separately predicted low and high
estimates of half life time degradation rate, and reported the mean of such predictions. Results are
shown in Table 5. While other methods often improve their performance over the previous batch,
our method is almost unaffected. Still, it outperforms all learners on the same four scenarios, and in
one case it obtains significantly better results than any other algorithm (Figure 7).

6. Discussion and Related Work

When tackling inductive learning problems using the presented techniques,there are a number of
design decisions to be made. These include: the choice of the backgroundtheoryB, visitor program
V and also the kernelK. As compared to traditional ILP, the background theoryB is similar, the
visitor program plays the role of the declarative and inductive bias, and the kernel can perhaps be
related to some distance based learning approaches (Ramon and Bruynooghe, 1998; Horvath et al.,
2001). The visitor program, however, constitutes an entirely different form of bias than the typical
declarative language bias employed in ILP (Nédellec et al., 1996), which is purely syntactic. The
visitor incorporates a much more procedural bias, which is perhaps more similar to explanation-
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based learning (Mitchell et al., 1986). Indeed, explanation-based learning also starts from proof
trees or traces for specific examples and then generalizes them using deductive methods (such as
regression or partial evaluation (Van Harmelen and Bundy, 1988)). There has, however, also been a
strong interest in integrating inductive concept-learning with explanation-based learning (Mitchell
et al., 1986). To some extent, the combination of the proof trees with the kernel realizes such an
integration, although it does not produce interpretable rules, due to the use of the kernel. The notion
and use of background theory has—to some degree—always been debated. The reason is that, on
the one hand, it provides the user with a flexible means to guide and influencethe learning process,
but, on the other hand, it is not always easy to define a background theory that will yield accurate
hypotheses. For instance, in applying traditional ILP systems to the Bongard example (Section 5.1),
it is clear that by using only the outcome of theinside predicate, one loses the information of how
many objects are between the outermost and innermost triangle. But this couldeasily be fixed by
defininginside(X,Y,Z) as “X is inside Y with Z objects between them.” In other words, a change
of background definitions makes it possible to learn the correct concept,even by traditional ILP
systems. This is one example that shows that background theory is a powerful but sometimes hard
to master tool.

To gain some further insights into the relationship of our method to traditional ILP, let us try to
relate the background theory to the visitor program. From an ILP perspective, it does seem natural
to add the visitor program to the background theory and run the traditional ILP system. Whereas
this is—in principle—possible, there are some major differences that would result. Indeed, the
ILP system could only use the predicates mentioned in the visitor program as conditions in its
hypotheses, and it would not have any means to look into the trace or proof.For instance, if there is
a predicatev in the visitor program that is defined using two different clauses, the ILP system will
not be able to distinguish instances ofv proven using the first clause from those proven using the
second one. Also, differences and similarities between proof trees couldnot be discovered unless
one would also add the meta-program (implemented as a Prolog predicate) thatgenerates the proof
tree to the background theory. In this case, the information about the structure of proof trees and the
clauses being used in there could be employed in the hypotheses of the ILP system. This would yield
conditions such asprove(visitor(x), proof-tree). However, since ILP systems have severe
search problems when dealing with large structured and terms and recursion, this idea cannot be
applied in practice. The use of kernels to realize the generalization is much more appealing because
there is no search involved in computing the kernel. Finally, let us remark thatit would be interesting
to further investigate the design choices(B,V ,K) to be made. In particular, one may wonder under
what conditions two possible choices (say(B,V ,K) and(B ′,V ′,K′)) are equivalent, and whether
this would allow us to reformulate one element (say the visitor) as a part of another one (say the
background theory).

7. Conclusions

We have introduced the general idea of kernels over program traces and specialized it to the case
of Prolog proof trees in the logic programming paradigm. The theory and the experimental results
that we have obtained indicate that this method can be seen as a successfulattempt to bridge several
aspects of symbolic and statistical learning, including the ability of working with relational data, the
incorporation of background knowledge in a flexible and principled way,and the use of regulariza-
tion. Computational complexity is also an advantage compared to typical ILP systems. The kernel
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matrix can be computed in time quadratic in the size of the training set and the complexity of the
learning problem is that of the kernel method employed (e.g., SVM or KRR) which is typically in-
ferior to ILP algorithms. This may potentially open the road towards some large-scale applications
of learning in the ILP setting.

The advantages of the proposed approach were experimentally verified. The Bongard problems
showed that our method scales better than typical ILP algorithms with the complexity of the target
concept. Furthermore, it is able to effectively address problems (like theM-of-N one) that require
precise counting, and are difficult to solve with classic ILP approaches.Both classification and re-
gression tasks can be naturally handled using appropriate kernel methods. Finally, the robust nature
of statistical learning can offer advantages with respect to symbolic approaches when dealing with
noisy data sets, as shown by the improved performance on the bioinformaticsand chemoinformatics
tasks.

Besides the cases of classification and regression that have been studied in this paper, other
learning tasks could naturally benefit from the proposed framework including clustering, ranking,
and novelty detection. One advantage of ILP as compared to the present work is the intrinsic ability
of ILP to generatetransparent explanations of the learned function. Developing kernel machines
capable of providing transparent predictions and the use of kernel-based approaches to guide hy-
pothesis search as in ILP remain interesting open issues.
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Appendix A. Proofs of Theorems

We give in this appendix a result showing that the class of functions studiedin this paper are positive
semi-definite and therefore valid Mercer kernels.

Theorem 9 The kernel function on Prolog ground terms given in Definition 5 is positive semi-
definite.

Proof. Let us introduce the following decomposition structure (see Shawe-Taylorand Cristianini,
2004):R = 〈(X1,X2),R,(k1,k2)〉 with X1 = F , X2 = (F ,U), and

R=
{

( f /n,( f /n,a),s)s.t.s is a term having functorf /n and tuple of argumentsa
}

.

Then it can be immediately verified that the kernel function of Equations (14)and (15) correspond
to the direct sum decomposition kernel associated with the decomposition structureR if k1 = ι and
k2(( f /n,a),(g/m,b)) = δ( f /n,g/m)k′(a,b) where givena = (s1, . . . ,sn) andb = (t1, . . . , tn)

k′(a,b) =
n

∑
i=1

K(si , ti).
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Note thatk′ is a valid kernel ifK is (being a direct sum). The proof then follows by induction
using the fact that kernels for base steps (κ (Equation (13)) andι (Equation (14))) are by hypothesis
positive semi-definite, and the induction step simply consists of combining positivesemi-definite
kernels by direct sum which itself produces valid kernels (Theorem 4).�

Theorem 10 The kernel function on typed Prolog ground terms given in Definitions 6 is positive
semi-definite.

Proof. We can use the same technique as for Theorem 9 but including types in the decomposition
structure:R = 〈(X1,X2),R,(k1,k2)〉 with X1 = (F ,T ), X2 = (F ,T ,U), and

R= {(( f /n,τ),( f /n,(τ1×, . . . ,×τn 7→ τ), t),s) s.t. s is a term having functorf /n,
tuple of argumentst, and type signatureτ1×, . . . ,×τn 7→ τ}.

The kernel function of Equations (17) and (18) correspond to the direct sum decomposition kernel
associated with the decomposition structureR if:

k1(( f /n,τ),(g/m,σ)) = δ(τ,σ)ιτ( f /n,g/m)

and

k2(( f /n,τ1×, . . . ,×τn 7→ τ,a),(g/m,σ1×, . . . ,×σm 7→ σ,b)) =

δ( f /n,g/m)δ(τ1×, . . . ,×τn 7→ τ,σ1×, . . . ,×σm 7→ σ)k′(a,b).

The proof follows from Theorem 4 and by induction using the fact thatκτ (Equation (16)),
ιτ (Equation (17)) and kernels on distinguished types (see Equation (18))are by hypothesis valid
kernels.�

Theorem 11 The kernel functions on Prolog ground terms given in Definitions 7 and 8 are positive
semi-definite.

Proof. Same as in Theorem 9 and 10 respectively, simply replacing direct sums with tensor prod-
ucts.�

Appendix B. Kernel Configuration Details

The kernel specification defines the way in which data and knowledge should be treated. The
default way of treating compound terms can be declared to be eithersumor product, by writing
compound_kernel(sum) or compound_kernel(product) respectively.

The default atomic kernel is the delta one for symbols, and the product for numbers. Such
behavior can be modified by directly specifying the type signature of a given clause or fact. As an
example, the following definition overrides the default kernel betweenatm terms in mutagenesis:

type(atm(ignore,ignore,cat,cat,num)).

It allows to ignore identifiers for molecule and atom, and change the default behavior for atom type
(which is a number) to categorical. At this level, it is possible to specify a combining operator for
predicate arguments which is different from the default one:

type(atm(ignore,ignore,cat,cat,num),product).
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Here we are stating that atoms of different types will always have zero similarity. Default
behaviors can also be overridden by defining specific kernels for particular clauses or facts. This
corresponds to specifying distinguished types together to appropriate kernels for them. Thus, the
last kernel between atoms could be equivalently specified by writing:

term_kernel(atm(_,_,Xa,Xt,Xc), atm(_,_,Ya,Yt,Yc),K) :-
delta_kernel(Xa,Ya,Ka),
delta_kernel(Xt,Yt,Kt),
dot_kernel(Xc,Yc,Kc),
K is Ka * Kt * Kc.

A useful kernel which can be selected is thefunctor equalitykernel as defined in Equation (22). For
example, by writing

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

at the end of the configuration file it is possible to force the default behavior for all remaining terms
to functor equality, where the combination operator employed for internal nodes will be the one
specified with thecompound_kernel statement.

Appendix C. Visitors and Kernels Used in Experiments

C.1 Bongard Problems

visit(X):-
inside(X,A,B),polygon(X,A),polygon(X,B).

compound_kernel(product).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

C.2 M-of-N Problems

visit(X):-
string(X,S),substr([A,B],S),comp(A,B).

leaf(substr(_,_)).

compound_kernel(sum).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

336



KERNELS ONPROLOG PROOFTREES

C.3 Protein Fold Classification

visit_global(X):- visit_unit(X):-
normlen(X,Len), sec_struc(X,A),
normnb_alpha(X,NumAlpha), unit_features(A).
normnb_beta(X,NumBeta).

unit_features(A):-
visit_adjacent(X):- normsst(A,B,C,D,E,F,G,H,I,J,K),

adjacent(X,A,B,PosA,TypeA,TypeB), has_pro(A).
normcoil(A,B,LenCoil),
unit_features(A), unit_features(A):-
unit_features(B). normsst(A,B,C,D,E,F,G,H,I,J,K),

not(has_pro(A))).

leaf(adjacent(_,_,_,_,_,_)).
leaf(normcoil(_,_,_)).

compound_kernel(sum).

type(normlen(ignore,num)).
type(normnb_alpha(ignore,num)).
type(normnb_beta(ignore,num)).
type(normsst(ignore,ignore,ignore,ignore,ignore,num,ignore,num,num,num,ignore)).
type(adjacent(ignore,ignore,ignore,cat,cat,cat)).
type(normcoil(ignore,ignore,num)).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

C.4 Mutagenesis

visit_global(X):-
lumo(X,Lumo),
logp(X,Logp),
ind1(X,Ind1),
inda(X,Inda).

visit_ring_size_5(X):-
ring_size_5(X,Atoms),
atoms(X,Atoms).

% ... etc.

visit_benzene(X):-
benzene(X,Atoms),
atoms(X,Atoms).

visit_anthracene(X):-
anthracene(X,[Ring1,Ring2,Ring3]),
atoms(X,Ring1),
atoms(X,Ring2),
atoms(X,Ring3).

compound_kernel(sum).

leaf(benzene(_,_)).
leaf(anthracene(_,_)).
leaf(ring_size_5(_,_)).
% ... etc.

atoms(X,[]).
atoms(X,[H|T]):-

atm(X,H,_,_,_),atoms(X,T).

type(atm(ignore,ignore,cat,cat,num)).
type(bond(ignore,ignore,ignore,cat)).
type(lumo(ignore,num)).
type(logp(ignore,num)).
type(ind1(ignore,num)).
type(inda(ignore,num)).
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term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).

C.5 Biodegradability

visit_p1(X):-
sscount(X,_SSType,_SSCount).

visit_p2(X):-
p2countnorm(X,_P2Type,_P2Count).

visit_global(X):-
normlogP(X,_LogP),
normmweight(X,_Mweight).

visit_alcohol(X):-
alcohol(X,Atoms,Conns),
atoms(X,Atoms),
atoms(X,Conns).

visit_aldehyde(X):-
aldehyde(X,Atoms,Conns),
atoms(X,Atoms),
atoms(X,Conns).

visit_ar_halide(X):-
ar_halide(X,Atoms,Conns),
atoms(X,Atoms),
atoms(X,Conns).

% ... etc.

leaf(alcohol(_,_,_)).
leaf(aldehyde(_,_,_)).
leaf(ar_halide(_,_,_)).
% ... etc.

atoms(X,[]).
atoms(X,[H|T]):-

atm(X,H,_,_,_),
atoms(X,T).

compound_kernel(sum).

type(atm(ignore,ignore,cat,ignore,ignore)).
type(normlogP(ignore,num)).
type(normmweight(ignore,num)).
type(sscount(ignore,cat,num),product).
type(normp2count(ignore,cat,num),product).

term_kernel(X,Y,K):-
functor_equality_kernel(X,Y,K).
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