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Abstract

We develop kernels for measuring the similarity betweeati@hal instances using background
knowledge expressed in first-order logic. The method allow/$o bridge the gap between tradi-
tional inductive logic programming (ILP) representati@msl statistical approaches to supervised
learning. Logic programs are first used to generate proogsveh visitor programs that use predi-
cates declared in the available background knowledge. Aegkés then defined over pairs of proof
trees. The method can be used for supervised learning tagks suitable for classification as well
as regression. We report positive empirical results on Boijke andM-of-N problems that are
difficult or impossible to solve with traditional ILP teclouies, as well as on real bioinformatics
and chemoinformatics data sets.

Keywords: kernel methods, inductive logic programming, Prolog, &y from program traces

1. Introduction

Within the fields of automated program synthesis, inductive logic programmiify &nd machine
learning, several approaches exist that learn from example-tranexample-trace is a sequence of
steps taken by a program on a particular example input. For instance, Bieand Krishnaswamy
(1976) have sketched how to induce Turing machines from examplesifiadais case sequences of
primitive actions and assertions). Mitchell et al. (1983) have develogeldEX system that learned
how to solve symbolic integration problems by analyzing traces (or seaes) fiar particular ex-
ample problems. Ehud Shapiro’s Model Inference System (1983)timdlycinfers logic programs
by reconstructing the proof-trees and traces corresponding to partfacts. Zelle and Mooney
(1993) show how to speed-up the execution of logic programs by anglgziample-traces of the
underlying logic program. Finally, De Raedt et al. (2005) proposed a mdtidearning stochastic

x. An early version of this paper was presented at the ICML '05 WongsimApproaches and Applications of Inductive
Programming (AAIP).
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logic programs using proof trees as training examples. The diversity £ tiygplications as well as
the difficulty of the learning tasks considered illustrate the power of leairfindmy example-traces
for a wide range of applications.

In this paper, we generalize the idea of learning from example-tracetheiRhan explicitly
learning a target program from positive and negative example-traessssume that a particular—
so-calledvisitor program—is given and that our task consists of learning from the assd¢iaces.
The advantage is that in principle any programming language can be usedébthmvisitor pro-
gram and that any machine learning system able to use traces as an intemeggiasentation can
be employed. In particular, this allows us to combine two frequently emplogadefivorks within
the field of machine learning: ILP and kernel methods. Logic programs willded to generate
traces corresponding to specific examples and kernels to quantify the gintiktween traces. This
combination yields an appealing and expressive framework for tacklimplex learning tasks in-
volving structured data in a natural manner. We ti@te kernelsghe resulting broad family of
kernel functions obtainable as a result of this combination. The visitor@nods a set of clauses
that can be seen as thderfacebetween the available background knowledge and the kernel itself.
Intuitively, the visitor program plays a role that is similar to that of declardbiees in inductive
logic programming systems @dellec et al., 1996) (see also Section 6).

Kernels methods have been widely used in many relational learning corfiéatsng from the
seminal work of Haussler (1999) (briefly reviewed in Section 4.1) sg¢vesearchers have proposed
kernels over discrete data structures such as sequences (LothR80a; Jaakkola and Haussler,
1999; Leslie et al., 2002; Cortes et al., 2004), trees (Collins and Daff§2; Viswanathan and
Smola, 2003), annotated graphsaf@er, 2003; Sabikopf and Warmuth, 2003; Kashima et al.,
2003; Matlt et al., 2004; Horath et al., 2004; Menchetti et al., 2005), and complex individuals
defined using higher order logic abstraction&(f@er et al., 2004). Constructing kernels over struc-
tured data types, however, is not the only aim of the proposed frameworkany symbolic ap-
proaches to learning, logic programs allow us to define backgroundl&dgerin a natural way.
Similarly, in the case of kernel methods, the notion of similarity between two inssagxpressed
by the kernel function is the main tool for exploiting the available domain knaydedt seems
therefore natural to seek a link between logic programs and kernelgsassmeans for embedding
knowledge into statistical learning algorithms iprncipled andflexibleway. This aspect is one of
the main contributions of this paper as few alternatives exist to achieve thlisRy@positionaliza-
tion, for example, transforms a relational problem into one that can bedsbivan attribute-value
learner by mapping data structures into a finite set of features (Kramey 20@0). Although it is
known that in many practical applications propositionalization works well, itsbillity is gener-
ally limited. A remarkable exception is the method proposed by Cumby and RAR) &tat uses
description logic to specify features and that has been subsequenthdedtéo specify kernels
(Cumby and Roth, 2003). Muggleton et al. (2005) have proposed aoagpwhere the feature
space is spanned by a set of first order clauses induced by an Ilickhigalgorithm. Declarative
kernels (Frasconi et al., 2004) are another possible solution towadgtve aim. A declarative
kernel is essentially based on a background-knowledge deperaiigindm that allows us to extract
parts from instances. Instances are reduced in this way to “bags-of-pamts’a combination of
sub-kernels between parts is subsequently used to obtain the kernekhédhstances.

The guiding philosophy of trace kernels is very different from all thevabapproaches. In-
tuitively, rather than comparing two given instances directly, these kecoeipare the execution
traces of a program that takes instances as its input. Similar instances gtumude similar traces
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when probed with programs that express background knowledgexantiree characteristics they
have in common. These characteristics can be more general than pants, ttace kernels can
be introduced with the aim of achieving a greater generality and flexibility wipeet to various
decomposition kernels (including declarative kernels). In particatarprogram to be executed on
data can be exploited within the present framework to form a valid kermetifin, provided one
can give a suitable definition of thasitor program to specify how to obtain relevant traces and
proofs to compare examples. Although in this paper we only study tracelkéan logic programs,
similar ideas could be used in the context of different programming paradigthg conjunction
with alternative models of computation such as finite state automata or Turing rgchin

In this paper, we focus on a specific learning framework for Prolognams. The execution
trace of a Prolog program consists of a set of search trees assowitiieal given goal. To avoid
feature explosion due to failed paths, which are typically much more humanaiigss informative
than successful ones, we resort to a reduced representationed brased on proof trees (Russell
and Norvig, 2002) that only maintain successful search paths. Peasf¢an be conveniently repre-
sented as Prolog ground terms. Thus, in this case, kernels over &does to Prolog ground terms
kernels (PGTKSs) (Passerini and Frasconi, 2005). These kemleish are reviewed in Section 4.3)
can be seen as a specialization to Prolog of the kernels between higéelogid individuals earlier
introduced by @rtner et al. (2004). Because of the special nature of terms in thenpas®ext,
we also suggest some proper choices for comparing logical terms theseapproofs. One central
advantage of the proposed method, as compared to inductive logic pnogng, is that it naturally
applies to both classification and regression tasks.

The remainder of this paper is organized as follows. In Section 2 we rahiewraditional
frameworks of statistical learning and ILP. In Section 3 we develop a reawework for statistical
learning in the ILP setting and introduce visitor programs and their traceSedtion 4 we de-
rive kernel functions over program traces represented as Probdad fpees. In Section 5 we report
an empirical evaluation of the methodology on some classic ILP benchmatksliimg Bongard
problemsM-of-N problems on sequences, and real world problems in biocinformatics antbaie
formatics. Section 6 contains a discussion on the relations between owaappnd traditional
ILP methods, as well as explanation based learning (Mitchell et al., 1888&lly, conclusions are
drawn in Section 7.

2. Notation and Background

In this section, we briefly review some concepts related to supervisedrgdfrom both the sta-
tistical and the ILP perspective) that will be used for defining the framlewblearning from proof
trees presented in the paper.

2.1 Statistical Learning and Kernels

In the usual statistical learning framework (see, e.g., Cucker and Sroal2, fdr a thorough math-
ematical foundation) a supervised learning algorithm is given a trainingfsaput-output pairs

D = {(X1,¥1),---,(Xm,Ym) }, With i € X andy; € 9. The setX is called the input (or instance)
space and can be any set. The eis called the output (or target) space; in the case of binary
classification)y” = {—1,1} while the case of regressigy is the set of real numbers. A fixed (but
unknown) probability distribution otk x 9 links input objects to their output target values. The
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learning algorithm outputs a functioh: X — 9 that approximates the probabilistic relation be-
tween inputs and outputs. The class of functions that is searched is calegpbihthesis space

A (Mercer) kernel is a positive semi-definite symmetric functién: X x X — R that general-
izes the notion of inner product to arbitrary domains (see, e.g., Shayler &ud Cristianini, 2004,
for details). When using kernel methods in supervised learning, theliggie space, denotef,
is the so-called reproducing kernel Hilbert space (RKHS) associatbdiw Learning consists of
solving the following Tikhonov regularized problem:

m
f= arghrg}pcizlv(yi,h(m)) + Ihllk (1)

whereV (y, h(x)) is a positive function measuring the loss incurred in predidtipxy when the target
isy, Cis a positive regularization constant, dhdk is the norm in the RKHS. Popular algorithms in
this framework include support vector machines (SVM) (Cortes andikap®95) and kernel ridge
regression (Poggio and Smale, 2003; Shawe-Taylor and Cristianir).2ZD0e representer theorem
(Kimeldorf and Wahba, 1970) shows that the solution to the above prolderbe expressed as a
linear combination of the kernel between individual training examyleadx as follows:

m
fx) = aK(xx). 2)
2,°
The above form also encompasses the solution found by other algoritemasthe kernel percep-
tron (Freund and Schapire, 1999).

2.2 Inductive Logic Programming

Within the field of inductive logic programming, the standard framework is th&arning from
entailment. In this setting, the learner is given a set of positive and negataraplesD™ and
D, respectively (in the form of ground facts), and a background thébfas a set of definite
clauses) and has to induce a hypothésgigalso a set of definite clauses) such ti#at # covers all
positive examples and none of the negative ones. More formvgll) € D : BUH E p(x) and
Vp(x) € D~ : BUH = p(x). In this paper, as in the work by Lloyd (2003), we shall use examples
that are individuals, i.e., first-order logic objects or identifiers. This mézatsve shall effectively
refer to the examples by their identifierather than use(x). The traditional definition of inductive
logic programming does not explicitly—as is the case of regularized empiiskaiminimization—
account for noisy data and the possibility that a complete and consistesthlegis might not exist.
Even though various noise handling techniques exist in inductive loggranmmming, they are not
as principled as those offered by statistical learning theory.

Example 1 As an illustration of the above concepts, consider the famous mutagenioitiirnark
by Srinivasan et al. (1996). There the examples are of the fatrageni c(i d) whereid is a

unique identifier of the molecule and the background knowledge contdorsniation about the
atoms, bonds and functional groups in the molecule. A hypothesis in tlisoakl be

mutageni c(1D) <« nitro(IDR),lum(ID L), L<-1.5.

1. A symmetric functionK : X x X — R is called apositive semi-definite kerneff Ym € IN,Vxy,...,Xm €
X,Vai,...,an € R, Zm-:laiajK(Xi,Xj) >0.
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mut ageni c( d26) . atn(d26, d26_9, h, 3, 0. 167). bond( d26, d26_5, d26_6, 7)
atn{ d26, d26_10, cl , 93, - 0. 163). bond(d26, d26_6, d26_1, 7)
| uno(d26, -2.072). atn{ d26, d26_11, n, 38, 0. 836) . bond(d26, d26_1, d26_7, 1)
logp(d26, 2.17). atn{ d26, d26_12, n, 38, 0. 836) . bond( d26, d26_3, d26_8, 1)
atn{d26, d26_1, ¢, 22, - 0. 093) . atn{d26, d26_13, 0, 40, - 0. 363) . bond( d26, d26_6, d26_9, 1)
atn{d26, d26_2, ¢, 22, - 0. 093) . atn{d26, d26_14, 0, 40, - 0. 363) . bond(d26, d26_10, d26_5, 1)
at n{ d26, d26_3, ¢, 22, - 0. 093) . atn{ d26, d26_15, 0, 40, - 0. 363) . bond( d26, d26_4, d26_11, 1)
at n{ d26, d26_4, c, 22, - 0. 093) . atn{ d26, d26_16, 0, 40, - 0. 363) . bond(d26, d26_2, d26_12, 1)
atn{d26, d26_5, ¢, 22, - 0. 093) . bond( d26, d26_1, d26_2, 7). bond(d26, d26_13, d26_11, 2)
at n{ d26, d26_6, ¢, 22, - 0. 093) . bond( d26, d26_2, d26_3, 7). bond( d26, d26_11, d26_14, 2)
atn{d26, d26_7, h, 3, 0. 167). bond( d26, d26_3, d26_4, 7). bond(d26, d26_15, d26_12, 2)
atn{d26, d26_8, h, 3, 0. 167).. bond( d26, d26_4, d26_5, 7). bond(d26, d26_12, d26_16, 2)

nitro(X [ AtonD, At o, At on2, AtonB]) : -
atm( X Atont, n, 38, ), 0 (o)
bondd( X, At onD, Atont, 1), N7
bondd( X, At ont, At on2, 2), N
atm X, Aton2, 0, 40, ), Cl
bondd( X, At ont, At on8, 2),
Aton8 @ Aton®,
atm X, Aton8, o, 40, ).

N\

N\

bondd( X, At o, At on®2, Type) :-
bond( X, At ont, At on2, Type).

bondd( X, At ont, At on2, Type) : -
bond( X, At on2, At ont, Type).

P4

[@—

Figure 1. Example from the mutagenesis domain. Taxtensionalepresentation of an instance
(a molecule). Left: sample fragment imtensionalbackground theory. Right: chemical
structure of the molecule.

It entails (covers) the molecule listed in Figure 1. It will be convenient tordjsishextensional
predicates, such a& m | ogp, | uno andbond, which specify information abogpecificexamples,
from theintensionalones, such asbond andni tro, which specify general properties about all
examples.

Regression can be introduced in ILP in different ways. For example irrils¢-Order Re-
gression System (Karéliand Bratko, 1997) some arguments of the target predicate (called con-
tinuous attributes) are real-valued. For instance, in our example one ceelldxamples of the
form mut ageni ¢(d26, -2.072, 2.17, 6.3) where the arguments would be the lumo and logp
values as well as the target activity. FORS then learns from “positivaingkes only, covering
subsets of examples on which linear regression between the contingpusests is solved in a
numerical way. An interesting alternative is Structural Regression ;Jaeesthod based on divide-
and-conquer, similar to regression trees (Kramer, 1996).

3. A Framework for Statistical Learning in the ILP Setting

In this section we introduce the logical framewaork for defining progracesand, in particular, the
concepts of visitor programs and proof trees.
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3.1 General Assumptions

The methods described in this paper are based on a framework that cersnine of the advantages
of the statistical and the ILP settings, in particular noise robustness andgbibility of describing
background knowledge in a flexible declarative language. First, warasthat the instance space
X is a set of first-order logic objects (i.e., individuals in the universe ofadisse), each having a
unique identifierx. As in the ILP setting, we assume that a background thébiy available in
the form of a set of definite clauses. This background theory is divittedntensionalpredicates,
which are relevant to all examples, aextensionabnes, which specify facts about specific exam-
ples. As in the statistical setting, we assume that a fixed and unknown distiligitiefined on

X x 9 and that training dat@® consist of input-output pairss, y;) (for classification or regression).
Rather than having to find a set of claugésthe learning algorithm outputs a functidérthat maps
instances into their targets and whose general form is given by Equ&fionin( this sense, our
setting is close to statistical learning and predictions on new instances wilsbatisdly opaque.
However, we make the fundamental assumption thatso depends on the available background
theory via the kernel function.

3.2 Visitors

A second key difference with respect to the traditional ILP setting is thadditian to data? and
background knowledg®, the learner is given an additional set of clauses forming the so-called
visitor program. Clauses in this program should be designed to “inspect” exanmiteg other
predicates declared i8. In facts, as detailed in Section 4, the kernel function to be plugged in
Equation (2) will be defined by means of the trace of this program. To this a@rare not only
interested in determining whether certain clauses succeed or fail on aufsarégzample. In our
approach, the execution traces of the visitor programs are recordedoampared, on the ratio-
nale that examples having similar traces should be mapped to similar represenitative feature
space associated with the kernel. The purpose of visitors is thus to arnstaiul features during
their execution. This is a major difference with respect to other apprednhehich features are
explicitly constructed by computing the truth value for predicates (Mugglédtah,&005).

Definition 1 (Visitor programs) A visitor program for a background theor§ and domainx is
a setV/ of definite clauses that contains at least one special clause (caligsitar) of the form
V < Bjy,...,By and such that

e V is a predicate of arity 1

e foreach j=1,...,N, Bj is declared inBU V/;

Intuitively, if vi si t/ 1 is a visitor in?/, by answering the quemi si t (x) ? we explore the features
of the instance whose constant identifieis passed to the visitor. Having multiple visitors in the
program?’ allows us to explore different aspects of the examples and include multipleesoof
information.

Some examples of visitor programs are introduced in the remainder of thisrsaatiowhen
presenting empirical results in Section 5.
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3.3 Traces and Proof Trees

A visitor program trace for a given domain instance is obtained by reapmivofs of visitor goals
called on that instance. There are alternative options for choosing th@kproof to be employed.
Therefore in order to give a precise definition of traces, we now needate a specific design
choice. In this paper, we are committed to Prolog-based representatiense Ha natural option
would be the use of SLD-trees, whose paths correspond to executjoarses of the Prolog in-
terpreter. A drawback of this choice is that an SLD-tree is a very compidxather unstructured
representation and also contains information about failed paths, potentaindeto an explosion
of redundant and irrelevant features for the purpose of learnimghEse reasons we prefer to resort
to proof trees (Russell and Norvig, 2002), defined as follows:

Definition 2 (Proof tree) 2 Let P be a program and G a goal. IP [~ G then theproof treefor G is
empty. Otherwise, it is a tree t recursively defined as follows:

o ifthere is afact f in? and a substitutio® such that ® = 0, then @ is a leaf of t.

e otherwise there must be a clauseHB;, ..., B, € P and a substitutio® such that ' = G&/
and? = B;0' V], GO’ is the root of t and there is a subtree of t for eacf@Bwhich is a proof
tree for Bj©'.

The kernels used in this paper work on ground proof trees. In gehexsever, proof trees or
SLD-trees need not be ground. If they are not, they can howevayalise made ground by skolem-
ization, i.e., by substituting all variables by different constants not yetaimg in the program and
goal. The skolemized proof will then still logically follow from the program. Aliatiaely, one
could impose the requirement that all clauses are range-restrictedJieeragnt that is often im-
posed in the logic programming community. Range-restrictedness requites|thariables that
appear in the head of a clause also appear in its body. It is a sufficopntement for guaranteeing
that all proofs will be ground. Finally, ground proofs can be also obthioy making specific as-
sumptions about the mode of head variables not occurring in the bodyatsthéise variables will
be instantiated in proving the goal. All the visitor programs presented in ourrieaigvaluation
(see Section 5) yield ground proofs thanks to such assumptions.

Example 2 For the sake of illustration, consider again the mutagenesis domain. Gartbielatom
bond representation of the simple molecule in Figure 1. By looking at thecielas a graph where
atoms are nodes and bonds are edges, we can introduce the comtiwrsd pathand cycle

1: cycle(X A):- 2 path(X,ABM:- 3 path(X,ABM:-
path(X, A B, [A]), atm( X A, ), atm X A _, ),
bond( X, B, A, ). bond( X, A B, ), bond( X, A C, ),

atm X, B, _, , ), not (menber (C,'M),
not ( menber (B, M ). path(X,C, B, [CM).

The following simple visitor may be used to inspect cycles in the molecule:

4 visit(X):
cycle(X A).

2. Such trees are sometimes also namedHrees
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Note that we numbered each clauselinand the intensional part of the background thedry
(but not in the extensional patt with a unique identifier. This will allow us to take into account
information about the clauses that are used in a proof. The correspgmuaoof tree for this example
is shown in Figure 2.

In general, a goal can be satisfied in more than one way. Therefare,qe®ry generates a
(possibly empty) set of proof trees. Since multiple visitors may be availableate of an instance
is a tuple of sets of proof trees, as formalized in the following definition:

Definition 3 (Trace) Let N be the number of visitors iiY and for each = 1,...,N let T x denote
the proof tree that represents the j-th proof of the ga&k)/ i.e., a proof thatBU V' =V (x). Let

-rl,X - {-r| Ixy«-- 7-|-|S|VX,X} (3)

where sy > 0 is the number of alternative proofs of goalX). The trace of an instance x is the
tuple

TX = [Tl,Xa e ’TN7x]. (4)

3.4 Pruning Proof Trees

In many situations, the proof tree for a given goal will be unnecessamptex in that it may contain
several uninteresting subtrees. In these cases, we will often worlpwitiedproof trees, which
are trees where subtrees rooted at specific predicates (decldreaf garedicates by the user) are
turned into leafs. This will reduce the complexity of the feature space iassdavith the kernel
by selectively ignoring subproofs. For instance, consider again thegengais domain described
in Srinivasan et al. (1996) where a theory of rings and functionalggas included as background
knowledge (see Figure 1). In this domain, it may be useful to define vighatsexplore groups
such as benzene rings:

atons(X []). visit_benzene(X): -

atons(X, [HT]):- benzene( X, At ons),
atm( X, H _, , ), atons( X, Atons).
atons(X T).

If we believe that the presence of the ring and the nature of the involvetsatpresent a sufficient
set of features, we may want to ignore details about the proof of thécptetlenzene by pruning
the corresponding proof subtree. This can be accomplished by incltlerigllowing fact in the
visitor program:

| eaf (benzene(_, )).

3.5 Bridging the Gap

We are finally able to give a complete formalization of our framework for iegrfrom example-
traces. The learner is given a data et {(x1,Y1),- .., (Xm,Ym)}, background knowledg®, and
visitor program?/. For each instancg, a traceTy is obtained by running the visitor program

3. The numbers in the extensional part would change from exampletog and hence, would not carry any useful
information.
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4 : visit(d26)
I—1: cycl e(d26, d26-1)
-3 : path(d26, d26.1, d26.6, [d26.1])
atm(d26, d26.1, c, 22, -0.093)
bond(d26, d26.1, d262, 7)
not (nenber (d26_2, [d26.1]))
3 : path(d26, d26.2, d26.6, [d26.2, d26.1])
atm(d26, d26.2, c, 22, -0.093)
bond(d26, d26.2, d26.3, 7)
not (nenber (d26_3, [d26.2, d26.1]))
3 : path(d26, d26.3, d26.6, [d26.3, d26.2, d26.1])
atm(d26, d26.3, c, 22, -0.093)
bond(d26, d26.3, d26.4, 7)
not (menber (d26_4, [d26.3, d262, d26.1]))
3 : path(d26, d26.4, d26.6, [d26.4, d26.3, d26.2, d26.1])
atm(d26, d26.4, c, 22, -0.093)
bond(d26, d26.4, d265, 7)
not (menber (d26.5, [d26.4, d26.3, d26.2, d26.1]))
2 : path(d26, d265, d26.6, [d265, d26.4, d26.3, d26.2, d26.1])
atm(d26, d26.5, c, 22, -0.093)
bond(d26, d26.5, d26.6, 7)
atm(d26, d26.6, c, 22, -0.093)
not (menber (d26_6, [d26.5, d26.4, d26.3, d26_2, d26.1]))
L bond(d26, d26.6, d26.1, 7)

Figure 2: Proof tree resulting from the goalsi t (d26) in the mutagenesis example.
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according to Definition 3. A kernel machine (e.g., an SVM) is then trainedro tbe function
f : X +— 9 defined as

m

f(x) = _ZiciK(Txi ).

The only missing ingredient is the kernel functigrior comparing two visitor traces. The definition
of this function is detailed in the next section.

4. Kernels over Visitor Traces

In this section, we derive kernel functions for comparing traces of vigitograms. We begin by
reviewing some preliminary concepts about convolution kernels (Hau4€68), a very general
family of kernels on discrete structures that will be used in the rest of therga define kernels
over the logical structures of interest.

4.1 Kernels for Discrete Structures

For the purposes of this subsection ebe a set of composite structures and¥er X letxs,...,xp
denote the “parts” ok, with x4 € Xy for all i € [1,D]. This decomposition can be formally repre-
sented by a relatioR on Xj x --- x Xp x X such thatR(xa,...,Xp,X) is true iff x1,...,Xp are the
parts ofx. We also write(xy,...,Xp) = R™(x) if R(Xs,...,Xp,X) is true. Note that the relation
R used in this definition is very general and does not necessarily satisixiamatic theory for
parts and wholes such as those studied in knowledge representatian (\@86). For example
if X3 =---=Xp =X are sets containing all finite strings over a finite alphabet, we can define a
relationR(xy, ..., Xp,X) which is true iffx = x3 o - - - o Xp, with o denoting concatenation of strings.
Note that in this example can be decomposed in multiple ways. We say that the rel&ieriinite

if the number of such decompositions is finite. Given a set of keiglsXy x X4 — IR, one for
each of the parts of, theR-convolutiorkernel is defined as

Krax2)= S 3 K, 2a) (5)
(X1,--.%0)ERL(X) (z1,...,20)ER1(2) d=1

where the sums run over all the possible decompositionsaofiz. Similarly, one could use direct
sum obtaining

D
Krox2)= S > 3 Kb (6)
(X1,---,Xp)€ERL(X) (z1,...,2p) ER"1(2) d=1

For finite relationsR, these functions can be shown to be valid kernels:

Theorem 4 (Haussler 1999)For any finite R on a spacg, the functions kg : X x X — R (de-
fined by Equation (5)) and i : X x X — R (defined by Equation (6)) are positive semi-definite
kernels onx x X.

Proof: Follows from closure properties of tensor product and direct sura.Haissler (1999) for
details.

Theset kerne(Shawe-Taylor and Cristianini, 2004) is a special case of convolutiorekéhat
will prove useful in defining kernels between visitor traces. Suppogannss are sets and let us
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define the part-of relation as the usual set-membership. The kernetetsits; is then obtained
from kernels between set memb&igemperas follows:

Kset(X, 2) = Z z Kmembef&, (). (7)

gexlez

In order to reduce the dependence on the dimension of the objectslskevee discrete structures
are often normalized. A common choice is that of using normalization in fegtacesi.e., given a
convolution kerneKg:

KR(X7 Z)
\/KR(X7 X) \/KR(Zv Z) .
In the case of set kernels, an alternative is that of dividing by the clitigs of the two sets, thus
computing the mean value between pairwise comparions:

~ Keet(X,2)
Kmear{X,2) = W (9)

(8)

Knorm(X, 2) =

Richer families of kernels on data structures can be formed by applyingatgn to the feature
mapping induced by a convolution kernel. For example, a convolution kEgnean be combined
with a Gaussian kernel as follows:

K(x,z) = exp(—y(KR(x, X) — 2KRr(X, 2) + Kr(z, z)>> . (10)

4.2 Kernels over Visitor Programs

Going back to the framework defined in Section 3,Xebe a set of first-order logic objects and
for x,z € X consider the program tracdg and T, defined by Equations (3) and (4). In order to
define the kernel over program traces we follow a top-down approaehbegin by decomposing
traces into parts associated with different visitors (i.e., the elements of thengdeation (4)) and
applying a decomposition kernel based on direct sum as defined byidiy(&):

N
K(TXaTz) = Iz KI (Tl,xaTI,z)- (11)
=1

Note that there is a unique decompositiorifpindTy, that is we just compare proofs of the same
visitor. According to Definition 3 for each=1,... N, the arguments t§ are sets of proof trees.
Hence, using the set kernel of Equation (7) we further obtain:

Sx Sz

KI (TI ,x,TI,z) = Z z Ktree(TI p,x7TIq,z>- (12)
p=10g=1

In this way, we have shown that the problem boils down to defining a k&pglover individual
proof trees. This will be detailed in the remainder of this section. Note thatwelefine different
kernels for proof trees originating from different visitors.

4. Note that normalizations such as those of Equations (8) and (9)\w@mdgfinite results iff one of the two arguments
(sayx) is the null vector of the feature space associated to the original kémeKg or Ksep. In such a case, we will
defineKnorm(X7 Z) = Kmear(x, Z) = 0 VZ € X, 4 # X.
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Atthe highest level of kernel between visitor programs (Equation (iti3)advisable to employ
a feature space normalization using Equation (8). In some cases it mayealsefol to normalize
lower-level kernels, in order to rebalance contributions of individwiatg In particular, the mean
normalization of Equation (9) can be applied to the kernel over individis#tbvs (Equation (12))
and it is also possible to normalize kernels between individual proof tieesder to reduce the
influence of the proof size.

4.3 Representing Proof Trees as Prolog Ground Terms

Proof trees are discrete data structures and, in principle, existingl&emérees could be applied
(e.g. Collins and Duffy, 2002; Viswanathan and Smola, 2003). Howgigcan gain more expres-
siveness by representing individual proof trees as typed Prolaghdrerms. In so doing we can
exploit type information on constants and functors so that differentksuatels can be applied to
different object types. In addition, while traditional tree kernels wouldciaity compareall pairs
of subtrees between two proofs, the kernel on ground terms predseited results in a more se-
lective approach that compares certain parts of two proofs only wizehee by following similar
inference steps (a distinction that would be difficult to implement with traditioeal kernels).

We will use the following procedure to represent a proof tree as a Pgotagd term:

e Base step: if a node contains a fact, this is already a ground term.

¢ Induction: if a node contains a clause, therméie the number of arguments in the head and
mthe number of atoms in the body (corresponding torthehildren of the node). A ground
compound termh havingn+ 1 arguments is then formed as follows:

— the functor name dfis the functor name of the head of the clause;
— the firstn arguments of are the arguments of the clause head;

— the last argument dof is a compound term whose functor name is a Prolog constant
obtained from the clause numbeand whosen arguments are the ground term repre-
sentations of then children of the node.

Example 3 Consider the proof tree of Figure 2 in the mutagenesis domain. The tramafion
outlined above yields the following representation as a Prolog ground term:

vi sit(d26,
cbody4(cycl e(d26,

d26_1,

cbody1( pat h(d26,
d26_1,
d26_6,
[d26_1],
cbody3(...)),

bond(d26, d26 6, d26_1,7))))).

where we skipped the representation of the childrepaihfor the sake of readability.

We are now able to employ kernels on Prolog ground terms as defined ieriRaasd Frasconi
(2005) to compute kernels over individual proof trees.

5. Since numbers cannot be used as functor names, this constéoat siamply obtained by prefixing the clause number
by 'cbody’.
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4.4 Kernels on Prolog Ground Terms

We begin with kernels on untyped terms. lL@be a set of constants arfl a set of functors, and
denote by the corresponding Herbrand universe (the set of all ground terrhsdhabe formed
from constants irC and functors infF). Let f/" ¢ F denote a functor having nanfeand arityn.

Definition 5 (Sum kernels on untyped terms) The kernel between two terms t and s is a function
K: U x U+~ R defined inductively as follows:

e ifse Candte Cthen
K(s,t) =K(st) (13)

wherek : C x C — R is a valid kernel on constants;
e else if s and t are compound terms and have different functors, ie.f ®,...,s) and

t=9(ty,...,tm), then
K(s,t) =1(f/" g™ (14)

wherel : ¥ x F — R is a valid kernel on functors;

e else if s and t are compound terms and have the same functor, &ef(s,...,s,) and
t = f(t1,...,ty), then

K(s,t):l(f/”,f/”)JriK(s,ti) (15)

e in all other cases Ks,t) = 0.

Functionsk andi are calledatomickernels as they operate on non-structured symbols. A special
but useful case is the atomic delta kerdelefined ad(x,z) = 1 if x=zandd(x,z) =0 if X # z

Example 4 Consider the two lists & [a,b, c] and t= [a, c]. Recall that in Prologa,b] is a short-
hand for.(a,.(b,[])) where the functor/2 is a data constructor for lists anfdlis the data constructor
for the empty list. Supposé/2,./2) = 0.25andk(x,z) = 6(x,z) for all x,z€ C. Then

Kist) = K((a.(b,.(c;[));(a,(c,[])
= 1(./2,-/2) +K(a,2) +K(.(b, (¢, ])),-(c, 1))
= 1(./2,./2) +K(a,a) +1(./2,./2) +K(b,c) + K(.(c,[]),]])
= 025+1+0.25+0+0=15

The result obtained in the above example is similar to what would be achievetheiternel on
higher-order logic basic terms defined ir@er et al. (2004). The following examples illustrate
the case of two other common data structures.

Example 5 Consider the two tuples simulated via a predicates = r(a,b,c) and t=r(d,b,a).

Suppose(r/3,r/3) = 0 andk(x,z) = §(x, z) for all X,ze C. Then it immediately follows from the
definition that Ks,t) = 1.
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Example 6 As a last example consider data structures intended to describe sciegftdiemces:

r = article("Kernels on Gius and Grats",journal(ggj,2004))
s = article("The Logic of Gnats",conference(icla,2004))
= article("Armadillos in Hilbert space",journal(ijaa,2004))

UsingK(x,z) = 8(x,z) for all x,ze C and1(x,z) = &(x,z) for all x,ze ¥, we obtain Kr,s) = 1,
K(r,t) = 3, and K(s,t) = 1. The fact that all papers are published in the same year does not
contribute to Kr,s) or K(s,t) since these pairs have different functors describing the venue of the
publication; it does contribute to K,t) as they are both journal papers. Note that strings have
been treated as constants (as standard in Prolog). Under our abduitae the kernel cannot
recognize the fact that r and s share a word in the title.

A finer level of granularity in the definition of ground term kernels can baed from the
use of typed terms. This extra flexibility may be necessary to specify diffdwrnel functions
associated with constants of different type (e.g., numerical vs catefjofigpes are also useful to
specify different kernels associated to different arguments of contptarms. As detailed below,
this allows us to distinguish different roles played by clauses in a proaf tree

Our approach for introducing types is similar to that proposed by LakslamafReddy (1991).
We denote by7 the ranked set of type constructors, which contains at least the nudiasgractor
L. The type signature of a function of arityhas the fornty x,..., x1, — T wheren > 0 is the
number of argumentsy, ..., Tk € T are their types, and € 7 is the type of the result. Functions
of arity 0 have signature. — 1’ and can therefore be interpreted as constants of typ&he
type of a function is the type of its result. The type signature of a predicatgtpi has the form
11%,..., XTn— QwhereQ € T is the type of Booleans, and is thus a special case of type signatures
of functions. We writd : T to assert thatt is a term of typer. We denote byg the set of all typed
ground terms, by” C G the set of all typed constants, and $ythe set of typed functors. Finally
we introduce a (possibly empty) set @iktinguishedype signature® C 7 that can be useful to
specify ad-hoc kernel functions on certain compound terms.

Definition 6 (Sum kernels on typed terms) The kernel between two typed termst and s is defined
inductively as follows:

e ifse(C,teC, s 1,t:1then
K(s,t) = Ke(st) (16)

wherek; : C x C — R is a valid kernel on constants of type

e elseifsandt are compound terms that have the same type but diffaretdriior signatures,
e, s=f(sy,...,s) andt=g(ty,...,tm), S: 01%,...,X0On— T, t 1 T1X,..., XTn— T, then

K(Sat) = IT’(f/nag/m) (17)
wherely : F x F — R is a valid kernel on functors that construct terms of type
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e else if s and t are compound terms and have the same functor and typguségn.e., s=
f(s1,...,%), t=f(t,...,tn),and st : 11 %, ..., xTh — T, then

K‘[1><,..‘,><Tn»—>‘['(s7t)

H /
K(st) = if (Tix,...,xTh—T1)eD (18)

n
IT/(f/”,f/”)JerK(s,ti) otherwise
i=

whereky, . xrv - U X U— Ris avalid kernel on terms having distinguished type signa-
ture 11 x,..., xTh— 1 € D.

e in all other cases Ks,t) = 0.

Versions of the kernels which combine arguments using products instesuhtwf can be easily
defined as follows.

Definition 7 (Product kernels on untyped terms) Use Definition 5 replacing Equation (15) with

n
K(s,t)zl(f/”,f/”)rlK(s,ti) (19)
i=
Definition 8 (Product kernels on typed terms) Use Definition 6 replacing Equation (18) with
KT1X,...7XTnHT’(Sat)
H /
K(s.t) = if (T1x,...,XTh—T)eD (20)

n
lr,(f/”,f/”)rlK(s,ti) otherwise
i=

The families of functions in Definitions 5-8 are special cases of Hausslecomposition ker-
nels and therefore they are positive semi-definite (see Appendix A fimaaesults).

4.5 Kernels on Prolog Proof Trees

In order to employ full typed term kernels (as in Definitions 6 and 8) on fpire@s, we need a
typed syntax for their ground term representation. We will assume the falipglefault types for
constantsnum(numerical) andat (categorical). Types for compounds terms will be eitheat |
corresponding to leaves in the proof treéause in the case of internal nodes, ahddy when
containing the body of a clause. Note that regardless of the specific imptisinanof kernels
between types, such definitions imply that we actually compare the common sobgawoofs
starting from the goal (the visitor clause), and stop whenever the twogpdbadrge.

A number of special cases of kernels can be implemented with appropratesiof the kernel
for compound and atomic terms. Thquivalenceernel outputs one iff two proofs are equivalent,
and zero otherwise:

1 ifs=t

0 otherwise (21)

Kequi(S,t) = {

We say that two proofs are equivalent if the same sequence of claysesén in the two cases,
and the head arguments in corresponding clauses satisfy a giveralegu# relation. A trivial
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implementation of proof equivalence can be obtained using the produnliaer typed terms (Def-
inition 8) in combination with the delta kernel on constants and functors.

In many cases, we will be interested in ignoring some of the arguments ofef gacund terms
when computing the kernel between them. As an example, consider the atdmelpoesentation of
a molecule shown in the upper part of Figure 1. The first argumersisnoindbond predicates are
simply molecule and atom identifiers, and we would like to ignore their values edraparing two
molecules together. This can be implemented using a spegial e type for arguments that should
be ignored in comparisons, and a correspondimgstantkernel which always outputs a constant
value:

Kr](s,t) =n.

It is straightforward to see th#t, is a valid kernel provided) > 0. The constanty should be set
equal to the identity element of the operation used to combine results for theedifarguments of
the term under consideration, thatjis= O for the sum kernel ang = 1 for the product one.

The extreme use for this kernel is that of implementing the notidarmdtor equalityfor proof
tree nodes, where two nodes are the same iff they share the same fregdiod)ess of the specific
values taken by their arguments. Given two ground tesmasf (s, ...,sy) andt = g(ty, . ..,tn) the
functor equality kernel is given by:

0 o if type(s) # type(t)
B 6(f n’g m) if s,t:fact
Ki(st) = 3(f/",g/™ xK(sn,tm) if st:clause @2
K(s,t) if s,t:body

whereK is a kernel on ground terms as defined in Section 4.4, and the operagor be either
sum or product. Note that § andt represent clauses (i.e., internal nodes of the proof tree), the
comparison skips clause head arguments, represented by the-fifs{resp. m— 1) arguments

of the terms, and compares the bodies (the last argument, see Section 4 @)oiteeding on the
children of the nodes. This kernel allows to define a non trivial equinadetween proofs (or parts

of them) checking which clauses are proved in sequence and ignorirspdedic values of their
head arguments.

Moreover, it will often be useful to define custom kernels for specifimgeby using distin-
guished type signatures. Appendix B contains details of possible kesn@guarations as sets of
Prolog clauses, while Appendix C contains the Prolog code for all visitat&arnel configurations
employed in the experimental section.

5. Experiments

We run a number of experiments in order to demonstrate the possibilities ofadhesad method.
In particular, we aim to empirically show that

1. statistical learning in the ILP setting can be addressed, scaling bettetyheal ILP algo-
rithms with the complexity of the target hypothesis;

2. problems which are difficult for traditional ILP algorithms can be solved;

3. both classification and regression tasks can be effectively handled;
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4. significant improvements on real world applications can be achieved.

For classification tasks, we employed SVM (Cortes and Vapnik, 1995y tisanGisé imple-
mentation, which permits to separate kernel calculation from training by tiegefhe complete
kernel matrix as input. We compared our method with two popular and divePsalgorithms:
Tilde (Blockeel and De Raedt, 1998), which upgrades C4.5 to inductidmgafal decision trees,
and Progol (Muggleton, 1995), which learns logical theories usingseventailment.

Regression is quite a difficult task for ILP techniques, and few algorithurreiatly exist which
are able to address it. Conversely, our definition of kernel over prees allows us to apply
standard kernel methods for regression, such as kernel ridgessign (KRR, (Poggio and Smale,
2003)) and support vector regression (Vapnik, 1995). We repsuits using the former approach,
as training was more stable and no significant difference in performande lbe noted. However,
when dealing with large data sets, the latter method would be preferabldifierafy reasons. In
Section 5.4 we report regression experiments comparing our approactutober of propositional
as well as relational learners.

5.1 Bongard Problems

In order to provide a full basic example of visitor program constructioth exploitation of the
proof tree information, we created a very simple Bongard problem (Bdnd870). The concept
to be learned can be represented with the simple patiangle-X"-triangle for a givenn, meaning
that a positive example is a scene containing two triangles nested into onerawidthexactlyn
objects (possibly triangles) in between. Figure 3 shows a pair of exanfgesioscenes with their
representation as Prolog facts and their classification according to thengatta = 1.

A possible example of background knowledge introduces the concepgstifigin containment
andpolygonas a generic object, and can be represented as follows:

inside(X, A B):- in(XAB). %clause nr 1
inside(X AB):- % cl ause nr 2
in(X A Q,
i nside(X C B).
polygon( X, A) :- triangle(X A). % cl ause nr 3
pol ygon(X A) :- rectangle(X A). % cl ause nr 4
polygon(X, A) :- circle(X A). % cl ause nr 5

A visitor exploiting such background knowledge, and having hints on tigetaoncept, could be
looking for two polygons contained one into the other. This can be repietas:

visit(X):- % cl ause nr 6
i nsi de(X, A B), pol ygon(X, A), pol ygon(X, B).

Figure 4 shows the proofs trees obtained running such a visitor on th@&dingard problem in
Figure 3.

A very simple kernel can be employed to solve such a task, namely an kemaiedkernel with
functor equality for nodewise comparison. For any valua,cfuch a kernel maps the examples
into a feature space where there is a single feature discriminating betwsigéingpand negative

6. The Gist package by W. Stafford Noble and P. Pavlidis is available  from
http://mcroarray. genomecent er. col unbi a. edu/ gi st/.
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positive (bongl) .
triangle (bongl,ol) .
circle (bongl, 02) .
triangle (bongl,03) .
in(bongl,ol,02) .
in(bongl,02,03) .

negative (bong4) .
triangle (bong4,o0l) .
rectangle (bong4,02) .
circle (bong4,03) .
triangle (bong4,o04) .
in(bong4,0l,02) .
in(bong4,02,03) .
in(bong4,03,04) .

Figure 3: Graphical and Prolog facts representation of two Bongardesc The left and right
examples are positive and negative, respectively, according to thenpatsangle-X-
triangle.

examples, while the simple use of ground facts without intensional backdjtcowledge would
not provide sufficient information for the task.

The data set was generated by creatingcenes each containing a serieg cindomly chosen
objects nested one into the other, and repeating the procedurednying from 2 to 20. Moreover,
we generated two different data sets by choosimg 10 andm = 50 respectively. Finally, for
each data set we obtained 15 experimental settings denoted i, 14]. In each setting, positive
examples were scenes containing the pattieangle-X"-triangle. We run an SVM with the above
mentioned proof tree kernel and a fixed vaflie- 10 for the regularization parameter, on the basis
that the data set is noise free. We evaluated its performance with a leea@mib(LOO) procedure,
and compared it to the empirical error of Tilde and Progol trained on the dataeand background
knowledge (including the visitor). Here we focus on showing that ILP ritlyms have troubles
finding a consistent hypothesis for this problem, hence we did not medsirgeneralization.

Figure 5(a) plots results fan= 10. Both Tilde and Progol stopped learning the concept for
n > 4. Progol found the trivial empty hypothesis for alt- 4 apart fromn = 6, and Tilde for all
n> 9. While never learning the concept with 100% generalization accurac$\iv performance
was much more stable when increasing the nesting level correspondingjtiogpexamples. Figure
5(b) plots results fom = 50. Progol was extremely expensive to train with respect to the other
methods. It successfully learned the conceptfar2, but we stopped training far= 3 after more
than one week training time on a 3.20 GHz PENTIUM IV. Tilde stopped learniagtimcept for
n> 8, and found the trivial empty hypothesis for- 12. Conversely, the SVM was almost always
able to learn the concept with 100% generalization accuracy, regaadlésEomplexity level.

Note that in order for the ILP algorithms to learn the target concept regar@f the nesting
level, it would be necessary to provide a more informesi de predicate, which explicitly contains
such nesting level as one of its arguments. The ability of the kernel to ektfagmation from the
predicate proof, on the other hand, allows our method to be employed whepaotial background
knowledge is available, which is typically the case in real world applications.

5.2 M-of-N Problems

The possibility to plug background knowledge into the kernel allows adiohigproblems that are
notoriously hard for ILP approaches. An example of such conceptshd-ibi-N one, which expects
the model to be able to count and make the decision accordingly.
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visit (1) visit (1)
inside (1,01,02) polygon(l,0l) polygon(l,o02) inside(1,02,03) polygon(l,02) polygon(l,03)
|
in(1,01,02) triangle(1l,0l) circle(l,02) in(1,02,03) circle(1l,02) triangle(l,03)
visit (1)
inside(1,01,03) polygon(1l,01) polygon(1l,03)

in(1,01,02) inside(1,02,03) triangle(l,01) triangle (1,03)

in(1,02,03)

Figure 4: Proof trees obtained by running the visitor on the first Bongarlem in Fig. 3.

1.05 T T T T T T T 1.05 T T T T T T T
1k y -
0.95 % - 1 [ eee—a— 4
09 F N
g ossf b 15 oer i
3 osf b 1§ '-.
< o7t Vo {< 09 Lo
0.7 | ': '.' 4 0.85
] 8o - SVM LOO == -
0.65 - i Progol train -
06 F H Tilde train -- i Tilde train -
. 1 1 1 1 I 1 0.8 1 1 1 1 1 I 1
0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16

Nesting Level Nesting Level

Figure 5: Comparison between SVM leave-one-out error, Progol éahel empirical error in learn-

ing thetriangle-X"-trianglefor different values oh, for data sets correspondingrto= 10
(a) andm =50 (b).
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-1 1

-1 | 528 0 Tie
1 94 833
Predicted

Table 1: Contingency table for the strings task with default regularizatioanpeter. Predicted
class is on columns, true class on rows.

We represented this kind of tasks with a toy problem. Examples are stringegéid < [0, 9],
and a string is positive iff more than a half of its pairs of consecutive eleneotslered, where
we employ the partial ordering relation between numbers. In this taddl andN are example
dependent, while their ratio is fixed.

As background knowledge, we introduced the concepts of “length thstsng” and “pairwise
ordering”:

substr([A B],[A B _T]).
substr([AB],[_HT]):-
substr([AB],T).

comp(A/B):- A @ B.
conp(A, B):- A @< B.

We then designed a visitor which looks for a substring of length two in the eeam@pd compares
its elements:

visit(X):-
string(X S),substr([A B],S), conp(A B).

We also declaredubst r to be a leaf predicate, thus pruning the proof tree as explained in Section
3.4, because we are not interested in where the substring is located witkexetingle.

The kernel we employed for this task is a sum kernel with functor equalityddewise compar-
ison. This kernel basically counts the number of clauses proved in the cosubpart of two proof
trees, where common means that the same clauses were proved reg#rttiesspecific values of
their head arguments.

The data set was created in the following way: the training set was madeOafah8omly
generated strings of length 4 and 150 strings of length 5; the test set vaesah&455 randomly
generated strings of length from 6 to 100. This allowed to verify the génatian performance of
the algorithm for lengths very different from the ones it was trained on.

Accuracy on the test set for a default value of the regularization paea@e- 1 was 935%,
with a contingency table as in Table 1. Moreover, false negatives wemetrest to the decision
threshold, and slightly modifying the regularization parameter led to 100%amcuOn the other
hand, neither Tilde nor Progol were able to induce any approximation ¢ééthet concept with the
available background knowledge. A number of problems prevented tleemiéarning:

1. All proofs of a given predicates(bst r) were necessary ingredients for the target concept.

2. Counting such proofs was needed, conditioned on the proof details.
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3. Gain measures were useless in guiding Tilde hypothesis search, lasasorgs forming the
target concept had no discriminative power if taken alone.

These problems are due to the need for an aggregation predicate (irstisocant) to correctly
define the target concept. Dealing with aggregation is known to be difficutefational learning
(Perlich and Provost, 2003; Knobbe et al., 2002).

In order for Progol to learn the target concept, two explicit conditioraahting predicates had
to be provided, counting the number of ordered (resp. unorderegkhlénwo substrings of a given
string. Tilde was still unable to learn the concept with such backgroundlkdge, due the above
mentioned problem with gain at intermediate steps of the search, and fulhleataf all building
predicates was needed. Again, this is a known problem for decision ae®ets (Van de Velde,
1989).

5.3 Protein Fold Classification

In this experiment, we tested our methodology on the protein fold classificatiatem studied by
Turcotte et al. (2001). The task consists of classifying proteins igtorSolds, given their high-
level logical descriptions about secondary structure and amino acigiseg. £opris a manually
curated database of proteins hierarchically organized according tetheitural properties. At the
top level SoP groups proteins into four main classes @Jlall-B, a/B, anda + B). Each class
is then divided into folds that group together proteins with similar secondargtsres and three-
dimensional arrangements. We used the data set made available as a snppeime paper by
Turcotte et al. (200%)that consists of the five most populated folds from each of the four main
Scorpclasses. This setting yields 20 binary classification problems. The datasetch of the
20 problems are relatively small (from about 30 to about 160 examplefojokrtotaling 1143
examples).

We relied on the background knowledge provided in Turcotte et al. (2@@Hesign a set of
visitors managing increasingly complex information. A global visitor was usexkti@act protein
level information, such as its length and the number ofxitsr B secondary structure segments.
A local visitor explored the details of each of such segments, while a ctonedsitor looked
for pairs of adjacent segments within the protein. Numerical values wensatiaed within each
top level fold class. The kernel configuration mainly consisted of typeasigas aiming to ignore
identifiers and treat some of the numerical features as categorical Arfeactor equality kernel
was employed for those nodes of the proofs which did not contain valiafolenation in their
arguments. Code details for visitors and kernel configuration can el ioulAppendix-C.3.
Following Turcotte et al. (2001), we measured prediction accuracy bipl@lOcross-validation,
micro-averaging the results over the 20 experiments by summing contingdney.ta he proof-
tree kernel was combined with a Gaussian kernel (see Equation (10dent model nonlinear
interactions between the features extracted by the visitor program. Melgetisn (i.e., choice
of the Gaussian widtly and the SVM regularization paramet€y was performed for each binary
problem with a LOO procedure before running the 10-fold cross validafi@ble 2 shows com-
parisons between the best setting for Progol (as reported by Turtattd2001)), which uses both
propositional and relational background knowledge, results for Tiglleguthe same setting, and
SVM with our kernel over proof trees. The difference between Tild Rrogol is not significant,
while our SVM achieves significantly higher overall accuracy with resfmelboth methods.

7.http://ww. brmicnet. uk/il p/data/nm 2000.tar. gz.
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Tilde Progol SVM

All- a:
Globin-like 97.4 951 949
DNA-binding 3-helical bundle 81.1 83.0 889
4-helical cytokines 83.3 70.7 86.7
lambda repressor-like DNA-binding domains 700 734 833
EF Hand-like 714 776 857
All- 3
Immunoglobulin-like beta-sandwich 741 763 852
SH3-like barrel 91.7 914 938
OB-fold 65.0 784 833
Trypsin-like serine proteases 952 931 93.7
Lipocalins 83.3 883 929
a/p:
beta/alpha (TIM)-barrel 69.7 70.7 733
NAD(P)-binding Rossmann-fold domains 794 716 84.1
P-loop containing nucleotide triphosphate hydrolases 64.3  76.0 76.2
alpha/beta-Hydrolases 583 722 86.1
Periplasmic binding protein-like Il 795 68.9 79.5
a-+p:
Interleukin 8-like chemokines 926 929 96.3
beta-Grasp 528 71.7 88.9
Ferredoxin-like 69.2 831 76.9
Zincin-like 51.3 643 795
SH2-like 82.1 76.8 66.7
Micro average: 75.2 78.3 836

+25 424 +£2.2

Table 2: Protein fold classification: 10-fold cross validation accuracyf(¥Tilde, Progol and
SVM for the different classification tasks, and micro averaged acasagth 95% confi-

dence intervals. Results for Progol are taken from Turcotte et al1§200
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5.4 QSAR Regression Tasks

Quantitative structure activity relationship (QSAR) tasks deal with the pnoloiepredicting the
biological activity of a molecule given its chemical structure. They can teusaturally represented
as regression problems. The chemical structure of molecules is typicalbsesyted by atom and
bond predicates, possibly specifying also non topological attributesasuatom and bond detailed
types and atom partial charge. Additional features include molecule ghgk&mical properties,
such as its weight, its hydrophobicitip@P) andlumo, which is the energy of the molecule lowest
unoccupied orbital. Intensional background knowledge can besepted by predicates looking for
ring structures and functional groups within the molecule, such as bepaathracene and nitro.
Relational features can also be propositionalized in different ways &r ¢ecemploy propositional
learners.

In the following we focused on two well known QSAR data sets, mutagenedibiadegrada-
bility, and compared to published results for different relational andgsitipnal learners, always
attaining to their same experimental settings. In both cases we run a prelimindet ssbec-
tion phase (optimizing Gaussian width and regularization parameter) on #ioadldl0 fold cross
validation procedure. We employed the Pearson correlation coeffigemstandard performance
measure, and two tailed Fishetests at 05 significance level in order to verify if the performance
difference between pairs of methods was statistically significant.

5.4.1 MUTAGENESIS

The mutagenicity problem is a standard benchmark for ILP approaclhesprbblem is treated in
Srinivasan et al. (1996) as a binary classification task (mutagenic vsmuotagenic). Here we
focused on its original formulation as a regression task, and compared tegtlts presented in
Kramer (1999) for the regression friendly data set.

We employed a global visitor exploring physico-chemical properties of thiequke, that is
logp, lumg, ind1 andinda. We then developed a set of visitors exploiting the ring theory for nitro
aromatic and heteroaromatic compounds, each looking for compoundseofainaype, and ex-
tracting the properties of the atoms belonging to it. We employed pruned tneesdl visitors,
as described in the example shown in Section 3.4. Kernel configuratiomastty made of type
signatures as for the protein fold classification task (Section 5.3, seaApp€.4 for code details).
Competing algorithms included S-CART (Kramer, 1999), which is an upgodd@ART to first
order logic, and M5’ (Quinlan, 1993; Wang and Witten, 1997), a pritioos regression-tree in-
duction algorithm. Propositionalization was conducted either by (P) counticuy@nces of differ-
ent functional groups (together to physico-chemical global propgrieéSP) running a supervised
stochastic propositionalization algorithm as described in Kramer (1998l 3aeports experimen-
tal comparisons on four 10 fold cross validation procedures. Our methaslstently outperforms
all other learners, and such difference is significant on four outvefdases.

5.4.2 BODEGRADABILITY

Degradation is the process by which chemicals are transformed into conpaevtdach are not con-
sidered pollutants. A number of different pathways are responsibkufdr process, depending on
environmental conditions. Blockeel et al. (2004) conducted a studysémton aqueous biodegra-
dation under aerobic conditions. Low and high estimates of half life time detoadrate were
collected for 328 molecules. The regression task consisted in predictingtilnal logarithm of the

329



PASSERINI, FRASCONI AND DE RAEDT

System r

KRR 0.8980.002
S-CART 0.830 (0.020)
P + S-CART 0.834 (0.010)
P+ M5’ 0.8930.001)
P+ SP + S-CART 0.767 (0.038)
P+ SP + M5’ 0.835 (0.012)

Table 3: Pearson correlation coefficient for the different learnarthe regression friendly muta-
genesis data set. Results are averaged over four 10-fold crosgiealigeocedures, and
standard deviations over the four procedures are reported. Beldfambers are signif-
icantly better than plain ones. All other differences are not significansulRefor all
systems except for KRR are taken from Kramer (1999).

arithmetic mean of the low and high estimate for a given molecule. A comprehdyaikground
knowledge of rings and functional groups was available as for the rmutaggedata set. Moreover,
relational features had been propositionalized in two different wayg: $ais of features were thus
made available to learning algorithms (Blockeel et al., 2004):

e Global consisted of molecule physico-chemical properties, namely weight and logP
e Plwere counts of rings and functional groups defined in the backgriheaaty.

e P2 were counts of small substructures of molecules (all connected subsésiof two or
three atoms, those of four with a star topology).

¢ Rcontained full relational features: atoms, bonds, ring and functionadtsies described by
their constituent atoms and those connecting them to the rest of the molecule.

We developed appropriate visitors for each of these feature sets. ¥i§itofull relational
features R) explored atoms within rings and functional structures as in the mutagenssisthli-
tionally including information about atoms connecting each compound to thefrdet molecule.
Numerical featuréswere normalized. The kernel configuration was again similar to that in the
protein fold classification task (Section 5.3), but we also modified the defaalbining operator
for a few type signatures in order to compared substructures of the spmertly (code details in
Appendix-C.5).

A number of relational and propositional learners were compared in B&ak al. (2004) on
different feature sets: apart from S-CART and M5’, already intoadlfor the mutagenesis data set,
simple linear regression (LR) and the version of Tilde learning regres$stes (Blockeel and De
Raedt, 1998). Table 4 reports average and standard deviation abRearrelation coefficient on
five 10-fold cross validation procedures, for different combinatidrtbe feature sets. Our kernel
outperforms all other methods on four out of five scenarios, and in taesagsults are significantly
better than any competitor (see Figure 6).

8. Apart from those ifP1 which had a small rangé€Q; 4]).
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System G G+P1 G+P2 G+R G+P1+P2+R
KRR 0.472 (0.005) 0.701 (0.005) 0.683 (0.006) 0.694 (0.005) 0.695%p.00
Tilde 0.487 (0.020) 0.596 (0.029) 0.615 (0.014) 0.616 (0.021) 0.595@P.02
S-CART 0.476(0.031) 0.563(0.010) 0.595(0.032) 0.605(0.023) 0B03Z)
M5’ 0.503 (0.012) 0.579 (0.024) 0.646 (0.013)

LR 0.436 (0.004) 0.592 (0.014) 0.443 (0.026)

Table 4: Pearson correlation coefficient for the different learrmrsdrious combinations of fea-
tures on the biodegradability data set. Results are averaged over figllIdoss valida-
tion procedures, and standard deviations over the five procederesparted. Results for
all systems except for KRR are taken from Blockeel et al. (2004).

M = M e M = M > = =

o X~ o & o & o & ~ ~

v < v < v < 0o < ~ 0 <

g 2 9 b o £ 2 Y 0 £ 2 Y 0 £ 2 ¢ e =29

24 B » = A4 ¥ B »n = 4 ¥ B »n = 4 ¥ B w» X B w

- N E
Tilde

S—-CART

M5’
LR

G G+P1 G+P2 G+R G+P1+P2+R

Figure 6: Significance of performance difference between learaetisd biodegradability data set.
A black box indicates that the learner on the row is significantly better tharothtte
column for the given feature setting.
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System G G+P1 G+P2 G+R G+P1+P2+R
KRR 0.498 (0.004) 0.700 (0.005) 0.683 (0.006) 0.694 (0.005) 0.6955p.00
Tilde 0.495 (0.015) 0.612(0.022) 0.619(0.021) 0.635(0.018) 0.6182p.02
S-CART 0.478(0.016) 0.581 (0.015) 0.636(0.015) 0.659 (0.019) 0®B26)
M5’ 0.502 (0.014) 0.592(0.013) 0.646 (0.014)

LR 0.437 (0.005) 0.592(0.013) 0.455 (0.022)

Table 5: Pearson correlation coefficient for the different learrarsdrious combinations of fea-
tures on the biodegradability data set (second batch). Results argesversaer five 10-fold
cross validation procedures, and standard deviations over the fivedanes are reported.
Results for all systems except for KRR are taken from Blockeel et @D4R

= g = > = ) % & = =
[ ] =] % A % & % & %
2 85 2 3 x 3 5 2 3 x 3
29 b o« =2 9 b g 2 9 o o« 29 =9
§ E wn = 4 § £ »n = 4 i E »n = 4 § E w 5 E w
Tilde
S—-CART
M5’
LR
G G+P1 G+P2 G+R G+P1+P2+R

Figure 7: Significance of performance difference between learoeted biodegradability data set
(second batch). A black box indicates that the learner on the row is samificbetter
than that on the column for the given feature setting.

In a second batch of experiments, Blockeel et al. (2004) separatetiicprd low and high
estimates of half life time degradation rate, and reported the mean of sudttiorex] Results are
shown in Table 5. While other methods often improve their performance ogerdvious batch,
our method is almost unaffected. Still, it outperforms all learners on the samsdenarios, and in
one case it obtains significantly better results than any other algorithm é=gur

6. Discussion and Related Work

When tackling inductive learning problems using the presented technitpees,are a number of
design decisions to be made. These include: the choice of the backdheangdB, visitor program

7’ and also the kernéd. As compared to traditional ILP, the background the®ris similar, the
visitor program plays the role of the declarative and inductive bias, am#ldimel can perhaps be
related to some distance based learning approaches (Ramon and Rylugnd®98; Horvath et al.,
2001). The visitor program, however, constitutes an entirely diffei@mmnt of bias than the typical
declarative language bias employed in ILRe(iéllec et al., 1996), which is purely syntactic. The
visitor incorporates a much more procedural bias, which is perhaps nmoitarso explanation-
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based learning (Mitchell et al., 1986). Indeed, explanation-basedimgaalso starts from proof
trees or traces for specific examples and then generalizes them usingidednethods (such as
regression or partial evaluation (Van Harmelen and Bundy, 1988¥x€llmas, however, also been a
strong interest in integrating inductive concept-learning with explanatsed learning (Mitchell
et al., 1986). To some extent, the combination of the proof trees with thelkealzes such an
integration, although it does not produce interpretable rules, due toéhs tlee kernel. The notion
and use of background theory has—to some degree—always begtediebhe reason is that, on
the one hand, it provides the user with a flexible means to guide and infltlenkEarning process,
but, on the other hand, it is not always easy to define a backgrounytthext will yield accurate
hypotheses. For instance, in applying traditional ILP systems to the Bibegample (Section 5.1),
it is clear that by using only the outcome of thesi de predicate, one loses the information of how
many objects are between the outermaost and innermost triangle. But thiseamiilg be fixed by
definingi nsi de( X, Y, Z) as “X s inside Y with Z objects between them.” In other words, a change
of background definitions makes it possible to learn the correct coneegn, by traditional ILP
systems. This is one example that shows that background theory is afpldwgrsometimes hard
to master tool.

To gain some further insights into the relationship of our method to traditionaléLBs try to
relate the background theory to the visitor program. From an ILP peigpgeit does seem natural
to add the visitor program to the background theory and run the traditibRasystem. Whereas
this is—in principle—possible, there are some major differences that wosidtrelndeed, the
ILP system could only use the predicates mentioned in the visitor prograranaitions in its
hypotheses, and it would not have any means to look into the trace or prardhstance, if there is
a predicatey in the visitor program that is defined using two different clauses, the yiskem will
not be able to distinguish instancesvogproven using the first clause from those proven using the
second one. Also, differences and similarities between proof trees notlae discovered unless
one would also add the meta-program (implemented as a Prolog predicag@iieaates the proof
tree to the background theory. In this case, the information about théustudt proof trees and the
clauses being used in there could be employed in the hypotheses of thestems This would yield
conditions such aprove(visitor(x), proof-tree). However, since ILP systems have severe
search problems when dealing with large structured and terms and regutsfoidea cannot be
applied in practice. The use of kernels to realize the generalization is muehappealing because
there is no search involved in computing the kernel. Finally, let us remark thatld be interesting
to further investigate the design choid& 1/,K) to be made. In particular, one may wonder under
what conditions two possible choices (98, 7,K) and(B’, 7’,K")) are equivalent, and whether
this would allow us to reformulate one element (say the visitor) as a part tiemone (say the
background theory).

7. Conclusions

We have introduced the general idea of kernels over program tradespacialized it to the case
of Prolog proof trees in the logic programming paradigm. The theory andkjterienental results
that we have obtained indicate that this method can be seen as a sucaiéssfpt to bridge several
aspects of symbolic and statistical learning, including the ability of working \eittional data, the
incorporation of background knowledge in a flexible and principled waag, the use of regulariza-
tion. Computational complexity is also an advantage compared to typical Ilt€nsysThe kernel

333



PASSERINI, FRASCONI AND DE RAEDT

matrix can be computed in time quadratic in the size of the training set and the cignpfethe
learning problem is that of the kernel method employed (e.g., SVM or KRR)hih typically in-
ferior to ILP algorithms. This may potentially open the road towards some kgle-applications
of learning in the ILP setting.

The advantages of the proposed approach were experimentally vefifiedBongard problems
showed that our method scales better than typical ILP algorithms with the cdtgpéthe target
concept. Furthermore, it is able to effectively address problems (likmMtoé&N one) that require
precise counting, and are difficult to solve with classic ILP approadBeth classification and re-
gression tasks can be naturally handled using appropriate kernel rmeHiodlly, the robust nature
of statistical learning can offer advantages with respect to symbolic appes when dealing with
noisy data sets, as shown by the improved performance on the bioinforaradichemoinformatics
tasks.

Besides the cases of classification and regression that have beem stuthes paper, other
learning tasks could naturally benefit from the proposed frameworkdimguclustering, ranking,
and novelty detection. One advantage of ILP as compared to the presd&risuihe intrinsic ability
of ILP to generatetransparent explanations of the learned function. Developing kernehimes
capable of providing transparent predictions and the use of kerseldkepproaches to guide hy-
pothesis search as in ILP remain interesting open issues.
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Appendix A. Proofs of Theorems

We give in this appendix a result showing that the class of functions stirdibid paper are positive
semi-definite and therefore valid Mercer kernels.

Theorem 9 The kernel function on Prolog ground terms given in Definition 5 is positivei-se
definite.

Proof. Let us introduce the following decomposition structure (see Shawe-TaglbCristianini,

2004):?{ = <(X1,X2), R, (kl, k2)> with X3 = F, Xo = (}-, ‘U), and

R= {(f/”, (f/" a),s)s.t.sis a term having functof/" and tuple of argumen'a} .

Then it can be immediately verified that the kernel function of Equationsgid)15) correspond
to the direct sum decomposition kernel associated with the decompositiotustricif k; =1 and
ko((£/™ @), (g/™ b)) = 8(f/",g/™K (a,b) where givera = (s;,...,s,) andb = (t1,...,t)

K(a.b) =§1K<s,ti>.
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Note thatk’ is a valid kernel ifK is (being a direct sum). The proof then follows by induction
using the fact that kernels for base stepgEquation (13)) and (Equation (14))) are by hypothesis
positive semi-definite, and the induction step simply consists of combining poséivédefinite
kernels by direct sum which itself produces valid kernels (Theorernl4).

Theorem 10 The kernel function on typed Prolog ground terms given in Definitions 6 sgipe
semi-definite.

Proof. We can use the same technique as for Theorem 9 but including types incthraplesition
structure:R = ((X1,%X2), R, (K, k2)) with X3 = (F,7), Xo = (¥,7,U), and

R={((f/"1),(f/",(11x,...,xTy— T),1),5) s.t. sis a term having functof/",
tuple of arguments, and type signature; x, ..., xT, — T}.

The kernel function of Equations (17) and (18) correspond to thetdiren decomposition kernel
associated with the decomposition struct®réf:

kl((f/nvr)’ (g/mvo)) = 6(T70-)|T(f/nag/m)
and
ko((F/™ 11, ..., xTnh — T,),(¢/™, 01X, ..., XOm+— 0,b)) =
S(f/M,g/™3(T1X,..., XTIy — T,01X,...,x0m— 0)K(a,b).

The proof follows from Theorem 4 and by induction using the fact tha(Equation (16)),
I (Equation (17)) and kernels on distinguished types (see Equationdfe3))y hypothesis valid
kernels.[

Theorem 11 The kernel functions on Prolog ground terms given in Definitions 7 ane esitive
semi-definite.

Proof. Same as in Theorem 9 and 10 respectively, simply replacing direct sums nsthr {grod-
ucts.[d

Appendix B. Kernel Configuration Details

The kernel specification defines the way in which data and knowledgddshe treated. The
default way of treating compound terms can be declared to be atimeor product by writing

conpound_ker nel (sum orconpound_kernel (product) respectively.

The default atomic kernel is the delta one for symbols, and the productufobers. Such
behavior can be modified by directly specifying the type signature of angilaise or fact. As an
example, the following definition overrides the default kernel betvagerterms in mutagenesis:

type(atn{ignore,ignore,cat, cat, num).

It allows to ignore identifiers for molecule and atom, and change the defddttme for atom type
(which is a number) to categorical. At this level, it is possible to specify a campwperator for
predicate arguments which is different from the default one:

type(atn{ignore,ignore,cat, cat, num, product).
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Here we are stating that atoms of different types will always have zero sitpileDefault
behaviors can also be overridden by defining specific kernels fticplar clauses or facts. This
corresponds to specifying distinguished types together to appropriatel&dor them. Thus, the
last kernel between atoms could be equivalently specified by writing:

termkernel (atm_, , Xa, Xt, Xc), atm(_, ,VYa, Yt,Yc),K) :-
del ta_kernel (Xa, Ya, Ka) ,
del ta_kernel (Xt, Yt,Kt),
dot _kernel (Xc, Yc, Kc),
Kis Ka * Kt * Kc.

A useful kernel which can be selected is thactor equalitykernel as defined in Equation (22). For
example, by writing

termkernel (X, Y,K): -
functor_equality kernel (X Y, K).

at the end of the configuration file it is possible to force the default behtwiall remaining terms
to functor equality, where the combination operator employed for interrdésaill be the one
specified with theonpound_ker nel statement.

Appendix C. Visitors and Kernels Used in Experiments

C.1 Bongard Problems

visit(X):-
i nsi de( X, A B), pol ygon( X, A), pol ygon( X, B).

conpound_ker nel (product).

termkernel (X VY, K): -
functor_equal ity_kernel (X Y, K).

C.2 M-of-N Problems

visit(X):-
string(X S),substr([A B],S), conp(A B).

| eaf (substr(_, )).
conpound_kernel (sum.

termkernel (X, Y,K): -
functor_equal ity_kernel (XY, K).
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C.3 Protein Fold Classification

visit_global (X):-
nornl en( X, Len),
nor mb_al pha( X, NumAl pha),
nor mb_bet a( X, NunBet a) .

visit_adjacent(X): -
adj acent (X, A, B, PosA, TypeA, TypeB),
norntoi | (A B, LenCoi | ),
unit_features(A),
unit_features(B).

leaf (norncoil (_, ,)).
conpound_ker nel (sunj.
type(norm en(ignore, nun).

type(normb_al pha(ignore, nun).
type(normb_bet a(i gnore, num).

visit_unit(X):-
sec_struc(X A,
unit_features(A).

unit_features(A):-
normsst (A B,C,D,E F,GHI,J K),
has_pro(A).

unit _features(A):-
nornsst(A B,C D EF,GHI,J K),
not (has_pro(A))).

type(adj acent (i gnore,ignore,ignore,cat,cat,cat)).

type(norncoil (ignore,ignore, num).

termkernel (X, Y, K): -
functor_equal ity_kernel (X Y, K).

C.4 Mutagenesis

visit_global (X):-
| 'umo( X, Luno),
I ogp( X, Logp),
indl(X Indl),
i nda( X I nda).
visit_henzene(X): -
benzene( X, At ons),
at oms( X, At ons) .

visit_anthracene(X): -
ant hracene( X, [ Ringl, Ring2, Ring3]),
atons(X, Ringl),
atons( X, Ring2),
atoms( X, Ri ng3).

conpound_ker nel (sun.

type(atn(ignore,ignore,cat,cat,nunm).
type(bond(ignore,ignore,ignore,cat)).
type(! umo(ignore, nunj).

| ogp(ignore, nun).
ind1(ignore, num).
i nda(ignore, num).

type
type
type

o~ N~~~

(
(
(
type(nornsst (ignore,ignore,ignore,ignore,ignore, numignore, num num numignore)).
(
(

visit_ring_size 5(X):-
ring_size 5(X Atons),
atons( X, At ons) .

% ... etc.

| eaf (benzene(_, )).
| eaf (anthracene(_, )).

leaf (ring size 5(_, )).
%... etc.

_'_:_),atom;(X,T).
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termkernel (X Y,K):-
functor_equality_kernel (X Y, K).

C.5 Biodegradability

visit_pl(X):-
sscount ( X, _SSType, _SSCount ).

visit_p2(X):-
p2count nor m( X, _P2Type, _P2Count) .
visit_al cohol (X):-
al cohol (X At ons, Conns),
at oms( X, At ons),
at ons( X, Conns).

visit_al dehyde(X): -
al dehyde( X, At ons, Conns),
at ons( X, At ons),
at oms( X, Conns).

visit_global (X):-

norm ogP( X, _LogP),
nor mmaei ght (X, _Mwei ght).

visit_ar_halide(X):-
ar _hal i de( X, At ons, Conns),
at oms( X, At ons),
at ons( X, Conns).

%... etc.

| eaf (al cohol (_, _,)).
| eaf (al dehyde(_, _, )).
| eaf (ar_halide(_, _,_)).

%... etc.
atons(X []).
atoms(X, [HT]):-
atm( X, H _,_, ),
atoms(X, T).

compound_ker nel (sunj.
type(atn(ignore,ignore,cat,ignore,ignore)).
type(norm ogP(ignore, nunj).
t ype( nor mmei ght (i gnore, num).
type(sscount (ignore, cat, nunj, product).
type( nor np2count (i gnore, cat, nunj, product).
termkernel (X Y,K):-
functor_equality_kernel (X Y, K).
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