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Abstract

In this work we consider the task of relaxing the i.i.d. asptian in pattern recognition (or classi-
fication), aiming to make existing learning algorithms dggdble to a wider range of tasks. Pattern
recognition is guessing a discrete label of some objectdhase set of given examples (pairs of
objects and labels). We consider the case of determinligtabafined labels. Traditionally, this task
is studied under the assumption that examples are indepeadd identically distributed. How-
ever, it turns out that many results of pattern recognittoeoty carry over a weaker assumption.
Namely, under the assumption of conditional independendeidentical distribution of objects,
while the only assumption on the distribution of labels iattthe rate of occurrence of each label
should be above some positive threshold.

We find a broad class of learning algorithms for which estiomat of the probability of the
classification error achieved under the classical i.i.duagption can be generalized to the similar
estimates for case of conditionally i.i.d. examples.

1. Introduction

Pattern recognition (or classification)is, informally, the following task. There is a finite number
of classes of some complex objects. A predictor is learning to classify theteppased only on
examples of labelled objects. The formal model of the task used most wideBssibled, for
example, in (Vapnik, 1998), and can be briefly introduced as followsvjldater refer to it as
“the i.i.d. model”). The objectx € X are drawn independently and identically distributed (i.i.d.)
according to some unknown (but fixed) probability distributiRi). The labels/ € Y are given for
each object according to some (also unknown but fixed) funttigr). The spacer of labels is
assumed to be finite (often binary). The task is to construct the best farefdicthe labels, based
on the data observed, i.e. actually to “leantX).

This task is usually considered in either of the following two settings. In thdéirafsetting
a (finite) set of examples is divided into two finite subsets, the training sethentbsting set. A
predictor is constructed based on the first set and then is used to cthedifyjects from the second.
In the online setting a predictor starts by classifying the first object with keow/ledge; then it is

1. Often (e.g. in (Vapnik, 1998)) a more general situation is congilié¢hne labels are drawn according to some proba-
bility distribution P(y|x), i.e. each object can have more than one possible label.
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given the correct label and (having “learned” this information) prdeeeith classifying the second
object, the correct second label is given, and so on.

Weakness of the model: an exampleMany algorithms were developed for solving pattern
recognition tasks (see Devroye, @¥i, Lugosi, 1996; Vapnik, 1998; Kearns, Vazirani, 1994, for
the most widely used methods). However, the i.i.d. assumption, which is centre model, is
too tight for many applications. It turns out that it is also too tight for a widegeaof methods
developed under the assumptions of the model: they work nearly as well wedker conditions.

First consider the following example, which provides intuition for the prdistic model we
introduce. Suppose we are trying to recognise a printed or hand-wrikenQbviously, letters in
the text are dependent (for instance, we strongly expect to meettar“gf). Observe also that a
written text is not Markovian and, moreover, can exhibit arbitrarily lomggeadependencies. This
seemingly implies that pattern recognition methods can not be applied to this tash,ig/one of
their classical applications.

However, a sequence of images which forms a written text has seveprfies, which in fact
will be shown to be sufficient for learning. First, the object-label depand does not change in
time. That is, an image of a letter which in the beginning of the text means, Sayp‘the end
of the text will not be interpreted as, say, “e”. Moreover, if we extfaatn the original sequence
all letters labelled with (for instance) “a”, the resulting sequence (of imaféa”) will be i.i.d.
Finally, the rate of occurrence of each label keeps above some pdhitghold. In our example,
we expect the rate of occurrence of each letter to be, say, somewdteredn 1% and 99% of all
letters, with some feasible probability (depending on the size of the text).

Thus, given labels, objects are independent. This holds exactly foewtitten text. For a text
on a journal page this condition is sometimes violated because of such imagedewendencies
as ligatures (like “ ff ). In a hand-written text different pairs of letters aonnected differently and
so the condition does not hold, but still seems more adequate than the pucanddion.

Conditional i.i.d. model. These intuitive ideas lead us to the following model (to which we re-
fer as “the conditional model”). The labets Y are drawn according to some unknown (but fixed)
distribution over the set of all infinite sequences of labels. There canybiyjpe of dependence be-
tween labels; moreover, we can assume that we are dealing with any foret)natorial sequence
of labels. However, in this sequence the rate of occurrence of eaehslabuld keep above some
positive threshold. For each labethe corresponding objegte X is generated according to some
(unknown but fixed) probability distributioR(x|y). All the rest is as in the i.i.d. model.

The main difference from the i.i.d. model is that in the conditional model we maddigtréou-
tion of labels primal; having done that we can relax the requirement of imdigpee of objects to
the conditional independence.

Results. The main result of the paperi®tin constructing an algorithm for the proposed model.
Rather, we show that any reasonable already known algorithm dedigmexk in the i.i.d. setting
also works under the strictly weaker conditionally i.i.d. assumption. An implicatidhas the
i.i.d. assumption for pattern recognition is, to a considerable extent, redunda

Moreover, we provide a tool for obtaining estimations of probability of reofoa predictor in
the conditional model from estimations of the probability of error in the i.i.d. modké general
theorems about extending results concerning performance of a premi¢te conditional model
are illustrated on two classes of predictors.

First, we extend weak consistency results concerning partitioning amdsteeighbour esti-
mates from the i.i.d. model to the conditional model.
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Second, we use some results of Vapnik-Chervonenkis theory to estintébenmnce in the
conditional model (on finite amount of data) of predictors minimizing empirick) &ad also obtain
some strong consistency results.

These results are obtained as applications of the following general stat@heronly assump-
tion on a predictor under which it works in the conditional model as well aséni.tid. model
is what we calltolerance to data in any large data set there is no small subset which strongly
changes the probability of error. This property should also hold witheedp permutations. This
assumption on a predictor should be valid in the i.i.d. model. Thus, the resulevedhn the
i.i.d. model can be extended to the conditional model; this concerns distribfréenesults as well
as distribution—specific, results on the performance on finite samples aasnali/mptotic results.

Further examples. As another example of pattern recognition task which does not comply with
the i.i.d. (or Markov) assumption, but is more adequately modelled by the camalitiod. assump-
tion, consider the problem of medical diagnostics. The problem is to diagana®rtain disease
based on the set of symptoms; for simplicity, consider binary labels (ill serstill). Since many
diseases have yearly or other dynamics (e.g. epidemics), the sequiesate of symptoms of pa-
tients entering a clinic can not be considered i.i.d. However, the sequésetsmf symptoms of
ill patients does not reflect such dynamics, and can be consideredeloisé. In other words, we
expect the distribution of symptoms to be determined only by the fact that thetpiatié or that
(s)he is not. Note however, that there are certain types of dependdratigeen sets of symptoms
which can violate our condition, for example, if a family comes for diagnostigstteer; yet the
conditional i.i.d. model seems to be more adequate here than just i.i.d. or thaovandition,
since it allows for more dependencies present in the problem.

The same argument applies for any task which would be i.i.d. if it was not éofidlctuations
of the class probability, such as an example from (Duda, Hart, Storkl)28f0classifying fish
species by a photographic image: one can imagine that at different timds différent areas the
proportion of species among the fish caught is different.

It should also be mentioned that in such popular practical tasks as sgeecmition the label-
label dependencies, which we show to be tolerated by pattern recognitibiodse can be and
actually are exploited. Thus, pattern recognition methods are used in ctojuwith sequence
prediction algorithms, and here our results can be considered a furthaetital justification of
the use of the pattern recognition component.

Related work. Various approaches to relaxing the i.i.d. assumption in learning tasks hewe be
proposed in the literature. Thus, in (Kulkarni, Posner , Sandilya, 2RQ&arni, Posner, 1995)
the authors study the nearest neighbour and kernel estimators for ki tagression estimation
with continuous regression function, under the assumption that labelsradtgionally independent
given their objects, while objects form any individual sequence. Thbeaghilistic assumption is
weaker than ours but continuity of regression function holds only in troaaes of the classifica-
tion task we consider. A similar approach is taken in (Morvai, Kulkarni, Njob@99), where a
regression estimation scheme is proposed which is consistent for anigiraligtable sequence of
object-label pairs (no probabilistic assumptions), assuming that there isvenkipper bound on
the variation of regression function.

There are also several approaches in which different types ofniggiguns on the joint distribu-
tion of objects and labels are made; then the authors construct a prediatolags of predictors, to
work well under the assumptions made. Thus, in (Gamarnik, 2003) andg|&/azirani, 1990) a
generalisation of PAC approach to Markov chains with finite or countable space is presented.
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The estimates of probability of error are constructed for this casesy tilel@essumption that the
optimal rule generating examples belongs to a pre-specified class of deritds. There is also

a track of research on prediction under the assumption that the distributienaj@g examples is
stationary or stationary and ergodic. The basic difference from otmitentask, apart from differ-

ent probabilistic assumption, is in that we are only concerned with objedtdapendence, while

in predicting ergodic sequences it is label-label (time series) depentteatds of primary interest.

On this task see (Ryabko, 1988; Algoet, 1999; Morvai, Yakowitz, Algb@9,7; Nobel, 1999) and

references therein. Observe also that none of these probabilistieptsriarkov assumption, sta-
tionarity, ergodicity) is comparable with our conditional i.i.d. assumption, in theeséhat none of

them is either weaker nor stronger than the conditional i.i.d. assumption.

Another approach is taken in (Helmbold, Long, 1991; Bartlett, Ben-Davidka¢ni, 1996)
where the PAC model is generalised to allow concepts changing over time.tliéemethodology
is proposed to track time series dependencies, that is, the authors findlssses of dependencies
which can be exploited for learning. Again the difference with our apgras that we try to find
a (broad) class of problems where the time series dependence can beditpgyoany reasonable
pattern recognition method rather than constructing methods to use somecgpepéndencies of
this kind.

2. Definitions and General Results

Consider a sequence ekamples(xi,y1), (X2,¥2),...; each example := (x;,y;) consists of an
object x € X and alabel y :=n(x) € Y, whereX is a measurable space calledabject space

Y :={0,1} is called alabel spaceandn : X — Y is some deterministic function. For simplicity
we made the assumption that the sp#cis binary, but all results easily extend to the case of any
finite spaceY. The notatiorZ := X x Y is used for the measurable space of examples. Objects are
drawn according to some probability distributiBron X® (and labels are defined ). Thus we
consider only the case of deterministically defined labels (that is, the meiserfodel); in section 5

we discuss possible generalisations.

The notatiorP is used for distributions oX* while the symboP is reserved for distributions
onX. In the latter cas@” denotes the i.i.d. distribution 0X generated bf?. Correspondingly we
will use symbolsE, E andE” for expectations over spac&§’ andX. Lettersx,y,z (with indices)
will be used for elements of spac¥sY,Z correspondingly, while letterX,Y,Z are reserved for
random variables on these spaces.

The traditional assumption about the distributgenerating objects is that examples are in-
dependently and identically distributed (i.i.d.) according to some distrib&ionX (i.e. P = P%).

Here we replace this assumption with the following two conditions.

First, for anyn € N and for any measurable s&tC X

P(xn €A|Ynaxlela"wxnfleﬂfl) = P(Xn 6’A‘|Yl’l) (1)

(i.e. some versions of conditional probabilities coincide). This conditiondoaky much like

Markov condition which requires that each object depends on the pbsttwough its immediate

predecessor. The condition (1) says that each object depends pesttenly through its label.
Secondfor anyy € Y, for anyny,n, € N and for any measurable sitC X

P(xﬂlEA’Ym:y):P(xﬂzeA’Ynz:y) (2
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(i.e. the process is uniform in time; (1) allows dependena®.in

Note that the first condition means that objects are conditionally indepegokent labels (on
conditional independence see Dawid, 1979). Under the condition®@1}2) we say thabtbjects
are conditionally independent and identically distribuiednditionally i.i.d.).

For eachy € Y denote the distributioR®(X, | Y, =y) by R, (it does not depend on by (2) ).
Clearly, the distribution$, andP; define some distributionB on X up to a parametep € [0, 1].
That is, Py(A) = pPL(A) + (1 — p)Po(A) for any measurable s& C X and for eachp € [0,1].
Thus with each distributio® satisfying the assumptions (1) and (2) we will associate a family of
distributionsP,, p € [0, 1].

The assumptions of the conditional model can be also interpreted as fokmsame that we
have some individual sequentg )nen Of labels and two probability distributiorid andP; on X,
such that there exists setg andX; in X such that;(X;) = Po(Xo) = 1 andPy(X1) = Pi(Xp) =0
(i.e. Xg andX; define some function). Each example, € X is drawn according to the distribution
P, examples are drawn independently of each other.

A predictoris a measurable functiof, := " (X1,Y1, . .., Xn, Yn, Xnt1) taking values iny (more
formally, a family of functions indexed by).

The probability of error of a predictdr on each step is defined as

erm(M,P,z,....z0) ==P{(xy) €Z:y#Tn(z1,...,Z0,X) }

(z, 1<i<nare fixed and the probability is taken ow&gr.1). We will sometimes omit some of the
arguments of eprwhen it can cause no confusion; in particular, we will often use a slutation
P(erty(T, Z1,...,Zn) > €) and an even shorter ofgerr,(I") > €) in place of

P{z,....zn:em(M,P,z,...,2,) > €}.
For a pair of distribution®, andP; and anyd € (0,1/2) define

Vs(Po,P1,n€) := sup Pg(erm(l") >¢), 3)
pe(d,1-9]

that is, we consider the supremum of the probability of error over all tdss probabilities.
For a predictofi” and a distributior? on X define

APnz,...,2y) := max lern(F,P*.zy,...,2Z,)—
j<sm; T{l,...,n}—{1,...n}

ErMh—| (ra Poova[(l)v s aZT[(ﬂfj))|'
Define thetolerance to dataf I as
A(Pn,g) :=P"(A(PN,Z1,...,Z,) > €) (4)

for anyn € N, anye > 0 ands«, := \/nlogn (see the end of Section 5 for the discussion of the choice
of the constantss,). Furthermore, for a pair of distributiori®s andP; and anyd € (0,1/2) define

D5(Po,P,ng) := sup A(Pp,n,g). (5)
pe(0,1-9]

Tolerance to data means, in effect, that in any typical large portion of data th no small
portion that changes strongly the probability of error. This propertykhalso hold with respect
to permutations.
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We will also use another version of tolerance to data, in which instead ofiegisome exam-
ples we replace them with an arbitrary sam;}Le. .,Z, consistent with:

APz,....7):

sup
j<xn;rt{1,...,n}ﬂ{1,...,n};z(1fj A

lern(F P, z1,...,z0) —ern (I, P°,L4,...,Cn)l,

where{y) := zy) if i <n— j and{y; := 7 otherwise; the maximum is taken over lin— j <
i < nconsistent withn. Define

A(Png) :=P"(A(PN,Zy,...,Zn) >€)

and _ _
Ds(Po,P,n,g):= sup A(Pp,ne).
pe(d,1-9]
The same notational convention will be appliedtandA as to ery,.

Various notions similar to tolerance to data have been studied in literaturea@¢itst they
appeared in connection with deleted or condensed estimates (see e.rp, Ridagner, 1988), and
were later called stability (see Bousquet, Elisseeff, 2002; Kearns, 1889, for present studies of
different kinds of stability, and for extensive overviews). Naturalliclsnotions arise when there
is a need to study the behaviour of a predictor when some of the training kesaarp removed.
These notions are much similar to what we call tolerance to data, only we arestef in the
maximal deviation of probability of error while usually it is the average or minineiations that
are estimated.

A predictor developed to work in the off-line setting should be, looselyldpgatolerant to
small changes in a training sample. The next theorem shows under whidhigos this property
of a predictor can be utilized.

Theorem 1 Suppose that a distributioR generating examples is such that the objects are condi-
tionally i.i.d., i.e. P satisfies (1) and (2). Fix sondec (0,1/2], let p(n) := 1#{i <n:Y; = 1} and
Ch:=P(d < p(n) <1-9) for each ne N. Let alsoa, := 1—11ﬁ' For any predictorl” and any

€ > 0we have

~

P(erm(T") > €) < Cy tan(vs(Po, Pu,n+ 4, 8¢/2)
+A6(P07Pl;n+%n758/2))+(1_Cn)v (6)

and
P(erm(I) > €) < C; tan(v5(Po, Pu, N, 88/2) + As(Po, P, n, 8€/2)) + (1—Cy). (7)

The theorem says that if we know with some confideBgt¢hat the rate of occurrence of each
label is not less than some (smdl))Jand have some bounds on the error rate and tolerance to data of
a predictor in the i.i.d. model, then we can obtain bounds on its error rate intidéional model.

The proofs for this section can be found in Appendix A. The intuition bekivedproof of the
theorem is as follows. First we fix some individual sample tatbels (without objects) and consider
the behaviour of the predictor conditional on this sample. Fixing the labelssalisvto pass from
the conditional i.i.d. case to i.i.d. and to use error estimates for this case. U$iag,tolerance
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to data, we compare the behaviour of the predictor on any two differentyjmgal for a certain
i.i.d. distribution, samples of labels. This allows us to estimate the probability of err@ny
(typical) sample and so to pass back to the conditional i.i.d. case.

Thus we have a tool for estimating the performance of a predictor on edighdiepn. In Sec-
tion 4 we will show how this result can be applied to predictors minimizing empirslal However,
if we are only interested in asymptotic results the formulations can be somewipditied.

Consider the following asymptotic condition on the frequencies of labelsn®gfin) := %#{i <
n:Y; =1}. We say that theates of occurrence of labels are bounded from belfatvere exist such
5,0<d< 1/2that

lim P(p(n) € [6,1—-9]) = 1. (8)

n—oo

As the condition (8) mears, — 1 we can derive from Theorem 1 the following corollary.

Corollary 2 Suppose that a distributiof satisfies (1), (2), and (8) for sonde= (0,1/2]. Letl" be
such a predictor that

r!inl’vs(Po, Pr,n.e)=0 9)
and either

lim A5(Po,Py,n.€) =0 (10)
or B

lim As(Po,Py,n.€) =0 (11)

for anye > 0. Then
E(ern(l,P,Za,...,Zy)) — 0.

In Section 3 we show how this statement can be applied to prove weak consistesome
classical nonparametric predictors in the conditional model.

3. Application to Classical Nonparametric Predictors

In this section we will consider two types of classical honparametric predicfmrtitioning and
nearest neighbour classifiers.
The nearest neighbour predictor assigns to a new okjegtthe label of its nearest neighbour
amongx, . .., Xn:
Mn(XL,Y1,- -+ X0, Y Xnt1) == Yj,

wherej :=argmin_; ,|x—xil.
For i.i.d. distributions this predictor is also consistent, i.e.

E®(ern(I,P?)) — 0,

for any distributionP on X (see Devroye, 1981).
We generalise this result as follows.

Theorem 3 Let " be the nearest neighbour classifier. [Rbe some distribution oX* satisfy-

ing (1), (2) and (8). Then
E(ermn(l,P)) — 0.
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The proofs for this section can be found in Appendix B.
A partitioning predictor on each steppartitions the object spacé = RY, d € N into disjoint
cellsAl, A, ... and classifies in each cell according to the majority vote:

_ 0 if Zin:lIYizllxiEA(x) < Zin:1|yi=o|xieA(x)
r(Z]_, AN X) T { 1 otheI‘WiSe

whereA(x) denotes the cell containing Define

diam(A) == sup x|
X,y

and .
NX) =Y lxeam -
i; X €A(X)

Itis a well known result (see, e.g. (Devroye, @ff, Lugosi, 1996)) that a partitioning predictor
is weakly consistent, provided certain regulatory conditions on the sizellef &ore precisely, let
I be a partitioning predictor such that di&gfiX)) — 0 in probability andN(X) — o in probability.
Then for any distributior® on X

E®(ern(r,P*)) — 0.

We generalise this result to the case of conditionally i.i.d. examples as follows.

Theorem 4 Letl be a partitioning predictor such thaiam(A(X)) — 0in probability and NX) —
o in probability, for any distribution generating i.i.d. examples. Then

E(ery(I',P)) — 0
for any distributionP on X satisfying (1), (2) and (8).

Observe that we only generalise results concerning weak consistif@red nearest neighbour
and non-data-dependent partitioning rules. More general results(egis e.g. Devroye et. al.,
1994),(Lugosi, Nobel, 1996), in particular for data-dependent rutésnvever, we do not aim to
generalise state-of-the-art results in nonparametric classificationatetr rto illustrate that weak
consistency results can be extended to the conditional model.

4. Application to Empirical Risk Minimisation

In this section we show how to estimate the performance of a predictor minimisingieahpsk
(over certain class of functions) using Theorem 1. To do this we estimateldrance to data of
such predictors, using some results from Vapnik-Chervonenkis théanyoverviews of Vapnik-
Chervonenkis theory see (Vapnik, Chervonenkis, 1974; Vapni@81BPevroye, G¢rfi, Lugosi,
1996).

LetX =Y for somed € N and letc be a class of measurable functions of the fgrnX — Y =
{0,1}, calleddecision functionsFor a probability distributio®® on X define ertd,P) :=P($ (X)) #
Y;). If the examples are generated i.i.d. according to some distribBfitire aim is to find a function
¢ from ¢ for which er(¢, P) is minimal:

bp = argminy . ern(¢,P).
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In the theory of empirical risk minimisation this function is approximated by thetfonc
&, :=argminert, ()
dbec

where e, (¢) == L1 ly(x)»y, is the empirical error functional, based on a samplgY;), i =
1,...,n. Thus,n(z,...,Z,%n+1) = 05 (Xat1) IS @ predictor minimising empirical risk over the
class of functiong".

One of the basic results of Vapnik-Chervonenkis theory is the estimatioredfitference of
probabilities of error between the best possible function in the clagsand the function which
minimises empirical error:

P(ert(r,P”) —err(¢p,P) > €) <8s(c, n)e /128
where the symbad$ (¢, n) is used for ther-th shatter coefficient of the clags

s(c,n):= max #{CNnA:Cec}.
A={Xq,... %n }CX
Thus, ,
P(erm() > €) < lengp.p)>e/2+ 85 (C,n)e /512,

A particularly interesting case is when the optimal rule belongs tice. whem € ¢. This situation
was investigated in e.g. (Valiant, 1984; Blumer et. al., 1989). Obviously, irctsepp € ¢ and
err(¢p, P) = 0 for anyP. Moreover, a better bound exists (see Vapnik, 1998; Blumer et. al.,; 1989
Devroye, Gyrfi, Lugosi, 1996)

P(erm(T,P) > €) < 25(c,n)e /2.

Theorem 5 Let ¢ be a class of decision functions and lebe a predictor which for each a N
minimisesert, over ¢ on the observed exampl¢s,...,z,). Fix somed € (0,1/2], let p(n) :=
i <n:Y =0} and G = P(d < p(n) < 1-3) for each ne N. Assume n> 4/€2 and let

1
On = 1=/ 75" We have

5

n

As(Po,Py,n,€) < 165 (C,n)e /512 (12)
(which does not depend on the distributiops R andd) and

_ _nx2¢2
P(errn(r, P) > E) < I29”’(¢P1/27P1/2)>5/2+ 1&]nCn 15(C7n)e nd“e /2048+ (1_Cn) (13)

If in additionn € ¢ then
A(n,g) < 4s(c,2n)2 /8 (14)

and
P(erm(T,P) > €) < 4a,Cy s (c,n)e /6 1 (1-Cy). (15)

Thus, if we have bounds on the VC dimension of some class of classifiesamobtain bounds
on the performance of predictors minimising empirical error for the conditimoael.

Next we show how strong consistency results can be achieved in the#icnabbimodel. For gen-
eral strong universal consistency results (with examples) see (L ufgrrer, 1995; Vapnik, 1998;
Vapnik, Chervonenkis, 1974).
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Denote the VC dimension af by V(¢ ):
V(c):=max{neN:s(c,n)=2"}.
Using Theorem 5 and Borel-Cantelli lemma, we obtain the following corollary.

Corollary 6 Letck, ke N be a sequence of classes of decision functions with finite VC dimension
Kn

such thaimy_qinfy. -« err(¢,P) = 0 for any distribution P orX. If k, — o and w —0as

n — oo then

err(l",P) — 0 P-a.s.

wherel is a predictor which in each trial n minimises empirical risk over andP is any distri-
bution satisfying (1), (2) an§;_1(1—Cy) < co.

In particular, if we use bound on the VC dimension on classes of heunabries provided in
(Baum, Haussler, 1989) then we obtain the following corollary.

Corollary 7 Letl be a classifier that minimises the empirical error over the cla&s, wherec ¥
is the class of neural net classifiers with k nodes in the hidden layer arttighold sigmoid, and
k — o0 so that Hogn/n — 0 as n— . LetP be any distribution orX* satisfying (1) and (2) such
thatsy 1(1—Cy) <. Then

lim err (') =0 P-a.s.

n—oo

5. Discussion

We have introduced “conditionally i.i.d.” model for pattern recognition whieheyalises the com-
monly used i.i.d. model. Naturally, a question arises whether our conditionseogigtributions
and on predictors are necessary, or they can be yet more genemltsedsame direction. In this
section we discuss the conditions of the new model from this point of view.

The first question is, can the same results be obtained without assumptimarance to data?
The following negative example shows that sdnoends on tolerance to data are necessary

Remark 8 There exists a distributio® on X* satisfying (1) and (2) such th&®(|p, — 1/2| >

3/n)=0forany n (i.e. G=1foranyd < (0,1/2) and n> We’—a)) and a predictor” such that

Pp(erm > 0) < 21-"for any pe [5,1— 8] andP(erf, = 1) =1forn> 1.

Proof LetX =Y = {0,1}. We define the distributionB, asR,(X =y) =1, for eachy € Y (i.e.
n(x) = x for eachx). The distributionP|y~ is defined as a Markov distribution with transition
0
10
We define the predictdr as follows

probability matrix 1 > i.e. it always generates sequences of label31010101. ..

. { 1-x, if #{i<n:yi=0}—n/2| <1,
rn = .
Xn otherwise.

So, in the case when the distributi®ris used to generate the examplEss always seeing either
n— 1 zeros andh ones, omn zeros andh ones which, consequently, will lead it to always predict the
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wrong label. It remains to note that this is very improbable in the case of an istdbdtion. MW

Another point isthe requirement on the frequencies of labelsIn particular, the assumption
(8) might appear redundant: if the rate of occurrence of some labed terzro, can we just ignore
this label without affecting the asymptotic? It appears that this is not the aagbe following
example illustrates.

Remark 9 There exist a distributio® on X* which satisfies (1) and (2) but for which the nearest
neighbour predictor is not consistent, i.e. the probability of error dogdemd to zero.

Proof Let X =[0,1], letn(x) = 0 if x is rational and)(x) = 1 otherwise. The distributioR; is
uniform on the set of irrational numbers, whifg is any distribution such tha(x) # 0 for any
rationalx. (This construction is due to T. Cover.) The nearest neighbour predsctonsistent for
any i.i.d. distribution which agrees with the definition, i.e. for gy P(Y = 1) € [0,1].

Next we construct the distributid?|y~. Fix someg, 0 < € < 1. Assume that according ®the
first label is always 1, (i.eP(y1. = 1) = 1; the object is an irrational number). Nektlabels are
always 0 (rationals), then follows 1, thép zeros, and so on. It is easy to check that there exists
such sequende, ko, ... that with probability at least we have
C . 1-¢
. )Qrgailri(aﬁonalPl{x. X; is the nearest neighbour g < )’
wherem(n) is the total number of irrational objects up to the tmal On each stem such that
n=t+ ztj:lk{ for somet € N (i.e. on each irrational object) we have

E(errn(T,P)) > €|1- P(X; is the nearest neighbour Xf) > g2
j<n: X; is Irrational

As irrational objects are generated infinitely often (that is, with intergdJshe probability of error
does not tend to zero. [ |

Another question is whether the results can be generalised to the casa-dkterministi-
cally defined labels which is often considered in literature. It should be noted that we canside
the task of learning object-label dependence, ignoring the label-lapehdence (and prohibiting
any dependence apart from these). On one hand, it allows us to epasig sort of label-label
dependence. On the other hand, the best bound on the probabilityoofwerrcan obtain is the
maximum of the class-conditional probabilities of error (as nothing is kndvanitethe probability
of the next label), and not the so-called Bayes error, which is the lsbgt\vable bound in the
i.i.d. case. Thus, if we want to consider stochastically defined labels, auddstestrict our attention
to class-conditional probabilities of error. On this way also some obstaatesecmet. In particular,
the functionn, which in this case is defined agx) := P(Y, = 1|X, = x) should not depend om,
which will require more restrictive definition of constai@s and the condition (8). We leave this
question for further investigation.

As it was mentioned in Section 2, for the sake of simplicity of notations, all reatdtéormu-
lated for the case of binary labets= {0, 1}; however, they can be easily extendedhe case of
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any finite label space Indeed, to pass to the general case only the following changes stwuld b
made. With each distribution satisfying the conditions of the model (1) and 2 ssociate (not
two but) |Y| distributionsP,, a € Y, defined byP(X,|Y, = a) (which does not depend a1). Anal-
ogously to the binary case, these distributions are used to define (in thialvedy) the family of
distributionsPy (cf. P, of Section 2), wherg stands for any probability distribution over the ¥et

The definitions (3) and (4) take the form

V5(Po,P1,n,€) 1= supPy’ (erm () > ) (16)
q

and
As(Po,P1,n,€) :=supA(Py,n,€), a7
q

where the supremums are with respect to all distributipssich that migey g(a) > . All the-
orems retain their form withp(n,a) (instead ofp(n) )defined ast#{i < n:y, = a} andC, as
P(mingey p(n,a) > &). It is easy to alter the proofs according to these changes. Howevir, as
can be seen, the notation becomes significantly more cumbersome.

Finally, the choice of the constants, requires clarification. We have fixed these constants for
the sake of simplicity of notations, however, they can be made variable, @safos, obeys the
following condition.

lim {n]pn — p| < sn} = 0

almost surely for any € (0,1) and any probability distributiof® on X such thatP(y = 1) = p,
wherepn := 2#{i <n:Y; = 0}.
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Appendix A: Proofs for Section 2

Before proceeding with the proof of Theorem 1 we give some definitindssapplementary facts.
Define the conditional probabilities of error bfas follows

err?](ru P7ZO> e 7Zﬂ) = P(Yn+1 ;é r(Zj_, .. '7Z|”I)Xn+1) ’Yn—o-l - 0)7

erti(l,P,20,...,z0) := P(Yai1 A T (21, ..., Z0, Xns1) [Yne1 = 1),

(with the same notational convention as used with the definition gfféxy. In words, for each
y<cY = {0,1} we define et} as the probability of al € X, such thaf” makes an error on'th trial,
given thatY,,1 =y and fixedz, ..., z,.

For anyy := (y1,Y2,...) € Y®, definey, := (y1,...,¥n) @and pn(y) := %#{i <n:y; =0}, for
n>1.
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Clearly (from the assumption (1)) the random variabtgs .., X, are mutually conditionally
independent givel, ..., Y,, and by (2) they are distributed according®g 1 <i <n. Hence, the
following statement is valid.

Lemma 10 Fix some > 1 and some € Y such thatP((Y1,....Ynt1) = Ynt+1) # 0. Then
P(ertri(l) > s\ Y1,....Ya) = ¥n) = Pg(erryn““(r) > £| (Y1,...,Ya) = Yn)
for any pe (0,1).
Where, accordingly to the notational conventions made above,
P(erd (M) > e[ (Y1,...,Yn) =yn) = P{X1,.... % : €Ma(,P,X1, Y1, ..., X0, Yn) > €};

that is, having fixed the labels, we consider probability over objects only.

Proof of Theorem 1Fix somen > 1, somey € Y and suchy! € Y* thatd < py(y}) <1—-dand
P((Y1,...,Yn) =V#) #0. Letp:= pn(y*). We will find bounds oP(err(I) > €| (Y1,...,Yn) =VYi),
first in terms ofA and then in terms AA.

Lemma 10 allows us to pass to the i.i.d. case:

P(e”yn(r,XLY%w~7Xn7yr117xn+1) > 8) = Pg(e”yn(ryxlaﬁa-~7xn7Y%aXn+1) > 8)

for anyy such thatP(Y; = yi, o Ya =V Yai1 =y) # 0 (recall that we use upper-case letters for
random variables and lower-case for fixed variables, so that thelpitiies in the above formula
are labels-conditional).

Clearly, ford < p< 1—&we have ei(I", Py) < maxey (ermi(I',Py)), and if erp(I", Py) < € then
ery(7,Py) < /8 foreachy € Y.

Let m be such number thah— 54y, = n. For anyy? € Y* such thatmpn(y?) — mp < sam/2
there exist such mapping: {1,...,n} — {1,...,m} thatyfr(i) =yt for anyi < n. Define random
variablesX; ... X/, as foIIows:X;[(i) := X fori <n, while the rest«, of X/ are some random variables
independent fronXy, ..., X, and from each other, and distributed accordingg¢a “ghost sample”).
We have

PR(erth (X, yi,- -, Xn,¥5) > €)
_ P‘T(err%(xl,y%, e X YE) — MK YR, L X YR e (XL YR, X YR > g)
< P ertX, V2. X ¥R) — erth O Y X VR > 2/2)
+PE(er O V2 X ¥2) > £/2).

Observe thay? was chosen arbitrarily (among sequences for whigf,(y?) — mp < »m/2) and
(X1,¥4,..., %Y%) can be obtained froniX],y2, ..., X/y2) by removing at most«, elements and
applying some permutation. Thus the first term is bounded by

P

P }|e”?'n(r7zl,m,zm)—

errﬁq_j(l',zn(l),...,Zn(m,j))| >¢g/2||mp(m) — mp < 54n/2)
A(Pp,m, 8¢/2) 1 A
~ PR(Imp(m) —mp <) T 1-1/y/m

(Pp,m,8e/2),
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and the second term is bounded%Pg‘(errm(r) > 0g/2). Hence

Po(erd (XL, Y1, Xn¥a) > €) < an(A(Pp,m3e/2) + Pl(erm(T) > &/2)). (18)

Next we establish a similar bound in terms/f For anyy?2 € Y" such thatnp,(y2) —np| <
/2 there exist such permutatiorns, 1, of the sef{1,...,n} thaty%tl(i) = yﬁz(i) for anyi < n— sz,
Denoten — &4, by n’ and define random variablég ... X/, as follows: Xfy(i) '= Xy (i) fori <,
while for " <i < n X are some “ghost” random variables independent f¥am. ., X, and from
each other, and distributed according?o We have

PR(eri(Xe Y1, .. Xn, Y5) > €)
<Py (e}, 12, X Y2) — et v, - X o) | > £/2)
+Pg<err¥(xi,y§,..-,xé,y2n) > S/Z)v

Again,y? was chosen arbitrarily (among sequences for wiigh(y?) —np| < ss/2) and

(Xlayiv ceey XnY%)

differs from
(Xi’y27 tet 7><|'/1y2n)
in at mostr, elements, up to some permutation. Thus the first term is bounded by

Po( sup ler¥(Zy,...,Z,)
j<%n;r|:{l,...,n}ﬂ{l,‘..,n}z]fj A

—erd({y,...,8n)| > €/2|Inp(n) — np| < 5/2) < onA(Pp, N, 8/2),

and the second term is boundeddnPy(erm(I") > d¢/2). Hence

Po(er)(Xe,yi, ... % Yh) > €) < an(B(Pp,nd€/2) + Pi(erm(T) > 38/2)). (19)

Finally, asy! was chosen arbitrarily among sequengesY* such thand < p,(y!) < n(1-98)
from (18) and (19), we obtain (6) and (7). O

Appendix B: Proofs for Section 3

The first part of the proof is common for theorems 3 and 4. Let us fix sestbdition P satisfying
conditions of the theorems. It is enough to show that

sup E®(erm(T,Pp,Z1,...,Z4)) — 0
pe(d,1-9]

and

sup E*(A(Py,n,Zy,...,Zy)) — 0
p<(d,1-9]

for nearest neighbour and partitioning predictor, and apply Corollary 2
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Observe that both predictors are symmetric, i.e. do not depend on theddrd®, ..., Z,.
Thus, for anyzy, ..., z,

A(Pp,n,z1,...,2y) = sup
j<om; TT{L,...n}—={L,..,n},7Z i,
lermn (I, Py, 21,...,Z0) — €M (, Py, Zra), -, Zn— ) Zne o -+ > Z0) |

where the maximum is taken over alconsistent withn, n— j <i <n. Define also the class-
conditional versions oA:

N(Po,n,z1,...,20) = sup
JS%nr Tc{lﬁ'“ﬁn}*){lv"sn}vz;]fj~,'“7Z|/1
| erf) (T, Pp,z1, .., Zn) — €M(F, P, Zrg)s - Znne ) 2o - 20) -

_ Note that (omittingz, .. ., z, from the notation) e(I",P,) < erfd(I",Py) +erri(I",P,) and
A(Pp,n) < A%(Pp,n) +AL(Py,n). Thus, itis enough to show that

sup E*(er}(r,Pp)) — 0 (20)
pe(d,1-9]
and B
sup E®(A'(Pp,n)) — 0. (21)
p<(5,1-9]

Observe that for each of the predictors in question the probability of given that the true
label is 1 will not decrease if an arbitrary (possibly large) portion of ingirexamples labelled
with ones is replaced with an arbitrary (but consistent \gitfportion of the same size of examples
labelled with zeros. Thus, for anyand anyp € [d,1— 9] we can decrease the number of ones in
our sample (by replacing the corresponding examples with examples froothiieclass) down to
(say)d/2, not decreasing the probability of error on examples labelled with 1. So,

E”(erih(TPp)) < E(€5(T", Pojal Pr = /2)) + Po(pn < 8/2) ¢2

where as usug, := %#{i <n:y; =1}. Obviously, the last term (quickly) tends to zero. Moreover,
it is easy to see that

E°°(err1n(l', Ps/2)|pn = N(3/2)) _
< E”(er(T" Ps2)|IN(8/2) — pu| < 5n/2) + E”(BL(Ps/2,1))

1 _
= mEm(e”ln(r, Ps/2)) +E* (A% (Ps/2.1)).  (23)

The first term tends to zero, as it is known from the results for i.i.d. psaseshus, to establish (20)
we have to show that

E(AY(Py,n,Z4,...,25)) — 0 (24)
foranype (0,1).
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We will also show that (24) is sufficient to prove (21). Indeed,

AY(Pp,n,z1,...,2) <ert(,Py,z1,...,2,)+

sup errln(I',Pp,zn(l),...,zn(n,j),zg,j,...,zg)
| <om; Tc{l,i..,n}—>{1,...,n},z(1_j,4..,23

Denote the last summand By Again, we observe th& will not decrease if an arbitrary (possibly
large) portion of training examples labelled with ones is replaced with an agb(trat consistent
with n) portion of the same size of examples labelled with zeros. Introﬁ&ldq),n, 2,...,Z,) as
AY(Pp,N,21,...,2y) With 34, in the definition replaced b%%n. Using the same argument as in (22)
and (23) we have

E*(D) (E°(A'(Psj2,m) + E®(em(T,Ps2)) + Po(pn < 8/2).

1
< -
- 1-1/yn
Thus, (21) holds true if (24) and

E®(AY(Pp,n,Z4,...,Zn)) — 0. (25)

Finally, we will prove (24); it will be seen that the proof of (25) is analogdi.e. replacing«,
by %%n does not affect the proof). Note that

E°(D(Po, 0,21, Zn)) < Pp( sup
JSJ'fn, n:{ls‘“vn}*){lv“vn}lafj=‘~'7Z;1
| (T, Po,Z4, -, Zn) # €1a(T,Po, Zet1)s s Znn ) Zo o=+ Z) )

where the maximum is taken over gliconsistent with, n— j <i < n. The last expression should
be shown to tend to zero. This we will prove for each of the predictoraraégly.

Nearest Neighbour predictorFix some distributiorP,, 0 < p < 1 and some > 0. Fix also
somen € N and define (leavingy, . . ., X, implicit)

Bn(X) := P{,‘*l{t € X : t andx have the same nearest neighbour amang ., x» }

andB,, := E(By(X)) Note thate”(B,,) = 1/n, where the expectation is taken ovér . .., X,. Define
B = {(X1,...,%) € X": By < 1/ne} anda (xq,...,%n) = {X: Bn(X) < 1/ne2}. Applying Markov’s
inequality twice, we obtain

E®(A(Pp,n)) <E®(A(Pp,n)|(X,..., %) € B) +£

< E°°( sup
j<om; {1, np—{1,...nhZ (26)
Po{x:erm(F,Py,Z1,...,Zn) # erma(T, P, Zn1ys - > Zrn-j)o Zojo - - 20)

X €A (Xg,...,. Xn) (X, ..., Xn) € Q;) + 2€.
Removing one poir; from a sampleq, ..., X, we can only change the value Iofin the area

{x € X x is the nearest neighbour of x= By(x),
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while adding one poirty to the sample we can change the valu€ @fi the area
Dn(Xo) := {X € X : Xg is the nearest neighbour of x

It can be shown that the number of examples (amang ., X,) for which a pointxg is the nearest
neighbour is not greater than a constamthich depends only the spae(see Devroye, Girfi,
Lugosi, 1996, Corollary 11.1). Thus,

Dn(%0) C Ui=jj.....j,Bn(X)

for somejg, ..., jy, and so

E*(A(Pp,n)) < 2e+2(y+ 1)%nE°°(X€ﬂEQ?x . Bn(X)[(X1,...,%Xn) € B)

1
S Z%n% + 28,
ne
which, increasing, can be made less thage.3 O
Partitioning predictor For any measurable setsc X" anda C X define

D(B,4):= E°°< sup
<3, TE{ZI_,...,I‘l}—>{1,...,!‘1},2;]7]-,...,Z{1

Po{x:erm(F,Py,Z1,...,Zn) # erma(T,Pp, Zr1ys -+ Zinj)> Zojo - -+ 20)
xea}|(Xe,.... %) € 93) + 2¢.

andD := D(X", X).
Fix some distributiorP,, 0 < p < 1 and some& > 0. Introduce

. 1
r](x,Xl,. .. ,Xn) = Wi;hﬁ:ﬂxjep\(x)

(X1, ... %X, will usually be omitted). From the consistency results for i.i.d. model (see [2egroye,
Gyorfi, Lugosi, 1996, Theorem 6.1) we know tHat™|fi,(X) —n(X)| — O (the upper index in
E"1 indicating the number of examples it is taken over).

Thus, E|fin(X) —n(X)| < &* from somen on. Fix any suchn and lets = {(xq,...,%y) :
Elfin(X) —n(X)| < €2}. By Markov inequality we obtaifP,(8) > 1— 2. For any(xy,..., X)) € B
let 2 (xa,...,%n) be the union of all cell&\! for whichE(|An(X) —n(X)||X € A") < ¢. Clearly, with
X1, ..., %n fixed, Py(X € 4 (Xq,...,%)) > 1—¢. MoreoverD < D(3,4) +e+€2

Fix 24 := (Xg,...,%) for some(xy,..., X)) € 8. Sincen(x) is always either 0 or 1, to change
a decision in any celA C 2 we need to add or remove at leg4t— €)N(A) examples, where

N(A) 1= N(x) for anyx € A. LetN(n) := E(N(X)) andA(n) := E(Py(A(X)). Clearly, 8 = 1 for

anyn, asE% =A(n).
As before, using Markov inequality and shrinkiagif necessary we can have
(sznA(X) £2nA(n)
P\ UN(n) N(X)
andD < D(B,.4)+3e+¢2. Thus, for all cellsA C 2 we haveN(A) > enA(n), so that the probability
of error can be changed in at mo% cells; but the probability of each cell is not greater

than N0 HenceE® (A(Pp,n)) < 220 +3e+ €2, O

€n (1—€)e?

ge\Xeﬂ1>:1, Pp( §8|X€ﬂl>:l,
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Appendix C: Proofs for Section 4

Proof of Theorem 5Fix some probability distributio®, and somen € N. Let ¢ be any decision
rule ¢ € ¢ picked byl_,,, on which (along with the corresponding permutation) the maximum

max ern(l,z1,...,z0) —ern_i (M, Zyny, - -+ s Zrgne |
i< r:{1,..4,n}_»{17...,n}| n(M21,.20) i (T Znia) min-))|
is reached. We need to estim®¥ |err(¢*) —err(¢p™)| > €).
Clearly, €T (¢ ) — € (¢*)| < 5n, @Sy is the maximal number of errors which can be made
on the difference of the two samples.
Moreover,

P"(Jer(¢n) —er(¢™)

> €)

< P(Jer(9;) — —em(@°)| > £/2) +P(| "em(9") —er9*)| > £/2— /n)
Observe that 1
P"(sup|emm(¢) — er(9)| > €) < 85(c,n)e /32 (27)
pec

see (Devroye, Girfi, Lugosi, 1996, Theorem 12.6). Thus,
A(Pp,n,e) < 165(c, n)e*”(s/Z*%n/n)2/32 < 165(c, n)efnsz/512
forn> 4/¢°. So,

P(erin(T,P) > €) < lsup s, 5 erbry.py)>e/2+ 160G, 5 (¢, n)e "OE/2048 (1 ).
It remains to notice that
ert(p,. Pp) = inf (perr'(,Py) + (1 p)er®($.Py)
< dig‘;(e”l((ba Py/2) +er(¢,Py)) = 2erdp, ,, Pyy2)
foranyp e [0,1].

So far we have proven (12) and (13); (14) and (15) can be pranalogously, only for the case
n € ¢ we have

P(sup| Zerin(9) — er(d)| > €) < s (c.n)e ™
pec N

instead of (27), and &fp,, Py) = 0. O
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