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Abstract
In this work we consider the task of relaxing the i.i.d. assumption in pattern recognition (or classi-
fication), aiming to make existing learning algorithms applicable to a wider range of tasks. Pattern
recognition is guessing a discrete label of some object based on a set of given examples (pairs of
objects and labels). We consider the case of deterministically defined labels. Traditionally, this task
is studied under the assumption that examples are independent and identically distributed. How-
ever, it turns out that many results of pattern recognition theory carry over a weaker assumption.
Namely, under the assumption of conditional independence and identical distribution of objects,
while the only assumption on the distribution of labels is that the rate of occurrence of each label
should be above some positive threshold.

We find a broad class of learning algorithms for which estimations of the probability of the
classification error achieved under the classical i.i.d. assumption can be generalized to the similar
estimates for case of conditionally i.i.d. examples.

1. Introduction

Pattern recognition (or classification)is, informally, the following task. There is a finite number
of classes of some complex objects. A predictor is learning to classify the objects, based only on
examples of labelled objects. The formal model of the task used most widely is described, for
example, in (Vapnik, 1998), and can be briefly introduced as follows (wewill later refer to it as
“the i.i.d. model”). The objectsx ∈ X are drawn independently and identically distributed (i.i.d.)
according to some unknown (but fixed) probability distributionP(x). The labelsy∈ Y are given for
each object according to some (also unknown but fixed) function1 η(x). The spaceY of labels is
assumed to be finite (often binary). The task is to construct the best predictor for the labels, based
on the data observed, i.e. actually to “learn”η(x).

This task is usually considered in either of the following two settings. In the off-line setting
a (finite) set of examples is divided into two finite subsets, the training set andthe testing set. A
predictor is constructed based on the first set and then is used to classifythe objects from the second.
In the online setting a predictor starts by classifying the first object with zeroknowledge; then it is

1. Often (e.g. in (Vapnik, 1998)) a more general situation is considered, the labels are drawn according to some proba-
bility distributionP(y|x), i.e. each object can have more than one possible label.
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given the correct label and (having “learned” this information) proceeds with classifying the second
object, the correct second label is given, and so on.

Weakness of the model: an example.Many algorithms were developed for solving pattern
recognition tasks (see Devroye, Györfi, Lugosi, 1996; Vapnik, 1998; Kearns, Vazirani, 1994, for
the most widely used methods). However, the i.i.d. assumption, which is centralin the model, is
too tight for many applications. It turns out that it is also too tight for a wide range of methods
developed under the assumptions of the model: they work nearly as well under weaker conditions.

First consider the following example, which provides intuition for the probabilistic model we
introduce. Suppose we are trying to recognise a printed or hand-written text. Obviously, letters in
the text are dependent (for instance, we strongly expect to meet “u” after “q”). Observe also that a
written text is not Markovian and, moreover, can exhibit arbitrarily long range dependencies. This
seemingly implies that pattern recognition methods can not be applied to this task, which is one of
their classical applications.

However, a sequence of images which forms a written text has several properties, which in fact
will be shown to be sufficient for learning. First, the object-label dependence does not change in
time. That is, an image of a letter which in the beginning of the text means, say, “a”, to the end
of the text will not be interpreted as, say, “e”. Moreover, if we extractfrom the original sequence
all letters labelled with (for instance) “a”, the resulting sequence (of imagesof “a”) will be i.i.d.
Finally, the rate of occurrence of each label keeps above some positivethreshold. In our example,
we expect the rate of occurrence of each letter to be, say, somewhere between 1% and 99% of all
letters, with some feasible probability (depending on the size of the text).

Thus, given labels, objects are independent. This holds exactly for a typewritten text. For a text
on a journal page this condition is sometimes violated because of such image-image dependencies
as ligatures (like “ ff ”). In a hand-written text different pairs of letters are connected differently and
so the condition does not hold, but still seems more adequate than the pure i.i.d.condition.

Conditional i.i.d. model. These intuitive ideas lead us to the following model (to which we re-
fer as “the conditional model”). The labelsy∈ Y are drawn according to some unknown (but fixed)
distribution over the set of all infinite sequences of labels. There can be any type of dependence be-
tween labels; moreover, we can assume that we are dealing with any (fixed)combinatorial sequence
of labels. However, in this sequence the rate of occurrence of each label should keep above some
positive threshold. For each labely the corresponding objectx∈ X is generated according to some
(unknown but fixed) probability distributionP(x|y). All the rest is as in the i.i.d. model.

The main difference from the i.i.d. model is that in the conditional model we made thedistribu-
tion of labels primal; having done that we can relax the requirement of independence of objects to
the conditional independence.

Results.The main result of the paper isnot in constructing an algorithm for the proposed model.
Rather, we show that any reasonable already known algorithm designedto work in the i.i.d. setting
also works under the strictly weaker conditionally i.i.d. assumption. An implication isthat the
i.i.d. assumption for pattern recognition is, to a considerable extent, redundant.

Moreover, we provide a tool for obtaining estimations of probability of error of a predictor in
the conditional model from estimations of the probability of error in the i.i.d. model.The general
theorems about extending results concerning performance of a predictor to the conditional model
are illustrated on two classes of predictors.

First, we extend weak consistency results concerning partitioning and nearest neighbour esti-
mates from the i.i.d. model to the conditional model.
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Second, we use some results of Vapnik-Chervonenkis theory to estimate performance in the
conditional model (on finite amount of data) of predictors minimizing empirical risk, and also obtain
some strong consistency results.

These results are obtained as applications of the following general statement. The only assump-
tion on a predictor under which it works in the conditional model as well as in the i.i.d. model
is what we calltolerance to data: in any large data set there is no small subset which strongly
changes the probability of error. This property should also hold with respect to permutations. This
assumption on a predictor should be valid in the i.i.d. model. Thus, the results achieved in the
i.i.d. model can be extended to the conditional model; this concerns distribution–free results as well
as distribution–specific, results on the performance on finite samples as wellas asymptotic results.

Further examples.As another example of pattern recognition task which does not comply with
the i.i.d. (or Markov) assumption, but is more adequately modelled by the conditional i.i.d. assump-
tion, consider the problem of medical diagnostics. The problem is to diagnose a certain disease
based on the set of symptoms; for simplicity, consider binary labels (ill versus not ill). Since many
diseases have yearly or other dynamics (e.g. epidemics), the sequence of sets of symptoms of pa-
tients entering a clinic can not be considered i.i.d. However, the sequence of sets of symptoms of
ill patients does not reflect such dynamics, and can be considered closeto i.i.d. In other words, we
expect the distribution of symptoms to be determined only by the fact that the patient is ill or that
(s)he is not. Note however, that there are certain types of dependencies between sets of symptoms
which can violate our condition, for example, if a family comes for diagnostics together; yet the
conditional i.i.d. model seems to be more adequate here than just i.i.d. or than Markov condition,
since it allows for more dependencies present in the problem.

The same argument applies for any task which would be i.i.d. if it was not for the fluctuations
of the class probability, such as an example from (Duda, Hart, Stork, 2001) of classifying fish
species by a photographic image: one can imagine that at different times andin different areas the
proportion of species among the fish caught is different.

It should also be mentioned that in such popular practical tasks as speechrecognition the label-
label dependencies, which we show to be tolerated by pattern recognition methods, can be and
actually are exploited. Thus, pattern recognition methods are used in conjunction with sequence
prediction algorithms, and here our results can be considered a further theoretical justification of
the use of the pattern recognition component.

Related work. Various approaches to relaxing the i.i.d. assumption in learning tasks have been
proposed in the literature. Thus, in (Kulkarni, Posner , Sandilya, 2002;Kulkarni, Posner, 1995)
the authors study the nearest neighbour and kernel estimators for the task of regression estimation
with continuous regression function, under the assumption that labels are conditionally independent
given their objects, while objects form any individual sequence. The probabilistic assumption is
weaker than ours but continuity of regression function holds only in trivial cases of the classifica-
tion task we consider. A similar approach is taken in (Morvai, Kulkarni, Nobel, 1999), where a
regression estimation scheme is proposed which is consistent for any individual stable sequence of
object-label pairs (no probabilistic assumptions), assuming that there is a known upper bound on
the variation of regression function.

There are also several approaches in which different types of assumptions on the joint distribu-
tion of objects and labels are made; then the authors construct a predictor or a class of predictors, to
work well under the assumptions made. Thus, in (Gamarnik, 2003) and (Aldous, Vazirani, 1990) a
generalisation of PAC approach to Markov chains with finite or countable state space is presented.
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The estimates of probability of error are constructed for this cases, under the assumption that the
optimal rule generating examples belongs to a pre-specified class of decision rules. There is also
a track of research on prediction under the assumption that the distribution generating examples is
stationary or stationary and ergodic. The basic difference from our learning task, apart from differ-
ent probabilistic assumption, is in that we are only concerned with object-label dependence, while
in predicting ergodic sequences it is label-label (time series) dependencethat is of primary interest.
On this task see (Ryabko, 1988; Algoet, 1999; Morvai, Yakowitz, Algoet,1997; Nobel, 1999) and
references therein. Observe also that none of these probabilistic concepts (Markov assumption, sta-
tionarity, ergodicity) is comparable with our conditional i.i.d. assumption, in the sense that none of
them is either weaker nor stronger than the conditional i.i.d. assumption.

Another approach is taken in (Helmbold, Long, 1991; Bartlett, Ben-David, Kulkarni, 1996)
where the PAC model is generalised to allow concepts changing over time. Here the methodology
is proposed to track time series dependencies, that is, the authors find someclasses of dependencies
which can be exploited for learning. Again the difference with our approach is that we try to find
a (broad) class of problems where the time series dependence can be ignored by any reasonable
pattern recognition method rather than constructing methods to use some specific dependencies of
this kind.

2. Definitions and General Results

Consider a sequence ofexamples(x1,y1),(x2,y2), . . . ; each examplezi := (xi ,yi) consists of an
object xi ∈ X and alabel yi := η(xi) ∈ Y, whereX is a measurable space called anobject space,
Y := {0,1} is called alabel spaceandη : X → Y is some deterministic function. For simplicity
we made the assumption that the spaceY is binary, but all results easily extend to the case of any
finite spaceY. The notationZ := X ×Y is used for the measurable space of examples. Objects are
drawn according to some probability distributionP on X∞ (and labels are defined byη). Thus we
consider only the case of deterministically defined labels (that is, the noise-free model); in section 5
we discuss possible generalisations.

The notationP is used for distributions onX∞ while the symbolP is reserved for distributions
onX. In the latter caseP∞ denotes the i.i.d. distribution onX∞ generated byP. Correspondingly we
will use symbolsE, E andE∞ for expectations over spacesX∞ andX. Lettersx,y,z (with indices)
will be used for elements of spacesX,Y,Z correspondingly, while lettersX,Y,Z are reserved for
random variables on these spaces.

The traditional assumption about the distributionP generating objects is that examples are in-
dependently and identically distributed (i.i.d.) according to some distributionP onX (i.e. P = P∞).

Here we replace this assumption with the following two conditions.
First, for anyn∈ N and for any measurable setA⊂ X

P(Xn ∈ A |Yn,X1,Y1, . . . ,Xn−1,Yn−1) = P(Xn ∈ A |Yn) (1)

(i.e. some versions of conditional probabilities coincide). This condition looks very much like
Markov condition which requires that each object depends on the past only through its immediate
predecessor. The condition (1) says that each object depends on thepast only through its label.

Second, for anyy∈ Y, for anyn1,n2 ∈ N and for any measurable setA⊂ X

P(Xn1 ∈ A |Yn1 = y) = P(Xn2 ∈ A |Yn2 = y) (2)
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(i.e. the process is uniform in time; (1) allows dependence inn).
Note that the first condition means that objects are conditionally independentgiven labels (on

conditional independence see Dawid, 1979). Under the conditions (1) and (2) we say thatobjects
are conditionally independent and identically distributed(conditionally i.i.d.).

For eachy ∈ Y denote the distributionP(Xn | Yn = y) by Py (it does not depend onn by (2) ).
Clearly, the distributionsP0 andP1 define some distributionsP on X up to a parameterp ∈ [0,1].
That is, Pp(A) = pP1(A) + (1− p)P0(A) for any measurable setA ⊂ X and for eachp ∈ [0,1].
Thus with each distributionP satisfying the assumptions (1) and (2) we will associate a family of
distributionsPp, p∈ [0,1].

The assumptions of the conditional model can be also interpreted as follows.Assume that we
have some individual sequence(yn)n∈N of labels and two probability distributionsP0 andP1 on X,
such that there exists setsX0 andX1 in X such thatP1(X1) = P0(X0) = 1 andP0(X1) = P1(X0) = 0
(i.e. X0 andX1 define some functionη). Each examplexn ∈ X is drawn according to the distribution
Pyn; examples are drawn independently of each other.

A predictor is a measurable functionΓn := Γ(x1,y1, . . . ,xn,yn,xn+1) taking values inY (more
formally, a family of functions indexed byn).

The probability of error of a predictorΓ on each stepn is defined as

errn(Γ,P,z1, . . . ,zn) := P
{
(x,y) ∈ Z : y 6= Γn(z1, . . . ,zn,x)

}

(zi , 1≤ i ≤ n are fixed and the probability is taken overzn+1). We will sometimes omit some of the
arguments of errn when it can cause no confusion; in particular, we will often use a short notation
P(errn(Γ,Z1, . . . ,Zn) > ε) and an even shorter oneP(errn(Γ) > ε) in place of

P
{

z1, . . . ,zn : errn(Γ,P,z1, . . . ,zn) > ε
}
.

For a pair of distributionsP0 andP1 and anyδ ∈ (0,1/2) define

▽δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

P∞
p (errn(Γ) > ε), (3)

that is, we consider the supremum of the probability of error over all classlabel probabilities.
For a predictorΓ and a distributionP onX define

∆(P,n,z1, . . . ,zn) := max
j≤κn; π:{1,...,n}→{1,...,n}

|errn(Γ,P∞,z1, . . . ,zn)−

errn− j(Γ,P∞,zπ(1), . . . ,zπ(n− j))|.

Define thetolerance to dataof Γ as

∆(P,n,ε) := Pn(∆(P,n,Z1, . . . ,Zn) > ε
)

(4)

for anyn∈N, anyε > 0 andκn :=
√

nlogn (see the end of Section 5 for the discussion of the choice
of the constantsκn). Furthermore, for a pair of distributionsP0 andP1 and anyδ ∈ (0,1/2) define

∆δ(P0,P1,n,ε) := sup
p∈[δ,1−δ]

∆(Pp,n,ε). (5)

Tolerance to data means, in effect, that in any typical large portion of data there is no small
portion that changes strongly the probability of error. This property should also hold with respect
to permutations.
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We will also use another version of tolerance to data, in which instead of removing some exam-
ples we replace them with an arbitrary samplez′j , . . . ,z

′
n consistent withη:

∆̄(P,z1, . . . ,zn) := sup
j<κn;π:{1,...,n}→{1,...,n};z′n− j ,...,z

′
n

|errn(Γ,P∞,z1, . . . ,zn)−errn(Γ,P∞,ζ1, . . . ,ζn)|,

whereζπ(i) := zπ(i) if i < n− j andζπ(i) := z′i otherwise; the maximum is taken over allz′i , n− j <
i ≤ n consistent withη. Define

∆̄(P,n,ε) := Pn(∆̄(P,n,Z1, . . . ,Zn) > ε
)

and
∆̄δ(P0,P1,n,ε) := sup

p∈[δ,1−δ]

∆̄(Pp,n,ε).

The same notational convention will be applied to∆ and∆̄ as to errn.
Various notions similar to tolerance to data have been studied in literature. Perhaps first they

appeared in connection with deleted or condensed estimates (see e.g. Rogers, Wagner, 1988), and
were later called stability (see Bousquet, Elisseeff, 2002; Kearns, Ron,1999, for present studies of
different kinds of stability, and for extensive overviews). Naturally, such notions arise when there
is a need to study the behaviour of a predictor when some of the training examples are removed.
These notions are much similar to what we call tolerance to data, only we are interested in the
maximal deviation of probability of error while usually it is the average or minimal deviations that
are estimated.

A predictor developed to work in the off-line setting should be, loosely speaking, tolerant to
small changes in a training sample. The next theorem shows under which conditions this property
of a predictor can be utilized.

Theorem 1 Suppose that a distributionP generating examples is such that the objects are condi-
tionally i.i.d., i.e. P satisfies (1) and (2). Fix someδ ∈ (0,1/2], let p(n) := 1

n#{i ≤ n : Yi = 1} and
Cn := P(δ ≤ p(n) ≤ 1− δ) for each n∈ N. Let alsoαn := 1

1−1/
√

n. For any predictorΓ and any
ε > 0 we have

P(errn(Γ) > ε) ≤C−1
n αn

(
▽δ(P0,P1,n+κn,δε/2)

+∆δ(P0,P1,n+κn,δε/2)
)
+(1−Cn), (6)

and
P(errn(Γ) > ε) ≤C−1

n αn
(
▽δ(P0,P1,n,δε/2)+ ∆̄δ(P0,P1,n,δε/2)

)
+(1−Cn). (7)

The theorem says that if we know with some confidenceCn that the rate of occurrence of each
label is not less than some (small)δ, and have some bounds on the error rate and tolerance to data of
a predictor in the i.i.d. model, then we can obtain bounds on its error rate in the conditional model.

The proofs for this section can be found in Appendix A. The intuition behindthe proof of the
theorem is as follows. First we fix some individual sample ofn labels (without objects) and consider
the behaviour of the predictor conditional on this sample. Fixing the labels allows us to pass from
the conditional i.i.d. case to i.i.d. and to use error estimates for this case. Then,using tolerance
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to data, we compare the behaviour of the predictor on any two different, but typical for a certain
i.i.d. distribution, samples of labels. This allows us to estimate the probability of error on any
(typical) sample and so to pass back to the conditional i.i.d. case.

Thus we have a tool for estimating the performance of a predictor on each finite stepn. In Sec-
tion 4 we will show how this result can be applied to predictors minimizing empirical risk. However,
if we are only interested in asymptotic results the formulations can be somewhat simplified.

Consider the following asymptotic condition on the frequencies of labels. Definep(n) := 1
n#{i ≤

n : Yi = 1}. We say that therates of occurrence of labels are bounded from belowif there exist such
δ, 0< δ < 1/2 that

lim
n→∞

P(p(n) ∈ [δ,1−δ]) = 1. (8)

As the condition (8) meansCn → 1 we can derive from Theorem 1 the following corollary.

Corollary 2 Suppose that a distributionP satisfies (1), (2), and (8) for someδ ∈ (0,1/2]. LetΓ be
such a predictor that

lim
n→∞

▽δ(P0,P1,n,ε) = 0 (9)

and either
lim
n→∞

∆δ(P0,P1,n,ε) = 0 (10)

or
lim
n→∞

∆̄δ(P0,P1,n,ε) = 0 (11)

for anyε > 0. Then
E(errn(Γ,P,Z1, . . . ,Zn)) → 0.

In Section 3 we show how this statement can be applied to prove weak consistence of some
classical nonparametric predictors in the conditional model.

3. Application to Classical Nonparametric Predictors

In this section we will consider two types of classical nonparametric predictors: partitioning and
nearest neighbour classifiers.

The nearest neighbour predictor assigns to a new objectxn+1 the label of its nearest neighbour
amongx1, . . . ,xn:

Γn(x1,y1, . . . ,xn,yn,xn+1) := y j ,

where j := argmini=1,...,n‖x−xi‖.
For i.i.d. distributions this predictor is also consistent, i.e.

E∞(errn(Γ,P∞)) → 0,

for any distributionP onX (see Devroye, 1981).
We generalise this result as follows.

Theorem 3 Let Γ be the nearest neighbour classifier. LetP be some distribution onX∞ satisfy-
ing (1), (2) and (8). Then

E(errn(Γ,P)) → 0.
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The proofs for this section can be found in Appendix B.
A partitioning predictor on each stepn partitions the object spaceX = R

d, d ∈ N into disjoint
cellsAn

1,A
n
2, . . . and classifies in each cell according to the majority vote:

Γ(z1, . . . ,zn,x) :=

{
0 if ∑n

i=1 Iyi=1Ixi∈A(x) ≤ ∑n
i=1 Iyi=0Ixi∈A(x)

1 otherwise,

whereA(x) denotes the cell containingx. Define

diam(A) := sup
x,y∈A

‖x−y‖

and

N(x) :=
n

∑
i=1

Ixi∈A(x).

It is a well known result (see, e.g. (Devroye, Györfi, Lugosi, 1996)) that a partitioning predictor
is weakly consistent, provided certain regulatory conditions on the size of cells. More precisely, let
Γ be a partitioning predictor such that diam(A(X))→ 0 in probability andN(X)→ ∞ in probability.
Then for any distributionP onX

E∞(errn(Γ,P∞)) → 0.

We generalise this result to the case of conditionally i.i.d. examples as follows.

Theorem 4 LetΓ be a partitioning predictor such thatdiam(A(X))→ 0 in probability and N(X)→
∞ in probability, for any distribution generating i.i.d. examples. Then

E(errn(Γ,P)) → 0

for any distributionP onX∞ satisfying (1), (2) and (8).

Observe that we only generalise results concerning weak consistency of (one) nearest neighbour
and non-data-dependent partitioning rules. More general results exist (see e.g. Devroye et. al.,
1994),(Lugosi, Nobel, 1996), in particular for data-dependent rules. However, we do not aim to
generalise state-of-the-art results in nonparametric classification, but rather to illustrate that weak
consistency results can be extended to the conditional model.

4. Application to Empirical Risk Minimisation

In this section we show how to estimate the performance of a predictor minimising empirical risk
(over certain class of functions) using Theorem 1. To do this we estimate thetolerance to data of
such predictors, using some results from Vapnik-Chervonenkis theory. For overviews of Vapnik-
Chervonenkis theory see (Vapnik, Chervonenkis, 1974; Vapnik, 1998; Devroye, Gÿorfi, Lugosi,
1996).

Let X = R
d for somed∈N and letC be a class of measurable functions of the formϕ : X →Y =

{0,1}, calleddecision functions. For a probability distributionP onX define err(ϕ,P) := P(ϕ(Xi) 6=
Yi). If the examples are generated i.i.d. according to some distributionP, the aim is to find a function
ϕ from C for which err(ϕ,P) is minimal:

ϕP = argminϕ∈C err(ϕ,P).
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In the theory of empirical risk minimisation this function is approximated by the function

ϕ∗
n := argmin

ϕ∈C
errn(ϕ)

whereerrn(ϕ) := ∑n
i=1 Iϕ(Xi)6=Yi

is the empirical error functional, based on a sample(Xi ,Yi), i =
1, . . . ,n. Thus,Γn(z1, . . . ,zn,xn+1) := ϕ∗

n(xn+1) is a predictor minimising empirical risk over the
class of functionsC .

One of the basic results of Vapnik-Chervonenkis theory is the estimation of the difference of
probabilities of error between the best possible function in the class (ϕP) and the function which
minimises empirical error:

P
(

errn(Γ,P∞)−err(ϕP,P) > ε
)
≤ 8S (C ,n)e−nε2/128,

where the symbolS (C ,n) is used for then-th shatter coefficient of the classC :

S (C ,n) := max
A:={x1,...,xn}⊂X

#{C∩A : C∈ C }.

Thus,
P(errn(Γ) > ε) ≤ Ierr(ϕP,P)>ε/2 +8S (C ,n)e−nε2/512.

A particularly interesting case is when the optimal rule belongs toC , i.e. whenη ∈ C . This situation
was investigated in e.g. (Valiant, 1984; Blumer et. al., 1989). Obviously, in thiscaseϕP ∈ C and
err(ϕP,P) = 0 for anyP. Moreover, a better bound exists (see Vapnik, 1998; Blumer et. al., 1989;
Devroye, Gÿorfi, Lugosi, 1996)

P(errn(Γ,P) > ε) ≤ 2S (C ,n)e−nε/2.

Theorem 5 Let C be a class of decision functions and letΓ be a predictor which for each n∈ N

minimiseserrn over C on the observed examples(z1, . . . ,zn). Fix someδ ∈ (0,1/2], let p(n) :=
1
n#{i ≤ n : Yi = 0} and Cn := P(δ ≤ p(n) ≤ 1− δ) for each n∈ N. Assume n> 4/ε2 and let
αn := 1

1−1/
√

n. We have

∆δ(P0,P1,n,ε) ≤ 16S (C ,n)e−nε2/512. (12)

(which does not depend on the distributions P0, P1 andδ) and

P(errn(Γ,P) > ε) ≤ I2err(ϕP1/2
,P1/2)>ε/2 +16αnC

−1
n S (C ,n)e−nδ2ε2/2048+(1−Cn). (13)

If in addition η ∈ C then
∆(n,ε) ≤ 4S (C ,2n)2−nε/8 (14)

and

P(errn(Γ,P) > ε) ≤ 4αnC
−1
n S (C ,n)e−nδε/16+(1−Cn). (15)

Thus, if we have bounds on the VC dimension of some class of classifiers, we can obtain bounds
on the performance of predictors minimising empirical error for the conditional model.

Next we show how strong consistency results can be achieved in the conditional model. For gen-
eral strong universal consistency results (with examples) see (Lugosi, Zeger, 1995; Vapnik, 1998;
Vapnik, Chervonenkis, 1974).
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Denote the VC dimension ofC by V(C ):

V(C ) := max{n∈ N : S (C ,n) = 2n}.

Using Theorem 5 and Borel-Cantelli lemma, we obtain the following corollary.

Corollary 6 Let C k, k∈ N be a sequence of classes of decision functions with finite VC dimension

such thatlimk→0 infϕ∈C k err(ϕ,P) = 0 for any distribution P onX. If kn → ∞ and V(C kn) logn
n → 0 as

n→ ∞ then
err(Γ,P) → 0 P–a.s.

whereΓ is a predictor which in each trial n minimises empirical risk overC kn andP is any distri-
bution satisfying (1), (2) and∑∞

n=1(1−Cn) < ∞.

In particular, if we use bound on the VC dimension on classes of neural networks provided in
(Baum, Haussler, 1989) then we obtain the following corollary.

Corollary 7 LetΓ be a classifier that minimises the empirical error over the classC (k), whereC (k)

is the class of neural net classifiers with k nodes in the hidden layer and thethreshold sigmoid, and
k→ ∞ so that klogn/n→ 0 as n→ ∞. LetP be any distribution onX∞ satisfying (1) and (2) such
that ∑∞

n=1(1−Cn) < ∞. Then
lim
n→∞

errn(Γ) = 0 P–a.s.

5. Discussion

We have introduced “conditionally i.i.d.” model for pattern recognition which generalises the com-
monly used i.i.d. model. Naturally, a question arises whether our conditions on the distributions
and on predictors are necessary, or they can be yet more generalisedin the same direction. In this
section we discuss the conditions of the new model from this point of view.

The first question is, can the same results be obtained without assumptions ontolerance to data?
The following negative example shows that somebounds on tolerance to data are necessary.

Remark 8 There exists a distributionP on X∞ satisfying (1) and (2) such thatP(|pn − 1/2| >
3/n) = 0 for any n (i.e. Cn = 1 for any δ ∈ (0,1/2) and n> 3

(1/2−δ) ) and a predictorΓ such that

Pn
p(errn > 0) ≤ 21−n for any p∈ [δ,1−δ] andP(errn = 1) = 1 for n > 1.

Proof Let X = Y = {0,1}. We define the distributionsPy asPy(X = y) = 1, for eachy ∈ Y (i.e.
η(x) = x for eachx). The distributionP|Y∞ is defined as a Markov distribution with transition

probability matrix

(
0 1
1 0

)
, i.e. it always generates sequences of labels. . .01010101. . . .

We define the predictorΓ as follows

Γn :=

{
1−xn if |#{i < n : yi = 0}−n/2| ≤ 1,
xn otherwise.

So, in the case when the distributionP is used to generate the examples,Γ is always seeing either
n−1 zeros andn ones, orn zeros andn ones which, consequently, will lead it to always predict the
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wrong label. It remains to note that this is very improbable in the case of an i.i.d. distribution.

Another point isthe requirement on the frequencies of labels. In particular, the assumption
(8) might appear redundant: if the rate of occurrence of some label tends to zero, can we just ignore
this label without affecting the asymptotic? It appears that this is not the case, as the following
example illustrates.

Remark 9 There exist a distributionP on X∞ which satisfies (1) and (2) but for which the nearest
neighbour predictor is not consistent, i.e. the probability of error does not tend to zero.

Proof Let X = [0,1], let η(x) = 0 if x is rational andη(x) = 1 otherwise. The distributionP1 is
uniform on the set of irrational numbers, whileP0 is any distribution such thatP(x) 6= 0 for any
rationalx. (This construction is due to T. Cover.) The nearest neighbour predictor is consistent for
any i.i.d. distribution which agrees with the definition, i.e. for anyp = P(Y = 1) ∈ [0,1].

Next we construct the distributionP|Y∞ . Fix someε, 0< ε < 1. Assume that according toP the
first label is always 1, (i.e.P(y1 = 1) = 1; the object is an irrational number). Nextk1 labels are
always 0 (rationals), then follows 1, thenk2 zeros, and so on. It is easy to check that there exists
such sequencek1,k2, . . . that with probability at leastε we have

max
i<n: Xi is irrational

P1{x : Xi is the nearest neighbour ofx} ≤ 1− ε
m(n)

,

wherem(n) is the total number of irrational objects up to the trialn. On each stepn such that
n = t +∑t

j=1kt for somet ∈ N (i.e. on each irrational object) we have

E(errn(Γ,P)) ≥ ε


1− ∑

j<n: Xj is irrational
P(Xj is the nearest neighbour ofX)


 ≥ ε2

As irrational objects are generated infinitely often (that is, with intervalski), the probability of error
does not tend to zero.

Another question is whether the results can be generalised to the case ofnon-deterministi-
cally defined labels, which is often considered in literature. It should be noted that we consider
the task of learning object-label dependence, ignoring the label-label dependence (and prohibiting
any dependence apart from these). On one hand, it allows us to consider any sort of label-label
dependence. On the other hand, the best bound on the probability of error we can obtain is the
maximum of the class-conditional probabilities of error (as nothing is known about the probability
of the next label), and not the so-called Bayes error, which is the best achievable bound in the
i.i.d. case. Thus, if we want to consider stochastically defined labels, we should restrict our attention
to class-conditional probabilities of error. On this way also some obstacles can be met. In particular,
the functionη, which in this case is defined asη(x) := P(Yn = 1|Xn = x) should not depend onn,
which will require more restrictive definition of constantsCn and the condition (8). We leave this
question for further investigation.

As it was mentioned in Section 2, for the sake of simplicity of notations, all resultsare formu-
lated for the case of binary labelsY = {0,1}; however, they can be easily extended tothe case of
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any finite label space. Indeed, to pass to the general case only the following changes should be
made. With each distribution satisfying the conditions of the model (1) and (2) we associate (not
two but) |Y| distributionsPa, a∈ Y, defined byP(Xn|Yn = a) (which does not depend onn). Anal-
ogously to the binary case, these distributions are used to define (in the natural way) the family of
distributionsPq (cf. Pp of Section 2), whereq stands for any probability distribution over the setY.
The definitions (3) and (4) take the form

▽δ(P0,P1,n,ε) := sup
q

P∞
q (errn(Γ) > ε) (16)

and
∆δ(P0,P1,n,ε) := sup

q
∆(Pq,n,ε), (17)

where the supremums are with respect to all distributionsq such that mina∈Y q(a) ≥ δ. All the-
orems retain their form withp(n,a) (instead ofp(n) )defined as1

n#{i ≤ n : yi = a} andCn as
P(mina∈Y p(n,a) ≥ δ). It is easy to alter the proofs according to these changes. However, asit
can be seen, the notation becomes significantly more cumbersome.

Finally, the choice of the constantsκn requires clarification. We have fixed these constants for
the sake of simplicity of notations, however, they can be made variable, as long asκn obeys the
following condition.

lim
n→∞

{n|pn− p| ≤ κn} = 0

almost surely for anyp ∈ (0,1) and any probability distributionP on X such thatP(y = 1) = p,
wherepn := 1

n#{i ≤ n : Yi = 0}.
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Appendix A: Proofs for Section 2

Before proceeding with the proof of Theorem 1 we give some definitions and supplementary facts.
Define the conditional probabilities of error ofΓ as follows

err0n(Γ,P,z0, . . . ,zn) := P(Yn+1 6= Γ(z1, . . . ,zn,Xn+1)|Yn+1 = 0),

err1n(Γ,P,z0, . . . ,zn) := P(Yn+1 6= Γ(z1, . . . ,zn,Xn+1)|Yn+1 = 1),

(with the same notational convention as used with the definition of errn(Γ)). In words, for each
y∈ Y = {0,1} we define erryn as the probability of allx∈ X, such thatΓ makes an error onn’th trial,
given thatYn+1 = y and fixedz1, . . . ,zn.

For anyy := (y1,y2, . . .) ∈ Y∞, defineyn := (y1, . . . ,yn) and pn(y) := 1
n#{i ≤ n : yi = 0}, for

n > 1.
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Clearly (from the assumption (1)) the random variablesX1, . . . ,Xn are mutually conditionally
independent givenY1, . . . ,Yn, and by (2) they are distributed according toPYi , 1≤ i ≤ n. Hence, the
following statement is valid.

Lemma 10 Fix some n> 1 and somey ∈ Y∞ such thatP((Y1, . . . .Yn+1) = yn+1) 6= 0. Then

P
(

erryn+1
n (Γ) > ε

∣∣(Y1, . . . ,Yn) = yn
)

= Pn
p

(
erryn+1

n (Γ) > ε
∣∣(Y1, . . . ,Yn) = yn

)

for any p∈ (0,1).

Where, accordingly to the notational conventions made above,

P
(

erryn+1
n (Γ) > ε

∣∣(Y1, . . . ,Yn) = yn
)

= P
{

x1, . . . ,xn : errn(Γ,P,x1,y1, . . . ,xn,yn) > ε
}

;

that is, having fixed the labels, we consider probability over objects only.
Proof of Theorem 1.Fix somen > 1, somey∈ Y and suchy1 ∈ Y∞ thatδ ≤ pn(y1) ≤ 1−δ and

P((Y1, . . . ,Yn) = y1
n) 6= 0. Letp := pn(y1). We will find bounds onP

(
errn(Γ) > ε | (Y1, . . . ,Yn) = y1

n

)
,

first in terms of∆ and then in terms of̄∆.
Lemma 10 allows us to pass to the i.i.d. case:

P
(

erryn(Γ,X1,y
1
1, . . . ,Xn,y

1
n,Xn+1) > ε

)
= Pn

p

(
erryn(Γ,X1,y

1
1, . . . ,Xn,y

1
n,Xn+1) > ε

)

for any y such thatP(Y1 = y1
1, . . . ,Yn = y1

n,Yn+1 = y) 6= 0 (recall that we use upper-case letters for
random variables and lower-case for fixed variables, so that the probabilities in the above formula
are labels-conditional).

Clearly, forδ ≤ p≤ 1−δ we have errn(Γ,Pp)≤maxy∈Y(erryn(Γ,Pp)), and if errn(Γ,Pp) < ε then
erryn(Γ,Pp) < ε/δ for eachy∈ Y.

Let m be such number thatm−κm = n. For anyy2 ∈ Y∞ such that|mpm(y2)−mp| ≤ κm/2
there exist such mappingπ : {1, . . . ,n} → {1, . . . ,m} thaty2

π(i) = y1
i for any i ≤ n. Define random

variablesX′
1 . . .X′

m as follows:X′
π(i) := Xi for i ≤ n, while the restκm of X′

i are some random variables
independent fromX1, . . . ,Xn and from each other, and distributed according toPp (a “ghost sample”).
We have

Pn
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n) > ε

)

= Pm
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n)−erryn(X

′
1,y

2
1, . . . ,X

′
m,y2

m)+erryn(X
′
1,y

2
1, . . . ,X

′
m,y2

m) > ε
)

≤ Pm
p

(∣∣erryn(X
′
1,y

2
1, . . . ,X

′
n,y

2
n)−erryn(X1,y

1
1, . . . ,Xn,y

1
n)

∣∣ > ε/2
)

+Pn
p

(
erryn(X

′
1,y

2
1, . . . ,X

′
n,y

2
n) > ε/2

)
.

Observe thaty2 was chosen arbitrarily (among sequences for which|mpm(y2)−mp| ≤ κm/2) and
(X1,y1

1, . . . ,Xny1
n) can be obtained from(X′

1,y
2
1, . . . ,X

′
my2

m) by removing at mostκm elements and
applying some permutation. Thus the first term is bounded by

Pm
p

(
max

j≤κm; π:{1,...,m}→{1,...,m}
|errym(Γ,Z1, . . . ,Zm)−

errym− j(Γ,Zπ(1), . . . ,Zπ(m− j))| > ε/2
∣∣ |mp(m)−mp| ≤ κm/2

)

≤ ∆(Pp,m,δε/2)

Pn
p(|mp(m)−mp| ≤ κm)

≤ 1
1−1/

√
m

∆(Pp,m,δε/2),
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and the second term is bounded by1
1−1/

√
mPm

p (errm(Γ) > δε/2). Hence

Pn
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n) > ε

)
≤ αn

(
∆(Pp,m,δε/2) + Pm

p (errm(Γ) > δε/2)
)
. (18)

Next we establish a similar bound in terms of∆̄. For anyy2
n ∈ Yn such that|npn(y2)−np| ≤

κn/2 there exist such permutationsπ1,π2 of the set{1, . . . ,n} thaty1
π1(i)

= y2
π2(i)

for anyi ≤ n−δκn.
Denoten− δκn by n′ and define random variablesX′

1 . . .X′
n as follows: X′

π2(i)
:= Xπ1(i) for i ≤ n′,

while for n′ < i ≤ n X′
i are some “ghost” random variables independent fromX1, . . . ,Xn and from

each other, and distributed according toPp. We have

Pn
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n) > ε

)

≤ Pn+κn
p

(∣∣erryn(X
′
1,y

2
1, . . . ,X

′
n,y

2
n)−erryn(X1,y

1
1, . . . ,Xn,y

1
n)

∣∣ > ε/2
)

+Pn
p

(
erryn(X

′
1,y

2
1, . . . ,X

′
n,y

2
n) > ε/2

)
,

Again,y2 was chosen arbitrarily (among sequences for which|npn(y2)−np| ≤ κn/2) and

(X1,y
1
1, . . . ,Xny1

n)

differs from
(X′

1,y
2
1, . . . ,X

′
ny2

n)

in at mostκn elements, up to some permutation. Thus the first term is bounded by

Pn
p

(
sup

j<κn;π:{1,...,n}→{1,...,n};z′n− j ,...,z
′
n

|erryn(Z1, . . . ,Zn)

−erryn(ζ1, . . . ,ζn)| > ε/2
∣∣ |np(n)−np| ≤ κn/2

)
≤ αn∆̄(Pp,n,δε/2),

and the second term is bounded byαnPn
p(errn(Γ) > δε/2). Hence

Pn
p

(
erryn(X1,y

1
1, . . . ,Xn,y

1
n) > ε

)
≤ αn

(
∆̄(Pp,n,δε/2) + Pn

p(errn(Γ) > δε/2)
)
. (19)

Finally, asy1 was chosen arbitrarily among sequencesy ∈ Y∞ such thatnδ ≤ pn(y1) ≤ n(1−δ)
from (18) and (19), we obtain (6) and (7). �

Appendix B: Proofs for Section 3

The first part of the proof is common for theorems 3 and 4. Let us fix some distributionP satisfying
conditions of the theorems. It is enough to show that

sup
p∈[δ,1−δ]

E∞(errn(Γ,Pp,Z1, . . . ,Zn)) → 0

and
sup

p∈[δ,1−δ]

E∞(∆̄(Pp,n,Z1, . . . ,Zn)) → 0

for nearest neighbour and partitioning predictor, and apply Corollary 2.
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Observe that both predictors are symmetric, i.e. do not depend on the order of Z1, . . . ,Zn.
Thus, for anyz1, . . . ,zn

∆̄(Pp,n,z1, . . . ,zn) = sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

|errn(Γ,Pp,z1, . . . ,zn)−errn(Γ,Pp,zπ(1), . . . ,zπ(n− j),z
′
n− j , . . . ,z

′
n)|,

where the maximum is taken over allz′i consistent withη, n− j ≤ i ≤ n. Define also the class-
conditional versions of̄∆:

∆̄y(Pp,n,z1, . . . ,zn) := sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

|erryn(Γ,Pp,z1, . . . ,zn)−erryn(Γ,Pp,zπ(1), . . . ,zπ(n− j),z
′
n− j , . . . ,z

′
n)|.

Note that (omittingz1, . . . ,zn from the notation) errn(Γ,Pp) ≤ err0n(Γ,Pp)+err1n(Γ,Pp) and
∆̄(Pp,n) ≤ ∆̄0(Pp,n)+ ∆̄1(Pp,n). Thus, it is enough to show that

sup
p∈[δ,1−δ]

E∞(err1n(Γ,Pp)) → 0 (20)

and
sup

p∈[δ,1−δ]

E∞(∆̄1(Pp,n)) → 0. (21)

Observe that for each of the predictors in question the probability of error given that the true
label is 1 will not decrease if an arbitrary (possibly large) portion of training examples labelled
with ones is replaced with an arbitrary (but consistent withη) portion of the same size of examples
labelled with zeros. Thus, for anyn and anyp∈ [δ,1− δ] we can decrease the number of ones in
our sample (by replacing the corresponding examples with examples from theother class) down to
(say)δ/2, not decreasing the probability of error on examples labelled with 1. So,

E∞(err1n(Γ,Pp)) ≤ E∞(err1n(Γ,Pδ/2|pn = δ/2))+Pp(pn ≤ δ/2), (22)

where as usualpn := 1
n#{i ≤ n : yi = 1}. Obviously, the last term (quickly) tends to zero. Moreover,

it is easy to see that

E∞(err1n(Γ,Pδ/2)|pn = n(δ/2))

≤ E∞(
err1n(Γ,Pδ/2)

∣∣|n(δ/2)− pn| ≤ κn/2
)
+E∞(∆̄1(Pδ/2,n))

≤ 1
1−1/

√
n

E∞(err1n(Γ,Pδ/2))+E∞(∆̄1(Pδ/2,n)). (23)

The first term tends to zero, as it is known from the results for i.i.d. processes; thus, to establish (20)
we have to show that

E(∆̄1(Pp,n,Z1, . . . ,Zn)) → 0 (24)

for any p∈ (0,1).
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We will also show that (24) is sufficient to prove (21). Indeed,

∆̄1(Pp,n,z1, . . . ,zn) ≤ err1n(Γ,Pp,z1, . . . ,zn)+

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

err1n(Γ,Pp,zπ(1), . . . ,zπ(n− j),z
′
n− j , . . . ,z

′
n)

Denote the last summand byD. Again, we observe thatD will not decrease if an arbitrary (possibly
large) portion of training examples labelled with ones is replaced with an arbitrary (but consistent
with η) portion of the same size of examples labelled with zeros. Introduce∆̃1(Pp,n,z1, . . . ,zn) as
∆̄1(Pp,n,z1, . . . ,zn) with κn in the definition replaced by2δκn. Using the same argument as in (22)
and (23) we have

E∞(D) ≤ 1
1−1/

√
n

(
E∞(∆̃1(Pδ/2,n)) + E∞(errn(Γ,Pδ/2)

)
+ Pp(pn ≤ δ/2).

Thus, (21) holds true if (24) and

E∞(∆̃1(Pp,n,Z1, . . . ,Zn)) → 0. (25)

Finally, we will prove (24); it will be seen that the proof of (25) is analogous (i.e. replacingκn

by 2
δκn does not affect the proof). Note that

E∞(∆̄(Pp,n,Z1, . . . ,Zn)) ≤ Pp

(
sup

j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z
′
n

∣∣errn(Γ,Pp,Z1, . . . ,Zn) 6= errn(Γ,Pp,Zπ(1), . . . ,Zπ(n− j),z
′
n− j , . . . ,z

′)
∣∣
)
,

where the maximum is taken over allz′i consistent withη, n− j ≤ i ≤ n. The last expression should
be shown to tend to zero. This we will prove for each of the predictors separately.

Nearest Neighbour predictor. Fix some distributionPp, 0 < p < 1 and someε > 0. Fix also
somen∈ N and define (leavingx1, . . . ,xn implicit)

Bn(x) := Pn+1
p {t ∈ X : t andx have the same nearest neighbour amongx1, . . . ,xn}

andBn := E(Bn(X)) Note thatE∞(Bn) = 1/n, where the expectation is taken overX1, . . . ,Xn. Define
B := {(x1, . . . ,xn) ∈ Xn : Bn ≤ 1/nε} andA (x1, . . . ,xn) := {x : Bn(x)≤ 1/nε2}. Applying Markov’s
inequality twice, we obtain

E∞(∆̄(Pp,n)) ≤ E∞(∆̄(Pp,n)|(X1, . . . ,Xn) ∈ B )+ ε

≤ E∞
(

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

Pp
{

x : errn(Γ,Pp,Z1, . . . ,Zn) 6= errn(Γ,Pp,Zπ(1), . . . ,Zπ(n− j),z
′
n− j , . . . ,z

′
n)

∣∣x∈ A (X1, . . . ,Xn)
}∣∣(X1, . . . ,Xn) ∈ B

)
+2ε.

(26)

Removing one pointxi from a samplex1, . . . ,xn we can only change the value ofΓ in the area

{x∈ X : xi is the nearest neighbour of x} = Bn(xi),
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while adding one pointx0 to the sample we can change the value ofΓ in the area

Dn(x0) := {x∈ X : x0 is the nearest neighbour of x}.
It can be shown that the number of examples (amongx1, . . . ,xn) for which a pointx0 is the nearest
neighbour is not greater than a constantγ which depends only the spaceX (see Devroye, Gÿorfi,
Lugosi, 1996, Corollary 11.1). Thus,

Dn(x0) ⊂ ∪i= j1,..., jγBn(xi)

for somej1, . . . , jγ, and so

E∞(∆̄(Pp,n)) ≤ 2ε+2(γ+1)κnE∞( max
x∈A (X1,...,Xn)

Bn(x)|(X1, . . . ,Xn) ∈ B )

≤ 2κn
γ+1
nε2 +2ε,

which, increasingn, can be made less than 3ε. �

Partitioning predictor. For any measurable setsB ⊂ Xn andA ⊂ X define

D(B ,A ) := E∞
(

sup
j≤κn; π:{1,...,n}→{1,...,n},z′n− j ,...,z

′
n

Pp
{

x : errn(Γ,Pp,Z1, . . . ,Zn) 6= errn(Γ,Pp,Zπ(1), . . . ,Zπ(n− j),z
′
n− j , . . . ,z

′
n)

∣∣x∈ A
}∣∣(X1, . . . ,Xn) ∈ B

)
+2ε.

andD := D(Xn,X).
Fix some distributionPp, 0< p < 1 and someε > 0. Introduce

η̂(x,X1, . . . ,Xn) :=
1

N(x)

n

∑
i=1

IYi=1IXi∈A(x)

(X1, . . .Xn will usually be omitted). From the consistency results for i.i.d. model (see, e.g.Devroye,
Györfi, Lugosi, 1996, Theorem 6.1) we know thatEn+1|η̂n(X)−η(X)| → 0 (the upper index in
En+1 indicating the number of examples it is taken over).

Thus, E|η̂n(X)− η(X)| ≤ ε4 from somen on. Fix any suchn and letB := {(x1, . . . ,xn) :
E|η̂n(X)−η(X)| ≤ ε2}. By Markov inequality we obtainPp(B ) ≥ 1− ε2. For any(x1, . . . ,xn) ∈ B
let A (x1, . . . ,xn) be the union of all cellsAn

i for whichE(|η̂n(X)−η(X)||X ∈ An
i ) ≤ ε. Clearly, with

x1, . . . ,xn fixed,Pp(X ∈ A (x1, . . . ,xn)) ≥ 1− ε. Moreover,D ≤ D(B ,A )+ ε+ ε2.
Fix A := (x1, . . . ,xn) for some(x1, . . . ,xn) ∈ B . Sinceη(x) is always either 0 or 1, to change

a decision in any cellA ⊂ A we need to add or remove at least(1− ε)N(A) examples, where
N(A) := N(x) for anyx∈ A. Let N(n) := E(N(X)) andA(n) := E(Pp(A(X)). Clearly, N(n)

nA(n) = 1 for

anyn, asE N(X)
n = A(n).

As before, using Markov inequality and shrinkingA if necessary we can have

Pp

(ε2nA(X)

N(n)
≤ ε|X ∈ A

)
= 1, Pp

(ε2nA(n)

N(X)
≤ ε|X ∈ A

)
= 1,

andD≤D(B ,A )+3ε+ε2. Thus, for all cellsA⊂ A we haveN(A)≥ εnA(n), so that the probability
of error can be changed in at most 2 κn

(1−ε)εnA(n) cells; but the probability of each cell is not greater

than N(n)
εn . HenceE∞(∆̄(Pp,n)) ≤ 2 κn

n(1−ε)ε2 +3ε+ ε2. �

661



RYABKO

Appendix C: Proofs for Section 4

Proof of Theorem 5.Fix some probability distributionPp and somen∈ N. Let ϕ× be any decision
rule ϕ ∈ C picked byΓn−κn on which (along with the corresponding permutation) the maximum

max
j≤κn; π:{1,...,n}→{1,...,n}

|errn(Γ,z1, . . . ,zn)−errn− j(Γ,zπ(1), . . . ,zπ(n− j))|

is reached. We need to estimatePn(|err(ϕ∗)−err(ϕ×)| > ε).
Clearly,|errn(ϕ×)−errn(ϕ∗)| ≤ κn, asκn is the maximal number of errors which can be made

on the difference of the two samples.
Moreover,

Pn(|err(ϕ∗
n)−err(ϕ×)| > ε

)

≤ Pn(|err(ϕ∗
n)−

1
n

errn(ϕ∗)| > ε/2
)
+Pn(|1

n
errn(ϕ×)−err(ϕ×)| > ε/2−κn/n

)

Observe that

Pn(sup
ϕ∈C

|1
n

errn(ϕ)−err(ϕ)| > ε) ≤ 8S (C ,n)e−nε2/32, (27)

see (Devroye, Gÿorfi, Lugosi, 1996, Theorem 12.6). Thus,

∆(Pp,n,ε) ≤ 16S (C ,n)e−n(ε/2−κn/n)2/32 ≤ 16S (C ,n)e−nε2/512

for n > 4/ε2. So,

P(errn(Γ,P) > ε) ≤ Isupp∈[δ,1−δ] err(ϕPp,Pp)>ε/2 +16αC−1
n S (C ,n)e−nδ2ε2/2048+(1−Cn).

It remains to notice that

err(ϕPp,Pp) = inf
ϕ∈C

(perr1(ϕ,Pp)+(1− p)err0(ϕ,Pp))

≤ inf
ϕ∈C

(err1(ϕ,P1/2)+err0(ϕ,P1/2)) = 2err(ϕP1/2,P1/2)

for any p∈ [0,1].
So far we have proven (12) and (13); (14) and (15) can be provenanalogously, only for the case

η ∈ C we have

Pn(sup
ϕ∈C

|1
n

errn(ϕ)−err(ϕ)| > ε) ≤ S (C ,n)e−nε

instead of (27), and err(ϕPp,Pp) = 0. �
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