Journal of Machine Learning Research 7 (2006) 2237-2257 Submitted 10/05; Revised 2/06; Published 10/06

An Efficient Implementation of an Active Set Method for SVMs

Katya Scheinberg KATYAS@US.IBM.COM
Mathematical Science Department

IBM T. J. Watson Research Center

1101 Kitchawan Road

Yorktown Heights, NY

Editors: Kristin P. Bennett and Emilio Parrado-Hernandez

Abstract

We propose an active set algorithm to solve the convex quadratic programming (QP) problem which
is the core of the support vector machine (SVM) training. The underlying method is not new and is
based on the extensive practice of the Simplex method and its variants for convex quadratic prob-
lems. However, its application to large-scale SVM problems is new. Until recently the traditional
active set methods were considered impractical for large SVM problems. By adapting the methods
to the special structure of SVM problems we were able to produce an efficient implementation.
We conduct an extensive study of the behavior of our method and its variations on SVM problems.
We present computational results comparing our method with Joachims® SVM!9 (see Joachims,
1999). The results show that our method has overall better performance on many SVM problems.
It seems to have a particularly strong advantage on more difficult problems. In addition this al-
gorithm has better theoretical properties and it naturally extends to the incremental mode. Since
the proposed method solves the standard SVM formulation, as does SVM'9 the generalization
properties of these two approaches are identical and we do not discuss them in the paper.
Keywords: active set methods, support vector machines, quadratic programming

1. Introduction

In this paper we introduce an active set method to solve the following convex quadratic program-
ming (QP) optimization problem which is defined by the classic soft margin SVM formulation (see,
for example, Cristianini and Shawe-Taylor, 2000).

1
max —EGTQG—CTE

—Qo+by+s—&=—e, @)
0<a<c,s>0&>0,

where a € R" is the vector of the dual variables, b is the bias (scalar) and s and & are the n-
dimensional vectors of the slack and the surplus variables, respectively. y is a vector of the labels,
+1. Q is the label encoded kernel matrix, Qi; = yiyjK(xi,Xj), € is the vector of all 1’s of length n
and c is the penalty vector associated with the errors (in standard soft margin SVMs the vector ¢ is
a product of vector e and a scalar penalty C, but here we will allow for any nonnegative vector c).
The dual of this problem is

1

R T T
min 50(Qua—e a

©2006 Katya Scheinberg.

SCHEINBERG

s.t. y a=0, 2
0<a<ec.

To confirm that problem (1) is equivalent to the traditional soft margin SVM formulation

. 1 T T
min -W wW-+c &

2
st ywx—b) —si+&>1, i=1,...,n (3)
$s>0,&>0,

observe that (2) is the same as the dual of (3) and from optimality conditions of (3) and (2) we
have w = 31 yiaix;. Substituting this expression for w to (3) and denoting Q;; = yiyjaiajxiij (or
Qij =ViyjoiaK(xi,x;) in the kernel case) we obtain the convex QP formulation (1), which we will
consider in this paper. Hence, (1) and soft margin SVM enjoy the same generalization properties.

General convex QPs are typically solved by one of the two approaches: interior point method
approach or active set method approach. If the Hessian of an objective function (matrix Q in the
case of SVM) and/or the constraint matrix of the QP problem is large and sparse then an interior
point method is usually the method of choice. If the problem is of moderate size but the matrices
are dense, then active set method is preferable. In SVM problems the Q matrix is typically dense.
Thus, large SVM problems present a challenge for both approaches. It was shown by Fine and
Scheinberg (2001) and Ferris and Munson (2000) that for some classes of SVMs, for which Q is
dense but low-rank, one can adapt an interior point method to work very efficiently. However, if the
rank of Q is high, an active set approach seems to remain the only main alternative.

One of the most “traditional” active set methods in the optimization literature is the Simplex
method for linear programming (LP) problems. The Simplex method is known to have very good
practical performance. The QP analogues, though not as extensively tested in practice, are also
considered to be very efficient. There are a few methods based on the Simplex method idea for
solving QP problems (see Fletcher, 1971; Goldfarb, 1972; Goldfarb and Idnani, 1983). Many of
them are theoretically equivalent, meaning that they produce the same sequence of iterations, but
they have different numerical properties (such as per-iteration complexity and numerical stability).
In this paper we derive an implementation targeted to SVM problems based on the framework
described in Fletcher (1971), Goldfarb (1972) and Nocedal and Wright (1999).

The main idea of this method in the context of SVM is to fix, at each iteration, all variables in the
current dual active set! at their current values (0 or c), and then to solve the reduced dual problem.
After obtaining a solution - decide whether it is optimal for the overall dual problem (same as being
feasible for the overall primal problem), or if any of the dual variables should be released from the
active set.

When applied to SVM, this approach poses the following problem: if the complement of the
dual active set (the set of “free” variables) has large cardinality, then solving the restricted subprob-
lems may be too expensive, since Q is completely dense. Also determining the next variable to
leave the active set may be expensive for the same reason. Therefore, updating all “free” variables
at once was considered impractical.

The most common approach to large SVM problems is to use a restricted active set method,
such as chunking (Boser et al., 1992) or decomposition (Osuna et al., 1997; Joachims, 1999) where

1. The dual active set is the set of dual variables a whose values are at their bound.

2238

ACTIVE SET METHOD FOR SVMSs

at each iteration only a small number of variables are allowed to be varied. The size of such “chunk”
is determined heuristically or is chosen by the user. There are a few skillfully implemented SVM
solvers based on this type of restricted active set methods (Joachims, 1999; Platt, 1999). The main
disadvantage of these methods is that they tend to have slow convergence when getting closer to the
optimal solution. Moreover, their performance is sensitive to the changes in the chunk size and there
is no good way of predicting a good choice for the size of the chunks for a particular problem.?

A full active set method, such as the one presented in this paper, avoids these disadvantages.
The method itself is not new (see Nocedal and Wright, 1999). Our contribution is to adapt it to the
SVM framework and provide an efficient implementation.

First we notice that a support vector that violates the margin constraint (that is the & surplus
variable is positive) corresponds to a variable a which is at its upper bound and therefore is in the
dual active set. The complement of the dual active set contains variables a that are strictly between
the upper and lower bounds. Such variables correspond only to the support vectors that are exactly
on the margin (that is both the corresponding slack and the surplus variables are zero). The current
number of such support vectors, ns, is the size of the reduced QP (RQP). Solving such RQP directly
(say, by an IPM method, as it is done in SVM'9) requires at least O(n2) operations, which might
be prohibitively expensive if repeated over and over again and if ng is relatively large. We do not
solve RQP directly, but only make one step toward its solution at each iteration. Moreover, the
active set is incremented only by one variable at a time (either one variable leaving, or one entering
the active set), hence we can store and update a factorization of the reduced matrix Q. Each update
takes O(n2) operations and so does solving a system of equations with the reduced matrix Q.

At each such step toward the optimal solution of the RQP, we either find that solution or en-
counter a bound on one of the “free” variables. In the latter case this variable is included into the
active set and the process repeats.

This process does not always produce an optimal solution to the subproblem, but usually pro-
duces a good approximation of it. Typically this does not affect the overall number of iterations
significantly, whereas the reduction of the per-iteration cost is significant.

The RQP may sometimes have an infinite solution, if reduced matrix Q is singular. In this case
an infinite descent direction is computed and a step is taken along this direction until one of the
variable bounds is encountered. We provide the full treatment of the various cases for solving the
RQP subproblem. We use the approach described in Frangioni (1996).

If the search for the optimum of the RQP subproblem is terminated then our method determines
whether the primal feasibility was achieved and if not, which dual variable should leave the active
set. To do that we need to compute a product of a submatrix of Q that corresponds to the variables
at their upper bounds and the unit vector of an appropriate length. This can be very expensive to
compute at each iteration, instead one should rather store and update the result of this multiplication.
Another advantage of using “one-variable-at-a-time” increments is in potentially reducing the cost
of such updates.

The multiple updates to the active set, which are used in “chunking” and “decomposition” meth-
ods could still have an advantage if the overall number of iterations were significantly smaller than
in the case of single updates. But as our computational results indicate this is not the case. We offer
some intuition to support this claim. Assume that your data contains 10 identical data points which
at the current iteration are the most violated examples and we would like to introduce them into the

2. See Section 12.1.1 in Platt (1999) for a similar discussion which motivated Platt’s SMO. Essentially SMO is an active
set method in which the chunk size is fixed to be the smallest possible, namely 2

2239

SCHEINBERG

next “chunk”. Introducing all 10 at once implies 10 times more work than introducing just one. Yet
since they are identical, introducing just one produces the same result as introducing all ten. Since
the training data is often somewnhat repetitive (there may not be identical points, but rather very
similar points, for instance, in clustered data sets) this example is not too far fetched.

As the computational results show, our method has particular advantage over SVM''9™ on prob-
lems where the number of the support vectors or the number of outliers is large (but not necessarily
excessive, such as ~ 1000 out of 20000 vectors). Our algorithm currently requires the storage of
the Cholesky factors of the reduced matrix Q, which might require excessive amount of memory for
problems where the number of unbounded support vectors is very large. However, this often means
that the chosen kernel suffers from overfitting the data, so the problem is badly posed in some sense,
unless the entire test set is very large, in which case one should consider a different implementation,
and, possibly, a more powerful computer.

The most expensive step of our algorithm (and of SVM''9™ in fact) is pricing the primal con-
straints and choosing the next constraint to enter the active set. We will compare two approaches.
One of these approaches is shrinking, which is used by SVM'9 and the other is sprint which is an
industry standard in advanced implementations of LP solvers (Bixby et al., 1992). We observe that
sprint appears to work better than shrinking on difficult SVM problems.

The proposed method enjoys several theoretical advantages compared to the methods based
on chunking. First of all it converges in a finite number of iterations (Fletcher, 1971; Frangioni,
1996). In the worst case this number might be exponential, but it is hardly the case in practice. The
method is also well suited for analysis of various situations. For instance, in Balcazar et al. (2001)
a randomized active set algorithm for SVM is introduced and shown to have a quasi-linear average
complexity. Our algorithm can be easily adapted to fit the randomized framework of Balcazar et al.
(2001), hence similar average case results apply.

Recently, active set methods for SVM similar to ours were used in Cauwenberghs and Poggio
(2001) for incremental learning and in Hastie et al. (2004) for generating the entire regularization
path. Their methods, unlike ours, require primal and dual feasibility to be satisfied at every iteration
and progress by changing the optimization problem itself (in a manner dictated by the respective
uses of their methods). However, many of the efficiency issues of the algorithms are similar, such as
the possible singularity of the reduced matrix Q and efficient updates of its Cholesky factorization.
Though we choose to focus on one specific active set method in this paper, we believe the the
experience we present here will be useful for other active set methods for SVM problems. Some of
the ideas presented in the paper to improve the efficiency of the active set methods for SVMs were
also suggested in Kaufman (1998).

The paper is organized as follows. In the next section we introduce the dual active set method
for the soft-margin SVM problem and describe the details of solving the reduced QP problem.
In Section 3 we will present the results of comparing our method to SVM'9 on a selection of
classification problems from the UCI repository (Blake and Merz, 1998). In Section 4 we will
focus on various implementational issues that arise in the attempt to improve the performance of the
method. In Subsection 4.4 we apply our method to the incremental case. Section 5 contains some
conclusions.

2240

ACTIVE SET METHOD FOR SVMSs

2. Dual Active Set Method for SVMs

Any optimal solution to problems (1) or (2) must satisfy the Karush-Kuhn-Tucker (KKT) necessary
and sufficient optimality conditions:

1 aisi=0, i=1,...,n

2 (ci—aj)& =0, i=1,...,n
3 ya=0,

4 —Qa+by+s—¢&=—e,

5 0<a<c,

6 s$>0,E>0.

Let us introduce some notation. A primal-dual solution (a,b,s,§) is called dual basic feasible
if it satisfies condition 1-5 of the KKT system, but may violate condition 6. For a given dual basic
feasible solution, (a,b,s, &), we partition the index set | = {1,...,n} into three sets o, Ic and Is in
the following way: Vi€ lpsi >0and a; =0,Viel.§ >0anda; =ciand Vie Issi =& =0 and
0 <aj<c. ltiseasy toseethat lgUlcUls=1land lgNlc = lcNls= lgNls = 0. We will refer to Ig
as the primal active set and to lo U I as the dual active set. Let ng = |ls|, no = |lp| and nc = |lo|,

Based on the partition (lo, I¢, Is) we define Qss (Qcs Qsc Qcc, Qos, Qoo) as the submatrix of Q
whose columns are the columns of Q indexed by the set Is (I¢, Is, lc, lo, lo) and whose rows are the
rows of Q indexed by I (Is, l¢, I¢, s, o). We also define ys (Yc, Yo) and as (a¢, 0g) and the subvectors
of y and a whose entries are indexed by Is (I, lo). Cc is the part of vector ¢ indexed by I. and by e
we denote a vector of all ones whose size is determined by the context.

To initiate the algorithm we assume that we have a dual basic feasible solution a®,b,s°, &% and
the corresponding partition (102, 1c%, 1%). For example setting a® =0 and lo = {1,...,n} produces a
starting point for the algorithm.

We know that Vi € lg a; = 0 and Vi € I¢ aj = ¢j. Then if we fix the variables in the dual active
set then our dual problem reduces to

. 1 T T T
Ming, EGSQ$GS+CCQCSCXS—G Og

T T
s.t. YsOs = —Y.C,
0<as<c.

The outline of the algorithm is the following:

Step 0 Given a®, B, s°, &9 find initial Is, lg and .

Step 1 If Is= 0, go to Step 2, otherwise:
(i) Solve
. 1
MiNng, EO(;stOler CTQCSCXS—GTGS 4)
T T
s.t. YsOs = —Y.Cc.

If a finite solution, a3, exists, then set d = a — as, otherwise find d - an infinite descent
direction.

2241

SCHEINBERG

(if) From the current iterate make a step along direction d until for some i € Is a; =0 or
o = ¢; or until solution is reached. a'§+1 is the new point.

(iii) 1f for somei € Is, ak*1 =0,
then update Is:= Is\{i}, lo := loU{i}, k :=k+ 1 and go to the beginning of Step 1.

(iv) If for somei € I, aftt =g,
then update Is:= Is\{i}, Ic := lc U{i}, k := k+ 1 and go to the beginning of Step 1.

(v) If the optimum is reached in step (ii); that is a¥** = a, proceed to Step 2.

Step 2 Partition Ig into Iy and 15 and partition I into I¢ and I¢

(i) Compute s, the subvector of s indexed by 1;:
56 = —Q630|§+1 - Y6B +1-— QIOCCC
and &, the subvector of & indexed by 1.:
&6 = Qo™ +yeB — 1+ Qe
where Qg and Qg (Qgs and Q.) are the submatrices of Qos and Qqc, respectively, (Qcs
and Qcc, respectively) with rows index by lg" ().
(i) Find ip=argmin;{s;: i€ ly’}.
Find ic = argmin;{&; : i € I¢'}.
(iii) Ifsi, > 0and &, > 0 then if Ig’ # lp or I’ # Ic then let g’ :=lg and I¢' := Ic and go to
Step 2(i). Else, the current solution is optimal, Exit.
If Sip < Eic, then Is ;= IsU {Io} and lg:= |o\{i0}.
k:=k+1, goto Step 1.

We will now discuss in details the implementation of the steps of the algorithm.

2.1 Solving the Quadratic Subproblem

When matrix Qg is strictly positive definite then problem (4) has a unique finite solution. This
solution satisfies the KKT conditions:

—stas+y;[3 = —¢ +CZchGs
y;as = _Czy(h
or, in matrix form,
[ul(5)- ()
y$ 0 B _Ccyc

Since we are considering the case when Qg is nonsingular, we can find B by taking the Schur
complement of the above system

(YsQslys)B =y Qxt(—€ + Qsie) — CoYe.

2242

ACTIVE SET METHOD FOR SVMSs

Consider the Cholesky factorization Qg = LSLST and denote Lstysby ry and Ls~1(—e+ cl Qcs)
by ro. Then the solution to (5) is

T T
rif2—Ccy r
=12 % gs=L, (nf—ry).

B

It is often the case, however, that Qg is not strictly positive definite. This can even occur when an
RBF kernel (which is strictly positive definite for distinct data points) is used, if the set Is contains
indices of two identical data points with different labels.

If, due to singularity of Qss, System (5) is underdetermined, this means that problem (4) has
an unbounded solution. In this case Step 1(i) should produce an infinite descent direction for (4).
A direction d is an infinite direction if it satisfies Qgd = 0 and y;d = 0. Depending on the sign
of (—e+ceTch)Td either d or —d is chosen as the infinite descent direction. Variable 3 remains
unchanged in this case. We use the approach for positive semidefinite QP problems described in
Frangioni (1996) and Kiwiel (1989).

We consider several cases.

Casel

Let Qs have only one zero eigenvalue. Then, subject to permutation and without loss of
generality, its Cholesky factorization can be written as

Ls O LST Is
[o] 5]

where Lg € R("s=Dx(%s=1) and Lg € R™~1, Then system (5) can be written as

—LsLsT —Lsls Y1ne-1 O1:ng—1 (—e+ QscCc)l:ns—l
—I;LST —I;Is Yne Op, = (—e+?scCC)ns ;
Y1ine—1 Yns 0 B —CcYe

where, following Matlab notation, y1:n.—1 (d1:n—1, (—€ + QsCc)1:n—1) denote the first ng— 1
elements of vector y (o, (—e+cQsc€)) and yn, (0n,, (—€+ QxCc)n,) denotes the last compo-
nent of this vector.

Let r; = Ls Yy 1 and rp = Ls}(—e 4+ QueCe)1n._1. BY expressing ay.n. 1 in the above
system through ay,, and 3, and by consecutively eliminating o, we obtain

T T
(—lsr1+Yng)B = (—€+4 QsCc)n — Isro.
We now have two cases.

@ If I; ri1 # yn then system (5) still has a unique solution

T
— s
(e+Qs(;Cc)n 7'5 I’2

B = :
—1grs+Yn,
T T T
CcYe+rr2—Prir
Gns = T
—Iyls+Yng
-T
Os = Lg (—lsOn,+riB—r2).

2243

SCHEINBERG

(b) If I; r1+Yn, = 0 then system (5) is singular, hence we are looking for an infinite direction
d.ds= ((Ls‘lls)T, —1)T is such a direction. It can be easily shown that Qsds = 0 from
the form of the factorization of Qg, and it can be easily shown that y;dS = 0 from the
fact that I; r1+4Yyn, =0.

Case 2

Let us now consider the case when Qg has exactly two zero eigenvalues. Then, again w.l.0.g.,
we can write its Cholesky factorization as

LTS O O LST IS;[ISZ
Qs = |$ 00 o 0 0|,
ILooJl o 00

where Ls € R™2%"%=2 | I, € R"™2, The system (5) is always underdetermined in this
case, hence an infinite direction always exists. There are, again, two possible cases.

@ If I;rl # Yn, then the following direction

- P
d=(Ls (Is,—pls),~1,p), where p = Lﬁl
Yne — ls, 11
is an infinite direction. Qgd = 0 follows from the form of the Cholesky factorization
and de = 0 is also easily shown by substitution.

(b) If 13,1 = yn, then
d=(Ls ls,0,—1)

is an infinite direction. This case can be shown similarly to Case 1(b).

Case 3

Finally, let us consider the case when Qs has more than two zero eigenvalues. First, we
observe that this case can only happen in the early stage of the algorithm. Whenever Qg has
more than one zero eigenvalue, then system (5) is underdetermined and an infinite direction
is found during Step 1(i). Hence, during Step 1(ii) a boundary is always encountered. This
means that the set Is gets reduced by one element and the number of zero eigenvalues of
Qs may only decrease or remain the same. Step 1 repeats until Qg has at most one zero
eigenvalue. Hence, the only way that Qss may have more than two zero eigenvalues is if a
starting solution with such Qg matrix is given to the algorithm. Such case arises when a warm
start is used to initiate the algorithm, as described in Subsection 4.3, therefore, we consider
this case here. Let k > 2 be the number of zero eigenvalues of Qg; as before we write, w.l.0.g.,
the factorization of Qg:

Ls 00 07 [Ls Iy I He
_|;looo 0 0 0 O
QSS_ISQOOO 0 0 0 0 |’

He 0 0 0 0 0 0 O

2244

ACTIVE SET METHOD FOR SVMSs

where Ls € Rk | I € R~k and Hs € R™s~*<k=2_ \We generate the infinite direction
for the first ng — k 4 2 variables exactly as it is done in Case 2 and we do not change the last
k — 2 variables. During each application of Case 3 of Step 1 we reduce Is by one elements
until Qg has at most 1 nonzero eigenvalue, and Case 3 does not arise again for that problem.

2.2 Rank-one Updates to Qg

On each iteration of the algorithm the set I5 can decrease by one element only and/or increase by one
element only. Hence, from each iteration to the next, Qs changes by an addition and/or a deletion
of one row and column. Instead of recomputing the Cholesky factorization each time, which would
require O(n2) operations, it is more efficient to keep the Cholesky factorization of Qg and update it
accordingly when a row and a column are added to or deleted from Qs. Each such update requires
only O(n2) operations. These updates can be found in Golub and Van Loan (1996), but we present
them here for completeness.

Increasing ls. Assume first that Qg is nonsingular and Qg = LSLST is its Cholesky factorization.
Let gs € R™* be the new row (column) that is added to Qs. Aside from possible numerical
issues, which we discuss later, gs can be added as the last row and column of Qg. Then the
Cholesky factorization of the new matrix is

Ls Lszl(qs){ZPs
0 (qs)%s+l_(q3)1:ns|‘5 Ls (ds)1n,

where (gs)1:n, are the first ng components of the vector gs and (gs)n.+1 IS its last component.
It is easy to see that obtaining the new factorization requires O(n2) operations.

Y

If Qg is singular, then from the discussion in Case 3 of the previous subsection, it can only
have one nonzero eigenvalue, since Is is increased and hence Step 2 was performed. In this
case we permute the rows and columns of Qg so that the dependent column and row are at the
end of Qs and inserted column and row are placed in the one before last positions. The the
last two rows of Cholesky factorization may need to be updated in a similar manner to above,
however the total work is still O(n2). In case when Qs is nonsingular, but nearly so, it is
sometimes important for numerical stability to use pivoting during its Cholesky factorization
procedure (Fine and Scheinberg, 2001). In such a case refactorization of several rows of Lg
might be required even if only one row and column are added to Q<. However, we did not
encounter such situations in our computational experiments.

Decreasing ls. When I is decreased by one element, then a row and a column are removed from
Qss Which corresponds to removing a row from the Cholesky factor L. If, say, k-th row was
removed from Lg then it is no longer lower triangular. In fact it is nearly lower triangular,
except for the elements in positions (j,j+1) for j =k+1,...,ns— 1. To zero out these
elements we apply Givens rotations (Golub and Van Loan, 1996) to the new matrix Lg; in
other words we multiply Lg on the right by orthogonal matrices of the form

1 .- 0 00

o
o
wn
o
o

SCHEINBERG

Each such matrix multiplication takes O(ns) operations and zeros out one off-diagonal ele-
ments, hence we need O(ns— k) such multiplications, which results in the total work of O(n2)
to update the Cholesky factorization of Qs Wwhen an elements is removed from I,

Remark 1 In Frangioni (1996) there are efficient updates for the vectors r; and r,, that we
introduced in Subsection 2.1. These vectors are results of backsolves with the Cholesky factors
of Qg and given right hand side vectors. In the case of Frangioni (1996) the right hand side
vectors remain the same throughout the algorithm and only the Cholesky factors change. In
our case this is true only for ry but not for r,, which changes each time the set I changes.
These updates can also improve the efficiency of the algorithm when these backsolves have a
noticeable contribution to the overall workload of the algorithms. Since this does not occur
very frequently we do not get into further details in this paper.

Remark 2 If ng is very large and is comparable to n then even storing and updating the
Cholesky factors of Qs become too expensive compared to solving the entire problem. Our
method is not practical on such problems. However, it is questionable whether such problems
should ever be solved, since the resulting classifiers is most likely overfitting the data and its
generalization properties are expected to be very poor. 3

Updating I Finally we discuss a trivial but useful updates to Qg:Cc, QocCe and QccCc When the set
Ic is either increased or decreased by one element. We maintain vector Q.. throughout the
algorithm, when index i is added to I then a ¢; multiple of the i-th column of Q is added to
QcCc. If index i is removed from I, then such a vector is subtracted from QcCc.

3. Comparison to SYM ot

In this section we compare our implementation of the proposed algorithm, which we call SVM-
QP, to SVM'9", SVM-QP currently is implemented in Fortran 77, although a C++ version is
under development. SVM-QP is an open source software and is available from the www.coin-or.org
website. We used a high-end IBM RS/6000 workstation in our experiments. We made the same
amount of memory available to both methods. Just as in SVM!''9" the sparsity of the examples is
exploited by SVM-QP during the kernel evaluations. Unlike SMO (Platt, 1999) there is no special
handling for the case of linear kernel.
We used the following data sets in our experiments:

e Letter-G: The Letter Image Recognition data set from the UCI Repository (Blake and Merz,
1998) - A large number of black-and-white character images were randomly distorted to pro-
duce a file of 20,000 unique stimuli. Each stimulus was converted into 16 primitive numerical
attributes (statistical moments and edge counts) which were then scaled to fit into a range of
integer values from 0 through 15. We examined performances on an arbitrary binary classifi-
cation problem which was set to separate the letter “G” from all the other letters.

3. See for example Cristianini and Shawe-Taylor (2000), Theorem 4.25, for the generalization power of compression
schemes, and the discussion right after and in Chapter 6.

2246

ACTIVE SET METHOD FOR SVMSs

e OCR: USPS (United States Postal Service) data set of hand written digits. This data set
comprises 7291 training and 2007 test patterns, represented as 257 dimensional vectors with
entries between 0 and 255. TO(T9) stand for the binary classification problem in which the
target is the digit 0(9) vis. the all the other digits.

e Web and Adult* : We used the tasks that was compiled by Platt and available from the SMO
home page®

— Adult - The goal is to predict whether a household has an income greater than $50000.
After discretization of the continuous attributes, there are 123 binary features, with ~ 14
non-zeros per example.

— Web - A text classification problem with binary representation based on 300 keyword
features. This representation is extremely sparse. On the average there are only ~ 12
non-zero features per example.

For both problems we chose the test cases with half of the overall available example. We did
S0 to enable to complete many computational tests in a reasonable amount of time. We also
present a table with the results of comparing only the runtime of SVM-QP and SVM'9 on
the full test sets for these two problems.

e Abalone: The Abalone data set from the UCI Repository (Blake and Merz, 1998). Since,
we were not interested in evaluating generalization performances, we fed the training al-
gorithm with increasing subsets up to the whole set (of size 4177). The gender encoding
(male/female/infant) was mapped into {(1,0,0),(0,1,0),(0,0,1)}. Then data was scaled to lie in
the [-1,1] interval.

e Spam: This is another data set from the UCI Repository. It was created by M. Hopkins, E.
Reeber, G. Forman and J. Suermondt of Hewlett-Packard Labs. It contains 4601 examples of
emails roughly 39% of which are classified as spam. There are 57 attributes for each example,
most of which represent how frequently certain words or characters appear in the email.

For each data set we used a selection of kernels and parameters to demonstrate how the perfor-
mance of the methods is affected by ng - the number of support vectors at the margin, and n - the
number of support vectors at the upper bound. For the same reason we use various values of C. We
use RBF kernel with parameter . We also use the linear kernel for a Letter-G and Spam problems
and polynomial kernel of degree 5 for the Abalone data set. In the tables of results we indicate
the kernel and the value of C in the name of the test case. For instance web _100_10 stands for the
web data set with parameter o = 100 and C = 10. Name letter_lin_100 stands for the Letter-G set
with linear kernel and C = 100, finally abalone_p5_100 stands for the Abalone set with polynomial
kernel of degree 5 and C = 100.

We provide two columns of CPU times for SVM!'!9™, The first one, SVM!'9" | contains the time
of the runs with default accuracy 10-3. The second column, SVM'E'ght contains the CPU time of the
runs with the accuracy set to 10~ which is the accuracy of SVM-QP. Both algorithms apply the
accuracy tolerance to the constraints —Qa + by +s— & = —e. Specifically, SVM-QP applies a given
tolerance € on Step 2(iii) of the algorithm (see Section 2) to determine if s;, > —€ and &;_ > €.

4. Original data set is from the UCI Repository (Blake and Merz, 1998).
5. http://www.research.microsoft.com/jplatt/smo.html

2247

SCHEINBERG

Name n k | ns | no | svMigt [symI9Tt [svm-Qp
web_100_100 | 24692 | 300 | 980 | 453 380 918 65
web_40_10 24692 | 300 | 1037 | 568 241 377 68
web_40_100 24692 | 300 | 1214 | 313 368 685 84
web_100_10 24692 | 300 | 679 | 835 203 358 40
letter_100_100 | 20000 | 16 | 241 | 39 19 26 3
letter_40_1 20000 | 16 | 250 | 266 6 7 5
letter 40 100 | 20000 | 16 | 346 | 8 11 16 4
letter 100_10 | 20000 | 16 | 193 | 146 10 15 4
letter_40_10 20000 | 16 | 320 | 57 8 10 4
letter lin_100 | 20000 | 16 | 17 | 1056 | 1052 1190 35
0cr9_256_100 | 7291 | 256 | 378 | 0 13 13 5
ocr0 256100 | 7291 | 256 | 309 | O 8 9 4
abalone4.100 | 4177 | 10 | 64 | 1863 | 135 198 5
abalone_p5.100 | 4177 | 10 | 304 | 1520 - - 22
spam_300_100 | 4601 | 57 | 1417 | 181 90 - 64
spam_lin_100 | 4601 | 57 | 58 | 822 - - 11
adult_100_1 16100 | 123 | 97 | 5996 | 153 154 81
adult_100_100 | 16100 | 123 | 871 | 4823 | 515 856 175
adult 2001 16100 | 123 | 168 | 5785 | 159 152 85
adult 200_100 | 16100 | 123 | 483 | 5219 | 332 447 140
adult 50_10 16100 | 123 | 615 | 5143 | 207 243 120

Table 1: Performance comparison of SVM-QP and SVM'19,

We chose CPU time (in seconds) as the most reasonable performance measure in our setting.
The “-” in the table indicates the failure of SVM'9 on that problem.

Table 1 contains the results for the test problems that we examine in this paper. As we can see,
SVM-QP is faster than even the lower accuracy SVM''9" on all of the problems. It is faster by at
least a factor of 2 on almost all of the problems and by a factor of 5 or more on a few problems.

In Table 2 we present the comparison of SVM-QP and SVM' 9 on the full test sets for adult
and web. These results were obtained by Hans Mittleman, at Arizona State University using a high-
end Unix workstation. The “*” in the last column of the last row indicates that SVM-QP ran out
of memory, since it was trying to store an ng x ng matrix, with ns &~ 10000. The stopping tolerance
was set to be 106 for both codes, but it is interesting to note that the resulting support vector sets
differed significantly. For example, the number of active support vectors for web_10_100 reported
by SVM-QP was 3446, while the same number reported by SVM'9" was 4025. This discrepancy
is due to the fact that SVM"'9" converges to the optimal active set asymptotically, while SVM-QP
steps from one feasible active set to another in an “exact” manner, until the optimal is found.

4. Implementation | ssues

Now we will discuss some implementation choices.

2248

ACTIVE SET METHOD FOR SVMSs

Name n k | ne ne | SVMI9T [SvM-QP
web 1000100 | 49749 | 300 | 297 | 1702 694 92
web_100_100 | 49749 | 300 | 1404 | 905 3581 174
web_10_100 49749 | 300 | 3446 | 527 1354 715
adult_1000_100 | 32561 | 123 | 143 | 11361 | 937 278
adult_100_100 | 32561 | 123 | 1317 | 9879 | 5685 460
adult_10_100 | 32561 | 123 | 9959 | 3200 | 14466 *

Table 2: Performance comparison of SVM-QP and SVM'19™ on large data sets.

4.1 Selecting the Incoming Element of Ig

In this subsection we discuss the implementation of Step 2(i). First of all we note that the compu-
tational cost of Step 2(i) depends on whether the kernel values are available in the memory or have
to be computed. We need O(|ls|(|lg| + |I¢])) kernel values at each iteration when Step 2 is invoked.
Specifically we need the elements of matrix Q whose column indices are in Is and whose row indices
are in I and ;.

We note that we always store the ng x ng matrix Qs. This can be a problems when ng is large.
Our algorithm requires storage of the Cholesky factor of Qg, hence even if we do not store Qg
itself, the storage requirement can be reduced at most by half. In our experiments the size of Qg
and its Cholesky factor was reasonable. For extremely large problems a different implementation
may be necessary which solves the linear system in Step 1 by an iterative solver.

To reduce the computational cost it is best to be able to store the entire Qg matrix (that is the
submatrix of Q whose column indices are in Ig). In some cases this might be prohibitively expensive
in terms of memory. In our experiments we were able to store Qs in the space not exceeding 400MB.
At the end of this subsection we will discuss the memory saving version of our code.

Let us assume for now that matrix Qg is available. We will consider various ways of reducing
the number of elements in 1) and I} at each repetition of Step 2(i). One simple way to achieve
this is to compute the elements of s; and & until a negative element is encountered, hence, not
looking for the maximum violation, but for any violation. This may reduce the per-iteration time,
but greatly increases the number of iterations, as has been shown by the extensive practice of the
Simplex method in linear programming (Vanderbei, 2001). We will demonstrate this in the section
on the incremental mode, since the incremental mode lacks the ability to “look ahead” and select
the maximum violated constraint. We conclude that it is important to select the most negative or
nearly the most negative element of s; and & during Step 2.

We use the following concepts, common in LP literature. The primal slack and surplus variables
sj and &; are the reduced costs of the associated dual variable a;j, whose value is currently at a bound.
Computing the values of the reduced costs (recall that for each i only one of the reduced costs is not
equal to zero) is called pricing of the appropriate dual variable. Hence it is important to price all
variables with indices in Iy’ and I’ and maintain these sets in such a way that they contain indices
of substantially negative reduced costs.

The efficiency of the large-scale SVM training relies heavily on the fact that at the optimal
solution the cardinality of I is often much smaller than the total number of data points n. Hence, the
cardinalities of I and, possibly, I are expected to be large in comparison to Is. If in Step 2(i) I’ and

2249

SCHEINBERG

I’ are large, while Is is not very small, then the complexity of this step, which is O(|Is| (|15 + [I¢])),
might become too high.

Let us assume for a moment that we know some of the indices that at optimality belong to I¢
and lo. Then we can place these indices in I and I at the beginning of each Step 2. This can
result in substantial savings in the run time, since Step 2(i) requires O(|ls|(|l5| + |I¢])) operations
and [1§] = |lo| — [lo”| and [I{] = |Ic| — |Ic”|. When all the reduced costs of variables whose indices
are in lg’ and 1¢’ are nonnegative, then so are the reduced costs of variables whose indices are in Io”
and I.”, due to our assumption about these two subsets.

Naturally, we usually do not know which indices will be in Iy and I at optimality, however,
to reduce the workload at each iteration we try to guess which indices are the most likely ones to
end up in lp and I; at optimality. We place such indices in 1g” and 1" sets, respectively. If we
guess well, then after all the reduced costs for 1o’ and 1" become nonnegative, hopefully, only a few
reduced costs for Io” and I.” are negative. Here we see a trade-off: if we select 15" and 1" too small,
then the computational saving is insignificant, and if we select Io” and I.” too large, then some of
large negative reduced costs might be missed and the overall number of iterations might increase.
Moreover, once all the dual variables with indices in 1o’ and I are priced, then we have to price all
variables with indices in " and I.”, which are large. So it is important to choose 1" and I¢” in such
a way that pricing the variables in ly” and I¢” does not occur too many times.

We will describe two possible strategies for maintaining sets lg’, I¢/, 1o” and I¢”. One strategy
is very simple and is called shrinking in SVM literature (Joachims, 1999). At each iteration an
index is placed in 1o” or 1" if its appropriate reduced cost remained nonnegative for a given number
of consecutive iterations (say 100). According to this strategy the sets I’ and I are large during
the earlier iterations and become gradually smaller during the course of the algorithm. This nicely
correlates with the fact that the size of Ig is very small in the earlier iterations Is gets gradually larger
during the course of the algorithm. It is often the case that maximum of |Is|(|15| + |I¢]) over all
iteration is 3 or 4 times smaller than max{|ls|} x max{(|l5| +|1¢|)}. At the end one still has to price
all the dual variables for I” and I.”, but only a few of such iterations are usually needed.

The second strategy is called sprint in Linear Programming literature and was introduced by
Forrest (1989). Sprint (sometimes also called sifting) has been proven to be very effective in practice
for problems that contain large number of inactive constraints (see Bixby et al., 1992). Following the
sprint strategy we select a relatively small subset of dual variables with the smallest (including the
most negative) reduced costs and we form g’ and I’ from the indices of those variables. Once the
problems was solved for ly" and I¢’ the remaining constraints are priced again and the next relatively
small sets of candidates are selected. Pricing all remaining variables and choosing the next small
subset is called a major iteration. According to this strategy 1o’ and I¢" are always kept small, but
the sets lo” and 1" have to be considered regularly throughout the algorithm. As long as the ratio of
major iterations to the number of “cheap” iterations is small, the implementation will be efficient.

Table 3 below shows that sprint outperforms shrinking in most cases, especially on larger, more
difficult problems.

4.2 Memory Saving Version

We now discuss the memory saving version. SVM'9 has an elegant scheme, where the kernel
values are stored in cache according to their most recent usage. The size of the cache is dictated by

2250

ACTIVE SET METHOD FOR SVMSs

Name n k Ng Ne | SVM-QPg, | SVM-QP
web_100_100 24692 | 300 | 980 | 453 537 65
web_40_10 24692 | 300 | 1037 | 568 281 68
web_40_100 24692 | 300 | 1214 | 313 416 84
web_100_10 24692 | 300 | 679 | 835 124 40
letter_.100_100 | 20000 | 16 | 241 39 6 3
letter 40_1 20000 | 16 | 250 | 266 6 5
letter_40 _100 20000 | 16 | 346 8 7 4
letter_100_10 20000 | 16 | 193 | 146 6 4
letter_40_10 20000 | 16 | 320 57 7 4
letter_lin_100 20000 | 16 17 | 1056 20 35
0cr9.256_100 7291 | 256 | 378 0 7 5
ocr0_256_100 7291 | 256 | 309 0 6 4
abalone_4_100 4177 | 10 64 | 1863 4 5
abalone_p5.100 | 4177 | 10 | 304 | 1520 31 22
spam_300_100 4601 | 57 | 1417 | 181 80 64
spam_lin_100 4601 | 57 58 822 15 11
adult_100_1 16100 | 123 | 97 | 5996 89 81
adult_100_100 | 16100 | 123 | 871 | 4823 253 175
adult_200_1 16100 | 123 | 168 | 5785 95 85
adult_200_.100 | 16100 | 123 | 483 | 5219 107 140
adult_50_10 16100 | 123 | 615 | 5143 120 120
Table 3: Sprint vs. Shrinking.

2251

SCHEINBERG

Name n k Ng Ne SVM-QP | SVM-QPrem SVM',{%.“%
web_100_100 24692 | 300 | 980 | 453 65 428 1097
web_40_10 24692 | 300 | 1037 | 568 68 447 553
web_40_100 24692 | 300 | 1214 | 313 84 524 1201
web_100_10 24692 | 300 | 679 | 835 40 230 348
letter_.100_.100 | 20000 | 16 | 241 39 3 14 26
letter_40_1 20000 | 16 | 250 | 266 5 17 9
letter_40 _100 20000 | 16 | 346 8 4 17 15
letter_100_10 20000 | 16 | 193 | 146 4 14 14
letter_40_10 20000 | 16 | 320 57 4 20 11
letter_lin_100 20000 | 16 17 | 1056 35 72 1052
0cr9.256_100 7291 | 256 | 378 0 5 24 13
ocr0_256_100 7291 | 256 | 309 0 4 13 9
abalone_4_100 4177 | 10 64 | 1863 5 13 78
abalone_p5_100 | 4177 | 10 | 304 | 1520 22 44 -
adult_100_1 16100 | 123 | 97 | 5996 81 171 228
adult_100_100 | 16100 | 123 | 871 | 4823 175 624 1541
adult_200_1 16100 | 123 | 168 | 5785 85 174 253
adult_200_100 | 16100 | 123 | 483 | 5219 140 173 1360
adult_50_10 16100 | 123 | 615 | 5143 120 355 593

Table 4: Comparison for memory saving mode.

the user. In the experiments discussed above we allowed the size of the cache to be 500MB, which
is at least as much memory as was used by SVM-QP.

We did not implement such sophisticated memory handling mechanism in our code. Luckily
sprint provides a natural setting for a memory saving mode. Instead of storing the whole Qs we
only store the elements of Q whose columns are in Is and whose rows are in IsU lgU ;. The size
of 15U ¢ can be regulated according to the available storage space. At each major iteration all the
elements of Qs whose row indices are in 17 U1 have to be recomputed. This can be a costly step.
To further try to reduce the computational cost of that step, we apply shrinkingto I U1{. That is,
if during a few consecutive major iterations a certain reduced cost remained nonnegative then the
appropriate variable is removed from 1§ U1{ and is ignored until the later stage of the algorithm. In
Table 4 below we present our results. We chose the size of I and I, to be 50 each, this way the total
storage for the elements of Qs (including Qss) did not exceed 20MB. We compare our CPU time to
that of SVM'9" \with 20MB of cache limit. We also list the CPU times for the version of SVM-QP
that stores the full Qs, to demonstrate the trade-off between the CPU time and memory requirement.

4.3 Warm Start

One of the significant advantages of the active set methods over the interior point methods is that
the former can benefit very well from warm starts. For instance, if some additional labeled training
data become available, the old optimal solution is used as a starting point for the active set algorithm

2252

ACTIVE SET METHOD FOR SVMSs

and the new optimal solution is typically obtained within a few iterations. This will be explored in
more detail in the subsection on the incremental mode of our algorithm.

Another situation where warm start arises, is when one wants to explore the path of optimal
solutions for various values of penalty parameter C. In Hastie et al. (2004) the whole solution path
is generated using an active set method similar to ours. There some differences between the two
methods, however. The method in Hastie et al. (2004) is a parametric active set method, which in
practice is usually slower than a purely primal or dual active set method, such as ours. Also their
method requires that at each iteration an optimal solution of a parametric problem is available, hence
there does not seem to be any possibility to use sprint or shrinking. It remains to be seen whether
a good implementation of the algorithm in Hastie et al. (2004) can match the performance of our
algorithm.

Our algorithm is not suitable directly for generating the entire parametric path, but using the
warm starts one can easily use it to generate solutions for a selection of the values of parameter C.

The warm starts can also be used when one wants to explore different values of kernel parame-
ters, but the efficiency of such application needs a separate computational study.

Here we investigate the use of warm start to increase the efficiency of the algorithm itself. It has
been noticed (see, for example, Fine and Scheinberg, 2001) that for many SVM problems the matrix
Q has eigenvalues decaying to zero. It was suggested in Fine and Scheinberg (2001) to use a low
rank approximation of Q and solve the approximate problem with an interior point method using
product form Cholesky factorizations, which benefit from the low rank of Q. Such approximations,
however, are not always very accurate. The idea we explore here is to use the solution of the
approximate problem to warm start the active set method.

If k is the rank of the approximation of Q, then per iteration complexity of the IPM is O(nk?).
There is a trade-off in choosing the right value for k: if k is chosen to be too large, then the IPM will
not be efficient and if k is too small then the solution produced by the IPM is too far from the optimal
solution of the true problem. We chose k = 50, which is reasonably small to make the IPM part fast
and sufficiently large to hope for a good warm start. The results in Table 5 are not as dramatic as
one might hope. Often the active set method itself is so fast that it outperforms the IPM even for
k = 50, for instance on letter x_x problems. In other cases the approximation does not produce a
good enough warm start. There also cases where Q itself has very low rank and, hence, the problem
can be solved to optimality just by the IPM; see letter_lin_100, for instance. There are examples
however, where the combined method achieves better timing results than either method, when used
separately. This seem to happen for the problems with relatively large I sets, such as the adult_x_x
problems. We have to note that we are using a rather crude implementation of the IPM for SVM.
One might achieve better results with a more efficient implementation of an IPM.

4.4 Incremental Mode

Incremental mode is used when the training data is available one point (or a few points) at a time.
Our algorithm applies naturally and almost without change to the incremental mode. Whenever
more data points become available, their indices get placed in set 1o, then Step 2(i) is applied to price
the corresponding variables, and if a negative reduced cost is found, then the algorithm proceeds in
the usual manner. The only difference with the batch case (when all data is available at once) is that
the pricing is Step 2(i) cannot be applied to the data that is not available yet. Hence, the constraints

2253

SCHEINBERG

Name n k Ns ne | SVM-QP, | SVM-QP
web_100_100 24692 | 300 | 980 | 453 113 65
web_40_10 24692 | 300 | 1037 | 568 112 68
web_40_100 24692 | 300 | 1214 | 313 142 84
web_100_10 24692 | 300 | 679 | 835 82 40
letter_100_100 | 20000 | 16 | 241 39 36 3
letter 40_1 20000 | 16 | 250 | 266 38 5
letter_40 _100 20000 | 16 | 346 8 49 4
letter_100_10 20000 | 16 | 193 | 146 33 4
letter 40_10 20000 | 16 | 320 | 57 44 4
letter_lin_100 20000 | 16 17 | 1056 7 35
ocr9_256_100 7291 | 256 | 378 0 21 5
ocr0_256_100 7291 | 256 | 309 0 15 4
abalone_4_100 4177 | 10 64 | 1863 5 5
abalone_p5.100 | 4177 | 10 | 304 | 1520 10 22
spam_300_100 4601 | 58 | 1417 | 181 40 64
spam_lin_100 4601 | 58 58 822 9 11
adult 1001 16100 | 123 | 97 | 5996 66 81
adult_ 100100 | 16100 | 123 | 871 | 4823 125 175
adult 2001 16100 | 123 | 168 | 5785 68 85
adult 200100 | 16100 | 123 | 483 | 5219 92 140
adult 5010 16100 | 123 | 615 | 5143 95 120

Table 5: Warm starting SVM-QP by an IPM.

2254

ACTIVE SET METHOD FOR SVMSs

Name n k Ng ne | SVM-QP | SVM-QPjnc
web_100_100 24692 | 300 | 980 | 453 65 1388
web_40_10 24692 | 300 | 1037 | 568 68 1017
web_40_100 24692 | 300 | 1214 | 313 84 1190
web_100_10 24692 | 300 | 679 | 835 40 1101
letter_100_.100 | 20000 | 16 | 241 39 3 24
letter_40_1 20000 | 16 | 250 | 266 5 37
letter_40 _100 20000 | 16 | 346 8 4 34
letter_100_10 20000 | 16 | 193 | 146 4 24
letter_40_10 20000 | 16 | 320 57 4 39
letter_lin_100 20000 | 16 17 | 1056 35 43
ocr9_256_100 7291 | 256 | 378 0 5 27
ocr0_256_100 7291 | 256 | 309 0 4 16
abalone_4_100 4177 | 10 64 | 1863 5 13
abalone_p5.100 | 4177 | 10 | 304 | 1520 22 137
spam_300_100 4601 | 58 | 1417 | 181 64 414
spam_lin_100 4601 | 58 58 822 11 647
adult_100_1 16100 | 123 | 97 | 5996 81 372
adult_100_.100 | 16100 | 123 | 871 | 4823 175 5882
adult_200_1 16100 | 123 | 168 | 5785 85 330
adult_200_.100 | 16100 | 123 | 483 | 5219 140 1819
adult_50_10 16100 | 123 | 615 | 5143 120 2274

Table 6: Incremental mode.

with sufficiently negative reduced costs are not included, until their data points are added to the
problem. As we show in Table 6, this results in a dramatic increase of CPU time.

Notice, that the sifting does not make sense in the incremental mode, since it selects the sets I’
and ¢’ based on the entire data set. However, shrinking can be easily applied, since its selection of
lo’ and I’ is only based on the past behavior of each individual constraint.

5. Concluding Remarks

Traditional active set methods for convex QPs were considered impractical for large-scale SVM
problems. However, they have theoretical appeal for many reasons. In this paper we studied in
details an active set method SVM and show that an efficient implementation can outperform other
state-of-the-art SVM software.

Furture direction of this work lies in a more comprehensive theoretical analysis of the behavior
and complexity of the method for SVM problems.

2255

SCHEINBERG

Acknowledgments

The author is grateful to Alexandre Belloni for pointing out the paper (Frangioni, 1996) for handling
the singular reduced QP system as well as for many fruitful discussions. The author is also grateful
to John Forrest for suggesting the sprint technique.

References

J. Balcazar, Y. Dai, and O Watanabe. Provably fast trainning algorithms for support vector machines.
In Proc. 1st IEEE International Conference on Data Mining, pages 43-50. IEEE, 2001.

R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shanno. Very large-scale lin-
ear programming: A case study in combining interior point and simplex methods. Operations
Research, 40(5):885-897, 1992.

C. L. Blake and C. J Merz. UCI repository of machine learning databases, 1998. URL
http://www. ics.uci.edu/ ~m earn/ M.Repository. htni .

B. Boser, 1. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In
D. Haussler, editor, Proceedings of the 5th Annual ACM Workshop on Computational Learning
Theory, pages 144-152. ACM Press, 1992.

G. Cauwenberghs and T. Poggio. Incremental and decremental support vector machine learning. In
Todd K. Leen, Thomas G. Dietterich, and Volker Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 409-415. MIT Press, 2001.

N. Cristianini and J. Shawe-Taylor. An Introductin to Support Vector Macines and Other Kernel-
Based Learning Methods. Cambridge University Press, 2000.

M. C. Ferrisand T. S. Munson. Interior point methods for massive support vector machines. Techni-
cal Report 00-05, Computer Sciences Department, University of Wisconsin, Madison, W1, 2000.

S. Fine and K. Scheinberg. Efficient svm training using low-rank kernel representations. Journal of
Machine Learning Research, 2:243-264, 2001.

R. Fletcher. A general quadratic programming algorithm. Journal of the Institute of Mathematics
and Its Applications, pages 76-91, 1971.

J. J. Forrest. Mathematical programming with a library of optimization subroutines. Presented at
the ORSA/TIMS Joint National Meeting, 1989.

A. Frangioni. Solving semidefinite quadratic problems within nonsmooth optimization algorithms.
Computers in Operations Research, 23(11):1099-1118, 1996.

D. Goldfarb. Extension of newton’s method and simplex method for solving quadratic problems. In
F. A. Lootsma, editor, Numerical Methods for Nonlinear Optimization, pages 239-254. Academic
Press, London, 1972.

D. Goldfarb and A. Idnani. A numerically stable dual method for solving strictly convex quadratic
programms. Mathematical Programming, 27:1-33, 1983.

2256

ACTIVE SET METHOD FOR SVMSs

G. H. Golub and Ch. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
Baltimore and London, 3rd edition, 1996.

T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path. Journal of Machine
Learning Research, 5:1391-1415, 2004.

T. Joachims. Making large-scale support vector machine nlearning practicle. In B. Scholkopf, C. C.
Burges, and A. J. Smola, editors, Advances in Kernel Methods, chapter 12, pages 169-184. MIT
Press, 1999.

L. Kaufman. Solving the quadratic programming problem arising in support vector classification.
In B. Schoélkopf, C. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods Support
Vector Learning, pages 147-168. MIT Press, 1998.

K. C. Kiwiel. A dual method for certain positive semidefinite quadratic programming problems.
SIAM Journal on Scientific and Statistical Computing, 10:175-186, 1989.

J Nocedal and S. Wright. Numerical Optimization. Springer-Verlag, 1999.

E. Osuna, R. Freund, and F. Girosi. An improved training algorithm for support vector machines. In
Proceedings of the IEEE Neural Networks for Signal Processing VII Workshop, pages 276-285.
IEEE, 1997.

J. C. Platt. Fast trining support vector machines using sequential mininal optimization. In
B. Scholkopf, C. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods, chapter 12,
pages 185-208. MIT Press, 1999.

R. Vanderbei. Linear Programming: Foundations and Extensions. Sringer, New York, NY, 2nd
edition, 2001.

2257

