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Abstract

We discuss the problem of learning to rank labels from a rahled feedback associated with
each label. We cast the feedback as a preferences graph thieen@des of the graph are the
labels and edges express preferences over labels. We taeklearning problem by defining a
loss function for comparing a predicted graph with a feelllgaaph. This loss is materialized by
decomposing the feedback graph into bipartite sub-gra@festhen adopt the maximum-margin
framework which leads to a quadratic optimization probleithlinear constraints. While the size
of the problem grows quadratically with the number of theewuh the feedback graph, we derive
a problem of a significantly smaller size and prove that iiatt the same minimum. We then
describe an efficient algorithm, called SOPOPO, for sol¥irggreduced problem by employing a
soft projection onto the polyhedron defined by a reduced fsebmstraints. We also describe and
analyze a wrapper procedure for batch learning when melgpphs are provided for training. We
conclude with a set of experiments which show significantrowpments in run time over a state
of the art interior-point algorithm.

1. Introduction

To motivate the problem discussed in this paper let us consider the followpigcation. Many
news feeds such as Reuters and Associated Press tag each newshayidiandle with labels
drawn from a predefined set of possible topics. These tags arearsexlifing articles to different
targets and clients. Each tag may also be associated with a degree of celestien expressed
as a numerical value, which reflects to what extent a topic is relevant tcethg article on hand.
Tagging each individual article is clearly a laborious and time consuming fasthis paper we
describe and analyze an efficient algorithmic framework for learningrdading preferences over
labels. Furthermore, in addition to the task described above, our learppagadus includes as
special cases problems ranging from binary classification to total orddicgion.
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SHALEV-SHWARTZ AND SINGER

We focus on batch learning in which the learning algorithm receives & s&iiming examples,
each example consists of an instance and a target vector. The goalle&thmg process is to
deduce an accurate mapping from the instance space to the target $hadarget space’ is a
predefinedset of labels. For concreteness, we assumedthat{1,2,... k}. The prediction task
is to assert preferences over the labels. This setting in particular ¢jeesrthe notion of a single
tag or labely € o = {1,2,... k}, typically used in multiclass categorization tasks, to a full set of
preferences over the labels. Preferences are encoded by aywedis whereyy > yy means that
labely is more relevant to the instance than laigel The preferences over the labels can also be
described as a weighted directed graph: the nodes of the graph arbdledad weighted edges
encode pairwise preferences over pairs of labels. In Fig. 1 we givgrdph representation for the
target vecto(—1,0,2,0, —1) where each edge marked with its weight. For instance, the weight of
the edge3,1) isys —y1 = 3.

The class of mappings we employ in this paper is the set of linear functionge Wis func-
tion class may seem restrictive, the pioneering work of Vapnik (1998kalelagues demonstrates
that by using Mercer kernels one can employ highly non-linear predjatatked support vector
machines (SVM) and still entertain all the formal properties and simplicity of fipeadictors. We
propose a SVM-like learning paradigm for predicting the preferenues labels. We generalize
the definition of the hinge-loss used in SVM to the label ranking setting. Ougrgbred hinge
loss contrasts the predicted preferences graph and the targeepmfegraph by decomposing the
target graph into bipartite sub-graphs. As we discuss in the next setttisrdecomposition into
sub-graphs is rather flexible and enables us to analyze severalysigvitefined loss functions in a
single unified setting. This definition of the generalized hinge loss lets usipe$sarning problem
as a quadratic optimization problem while the structured decomposition leadsefficzent and
effective optimization procedure.

The main building block of our optimization procedure is an algorithm whichoper$ fast and
frugal soft projectionsonto arpdyhedron and is therefore abbreviated SOPOPO. Generalizing the
iterative algorithm proposed by Hildreth (1957) (see also Censor anidZ€1997)) from half-space
constraints to polyhedra constraints, we also derive and analyze divéelgorithm which on each
iteration performs a soft projection onto a single polyhedron. The endt ies fast optimization
procedure for label ranking from general real-valued feedback.

The paper is organized as follows. In Sec. 2 we start with a formal defirfiour setting and
cast the learning task as a quadratic programming problem. We also malencefeto previous
work on related problems that are covered by our setting. Our efficmimhization procedure for
the resulting quadratic problem is described in two steps. First, we priesBat. 3 the SOPOPO
algorithm for projecting onto a single polyhedron. Then, in Sec. 4, wigaland analyze an iterative
algorithm which solves the original quadratic optimization problem by suieesstivations of
SOPOPO. Experiments are provided in Sec. 5 and concluding remarfis@ngn Sec. 6.

Before moving to the specifics, we would like to stress that while the learnikglissussed in
this paper is well rooted in the machine learning community, the focus of the e design
and analysis of an optimization apparatus. The readers interested in #uedsatlem of learning
preferences, including its learning theoretic facets such as generalipadiperties are referred for
instance to (Cohen et al., 1999; Herbrich et al., 2000; Rudin et al., 2@5wal and Niyogi, 2005;
Clemenon et al., 2005) and the many references therein.

1568



SOPOPO - 8FTPROJECTIONS ONTOPOLYHEDRA

y=2
y=0
y=-1

Figure 1: The graph induced by the feedbgek (—1,0,2,0,—1).

2. Problem Setting

In this section we introduce the notation used throughout the paper andlfpidescribe our prob-
lem setting. We denote scalars with lower case letters ¢eanda), and vectors with bold face
letters (e.gx anda). Sets are designated by upper case Latin letters (e.g. E) and setloyf betsl
face (e.g.E). The set of hon-negative real numbers is denote®by For anyk > 1, the set of
integers{1,...,k} is denoted byk]. We use the notatiofa) , to denote the hinge function, namely,
(a), = max{0,a}.

Let x be an instance domain and ket = [k] be a predefined set of labels. A target for an
instancex € x is a vectory € R¥ whereyy >y, means thay is more relevant ta thany’. We also
refer toy as a label ranking. We would like to emphasize that two different labels mag #ia
same rank, that isy =y, whiley #y'. In this case, we say thgtandy’ are of equal relevance to
X. We can also describgas a weighted directed graph. The nodes of the graph are labeled by the
elements ofk] and there is a directed edge of weight- ys from noder to nodesiff y, > ys. In
Fig. 1 we give the graph representation for the label-ranking vegctof—1,0,2,0,—1).

The learning goal is to learn a ranking function of the farmx — R which takesx as an
input instance and returns a ranking vedtor) € R¥. We denote byf, (x) therth element of(x).
Analogous to the target vectgt,we say that labe}is more relevant than labgl with respect to the
predicted ranking iffy(x) > fy/(x). We assume that the label-ranking functions are linear, namely,

fr(X) =wy-x

where eachw;, is a vector inR" andx C R". As we discuss briefly at the end of Sec. 4, our al-
gorithm can be generalized straightforwardly to non-linear rankingtiome by employing Mercer
kernels (Vapnik, 1998).

We focus on a batch learning setting in which a trainingset{(x',y)}", is provided. Thus,
each example consists of an instarte x and a label-ranking € RK. The performance of a label-
ranking functionf on an exampléx,y) is evaluated via a loss functigit R x RK — R. Clearly,
we want the loss of a predicted ranking to be small if it expresses similarprefes over pairs as
the given label-ranking. Moreover, we view the differenge- ys for a pair of labelg ands as an
encoding of the importance of the orderingraihead ofk. That is, the larger this difference is the
more we prefer overs. We view this requirement as a lower bound on the difference betdyéen
and fs(x). Formally, for each pair of labels,s) € > x 9 such thaty, > ys, we define the loss df

1569



SHALEV-SHWARTZ AND SINGER

with respect to the pair as,

s(f(X),y) = (W —Ys) — (fr(x) = fs(X))), - 1)

The above definition of loss extends the hinge-loss used in binary clasisifiproblems (Vapnik,
1998) to the problem of label-ranking. The logg reflects the amount by which the constraint
fr(X) — fs(X) > yr — ys is not satisfied. While the construction above is defined for pairs, odr goa
though is to associate a loss with thgtire predicted ranking and not a single pair. Thus, we need
to combine the individual losses over pairs into one meaningful loss. Indpisrpve take a rather
flexible approach by specifying an apparatus for combining the indiVidaaes over pairs into a
single loss. We combine the different pair-based losses into a single lag®iying the pairs of
labels into independent sets each of which is isomorphicdonaplete bipartitegraph. Formally,
given a target label-ranking vectgre R¥, we defineE(y) = {Ej,...,Eq} to be a collection of
subsets ofy x 9. For eachj € [d], defineV; to be the set of labels which support the edge;in
that is,

Vi={yeo drst(ry) eEjV(yr) €Ej} . 2

We further require the(y) satisfies the following conditions,
1. For each € [d] and for eachir,s) € Ej we havey; > ys.
2. Foreach # j € [d] we haveENE; = 0.

3. Foreach € [d], the sub-graph defined Y|, E;) is a complete bipartite graph. That is, there
exists two seté andB, such thahNB =0, V; = AUB, andE; = Ax B.

In Fig. 2 we illustrate a few possible decompositions into bipartite graphs fivea abel-ranking.

The loss of each sub-graghj,E;) is defined as the maximum over the losses of the pairs
belonging to the sub-graph. In order to add some flexibility we also allowrdiftesub-graphs to
have different contribution to the loss. We do so by associating a weighith each sub-graph.
The general form of our loss is therefore,

d
€(f(x),y) = ZGJ maX_ Er,s(f(x)ay) ’ (3
=1 (r,)€E;j

where eaclo; € R, is a non-negative weight. The weighis can be used to associate importance
values with each sub-graflj,E;) and to facilitate different notions of losses. For example, in
multilabel classification problems, each instance is associated with a set\afntelabels which
come from a predefined sgt. The multilabel classification problem is a special case of the label
ranking problem discussed in this paper and can be realized by sgtting if the r'th label is
relevant and otherwise defining = 0. Thus, the feedback graph itself is of a bipartite form. Its
edges are fromA x B whereA consists of all the relevant labels aBdof the irrelevant ones. If
we decide to seE(y) to contain the single se& x B and defineo; = 1 then/(f(x),y) amounts

to the maximumvalue of/, s over pairs of edges il x B. Thus, the loss of this decomposition
distills to the worst loss suffered over all pairs of comparable labels. Altimely, we can seE(y)

to consist of all the set§(r,s)} for each(r,s) € Ax B and defineo; = 1/|E(y)|. In this case the
total loss/(f(x),y) is theaveragevalue of/; s over the edges i\ x B. Clearly, one can devise
decompositions dE(y) which are neither all pairs of edges nor a singleton including all edges. We
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Figure 2: Three possible decompositions into complete bipartite sub-grdhe graph from
Fig. 1. Top: all-pairs decomposition; Middle: all adjacent layers; Bottom: layer
versus the rest of the layers. The edges and vertices participatinghirsebgraph are
depicted in black while the rest are presented in gray. In each grapbdles nonstituting
the setA are designated by black circles while for the nodeB by filled black circles.

can thus capture different notions of losses for label ranking furetiath multitude schemes for
casting the relative importance of each sulfStE;).

Equipped with the loss function given in Eq. (3) we now formally define carlmg problem.
As in most learning settings, we assume that there exists an unknown distriButicer x x R¥
and that each example in our training set is identically and independentlyndram D. The
ultimate goal is to learn a label ranking functibrwhich entertains a small generalization loss,
Exy~o [£(f(x),y)]. Since the distribution is not known we use instead an empirical sampledrom
and encompass a penalty for excessively complex label-ranking fuactBemeralizing the Support
Vector Machine (SVM) paradigm, we define a constrained optimization prgbhkhose optimal
solution would constitute our label-ranking function. The objective functtemeed to minimize is
composed of two terms. The first is the empirical loss of the label-rankingifumon the training
set and the second is a penalty for complexity, often referred to as ariegtion term. This term
amounts to the sum of the squared norm$wf, . .., wi}. The trade-off between the regularization
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term and the empirical loss term is controlled by a paranttdihe resulting optimization problem
is,

mll’]
Wi,...,

k
Z will* + C Ze (4)

wherefy(x‘) = Wy-xi. Note that the loss function in Eq. (3) can also be represented as the solutio
of the following optimization problem,

I\) \

d
£(f(x),y) = min ch &

EERi j:l

(5)

whered = |E(y)|. Thus, we can rewrite the optimization problem given in Eq. (4) as a qtiadra
optimization problem,

m [E(Y
L ZZHWJHZJrCZl Z 015'
e . L 6
s.t.Vie| ],VEjeE(y‘), V(r,s) € Ej, Wr-X —Ws-X >V, —Ys—&| ©

Vi,j, & >0.

To conclude this section, we would like to review the rationale for choosingnarsided loss
for each pair by casting a single inequality for edcfs). It is fairly easy to define a two-sided
loss for a pair by mimicking regression problems. Concretely, we couldaepplke definition of
!y s as given in Eq. (1) with the logs, (x) — fs(X) — (\r — Ys)|. This loss penalizes fanydeviation
from the desired difference of — ys. Instead, our loss is one sided as it penalizes only for not
achieving a lower-bound. This choice is more natural in ranking applicatiorsnstance, suppose
we need to induce a ranking over 4 labels where the target label rank{rdLi®,0,0). Assume
that the predicted ranking is inste&d5,3,0,0). In most ranking and search applications such a
predicted ranking would be perceived as being right on target singgélferences it expresses over
pairs are on par with the target ranking. Furthermore, in most rankingappns, overly demotion
of the most irrelevant items and excessive promotion of the most relevastisrperceived as
beneficial rather than a deficiency. Put another way, the set of tzalyets encode minimal margin
requirements and over-achieving these margin requirements should petalzed.

Related Work Various known supervised learning problems can be viewed as spaséd of the
label ranking setting described in this paper. First, note that when theeombrtwo labels we obtain

the original constrained optimization of support vector machines for bidlassification (Cortes

and Vapnik, 1995) with the bias term set to zero. In the binary case, Igaritam reduces to

the SOR algorithm described in (Mangasarian and Musicant, 1999). Thelass problem, in
which the target is a single labgle 7, can also be derived from our setting by definigg=

1 andy; =0 for allr #y. A few special-purpose algorithms have been suggested to solve the
multiclass SVM problems. The multiclass version of Weston and Watkins (199jtésned by
defining E(y) = {{(y,r)}},,, that is, each subset consists of a single jpgir). The multiclass
version of Crammer and Singer (2001) can be obtained by simply séifiy)gto be a single set

containing all the pairgy,r) for r #y, namelyE(y) = {{(y,1),...,(\,y—21),(y,y+1),...,(V,K)} }.
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While the learning algorithms from (Weston and Watkins, 1999) and (CramnateSager, 2001)
are seemingly different, they can be solved using the same algorithmic iottaste presented in
this paper. Proceeding to more complex decision problems, the task of multlabsification or
ranking is concerned with predicting a set or relevant labels or rankantatiels in accordance to
their relevance to the input instance. This problem was studied by sewerairs (Elisseeff and
Weston, 2001; Crammer and Singer, 2002; Dekel et al., 2003). Amorsg stadies, the work
of Elisseeff and Weston (2001) is probably the closest to ours yet it isagtiirived special case
of our setting . Elisseeff and Weston focus on a feedback vecudiich constitutes a bipartite
graph by itself and define a constrained optimization problem wik@arateslack variable for
each edge in the graph. Formally, each instaniseassociated with a set of relevant labels denoted
Y. As discussed in the example above, the multilabel categorization setting cadretreadized by
definingy, =1 for allr € Y andys = 0 for all s¢ Y. The construction of Elisseeff and Weston can
be recovered by defining(y) = {{(r,s)}|yr > Ys}. Our approach is substantially more general as it
allows much richer and flexible ways to decompose the multilabel problem aaswelbre general
label ranking problems.

3. Fast “Soft” Projections

In the previous section we introduced the learning apparatus. Our g@dbrio derive and analyze
an efficient algorithm for solving the label ranking problem. In addition ficiehcy, we also
require that the algorithm would be general and flexible so it can be ugleémy decomposition

of the feedback according t#(y). While the algorithm presented in this and the coming sections
is indeed efficient and general, its derivation is rather complex. We threrafould like to present

it in a bottom-up manner starting with a sub-problem which constitutes the main lgulbdtick

of the algorithm. In this sub-problem we assume that we have obtained ardaiié@hg function
realized by the saty, ..., ux and the goal is to modify the ranking function so as to fit better a newly
obtained example. To further simplify the derivation, we focus on the caseelt(y) contains a
single complete bipartite graph whose set of edges are simply denotedye end result is the
following simplified constrained optimization problem,

. 1 KX
min 2y;\’Wy_uy‘2+CE
(7)

S.t.¥(r,s) €E, Wr-X—Ws-X>Vr—Ys—§
§€>0 .

Herex € x is a single instance arfelis a set of edges which induces a complete bipartite graph.
The focus of this section is an efficient algorithm for solving Eq. (7). Dipigmization problem
finds the set closest tfus,...,ux} which approximately satisfies a system of linear constraints
with a single slack (relaxation) variab&e Put another way, we can view the problem as the task
of finding a relaxed projection of the séti,...,ux} onto the polyhedron defined by the set of
linear constraints induced froB. We thus refer to this task as the soft projection. Our algorithmic

solution, while being efficient, is rather detailed and its derivation consistsubtiple complex

steps. We therefore start with a high level overview of its derivation. Y¥ederive a dual version
of the problem defined by Eq. (7). Each variable in the dual problemesponds to an edge in
E. Thus, the total number of dual variables can be as large /& We then introduce a new
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and more compact optimization problem which has dolariables. We prove that the reduced
problem nonetheless attains the same optimum as the original dual problemeduésion is one
of the two major steps in the derivation of an efficient soft projection mhoe We next show that
the reduced problem can be decoupled into two simpler constrained optimipeatislems each of
which corresponds to one layer in the bipartite graph inducel.byhe two problems are tied by
a single variable. We finally reach an efficient solution by showing that ptienal value of the
coupling variable can be efficiently computed@iklog(k)) time. We recap our entire derivation
by providing the pseudo-code of the resulting algorithm at the end of tti®se

3.1 The Dual Problem

To start, we would like to note that the primal objective function is convex drtieprimal con-
straints are linear. A necessary and sufficient condition for stronlifglt@hold in this case is that
there exists a feasible solution to the primal problem (see for instance @aydandenberghe,
2004)). A feasible solution can indeed obtained by simply settipg= O for all y and defining

& = maXx,sce(Vr —Vs). Therefore, strong duality holds and we can obtain a solution to the primal
problem by finding the solution of its dual problem. To do so we first write thgrangian of the
primal problem given in Eq. (7), which amounts to,

1 k
L= 5y Iwy—wlP+CE+ Y Trs(V— Ve & wsrx—wrx) L&
=1
Y; (BES

k
= % z HWy*UyHZwLE (C z Tr,sZ) + Z Tr,s(Vr —Wr - X —Ys+Ws-X) ,
y=1 (r,5)€E (r,5)€E
wheret;s > 0 for all (r,s) € E andZ > 0. To derive the dual problem we now can use the strong
duality. We eliminate the primal variables by minimizing the Lagrangian with respéist poimal
variables. First, note that the minimum of the tef(€ — ¥ ¢ ceTrs — ) With respect tc is zero
wheneveiC — 3 ;5 ce Trs— ( = 0. If howeverC — Y (rs)cE Trs— ( # 0 then this term can be made
to approach-o. Since we need to maximize the dual we can rule out the latter case and pose the
following constraint on the dual variables,

C— > us—{=0. (8)
(r,s)€E

Next, recall our assumption th& induces a complete bipartite grap¥i, E) (see also Eq. (2)).
Therefore, there exists two seisandB such thaANB =0,V = AUB, andE = A x B. Using the
definition of the set# andB we can rewrite the last sum of the Lagrangian as,

Z Trs(Yr —Wr -X—Ys+Ws-X) =

.S€B

;(Vr —Wr 'X>SZBTr,s - sgB(Vs—Ws'X) ;Tr.,s .

Eliminating the remaining primal variables,...,wy is done by differentiating the Lagrangian
with respect taw; for all r € [k] and setting the result to zero. For yk A, the above gives the set

of constraints,
S
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Similarly, fory € B we get that,

Ow,L = Wy—Uy+ Z&Tr’y x=0. (10)
re

Finally, we would like to note that for any labgl AU B we get thatvy —uy = 0. Thus, we can
omit all such labels from our derivation. Summing up, we get that,

Uy+ (JseBTys)X YEA
Wy = uy_(ireATr,y)X ye B . (11)
Uy otherwise

Plugging Eqg. (11) and Eq. (8) into the Lagrangian and rearranging tgiraghe following dual
objective function,

2 2
D) = _;‘XHZ),;(S;TMS) —;uxnzy;(r;rr,y> (12)
+ yez\(yy— uy-x)sgBTy,s—ygB (Yy— Uy -X) r;n,y .

In summary, the resulting dual problem is,

max D(1)  s.t. Ts<C . (13)
te]R‘f‘ (rs)eE
3.2 Reparametrization of the Dual Problem

Each dual variable, s corresponds to an edge ih Thus, the number of dual variables may be
as large a¥?/4. However, the dual objective function depends only on sums of \asaks.
Furthermore, each primal vectar, also depends on sums of dual variables (see Eq. (11)). We
exploit these useful properties to introduce an equivalent optimizatiorswiadler size with onlk
variables. We do so by defining the following variables,

VWeA ay= ) Ty and VYyeB, By=) Ty . (14)
y SgBys y r;&ry

The primal variablesvy from Eq. (11) can be rewritten usirg, andpy as follows,

Uy+0ayX yeA
Wy = u—Bx yeB : (15)
Uy otherwise

Overloading our notation and usif(a, ) to denote dual objective function in termsafandf,
we can rewrite the dual objective of Eq. (12) as follows,

D(a,B) = _% HXHZ (;0‘5"‘ EBB§> + Z;\(Vy—uy'x) Oy — EB(Vy—Uy'X) By - (16)
ye ye ye ye
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Note that the definition afiy andBy from Eq. (14) implies thatty andBy are non-negative. Further-
more, by construction we also get that,

;Gy = EBBy = Z Ts < C. (17)
ye ye (r,s)€E

In summary, we have obtained the following constrained optimization problem,

D(a.B) s.t. - <C. 18
max D(a,B) s y;ay yZBBy (18)

aeRﬂ BeR‘fl
We refer to the above optimization problem as teducedproblem since it encompasses at
mostk = |V| variables. In appendix A we show that the reduced problem and the aridjiral
problem from Eq. (13) are equivalent. The end result is the followinglzoy.

Corollary 1 Let(a*, ") be the optimal solution of the reduced problem in Eq. (18). Ddfine. . ., wy}
as in Eq. (15). Thenfws,...,wi} is the optimal solution of the soft projection problem defined by

Eq. (7).

We now move our focus to the derivation of an efficient algorithm for sgluime reduced
problem. To make our notation easy to follow, we define |A| andq = |B| and construct two
vectorsp € RP andv € RY such that for eacla € A there is an elemertly, — ua - x)/||x||? in
and for eaclb € B there is an element (y, — Uy - X)/||X||? in v. The reduced problem can now be
rewritten as,

min || — + b=V
L Sllo=u=+5|[B -Vl
p q (29)

s.t. aj = B <C.
2%~ 2,

i =

3.3 Decoupling the Reduced Optimization Problem

In the previous section we showed that the soft projection problem diydeq. (7) is equivalent
to the reduced optimization problem of Eq. (19). Note that the variabkesd3 are tied together
through a single equality constraifa || = ||B||1. We represent this coupling afandp by rewriting
the optimization problem in Eq. (19) as,

min - g(zp) +9(zVv) ,

z€[0,C]
where p
1
gz = rrynéHO(—qu s.t. i;ai =z, a>0, (20)
and similarly
1 2 d
ZV) = min=||[B—v S.t. i=12z, Bi>0. 21
9(zv) B ZHB | JZlBJ Bj (21)
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The functiong(z ) takes the same functional form whether we pse v as the second argument.
We therefore describe our derivation in termy(d; 11). Clearly, the same derivation is also appli-
cable tog(zv). The Lagrangian of(z ) is,

_ 1 2 e
L= EHG—IJH +9<i;a.—2>—l‘a ,

whereB € R is a Lagrange multiplier and € ]Riﬂ is a vector of non-negative Lagrange multipliers.
Differentiating with respect ta; and comparing to zero gives the following KKT condition,

dr,

ddi

The complementary slackness KKT condition implies that whenayer O we must have that
¢; = 0. Thus, ifa; > 0 we get that,

ai = -6+ = -0 . (22)

=ai—+6-¢ =0.

Since all the non-negative elements of the vectare tied via a single variable we would have
ended with a much simpler problem had we known the indices of these elemengsfirét sight,
this task seems difficult as the number of potential subsets isfclearly exponential in the di-
mension ofa. Fortunately, the particular form of the problem renders an efficiertrighgn for
identifying the non-zero elements af The following lemma is a key tool in deriving our proce-
dure for identifying the non-zero elements.

Lemma 2 Leta be the optimal solution to the minimization problem in Eq. (20). Let s and j be two
indices such thatgs> ;. If as = 0thenaj must be zero as well.

Proof Assume by contradiction that = 0 yeta; > 0. Letd € RK be a vector whose elements are
equal to the elements of except forGs anda; which are interchanged, that s = aj, G = as,
and for every other ¢ {s, j} we haved, = a,. It is immediate to verify that the constraints of
Eq. (20) still hold. In addition we have that,

lot— 2= |G — | = 3+ (aj —py)? — (0] — k)2 — 1 = 2aj(s— ) > O .

Therefore, we obtain thdta — p||? > ||& — p|?, which contradicts the fact that is the optimal
solution. m

Let | denote the sefi € [p] : a; > 0}. The above lemma gives a simple characterization of the set
I. Let us reorder th@ such thatu, > pp > ... > . Simply put, Lemma 2 implies that after the
reordering, the sdtis of the form{1,...,p} for some 1< p < p. Had we knowrp we could have
simply use Eqg. (22) and get that

R

In summary, giverp we can summarize the optimal solution foas follows,
1 P
j— — i—z| i<
a={H e\ " =P (23)
0 i>p
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We are left with the problem of finding the optimal value@f We could simply enumerate all
possible values g in [p], for each possible value compwteas given by Eq. (23), and then choose
the value for which the objective functiofid — p|?) is the smallest. While this procedure can
be implemented quite efficiently, the following lemma provides an even simpler solutics we
reorder the elements @fto be in a non-increasing order.

Lemma 3 Leta be the optimal solution to the minimization problem given in Eq. (20) and assume
that g > o > ... > Wp. Then, the number of strictly positive elementsiis,

j
p(z W) = maX{Je[p] : Hj‘?(Zlur—z> >0} :

The proof of this technical lemma is deferred to the appendix.

Had we known the optimal value af i.e. the argument attaining the minimum @g(iz; u) +
g(zv) we could have calculated the optimal dual variatdésand 3 by first findingp(z, ) and
p(z,v) and then findingx and using Eq. (23). This is a classical chicken-and-egg problem: we
can easily calculate the optimal solution given some side information, hovwabtaining the side
information seems as difficult as finding the optimal solution. One option is t@perd search
over ane-net of values fozin [0,C]. For each candidate value fafrom thee-net we can findx
andp and then choose the value which attains the lowest objective vglzg1(+ 9(z Vv)). While
this approach may be viable in many cases, it is still quite time consuming. Tosmuereomes
the fact thaig(z ) andg(z v) entertain a very special structure. Rather than enumerating over all
possible values afwe need to check at molst- 1 possible values far. To establish the last part of
our efficient algorithm which performs this search for the optimal valueveé need the following
theorem. The theorem is stated withut, clearly, it also holds fov .

Theorem 4 Let gz 1) be as defined in Eq. (20). For eack i[p], define

z—riziur—iui :

Then, for each & [z,z,4] the function @z p) is equivalent to the following quadratic function,

i 2 p
g(zy = ?(Zlur—z> +y T

=1+1

Moreover, g is continuous, continuously differentiable, and convéx @j.

The proof of this theorem is also deferred to the appendix. The goosltheithe theorem carries is
thatg(z 1) andg(z v) are convex and therefore their sum is also convex. Furthermore,rnibhédn
d(z ) is piecewise quadratic and the points where it changes from one quddration to another
are simple to compute. We refer to these points as knots. In the next digrsee exploit the
properties of the functiog to devise an efficient procedure for finding the optimal value ahd
from there the road to the optimal dual variables is clear and simple.
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INPUT: instancex € x ; targetranking/ ; setsA,B
current prototypes®,...,uk ; regularization paramet€r
MARGINS:
= sort{ (va—u?-x)/[[x|[* | a€ A}
v = sort{ (uP-x—v) /||x||? | b € B}
KNOTS:
vielpl:a=Siak i Viel: f=3Lve— v,
Q={z:7z<C}u{z:Z <C}u{C}
INTERVALS:
vzeQ: R2=Hz:2<z| ; S@=[{%:%<2]
VzeQ: N(z=min{Zeq:Z >z u{C}
LocAL MIN:

R@) @
O(2) = (S(Z) Zl““ +R(@) Zlvr> /(R(2)+52)

GLOBAL MIN:
If (3zeQ s.t. O(z) € [z N(2)]) Then
z=0(z) ; "=R2 ; "=92
Else If (i +v1<0)
z=0,;i"r=1; j*=1
Else
z=C ; i"=RC) ; j*

DUAL’S AUXILIARIES:
1 (K 1 (L
By = — W—Z | 5 6=~ VvV, —Z
I* e J* &

VaEA aa — <ya—Ua'X ea) and Wa == Ua+aax
+

I
%
\®)

OUTPUT:

.

VbeB: B, = (w—eﬁ)+ and Wy — Up— BpX

Figure 3: Pseudo-code of the soft-projection onto polyhedra (SOR@lgQrithm.
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0 2 4 6 8 10

Figure 4: Anillustration of the functiog(z p) +9(z V). The vectorgtandv are constructed from,
y=(1,2,3,4,5,6),u-x=(2,3,5,1,6,4), A= {4,5,6}, andB = {1, 2, 3}.

3.4 Putting it All Together

Due to the strict convexity af(z 1) 4+ g(zVv) its minimum is unique and well defined. Therefore,
it suffices to search for a seemindbcal minimum over all the sub-intervals in which the objective
function is equivalent to a quadratic function. If such a local minimum poirtusd it is guaranteed
to be the global minimum. Once we have the valuea which constitutes the global minimum we
can decouple the optimization problems éoand3 and quickly find the optimal solution. There
is though one last small obstacle: the objective function is the sum of twowiseeuadratic
functions. We therefore need to efficiently go over timeon of the knots derived fromuandv. We
now summarize the full algorithm for finding the optimum of the dual variablesverap up with
its pseudo-code.

Givenp andv we find the sets of knots for each vector, take the union of the two setsoand
the setin an ascending order. Based on the theorems above, it follows imtehethat each interval
between two consecutive knots in the union is also quadratic. $izeg) +9(z V) is convex, the
objective function in each interval can be characterized as falling intmbheo cases. Namely,
the objective function is either monotone (increasing or decreasing) tinihsits unique global
minimum inside the interval. In the latter case the objective function clearly a@sese reaches
the optimum where its derivative is zero, and then increases. See alsbfbigan illustration. If
the objective function is monotone in all of the intervals then the minimum is obtainedeaof
the boundary pointg = 0 orz= C. Otherwise, we simply need to identify the interval bracketing
the global minimum and then find the optimal valuezddy finding the minimizer of the quadratic
function associated with the interval. For instance, in Fig. 4 the minimum is attaiaedglow 5
at the interval defined by the second and third knot<C i$, say, 10 then the optimal value far
coincides with the minimum below 5. If howeVeErlies to the left of the minimum, say at 3, then
the optimum ofzis at 3. We now formally recap the entire procedure.
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We utilize the following notation. For eadte [p], define the knots derived from

Z:;;M—mh

and similarly, for each € [g] define
~ J .
Zj=3 Vi—jvj .
r=1

From Lemma 4 we know thaj(z p) is quadratic in each segmelat, z 1) andg(z V) is quadratic
in each segmerjg;, Z;1). Therefore, as already argued above, the fundia@y) + g(zv) is also
piecewise quadratic if0,C] and its knots are the points in the set,

Q=1{z:2<C}U{Z:Z<C}U{C} .
For each knot € Q , we denote by (z) its consecutive knot i , that is,
N(z) =min ({ZeqQ:Z>ztu{C}) .
We also need to know for each knot how many knots precede it. Giveonta ke define
R@={z:z2<2| and Sz ={z:5 <2 .

Using the newly introduced notation we can find for a given valuts bracketing intervalz €
[Z,N(Z)]. From Thm. 4 we get that the value of the dual objective functianist

9(zw+9(zv) =

1 <R(z) )2 P, (S(i> )2 P
—_— Ww—z| + o+ == Vi—Z] + V.
R(Z/) r; r:R(zz’)+1 S(Z’) rZi r= ZZ’)+1 F

The unigue minimum of the quadratic function above is attained at the point

R(Z) S(Z)
0(Z)= (sm Y HIRD) Y w) /(RZ)+S2)) .

Therefore, ifO(Z) € [Z,N(Z)], then the global minimum of the dual objective function is attained
at O(Z). Otherwise, if no such interval exists, the optimum is eithez at0 or atz=C. The
minimum is achieved a = 0 iff the derivative of the objective function at= 0 is non-negative,
namely,—p — vy > 0. In this case, the optimal solution és= 0 and 3 = 0 which implies that

w; = u; for all r. If on the other hand-p; — v1 < 0 then the optimum is attained at=C. The
skeleton of the pseudo-code for the fast projection algorithm is givemirBF The most expensive
operation performed by the algorithm is the sortingi@indv. Since the sum of the dimensions of
these vectors ik the time complexity of the algorithm ®(klog(k)).
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4. From a Single Projection to Multiple Projections

We now describe the algorithm for solving the original batch problem dgfayeEq. (6) using the
SOPOPO algorithm as its core. We would first like to note that the generdl padblem can
also be viewed as a soft projection problem. We can cast the batch prablénding the set of
vectors{wsu,...,wx} which is closest td zero vectorq0,...,0} while approximately satisfying a
set of systems of linear constraints where each system is associated itltepandent relaxation
variable. Put another way, we can view the full batch optimization probletheatask of finding
a relaxed projection of the s¢0,...,0} onto multiple polyhedra each of which is defined via a
set of linear constraints induced by a single sub-gfaph E(y). We thus refer to this task as the
soft-projection onto multiple polyhedra. We devise an iterative algorithm whidves the batch
problem by successively calling to the SOPOPO algorithm from Fig. 3. Werithe and analyze
the algorithm for a slightly more general constrained optimization which resulissimplified
notation. We start with the presentation of our original formulation as an iost@fithe generalized
problem.

To convert the problem in Eq. (6) to a more general form, we assume withssiof generality
that|E(y)| = 1 for alli € [m]. We refer to the single set iE(y) asE'. This assumption does not
pose a limitation since in the case of multiple decompositigiig) = {E1,...,Eq4}, we can replace
the ith example withd pseudo-examples{(x',E1),...,(x',Eq)}. Using this assumption, we can
rewrite the optimization problem of Eq. (6) as follows,

1 K 2 Al i
min =Y |w]c+ Y G¢E
Wi, Wi 2 r; Iwell izi |

st.Viem,v(rs) eE, wr-x —wsx >y -y —&
Vi, &€ >0,

(24)

whereC; = Co' is the weight of théth slack variable. To further simplify Eq. (24), we use= R"™
to denote the concaf[enation of the vectavs, ..., wy). In addition, we associate an index, denoted
j, with each(r,s) € E' and definea”! € R"k to be the vector,

ij_ i i
al=( o0 ,..,0, X ,0,,...,0, —x' ,0,..., \q_,). (25)
1st block rth block sth block kth block

We also defindd] =y, — L. Finally, we definek; = |E'|. Using the newly introduced notation we
can rewrite Eq. (24) as follows,

min }HVVHZ-F mC-Ei
nin - 5 i; i

st Vie[m,Vjelk], w-al>bpi—¢ (26)

§>0.
Our goal is to derive an iterative algorithm for solving Eq. (26) based procedure for solving a
single soft-projection which takes the form,

min Z[W—ul?+GE
we o 2
s.t. Vje k], w-a") >b ¢ (27)

g>0.
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By construction, an algorithm for solving the more general problem d&fim&g. (26) would also
solve the more specific problem defined by Eq. (6).

The rest of the section is organized as follows. We first derive theafubhE problem given in
Eq. (26). We then describe an iterative algorithm which on each iteratidarpes a single soft-
projection and present a pseudo-code of the iterative algorithm tailordaef specific label-ranking
problem of Eqg. (6). Finally, we analyze the convergence of the stegésrative algorithm.

4.1 The Dual Problem

First, note that the primal objective function of the general problem iseoawnd all the primal
constraints are linear. Therefore, using the same arguments as in Sixds 3ifnple to show that
strong duality holds and a solution to the primal problem can be obtained fregotation of its
dual problem. To derive the dual problem, we first write the Lagrangian,

1 _ ki i m K i i — i m i
="+ 5 GE DPRUCEIENEN TR

where; j and{; are non-negative Lagrange multipliers. Taking the derivative ofith respect to
w and comparing it to zero gives,

ki .
W = Aad (28)
i ,Zl B

IM 3

—

As in the derivation of the dual objective
following must hold at the optimum,

unction for a single soft priigec we get that the

K
Vi , Aii—C—¢=0. 29
ie[m J; i—Ci—¢ (29)

SinceA; j and(; are non-negative Lagrange multipliers we get that the set of feasiblosswf
the dual problem is,
s- {A

Using Eg. (28) and Eq. (29) to further rewrite the Lagrangian givesltia objective function,

ki
Vi, Z}\i’j <G andVi,j,Aj>0, .
=1

2 m

S5 A ad . A b
i;gl e +i;gl A

The dual of the problem defined in Eqg. (26) is therefore,

D(\) = —%

Teasx D(A) . (30)
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INPUT:  training set{(x,y)}", ; decomposition functio&(y) ;
regularization paramet€r

INITIALIZE :
Vi e [m), Aj xBj € E(Y), (a,b) € Aj xBj, setas' =0, B;! =0
vr € [K], setw; =0

Loor:

Choose a sub-graphe [m], Aj x B; € E(Y)
UPDATE:

VacAj: Us = Wa—ablx; VYbeBj: up = wp+Byxi
SOLVE:

(a"),B", {w }) = SOPOPQ{ur},X,Y,Aj,Bj,Cal)

OuTPUT: The final vectorgw, }_,

Figure 5: The procedure for solving the preference graphs protikesoft-projections.

4.2 An lterative Procedure

We are now ready to describe our iterative algorithm. We would like to stgzss that the method-
ology and analysis presented here have been suggested by satlened. aOur procedure is a slight
generalization of row action methods (Censor and Zenios, 1997) whidteis i@ferred to as de-
composition methods (see also Lin (2002); Mangasarian and Musica@®){1Rlatt (1998)). The
iterative procedure works in rounds and operates on the dual fotimeadbjective function. We
show though that each round can be realized as a soft-projectiortiopetaetA' denote the vector
of dual variables before thigh iteration of the iterative algorithm. Initially, we skt = 0, which
constitutes a trivial feasible solution to Eq. (30). On ttieiteration of the algorithm, we choose a
single example whose index is denotemhd update its dual variables. We freeze the rest of the dual
variables at their current value. We cast thieiteration as the following constrained optimization
problem,

A = argmaD(A) st ViFr Ve k], A=Al (31)

AeS

Note that\'* 1 is essentially the same Asexcept for the variables corresponding tottreexample,
namely,{Ar ;| ] € [k]}. In order to explicitly write the objective function conveyed by Eq. (31) let
us introduce the following notation,

u= _ZZA}’jaH . (32)

i#r j=1
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The vecton is equal to the current estimate wfexcluding the contribution of theth set of dual
variables. Withu on hand, we can rewrite the objective function of Eqg. (31) as follows,

%AdiljlwW+KAb”+ %MHJ
J— r7- ’ . _— — r’- ’ .!. El
J 2 2; ] 2;121 i

I

+Z)\r, (b —u-a" )+, (33)

whererl is a constant that does not depend on the variablék,in| j € [k]}. In addition the set of
variables which are not fixed must resideSrtherefore,

ki
S A <G and Vi, Aj>0. (34)
=1

The fortunate circumstances are that the optimization problem defined KB¥osubject to the
constraints given in Eq. (34) can be rephrased as a soft-projectibiepn. Concretely, let us define
the following soft-projection problem,

. 1, _

min - S|W—ul® + G &

wer o 2

SI.VjE[kd’\N.aW'leJ__g
£€>0.

(35)

The value 01?\”1 is obtained from the optimal value of the dual problem of Eq. (35) as we now
show. The Lagranglan of Eq. (35) is

1. _ k . o
= SIW—u?+ CE + Y A (01 & W) ~ g8
j=1
Differentiating with respect tav and comparing to zero give,

kr .
N g u+ Anj a.nj .
2

As in the previous derivations of the dual objective functions we alsthgét

ke
—ZArJ - O,
=

and thus the Lagrange multipliers must satisfy,

ke
Z)\r’j S Cr .
j=1
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Therefore, the dual problem of Eq. (35) becomes,

2
1 kr y .

_ = (B —y. gl
max > +J§:l)\m (b"—u-a*) st

Ar.

ke :
> Arja!
=1

‘ (36)
Z)\I’,j SCr and vJa }\I',j ZO ’
j=1

which isidenticalto the problem defined by Eq. (33) subject to the constraints given b{BE)).

In summary, our algorithm works by updating one set of dual variablesagh round while
fixing the rest of the variables to their current values. Finding the optimaéwaf the unrestricted
variables is achieved by defining an instantaneous soft-projection problee instantaneous soft-
projection problem is readily solved using the machinery developed in tipsesection. The
pseudo-code of this iterative procedure is given in Fig. 5. It is thesdift to reason about the
formal properties of the iterative procedure. From the definition of ttaatgpfrom Eq. (31) we
clearly get that on each round we are guaranteed to increase thebjlethe function unless we
are already at the optimum. In the next subsection we show that this iterati@digm converges
to the global optimum of the dual objective function.

To conclude this section, we would like to note that a prediction of our lalmimg function
is solely based on inner products between vectors fom ..., wi} and an instance. In addition,
as we have shown in the previous section, the solution of each soft fiwojéakes the formw, =
Ua+ X' andwp = up — Bpx'. Since we initially set all vectors to be the zero vector, we get that at
each step of the algorithm all the vectors can be expressed as linear atiotisrof the instances.
Thus, as in the case of support vector machines for classification prebhee can replace the inner
product operation with any Mercer kernel (Vapnik, 1998).

4.3 Analysis of Convergence

To analyze the convergence of the iterative procedure we need toung@dfew more definitions.
We denote by! the value of the dual objective functiteforethetth iteration and by = D' —
D! the increase in the dual on thi iteration. We also denote Ity (A) the potential increase we
have gained had we chosen flleexample for updating. We assume that on each iteration of the
algorithm, we choose an example, whose index ighich attains the maximal increase in the dual,
thereforeA™ (A\) = max A'(A'). Last, letD* andA* denote the optimal value and argument of the
dual objective function. Our algorithm maximizes the dual objective on geaidtion subject to the
constraint that for all # r and j € [k], the variables\; ; are kept intact. Therefore, the sequence
D!,D?,... is monotonically non-decreasing.

To prove convergence we need the following lemma which says that if thathlgads at sub-
optimal solution then it will keep increasing the dual objective on the sulesedgeration.

Lemma5 LetA be a suboptimal solution, @) < D*. Then there exists an example r for which
A"(A) > 0.

Proof Assume by contradiction that for allA'(A) = 0 and yetD(A\) < D*. In this case we clearly
have that # \*. Letv = A* — A denote the difference between the optimal solution and the current
solution and denotk(6) = D(A + 6v) the value of the dual obtained by moving along the direction
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v fromA. SinceD(A) is concave then so s Therefore, the line tangent koat O resides aboveat
all points butd = 0. We thus get thah(0) + I (0)8 > h(8) and in particular fob = 1 we obtain,
h'(0) > h(1) —h(0) =D(A*) —D(A\) >0 .

Let OD denote the gradient of the dual objective\aSinceh’(0) = [ID - v we get that,
D-v > 0 . (37)
We now rewritev as the sum of vectors,

Vr7j I’:I

m
T i _
v_i;z where 7 | {0 "y

In words, we rewritev as the sum of vectors each of which corresponds to the dual variables

appearing in a single soft-projection problem induced byitthexample. From the definition af
together with the form of the dual constraints we get that the véctar' is also a feasible solution
for the dual problem. Using the assumption that foii,ai (\) = 0, we get that for eacl [0, 1],
D(A) > D(A +6z2'). Analogously toh we define the scalar functidn(8) = D(A +62'). Sinceh; is
derived from the dual problem by constraining the dual variables tdees the line\ +6z', then
as the functiorD, h; is also continuously differentiable. The fact thgt0) > h;(6) for all 6 € [0, 1]
now implies thaty(0) < 0. Furthermore[ D -Z' = h(0) < O for alli which gives,

< c i
(D-v = DD-i;z = i;DD-Z <0,

which contradicts Eq. (37). |

Equipped with the above lemma we are now ready to prove that the iterativétaigoonverges to
an optimal solution.

Theorem 6 Let D' denote the value of the dual objective after the t'th iteration of the algorithm
defined in Eq. (31). Denote by Ehe optimum of the problem given in Eq. (30). Then, the sequence
D,D?,...,D,... converges to B

Proof Recall that the primal problem has a trivial feasible solution which is attaigesktiing

w = 0 and&' = max; b"J. For this solution the value of the primal problem is finite. Since the value
of the dual problem cannot exceed the value of the primal problem wibadd* < . Therefore,

the sequence of dual objective values is a monotonic, non-decreasthgpper bounded sequence,
Dl<D?<...<D'<...<D* <. Thus, this sequence converges to a limit which we denote
by D'. Itis left to show thaD’ = D*. Assume by contradiction th&* — D’ = € > 0. The set of
feasible dual solutions;, is a compact set. L&Y' : S— R be the average increase of the dual over
all possible choices for an example to use for updating

NN = %ZN(A) .

On each iteration we have by construction that> A'(A'). DefineA = {A : D(\) > D* —¢/2}.
From the concavity oD we get that the s&8\ A is a compact set. Sin@¥ is a continuous function
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it attains a minimum value ové&\ A. Denote this minimum value by and IetZ\ be the point which
attains this minimum. From Lemma 5 we know tiat- O since otherwis®(A) would have equal
to D* which in turn contradicts the fact that¢ A. Since for allt we know thatD! < D' = D* —¢

we conclude thak! € S\ A. This fact implies that for ali
A >N >N =K .

The above lower bound on the increase in the dual implies that the sedd&ie D3, . .. diverges
to infinity and thusD’ = c which is in contradiction to the fact th@Y = D* —¢& < . |

5. Experiments

In this section we compare the SOPOPO algorithm from Fig. 3 and our iteqatdeedure for
soft-projection onto multiple polyhedra from Fig. 5 to a commercial interior pwiathod called
LOQO (Vanderbei, 1999).

Ouir first set of experiments focuses on assessing the efficiency O8O for soft-projection
onto asingle polyhedron. In this set of experiments, the data was generated as folleing,
we chose the number of clasdes: |7 | and definecE to be the seA x B with A= [k/2] andB =
[k \ [k/2]. We set the value of to be one for € Aand otherwise it was set to zero. We then sampled
an instance and a set of vectorfus, . .., ux} from a 100-dimensional Normal distribution of a zero
mean and an identity matrix as a covariance matrix. After generating the instadchtiee targets, we
presented the optimization problem of Eq. (7) to SOPOPO and to the LOQO optonipackage.
We repeated the above experiment for different valuek @inging from 10 through 100. For
each value ok we repeated the entire experiment ten times, where in each trial we genarated
new problem. We then averaged the results over the ten trials. The aw@Pajime consumed
by the two algorithms as a function &fis depicted on the left hand side of Fig. 6. We would
like to note that we have implemented SOPOPO both in Matlab and C++. We usedatteh M
interface to LOQO, while LOQO itself was run in its native mode. We repottltgsising our
Matlab implementation of SOPOPO in order to eliminate possible implementation advantage
Matlab implementation follows the pseudo-code of Fig. 3. Nevertheless, adyciedicated by
the results, the time consumed by SOPOPO is negligible and exhibits only a veryindrease
with k. In contrast, the run time of LOQO increases significantly Wwitifhe apparent advantage
of our algorithm over LOQO can be attributed to a few factors. First, LOQ&general purpose
numericaloptimization toolkit. Its generality is clearly a two edged sword as it employs a ncaher
interior point method regardless of the problem on hand. Furthermor®Q. @as set to solve
numerically the soft-projection problem of Eq. (7) while SOPOPO solves oftyiltinee equivalent
reduced problem of Eq. (19). To eliminate the latter mitigating factor which is/iorfaf SOPOPO,
we repeated the same experiment as before while presenting to LOQO thedeaptimization
problem rather than the original soft-projection problem. The resultsepietéd on the right hand
side of Fig. 6. Yet again, the run time of SOPOPO is still significantly lower tf@Q0O fork > 300
and as before there is no significant increase in the run time of SOPOPDGeases.

The second experiment compares the performance of the iterative atgdram Fig. 5 and
LOQO in the batch setting described by Eq. (6). In this experiment we gitkesynthetic data
as follows. First, we chose the number of classes|y | and sampledn instances from a 100-
dimensional Normal distribution of a zero mean and an identity covariance mlfexnext sam-
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Figure 6: A comparison of the run-time of SOPOPO and LOQO on the origofabsojection
problem defined in Eqg. (7) (left) and on the reduced problem from E9). (fight).

pled a set of vector$wy, ...,

wg} from the same Gaussian distribution. For each instahcee

calculated the vector' € R¥, whoser’th element isw, - x'. We then sef\ to be the indices of
the topk/2 elements of/ while B' consisted of all the rest of the elemeritg,\ A'. For example,

assume that' = (0.4,4.1,3.5, —2) thenA' =

{2,3} andB' = {1,4}. As feedback we set, = 1 for

allac Al and forb € B' we sety'b = 0. In our running example, the resulting vecybamounts to

(0,1,1,0). Finally, we setE(y) =

{E'}, whereE' =

A x B, and the value of was always 1. We

repeated the above process for different valuds r@inging from 20 through 100. The number of
examples was fixed to be R@nd thus ranged from 200 through 1000. The valu€ ofas set to
be 1/m. In each experiment we terminated the wrapper procedure describ&g B\when the gap
between the primal and dual objective functions went beldt OWe first tried to execute LOQO
with the original optimization problem described in Eq. (6). However, thaltieg optimization
problem was too large for LOQO to manage in a reasonable time, even fomtikest problem
(k= 20). Our iterative algorithm solves such small problems in less than a seTorfdcilitate a
more meaningful comparison, we used the techniques described in Setr&uaced the original
optimization problem from Eq. (6) with the following reduced problem,

2

k k
max -3 CXiXi— Bix | + aly —
221 i;reAl r i:r%Bi r r; <i:r§Ai o
st v|e[ m :vaceA, a;>0 andvVbeB', B,>0
em:Ya,= yp<C.
acA beB!

S Bivi

irreB

)

(38)

By presenting the reduced problem given in Eq. (38) to LOQO, we injesqpiiéd a bit of prior
knowledge that made the task manageable for LOQO. The derivation dfohe seduced problem
is given in appendix C. The results are summarized in Fig. 7. As clearly eaeén from the
graph, our iterative algorithm outperforms LOQO, in particular as the $ittee@roblem increases.
Due to the nature of the decomposition procedure, our running time is norloggpendent of the
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time (sec.)
AY

20 40 60 80 100

Figure 7: A comparison of the run-time in batch settings of SOPOPO and L@&@y(the reduced
problemin Eq. (38)). The number of examples was set to be 10 times the nahidieels
(denotedk) in each problem.

value ofk as the number of graphs grows wkh Nonetheless, even fdr= 100 the run time of
SOPOPO’s wrapper does not exceed 4 seconds. These promisitig eesphasize the viability of
our approach for large scale optimization problems.

The last experiment underscores an interesting property of our i@torithm. In this ex-
periment we have used the same data as in the previous experimemt-wit®0 andm = 1000.
After each iteration of the algorithm, we examined both the increase in the djesltive after the
update and the difference between the primal and dual values. THes @®ushown in Fig. 8. The
graphs exhibit a phenomena reminiscent of a phase transition. Aftet 2000 iterations, which
is also the number of examples, the increase in the dual objective becomesufeinibhis phase
transition is also exhibited for other choicesmfk andC. Note in addition that as the number of
epochs increases, the increase of the dual objective becomes védirgesatigely to the duality gap.
Itis common to use the increase of the dual objective as a stopping critaddhelast experiment
indicates that this criterion does not necessarily imply convergence. e fisdher investigation
of these phenomena to future research.

We would like to conclude this section with a short discussion which contrastapproach
with previous algorithms. Previous large margin approaches for labkinguassociate a unique
slack variable with each constraint which is induced by a pair of labelsfd8esample (Elisseeff
and Weston, 2001) and the SVM-light implementation of label ranking (Joesct2002). Thus,
using the terminology of this paper, these methods employ the overly simple allegaimgosition
(see Fig. 2). Using the all-pair decomposition, the label ranking problemdigsced to a binary
classification problem. Indeed, the soft projection problem can be sahadgtically and our wrap-
per algorithm from Fig. 5 is equivalent to the SOR algorithm for binary diaasion described
in (Mangasarian and Musicant, 1999). The practical performance@®R algorithm for binary
classification was extensively studied by Mangasarian and others. fQhe main contributions
of this paper is a general and flexible algorithmic framework for labelirgnkhich can be car-
ried with more complex decompositions. Moreover, trying to import one of teeigusly studied
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Figure 8: The increase in the dual objective (left) and the primal-dualmgist) as a function of
the number of iterations of the iterative algorithm in Fig. 5.

approach to our setting is difficult. A main obstacle is attributed to the fact thaethef feasible
solutions for the dual problem must satisfy the constrgiptia = 3,8, < C. Thus, a sequential
minimization algorithm must update at least 4 dual variables on each iteratiodentorpreserve
the feasibility of the dual solution. Therefore the SMO algorithm of Platt 8) #9not easily appli-
cable to our setting. The SOPOPO algorithm suggests an efficient alterbgtiyodating atomically
all the dual variables of each sub-graph.

6. Discussion

We described an algorithmic framework for label ranking. Each iteratiauoglgorithm is based

on SOPOPO, a fast procedure for soft projection onto a single palghed@here are several possi-
ble extensions of the work presented in this paper. One of them is fughergjization of SOPOPO

to more complex polyhedral constraints. Recall that SOPOPO is desigr@ojecting onto a poly-
hedron which is defined according to a complete bipartite graph. Thealea¢gion of SOPOPO

to decompositions consisting kfpartite graphs is one particular interesting task. Another type of
polyhedra that naturally emerges is regression problems with multiple outputisis Isetting, we
would like the predicted differenceg(x) — fs(X) to be as close as possible to the target differences
Vr — Vs, POSSibly up to an insensitivity term This problem can be formalized by replacing the
constraintf, (x) — fs(x) > yr — ys — & with the constraint(f;(x) — fs(X)) — (\y —Ys)| < €+&. Yet
another interesting direction is the applicability of SOPOPO to online learnidgngfCrammer
and Singer, 2005) where each online update is performed efficiently &P OPO. The phase
transition phenomenon underscored in our experiments surfaces theantpesue of generaliza-
tion properties of our algorithm. In particular, the fact that increases ivahe of dual become
miniscule suggests the usage of early stopping so long as the predictisa@cdaes not degrade.
Finally, we plan to work on real world applications of SOPOPO to tasks ssicategory ranking

for text documents.
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Figure 9: An illustration of the construction of a flow graph for= {1,2} andB = {3,4,5}.
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Appendix A. The Equivalence Between the Dual Problems in Eq. (1&nd Eq. (13)

In this appendix we prove that the solutions of the problem in Eq. (18) andr@inal dual problem
from Eq. (13) are equivalent. (For an alternative derivation see(blsog et al., 2006)). To do so,
it suffices to show that for each feasible solution of the reduced prothiere exists an equivalent
feasible solution of the original problem and vice versa. Clearly, giveunich satisfies the con-
straints imposed by Eq. (13), definingand as given by Eq. (14) would satisfy the constraints of
Eg. (18) and furthermorB(a, 3) = D(1). Denoting the optimal solution of Eq. (13) oy and that
of Eq. (18) by(a*, B*), we immediately get thdd(a*,3*) > D(1*). We are thus left to show that for
each feasible solutioa, 3 there exists a feasible solutiarsuch thaD(t) = 2 (a, ). This reverse
mapping is non-trivial and there does not exist a closed form descriptitie mapping fronu, 3 to

1. The existence of such a mapping is provided in Lemma 7 below which usegdliy @f max-
flow and min-cut. Lemma 7 immediately implies tHaft*) > D(a*,*). In summary, we have
shown that bottD(1*) < D(a*,$*) andD(1*) > D(a*, ") holds and thereforB(1*) = D(a*, B").

Lemma 7 Let (a,p) be a feasible solution of the reduced problem given in Eq. (18). Therg ther
exists a feasible solutionof the original problem (Eq. (13)) such that© = D(a, ).

Proof The proof is based on the duality of max-flow and min-cut (see for exammiméh et al.
(1990)). Given a feasible solutidn, B) defined over the sesandB we construct a directed graph
(V/,E’). The set of nodes of the graph consists of the original nodes defindtlsetsA andB
and two additional nodeswhich serves as a source andhich is a sinkV' = AUBU{s,t}. In
addition to the original edges of the bipartite graph supported bpdB we add edges frorato
all the nodes irA and from all the nodes iB to t and thusE’ = (Ax B) U ({s} x A) U (B x {t}).
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Each edge € E’ is associated with a capacity valog). For eache € A x B we definec(e) = .
For each edge of the foriis,a) wherea € A we definec(e) = a, and analogously fofb,t) where
b € B we setc(e) = Bp. An illustration of the construction is given in Fig. 9 wheke= {1,2} and
B ={3,4,5}. We are now going to define a flow problem {&',E’). We show in the sequel that
maximalflow in the graph above defines a feasible solution for the original optimizatiablem.
Furthermore, by using the max-flow min-cut duality, we also show that the\atained by the
induced solution coincides with the value of the reduced optimization problefu f8).

A flow for the graph above is an assignment of non-negative valuesgesed : E' — R,
which satisfies

(i) v(rv)eE, F((rv)) <crv)
(i) weV, S g(rv)= 5 F(ur). (39)

r:(rv)eg’ r:(vr)eE’

The value of a flow function is defined as the total flow outgoing the source,

val(¥) = Z F((sr)) .
r:(sr)ekE’

Let 7 * denote the flow attaining the maximal value among all possible flows, that(is Vab
val(# ). We next prove that vaF *) = 3 ,-o0a. To do so we use the max-flow min-cut duality
theorem. This theorem states that the value of the maximal flow equals the #teem@nimal cut
of a graph. Formally, a cut of the graph is a sutetV’ such that & Sand t¢ S The value of a
cut is defined as the totahpacityof edges outgoing frorBtoV'\ S,

val(s) = Z c(r,v) .
(r,v)eSx (V\S)NE’

A cut is said to be minimal if its value does not exceed the value of any othef the graph. The
value of the cuB= {s} is equal toy y.5 ay. We now show thaBis a minimal cut. We note in passing
that while there might exist other cuts attaining the minimum value, for our parpasiffices to
show thatS= {s} is a minimal cut. LeS be a cut different frons. Clearly, if valS) = « thenS
cannot be minimal. We thus can safely assume th@BJak «. If there exists a nodac ANS
then all the nodes iB must also reside i8. Otherwise, there exists an edgeb) of an infinite
capacity which crosses the cut and(8) = « > val(S). Sincet cannot be irS we get that for each
b € B, the edg€b,t) crosses the cut and therefore the value of the cut is atygagBp = 5 acaa.
If on the other hand NS = 0 then all the edges from s to the nodeAinross the cut. Therefore,
val(S) is again at leasy .5 ay. We have thus shown th&t= {s} is a minimal cut of the flow graph.
From the duality theorem of max-flow and min-cut we get that there exists a nlifiowas *
such that val7 *) = S ,ca0a. Since each outgoing edge from s hits a different nodg, we must
have thatr *((s,a) ) = a5 in order to reach the optimal flow value. Similarly, for edh B we get
that 7 *((b,t) ) = Br. We now sett,p = 7 *((a,b) ) for each(a,b) € Ax B. Since a proper flow
associates a non-negative value with each edge we obtainthat 0. From the conservation of
flow we get that,

aa:T*((S,a>): ZT*“a?b)): zravb )

beB beB
and

Bo=7"((bt) = Z\T*((a’b)): Z\Ta,b :
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Thus, this construction aof from the optimal flow satisfies the equalities given in Eq. (14). By
construction, each nodec A has one incoming edge,a) and outgoing edges to all nodesBn
Thus, the flow conservation requirement of Eq. (39) again implies that

C> Z\T*((S,a))z éBT*((a,b))z ;BTayb-

Therefore,t adheres with the constraints of Eq. (13). In summary, we have constradeasible
solution for the original constrained optimization problem which is consist@httive definitions
of a andp. ThereforeD(1) = D(a, ) as required. [ |

Appendix B. Technical Proofs

Proof of Lemma 3
Throughout the proof we assume that the elements of the vpaoe sorted in a non-ascending
order, namelypy > po > ... > Hp. Recall that the definition gb(z, ) is,

j
p(zp) = max{je[p] : u;—?(;ur—z) >o} .

For brevity, we refer t@(z p) simply asp. Denote bya* the optimal solution of the constrained
optimization problem of Eq. (20) and let

p*=max{j : o >0} .

From Eq. (23) we know that; = p — 6* > 0 forr < p* where

1 p
x _ 7 7
(20

and thereforg > p*. We thus need to prove that= p*. Assume by contradiction that> p*. Let
us denote byt the vector induced by the choice pfthat is,a; = 0 forr > p anda; = i — 0 for

r <p, where,
1 p
= — e 4
p ,;”’

From the definition op, we must have that, = pi, — 6 > 0. Therefore, since the elements.odre
sorted in a non-ascending order, we get that | — 6 > 0 for all r < p. In addition, the choice

of 8 implies that||a||; = z. We thus get thatt is a feasible solution as it satisfies the constraints of
Eqg. (20). Examining the objective function attaineaate get that,

) P p p 5
lo—p= = Z Z + > W
r= =p*+ r=p+1
p* p p 5
< 3EE > WE Y
r= p*+1 r=p+1
B p 92_|_ p 2
= M,
r=1 r=p*+1
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where to derive the inequality above we used the factighatd > 0 for allr < p. We now need to
analyze two cases depending on wheffeis greater tha® or not. If 8 > 6 than we can further
bound||a — pj|? from above as follows,

p* p p* p
lo—p? < Y 6%+ W< Y O)+ W= o —p?
er r:pz*+l rZi r:pZ+l

which contradicts the optimality af*. We are thus left to show that the cdse 6* also leads to a
contradiction. We do so by constructing a vedidirom a*. We show that this vector satisfies the
constraints of Eqg. (20) hence it is a feasible solution. Finally, we showthieadbjective function
attained byd is strictly smaller than that ai*. We define the vectdi € RX as follows,

Op—€ =p~

a =< ¢ r=p*+1 ,
oy otherwise

wheree = %(up*ﬂ —0%). Since we assume thét> 6 andp > p* we know thatip- 1 = Hp+1 —0 >
0 which implies that
o1 1
p1= 5 (M1 = 07) > S (Hpr+1—8) = 50p 1 > 0

Furthermore, we also get that,

_ 1 1., 1 1
Gp* = “p*_épp’%l_ie > E(pp*+1—9) = éap*_H_ > 0.

In addition, by construction we get that the rest of component afe also non-negative. Our
construction also preserves the norm, thdti§; = |ja*||s = z. Thus, the vectod is also a feasible
solution for the set of constraints defined by Eq. (20). Alas, examinindiffezence in the objective
functions attained by anda* we get,

* ~ * S 2
o —HZ =6 =P = (@) +ifa— (0" +8)°+ (i1 —e)°)
= 2¢(Mpp1—0") — 26 = 2e> > 0.
2
=2¢

We thus obtained the long desired contradiction which concludes the proof. |

Proof of Thm. 4
Plugging the value of the optimal solutienfrom Eq. (23) into the objectivéa — ||?> and using

Lemma 3 give that,
1 (p(zm) )2 )
Iz = — W—2z] + T
P(ZH) f; r:p(zz:uH1

where, to remind the reader, the number of strictly posititgas,

p
p(z;u)zmaX{p:up—: (Zlur—2> 20} .
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Throughout the proafi is fixed and known. We therefore abuse our notation and use the srtha
p(z) for p(z ). Recall thapuis given in a non-ascending order, 1 < | fori € [p— 1]. Therefore,
we get that

i+1

4y1 = };M i+ 1)1 = E;M“%M+L—M+l THiv1

= Zu—ﬂm > Zu—iui =7 .
r= r=

Thus, the sequenag, z,, . . ., z, is monotonically non-decreasing and the interVals; 1) are well
defined. The definition gb(z) implies that for allz € [7,z.1) we havep(z) = p(z) =i. Hence, the
value ofg(z ) for eachz € [7,71) is,

1/ 2 p
g(Z:m:i( ur—2> + Y W

We have thus established the fact th@t, 1) is a quadratic function in each interv@,z. 1) and in
particular it is continuous in each such sub-interval. To showdh&tontinuous iff0,C] we need
to examine all of its knotg. Computing the left limit and the right limit af at each knot we get
that,

. 2
N . P
Izl[gg(z,u) = Izllrgi(ZMr—Z> +rz Hr

r=1 =I+1
1 1 | 2 P )
= |\ DM DRI+ W
r= r=1 r=i+1
2 R
= |U| + z uf )
r=i+1
and
1 (i1 2 ,
I Z = lim— — +
img(z 1 im - glur Zlur

Therefore, lim; 9(z 1) = limz; 9(z 1) andg is indeed continuous. The continuity of the derivative
of g is shown by using the same technique of examining the right and left limits akeathk for

the function,
2 i
dzw=-(z2-> K
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Finally, we use the fact that a continuously differentiable function is coiiffets derivative is
monotonically non-decreasing. Singeés quadratic in each segmejiat, 7, 1], ¢’ is indeed mono-
tonically non-decreasing in each segment. Furthermore, from the contifiugtyve get thaty' is
monotonically non-decreasing on the entire intef0aC|. Thus,gis convex on0,C]. [ |

Appendix C. Derivation of Eq. (38)

In this section we derive conversion of the optimization problem from Eqto(@s reduced form
given in Eq. (38). In Sec. 4 (Eq. (30)) we derived the dual of EB). (Assuming that for each
example E(y) = {A' x B'}, and using the definitions @i+, b/, andw from Sec. 4, we can rewrite
the dual of EqQ. (6) as

k .
max zywm2+:g S 3 Ml
acAl beBi

st vl [ ] (a,b)€A|><Bl7 55\7b20 (40)
em: 3 Np=C .
(a,b)eA B
where o .
R IDL B IR a)
i:rcAl beBi iireB acA
For eacha € Al define, _ _
beB

and similarly, for eaclo € B' define,

B, = > Map - (43)

acAl

Using these definitions, we can rewrite Eq. (41) as,

we =Y apx'— Y BxX

iireA irrep!

Therefore, the dual objective can be rewritten as,
1K ’

k oo P
D = _ér; i r; (i:rgAi cx:’y;_i:r%Bi BIFVI")

As in Sec. 3, we need to enforce the additional constraints and3,

Z’O(irxi— Z.Birxi

irreAl irreB!

Vie [m] :vacA, a,>0 andvbeB', B, >0

[m] ZG ZBbSC

acAl beB!

Combining the dual definition with the above constraints gives the reducbtepn from Eq. (38).
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