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Abstract
While the model parameters of a kernel machine are typically given by the solution of a convex op-
timisation problem, with a single global optimum, the selection of good values for the regularisation
and kernel parameters is much less straightforward. Fortunately the leave-one-out cross-validation
procedure can be performed or a least approximated very efficiently in closed form for a wide vari-
ety of kernel learning methods, providing a convenient means for model selection. Leave-one-out
cross-validation based estimates of performance, however, generally exhibit a relatively high vari-
ance and are therefore prone to over-fitting. In this paper, we investigate the novel use of Bayesian
regularisation at the second level of inference, adding a regularisation term to the model selection
criterion corresponding to a prior over the hyper-parameter values, where the additional regulari-
sation parameters are integrated out analytically. Results obtained on a suite of thirteen real-world
and synthetic benchmark data sets clearly demonstrate the benefit of this approach.
Keywords: model selection, kernel methods, Bayesian regularisation

1. Introduction

Leave-one-out cross-validation (Lachenbruch and Mickey, 1968; Luntz and Brailovsky, 1969; Stone,
1974) provides the basis for computationally efficient model selection strategies for a variety of ker-
nel learning methods, including the Support Vector Machine (SVM) (Cortes and Vapnik, 1995;
Chapelle et al., 2002), Gaussian Process (GP) (Rasmussen and Williams, 2006; Sundararajan and
Keerthi, 2001), Least-Squares Support Vector Machine (LS-SVM) (Suykens and Vandewalle, 1999;
Cawley and Talbot, 2004), Kernel Fisher Discriminant (KFD) analysis (Mika et al., 1999; Caw-
ley and Talbot, 2003; Saadi et al., 2004; Bo et al., 2006) and Kernel Logistic Regression (KLR)
(Keerthi et al., 2005; Cawley and Talbot, 2007). These methods have proved highly successful
for kernel machines having only a small number of hyper-parameters to optimise, as demonstrated
by the set of models achieving the best average score in the WCCI-2006 performance prediction
challenge1 (Cawley, 2006; Guyon et al., 2006). Unfortunately, while leave-one-out cross-validation
estimators have been shown to be almost unbiased (Luntz and Brailovsky, 1969), they are known
to exhibit a relatively high variance (e.g., Kohavi, 1995). A kernel with many hyper-parameters, for
instance those used in Automatic Relevance Determination (ARD) (e.g., Rasmussen and Williams,
2006) or feature scaling methods (Chapelle et al., 2002; Bo et al., 2006), may provide sufficient

1. See http://www.modelselect.inf.ethz.ch/index.php.
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degrees of freedom to over-fit leave-one-out cross-validation based model selection criteria, result-
ing in performance inferior to that obtained using a less flexible kernel function. In this paper, we
investigate the novel use of regularisation (Tikhonov and Arsenin, 1977) of the hyper-parameters
in model selection in order to ameliorate the effects of the high variance of leave-one-out cross-
validation based selection criteria, and so improve predictive performance. The regularisation term
corresponds to a zero-mean Gaussian prior over the values of the kernel parameters, representing a
preference for smooth kernel functions, and hence a relatively simple classifier. The regularisation
parameters introduced in this step are integrated out analytically in the style of Buntine and Weigend
(1991), to provide a Bayesian model selection criterion that can be optimised in a straightforward
manner via, for example, scaled conjugate gradient descent (Williams, 1991).

The paper is structured as follows: The remainder of this section provides a brief overview of
the least-squares support vector machine, including the use of leave-one-out cross-validation based
model selection procedures, given in sufficient detail to ensure the reproducibility of the results.
Section 2 describes the use of Bayesian regularisation to prevent over-fitting at the second level
of inference, that is, model selection. Section 3 presents results obtained over a suite of thirteen
benchmark data sets, which demonstrate the utility of this approach. Section 4 provides discussion
of the results and suggests directions for further research. Finally, the work is summarised and
directions for further work are outlined in Section 5.

1.1 Least Squares Support Vector Machine

In the remainder of this section, we provide a brief overview of the least-squares support vector
machine (Suykens and Vandewalle, 1999) used as the testbed for the investigation of the role of
regularisation in the model selection process described in this study. Given training data,

D = {(xi, yi)}`
i=1 , where xi ∈ X ⊂ R

d and yi ∈ {−1,+1},

we seek to construct a linear discriminant, f (x) = φ(x) ·w + b, in a feature space, F , defined by
a fixed transformation of the input space, φ : X → F . The parameters of the linear discriminant,
(w, b), are given by the minimiser of a regularised (Tikhonov and Arsenin, 1977) least-squares
training criterion,

L =
1
2
‖w‖2 +

1
2µ

`

∑
i=1

[yi −φ(xi) ·w−b]2 , (1)

where µ is a regularisation parameter controlling the bias-variance trade-off (Geman et al., 1992).
Rather than specify the feature space directly, it is instead induced by a kernel function, K : X ×X →
R, which evaluates the inner-product between the projections of the data onto the feature space, F ,
that is, K (x,x′) = φ(x) · φ(x′). The interpretation of an inner-product in a fixed feature space is
valid for any Mercer kernel (Mercer, 1909), for which the Gram matrix, K = [ki j = K (xi,x j)]

`
i, j=1

is positive semi-definite, that is,

aT Ka ≥ 0, ∀ a ∈ R
`, a 6= 0.

The Gram matrix effectively encodes the spatial relationships between the projections of the data in
the feature space, F . A linear model can thus be implicitly constructed in the feature space using
only information contained in the Gram matrix, without explicitly evaluating the positions of the
data in the feature space via the transformation φ(·). Indeed, the representer theorem (Kimeldorf
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and Wahba, 1971) shows that the solution of the optimisation problem (1) can be written as an
expansion over the training patterns,

w =
`

∑
i=1

αiφ(xi) =⇒ f (x) =
`

∑
i=1

αiK (xi,x)+b.

The advantage of the “kernel trick” then becomes apparent; a linear model can be constructed in an
extremely rich, high- (possibly infinite-) dimensional feature space, using only finite-dimensional
quantities, such as the Gram matrix, K. The “kernel trick” also allows the construction of statistical
models that operate directly on structured data, for instance strings, trees and graphs, leading to the
current interest in kernel learning methods in computational biology (Schölkopf et al., 2004) and
text-processing (Joachims, 2002). The Radial Basis Function (RBF) kernel,

K (x,x′) = exp
{
−η‖x− x′‖2}

is commonly encountered in practical applications of kernel learning methods, here η is a kernel
parameter, controlling the sensitivity of the kernel function. The feature space for the radial basis
function kernel consists of the positive orthant of an infinite-dimensional unit hyper-sphere (e.g.,
Shawe-Taylor and Cristianini, 2004). The Gram matrix for the radial basis function kernel is thus
of full rank (Micchelli, 1986), and so the kernel model is able to form an arbitrary shattering of the
data.

1.1.1 A DUAL TRAINING ALGORITHM

The basic training algorithm for the least-squares support vector machine (Suykens and Vandewalle,
1999) views the regularised loss function (1) as a constrained minimisation problem:

min
w,b,εi

1
2
‖w‖2 +

1
2µ

`

∑
i=1

ε2
i subject to εi = yi −w ·φ(xi)−b.

The primal Lagrangian for this constrained optimisation problem gives the unconstrained minimi-
sation problem defined by the following regularised loss function,

L =
1
2
‖w‖2 +

1
2µ

`

∑
i=1

ε2
i −

`

∑
i=1

αi {w ·φ(xi)+b+ εi − yi} ,

where α = (α1,α2, . . . ,α`) ∈ R
` is a vector of Lagrange multipliers. The optimality conditions for

this problem can be expressed as follows:

∂L
∂w

= 0 =⇒ w =
`

∑
i=1

αiφ(xi), (2)

∂L
∂b

= 0 =⇒
`

∑
i=1

αi = 0, (3)

∂L
∂εi

= 0 =⇒ αi =
εi

µ
, ∀i ∈ {1,2, . . . , `}, (4)

∂L
∂αi

= 0 =⇒ w ·φ(xi)+b+ εi − yi = 0, ∀ i ∈ {1,2, . . . , `}. (5)
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Using (2) and (4) to eliminate w and ε = (ε1,ε2, . . . ,ε`), from (5), we find that

`

∑
j=1

α jφ(x j) ·φ(xi)+b+µαi = yi ∀ i ∈ {1,2, . . . , `}. (6)

Noting that K (x,x′) = φ(x) ·φ(x′), the system of linear equations, (6) and (3), can be written more
concisely in matrix form as [

K +µI 1
1T 0

][
α
b

]
=

[
y
0

]
,

where K = [ki j = K (xi,x j)]
`
i, j=1, I is the `×` identity matrix and 1 is a column vector of ` ones. The

optimal parameters for the model of the conditional mean can then be obtained with a computational
complexity of O(`3) operations, using direct methods, such as Cholesky decomposition (Golub and
Van Loan, 1996).

1.1.2 EFFICIENT IMPLEMENTATION VIA CHOLESKY DECOMPOSITION

A more efficient training algorithm can be obtained, taking advantage of the special structure of the
system of linear equations (Suykens et al., 2002). The system of linear equations to be solved in
fitting a least-squares support vector machine is given by,

[
M 1
1T 0

][
α
b

]
=

[
y
0

]
, (7)

where M = K +µI. Unfortunately the matrix on the left-hand side is not positive definite, and so we
cannot solve this system of linear equations directly using the Cholesky decomposition. However,
the first row of (7) can be re-written as

M
(
α+M−11b

)
= y. (8)

Rearranging (8), we see that α = M−1 (y−1b), using this result to eliminate α, the second row of
(7) can be written as

1T M−11b = 1T M−1y.

The system of linear equations can then be re-written as
[

M 0
0T 1T M−11

][
α+M−11b

b

]
=

[
y

1T M−1y

]
. (9)

In this case, the matrix on the left hand side is positive-definite, as M = K + λI is positive-definite
and 1T M−11 is positive since the inverse of a positive definite matrix is also positive definite. The
revised system of linear equations (9) can be solved as follows: First solve

Mρ = 1 and Mν = y, (10)

which may be performed efficiently using the Cholesky factorisation of M. The model parameters
of the least-squares support vector machine are then given by

b =
1T ν
1T ρ

and α = ν−ρb.

The two systems of linear equations (10) can be solved efficiently using the Cholesky decomposition
of M = RT R, where R is the upper triangular Cholesky factor of M.
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1.2 Leave-One-Out Cross-Validation

Cross-validation (Stone, 1974) is commonly used to obtain a reliable estimate of the test error for
performance estimation or for use as a model selection criterion. The most common form, k-fold
cross-validation, partitions the available data into k disjoint subsets. In each iteration a classifier
is trained on a different combination of k − 1 subsets and the unused subset is used to estimate
the test error rate. The k-fold cross-validation estimate of the test error rate is then simply the av-
erage of the test error rate observed in each of the k iterations, or folds. The most extreme form
of cross-validation, where k = ` such that the test partition in each fold consists of only a sin-
gle pattern, is known as leave-one-out cross-validation (Lachenbruch and Mickey, 1968) and has
been shown to provide an almost unbiased estimate of the test error rate (Luntz and Brailovsky,
1969). Leave-one-out cross-validation is however computationally expensive, in the case of the
least-squares support vector machine a naı̈ve implementation having a complexity of O(`4) opera-
tions. Leave-one-out cross-validation is therefore normally only used in circumstances where the
available data are extremely scarce such that the computational expense is no longer prohibitive.
In this case the inherently high variance of the leave-one-out estimator (Kohavi, 1995) is offset by
the minimal decrease in the size of the training set in each fold, and so may provide a more reliable
estimate of generalisation performance than conventional k-fold cross-validation. Fortunately leave-
one-out cross-validation of least-squares support vector machines can be performed in closed form
with a computational complexity of only O(`3) operations (Cawley and Talbot, 2004). Leave-one-
out cross-validation can then be used in medium to large scale applications, where there may be a
few thousand data-points, although the relatively high variance of this estimator remains potentially
problematic.

1.2.1 VIRTUAL LEAVE-ONE-OUT CROSS-VALIDATION

The optimal values of the parameters of a Least-Squares Support Vector Machine are given by the
solution of a system of linear equations:

[
K +µI 1

1T 0

][
α
b

]
=

[
y
0

]
. (11)

The matrix on the left-hand side of (11) can be decomposed into block-matrix representation, as
follows: [

K +µI 1
1T 0

]
=

[
c11 cT

1
c1 C1

]
= C.

Let [α(−i);b(−i)] represent the parameters of the least-squares support vector machine during the ith

iteration of the leave-one-out cross-validation procedure, then in the first iteration, in which the first
training pattern is excluded, [

α(−1)

b(−1)

]
= C−1

1 [y2, . . . ,y`,0]T .

The leave-one-out prediction for the first training pattern is then given by

ŷ(−1)
1 = cT

1

[
α(−1)

b(−1)

]
= cT

1 C−1
1 [y2, . . . ,y`,0]T .
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Considering the last ` equations in the system of linear equations (11), it is clear that [c1 C1]
[α1, . . . ,α`,b]T = [y2, . . . ,y`,0]T , and so

ŷ(−1)
1 = cT

1 C−1
1 [c1 C1]

[
αT ,b

]T
= cT

1 C−1
1 c1α1 + c1 [α2, . . . ,α`,b]T .

Noting, from the first equation in the system of linear equations (11), that y1 = c11α1+
cT

1 [α2, . . . ,α`,b]T , thus

ŷ(−1)
1 = y1 −α1

(
c11 − cT

1 C−1
1 c1

)
.

Finally, via the block matrix inversion lemma,
[

c11 cT
1

c1 C1

]−1

=

[
κ−1 −κ−1c1C−1

1
C−1

1 +κ−1C−1
1 cT

1 c1C−1
1 −κ−1C−1

1 cT
1

]
,

where κ = c11−cT
1 C−1

1 c, and noting that the system of linear equations (11) is insensitive to permu-
tations of the ordering of the equations and of the unknowns, we have that,

yi − ŷ(−i)
i =

αi

C−1
ii

. (12)

This means that, assuming the system of linear equations (11) is solved via explicit inversion of C,
a leave-one-out cross-validation estimate of an appropriate model selection criterion can be evalu-
ated using information already available a by-product of training the least-squares support vector
machine on the entire data set (cf., Sundararajan and Keerthi, 2001).

1.2.2 EFFICIENT IMPLEMENTATION VIA CHOLESKY FACTORISATION

The leave-one-out cross-validation behaviour of the least-squares support vector machine is de-
scribed by (12). The coefficients of the kernel expansion, α, can be found efficiently, via Cholesky
factorisation, as described in Section 1.1.2. However we must also determine the diagonal elements
of C−1 in an efficient manner. Using the block matrix inversion formula, we obtain

C−1 =

[
M 1
1T 0

]−1

=

[
M−1 +M−11S−1

M 1T M−1 −M−11S−1
M

−S−1
M 1T M−1 S−1

M

]

where M = K + µI and SM = −1T M−11 = −1T η is the Schur complement of M. The inverse of
the positive definite matrix, M, can be computed efficiently from its Cholesky factorisation, via the
SYMINV algorithm (Seaks, 1972), for example using the LAPACK routine DTRTRI (Anderson et al.,
1999). Let R = [ri j]

`
i, j=1 be the lower triangular Cholesky factor of the positive definite matrix M,

such that M = RRT . Furthermore, let

S = [si j]
`
i, j=1 = R−1, where sii =

1
rii

and si j = −sii

i−1

∑
k=1

riksk j,

represent the (lower triangular) inverse of the Cholesky factor. The inverse of M is then given by
M−1 = ST S. In the case of efficient leave-one-out cross-validation of least-squares support vector
machines, we are principally concerned only with the diagonal elements of M−1, given by

M−1
ii =

i

∑
j=1

s2
i j =⇒ C−1

ii =
i

∑
j=1

s2
i j +

ρ2
i

SM
∀ i ∈ {1,2, . . . , `}.
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The computational complexity of the basic training algorithm is O(`3) operations, being dom-
inated by the evaluation of the Cholesky factor. However, the computational complexity of the
analytic leave-one-out cross-validation procedure, when performed as a by-product of the training
algorithm, is only O(`) operations. The computational expense of the leave-one-out cross-validation
procedure therefore becomes increasingly negligible as the training set becomes larger.

1.3 Model Selection

The virtual leave-one-out cross-validation procedure described in the previous section provides the
basis for a simple automated model selection strategy for the least-squares support vector machine.
Perhaps the most basic model selection criterion is provided by the Predicted REsidual Sum of
Squares (PRESS) criterion (Allen, 1974), which is simply the leave-one-out estimate of the sum-of-
squares error,

Q(θ) =
1
2

`

∑
i=1

[
yi − ŷ(−i)

i

]2
.

A minimum of the model selection criterion is often found via a simple grid-search procedure in
the majority of practical applications of kernel learning methods. However, this is rarely necessary
and often highly inefficient as a grid-search spends a large amount of time investigating hyper-
parameter values outside the neighbourhood of the global optimum. A more efficient approach uses
the Nelder-Mead simplex algorithm (Nelder and Mead, 1965), as implemented by the fminsearch
function of the MATLAB optimisation toolbox. An alternative easily implemented approach uses
conjugate gradient methods, with the required gradient information estimated by the method of finite
differences, and implemented by the fminunc function from the MATLAB optimisation toolbox.
In this study however, we use scaled conjugate gradient descent (Williams, 1991), with the required
gradient information evaluated analytically, as this is approximately twice as efficient.

1.3.1 PARTIAL DERIVATIVES OF THE PRESS MODEL SELECTION CRITERION

Let θ = {θ1, . . . ,θn} = {λ,η1, . . . ,ηd} represent the vector of hyper-parameters for a least-squares
support vector machine, where η1, . . . ,ηd represent the kernel parameters. The PRESS statistic
(Allen, 1974) can be written as

Q(θ) =
1
2

`

∑
i=1

[
r(−i)

i

]2
, where r(−i)

i = yi − ŷ(−i)
i =

αi

C−1
ii

.

Using the chain rule, the partial derivative of the PRESS statistic, with respect to an individual
hyper-parameter, θ j, is given by,

∂Q(θ)

∂θ j
=

`

∑
i=1

∂Q(θ)

∂r(−i)
i

∂r(−i)
i

∂θ j
,

where
∂Q(θ)

∂r(−i)
i

= r(−i)
i =

αi

C−1
ii

and
∂r(−i)

i

∂θ j
=

∂αi

∂θ j

1

C−1
ii

− αi[
C−1

ii

]2

∂C−1
ii

∂θ j
,

such that
∂Q(θ)

∂θ j
=

`

∑
i=1

αi

C−1
ii

{
∂αi

∂θ j

1

C−1
ii

− αi[
C−1

ii

]2

∂C−1
ii

∂θ j

}
.
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We begin by deriving the partial derivatives of the model parameters,
[
αT b

]T
, with respect to the

hyper-parameter θ j. The model parameters are given by the solution of a system of linear equations,
such that [

αT b
]T

= C−1 [
yT 0

]T
.

Using the following identity for the partial derivatives of the inverse of a matrix,

∂C−1

∂θ j
= −C−1 ∂C

∂θ j
C−1, (13)

we obtain,
∂
[
αT b

]T

∂θ j
= −C−1 ∂C

∂θ j
C−1 [

yT 0
]
= −C−1 ∂C

∂θ j

[
αT b

]T
.

Note the computational complexity of evaluating the partial derivatives of the model parameters
is O(`2), as only two successive matrix-vector products are required. The partial derivatives of the
diagonal elements of C−1 can be found using the inverse matrix derivative identity (13). For a kernel
parameter, ∂C/∂η j will generally be fully dense, and so the computational complexity of evaluating
the diagonal elements of ∂C−1/∂η j will be O(`3) operations. If, on the other hand, we consider the
regularisation parameter, µ, we have that

∂C
∂µ

=

[
I 0

0T 0

]
,

and so the computation of the partial derivatives of the model parameters, with respect to the regu-
larisation parameter, is slightly simplified,

∂
[
αT b

]T

∂µ
= −C−1 [

αT b
]T

.

More importantly, as ∂C/∂µ is diagonal, the diagonal elements of (13) can be evaluated with a
computational complexity of only O(`2) operations. This suggests that it may be more efficient
to adopt different strategies for optimising the regularisation parameter, µ, and the vector of kernel
parameters, η, (cf., Saadi et al., 2004). For a kernel parameter, η j, the partial derivatives of C with
respect to η j are given by the partial derivatives of the kernel matrix, that is,

∂C
∂η j

=

[
∂K/∂η j 0

0T 0

]
.

For the spherical radial basis function kernel, used in this study, the partial derivative with respect
to the kernel parameter is given by

∂K (x,x′)
∂η

= −K (x,x′)‖x− x′‖2.

Finally, since the regularisation parameter, µ, and the scale parameter of the radial basis function
kernel are strictly positive quantities, in order to permit the use of an unconstrained optimisation
procedure, we adopt the parameterisation θ̃ j = log2 θ j, such that

∂Q(θ)

∂θ̃ j

=
∂Q(θ)

∂θ j

∂θ j

∂θ̃ j

where
∂θ j

∂θ̃ j

= θ j log2.
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1.3.2 AUTOMATIC RELEVANCE DETERMINATION

Automatic Relevance Determination (ARD) (e.g., Rasmussen and Williams, 2006), also known as
feature scaling (Chapelle et al., 2002; Bo et al., 2006), aims to identify informative input features as
a natural consequence of optimising the model selection criterion. This can be most easily achieved
using an elliptical radial basis function kernel,

K (x,x′) = exp

{
−

d

∑
i=1

ηi[xi − x′i]
2

}
,

that incorporates individual scaling factors for each input dimension. The partial derivatives with
respect to the kernel parameters are then given by,

∂K (x,x′)
∂ηi

= −K (x,x′)[xi − x′i]
2.

Generalisation performance is likely to be enhanced if irrelevant features are down-weighted. It is
therefore hoped that minimising the model selection criterion will lead to very small values for the
scaling factors associated with redundant input features, allowing them to be identified and pruned
from the model.

2. Bayesian Regularisation in Model Selection

In order to overcome the observed over-fitting in model selection using leave-one-out cross-validation
based methods, we propose to add a regularisation term (Tikhonov and Arsenin, 1977) to the model
selection criterion, which penalises solutions where the kernel parameters take on unduly large val-
ues. The regularised model selection criterion is then given by

M(θ) = ζQ(θ)+ξΩ(θ), (14)

where ξ and ζ are additional regularisation parameters, Q(θ) is the model selection criterion, in this
case the PRESS statistic and Ω(θ) is a regularisation term,

Q(θ) =
1
2

`

∑
i=1

[
yi − ŷ(−i)

i

]2
and Ω(θ) =

1
2

d

∑
i=1

η2
i .

In this study we have left the regularisation parameter, µ, unregularised. However, we have now
introduced two further regularisation parameters ξ and ζ for which good values must also be found.
This problem may be solved by taking a Bayesian approach and adopting an ignorance prior and
integrating out the additional regularisation parameters analytically in the style of Buntine and
Weigend (1991). Adapting the approach taken by Williams (1995), the regularised model selec-
tion criterion (14) can be interpreted as the posterior density in the space of the hyper-parameters,

P(θ|D) ∝ P(D|θ)P(θ),

by taking the negative logarithm and neglecting additive constants. Here P(D|θ) represents the
likelihood with respect to the hyper-parameters and P(θ) represents our prior beliefs regarding the
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hyper-parameters, in this case that they should have a small magnitude, corresponding to a relatively
simple model. These quantities can be expressed as

P(D|θ) = Z−1
Q exp{−ζQ(θ)} and P(θ) = Z−1

Ω exp{−ξΩ(θ)}

where ZQ and ZΩ are the appropriate normalising constants. Assuming the data represent an i.i.d.
sample, the likelihood in this case is Gaussian,

P(D|θ) =
`

∏
i=1

1√
2πσ

exp




−

[
yi − ŷ(−i)

i

]2

2σ2





where ζ =
1

σ2 =⇒ ZQ =

(
2π
ζ

)`/2

.

Likewise, the prior is a Gaussian, centred on the origin,

P(θ) =
d

∏
i=1

1√
2π/ξ

exp

{
−ξ

2
η2

i

}
such that ZΩ =

(
2π
ξ

)d/2

.

Minimising (14) is thus equivalent to maximising the posterior density with respect to the hyper-
parameters. Note that the use of a prior over the hyper-parameters is in accordance with normal
Bayesian practice and has been investigated in the case of Gaussian Process classifiers by Williams
and Barber (1998). The combination of frequentist and Bayesian approaches at the first and sec-
ond levels of inference is however somewhat unusual. The marginal likelihood is dependent on
the assumptions of the model, which may not be completely appropriate. Cross-validation based
procedures may therefore be more robust in the case of model mis-specification (Wahba, 1990). It
seems reasonable for the model to be less sensitive to assumptions at the second level of inference
than the first, and so the proposed approach represents a pragmatic combination of techniques.

2.1 Elimination of Second Level Regularisation Parameters ξ and ζ

Under the evidence framework proposed by MacKay (1992a,b,c) the hyper-parameters ξ and ζ are
determined by maximising the marginal likelihood, also known as the Bayesian evidence for the
model. In this study, however we opt to integrate out the hyper-parameters analytically, extending
the work by Buntine and Weigend (1991) and Williams (1995) to consider Bayesian regularisation
at the second level of inference, namely the selection of good values for the hyper-parameters. We
begin with the prior over the hyper-parameters, which depends on ξ,

P(θ|ξ) = ZΩ(ξ)−1 exp{−ξΩ} .

The regularisation parameter ξ may then be integrated out analytically using a suitable prior, P(ξ),

P(θ) =
Z

P(θ|ξ)P(ξ)dξ.

The improper Jeffreys’ prior, P(ξ) ∝ 1/ξ is an appropriate ignorance prior in this case as ξ is a scale
parameter, noting that ξ is strictly positive,

p(θ) =
1

(2π)d/2

Z ∞

0
ξd/2−1 exp{−ξΩ}dξ.
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Using the Gamma integral
R ∞

0 xν−1e−µxdx = Γ(ν)/µν (Gradshteyn and Ryzhic, 1994, equation 3.384),
we obtain

p(θ) =
1

(2π)d/2

Γ(d/2)

Ωd/2
=⇒ − log p(θ) ∝

d
2

logΩ.

Finally, adopting a similar procedure to eliminate ζ, we obtain a revised model selection criterion
with Bayesian regularisation,

L =
`

2
logQ(θ)+

d
2

logΩ(θ). (15)

in which the regularisation parameters have been eliminated. As before, this criterion can be opti-
mised via standard methods, such as the Nelder-Mead simplex algorithm (Nelder and Mead, 1965)
or scaled conjugate gradient descent (Williams, 1991). The partial derivatives of the proposed
Bayesian model selection criterion are given by

∂L
∂θi

=
`

2Q(θ)

∂Q(θ)

∂θi
+

d
2Ω(θ)

∂Ω(θ)

∂θi
and

∂Ω(θ)

∂ηi
= ηi.

The additional computational expense involved in Bayesian regularisation of the model selection
criterion is only O(d) operations, and is extremely small in comparison with the O(`3) operations
involved in obtaining the leave-one-out error (including the cost of training the model on the entire
data set). Per iteration of the model selection process, the cost of the Bayesian regularisation is
therefore minimal. There seems little reason to suppose that the regularisation will have an adverse
effect on convergence, and this seems to be the case in practice.

2.2 Relationship with the Evidence Framework

Under the evidence framework of MacKay (1992a,b,c) the regularisation parameters, ξ and ζ, are
selected so as to maximise the marginal likelihood, also known as the Bayesian evidence, for the
model. The log-evidence is given by

logP(D) = −ξΩ(θ)−ζQ(θ)− 1
2

log |A|+ d
2

logξ+
`

2
logζ− `

2
log{2π} ,

where A is the Hessian of the regularised model selection criterion (14) with respect to the hyper-
parameters, θ. Setting the partial derivatives of the log evidence with respect to the regularisation
parameters, ξ and ζ, equal to zero, we obtain the familiar update formulae,

ξnew =
γ

2Ω(θ)
and ζnew =

`− γ
2Q(θ)

,

where γ is the number of well defined hyper-parameters, that is, the hyper-parameters for which the
optimal value is primarily determined by the log-likelihood term, Q(θ) rather than by the regulariser,
Ω(θ). In the case of the L2 regularisation term, corresponding to a Gaussian prior, the number of
well determined hyper-parameters is given by

γ =
n

∑
j=1

λ j

λ j +ξ

where, λi, . . . ,λn represent the eigenvalues of the Hessian of the unregularised model selection cri-
terion, Q(θ) with respect to the kernel parameters. Comparing the partial derivatives of the reg-
ularised model selection criterion (14) with those of the Bayesian criterion (15), reveals that the
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Bayesian regularisation scheme is equivalent to optimising the regularised model selection criterion
(14) assuming that the regularisation parameters, ξ and ζ, are continuously updated according to the
following update rules,

ξeff =
d

2Ω(θ)
and ζeff =

`

2Q(θ)
.

This exactly corresponds to the “cheap and cheerful” approximation of the evidence framework sug-
gested by MacKay (1994), which assumes that all of the hyper-parameters are well-determined and
that the number of hyper-parameters is small in relation to the number of training patterns. Since
γ ≤ d, it seems self evident that the proposed Bayesian regularisation scheme will be prone to a de-
gree of under-fitting, especially in the case of a feature scaling kernel with many redundant features.
The theoretical and practical pros and cons of the integrate-out approach and the evidence frame-
work are discussed in some detail by MacKay (1994) and Bishop (1995) and references therein.
However, the integrate-out approach does not require the evaluation of the Hessian matrix of the
original selection criterion, Q(θ), which is likely to prove computationally prohibitive.

3. Results

In this section, we present experimental results demonstrating the benefits of the proposed model
selection strategy incorporating Bayesian regularisation to overcome the inherent high variance of
leave-one-out cross-validation based selection criteria. Table 2 shows a comparison of the error
rates of least-squares support vector machines, using model selection procedures with, and without,
Bayesian regularisation, (LS-SVM and LS-SVM-BR respectively) over the suite of thirteen pub-
lic domain benchmark data sets used in the study by Mika et al. (2000). Results obtained using a
Gaussian process classifier (Rasmussen and Williams, 2006), based on the expectation propagation
method, are also provided for comparison (EP-GPC). The same set of 100 random partitions of the
data (20 in the case of the larger image and splice benchmarks) to form training and test sets used
in that study are also used here. In each case, model selection is performed independently for each
realisation of the data set, such that the standard errors reflect the variability of both the training
algorithm and the model selection procedure with changes in the sampling of the data. Both con-
ventional spherical and elliptical radial basis kernels are used for all kernel learning methods, so
that the effectiveness of each algorithm for automatic relevance determination can be assessed. The
use of multiple training/test partitions allows an estimate of the statistical significance of differences
in performance between algorithms to be computed. Let x̂ and ŷ represent the means of the perfor-
mance statistic for a pair of competing algorithms, and ex and ey the corresponding standard errors,
then the z statistic is computed as

z =
ŷ− x̂√
e2

x + e2
y

.

The z-score can then be converted to a significance level via the normal cumulative distribution
function, such that z = 1.64 corresponds to a 95% significance level. All statements of statistical
significance in the remainder of this section refer to a 95% level of significance.

3.1 Performance of Models Based on the Spherical RBF Kernel

The results shown in the first three data columns of Table 2 show the performance of LS-SVM,
LS-SVM-BR and EP-ARD models based on the spherical Gaussian kernel. The performance of
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Data Set
Training Testing Number of Input
Patterns Patterns Replications Features

Banana 400 4900 100 2
Breast cancer 200 77 100 9
Diabetis 468 300 100 8
Flare solar 666 400 100 9
German 700 300 100 20
Heart 170 100 100 13
Image 1300 1010 20 18
Ringnorm 400 7000 100 20
Splice 1000 2175 20 60
Thyroid 140 75 100 5
Titanic 150 2051 100 3
Twonorm 400 7000 100 20
Waveform 400 4600 100 21

Table 1: Details of data sets used in empirical comparison.

LS-SVM models with and without Bayesian regularisation are very similar, with neither model
proving significantly better than the other on any of the data sets. This seems reasonable given
that only two hyper-parameters are optimised during model selection and so there is little scope for
over-fitting the PRESS model selection criterion and the regularisation term will have little effect.
The LS-SVM model with Bayesian regularisation is significantly out-performed by the Gaussian
Process classifier on one benchmark banana, but performs significantly better on a further four
(ringnorm, splice, twonorm, waveform). Demšar (2006) recommends the use of the Wilcoxon
signed rank test for assessing the statistical significance of differences in performance over multiple
data sets. According to this test, neither the LSSVM-BR nor the EP-PGC is statistically superior at
the 95% level of significance.

3.2 Performance of Models Based on the Elliptical RBF Kernel

The performances of LS-SVM, LS-SVM-BR and EP-GPC models based on the elliptical Gaussian
kernel, which includes a separate scale parameter for each input feature, are shown in the last three
columns of Table 2. Before evaluating the effects of Bayesian regularisation in model selection it is
worth noting that the use of elliptical RBF kernels does not generally improve performance. For the
LS-SVM, the elliptical kernel produces significantly better results on only two benchmarks (image
and splice) and significantly worse results on a further eight (banana, breast cancer, diabetis,
german, heart, ringnorm, twonorm, waveform), with the degradation in performance being very
large in some cases (e.g., heart). This seems likely to be a result of the additional degrees of
freedom involved in the model selection process, allowing over-fitting of the PRESS model selection
criterion as a result of its inherently high variance. Note that fully Bayesian approaches, such as
the Gaussian Process Classifier, are also unable to reliably select kernel parameters for the elliptical
RBF kernel. The elliptical kernel is significantly better on only three benchmarks (flare solar,
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Data Set
Radial Basis Function Automatic Relevance Determination

LSSVM LSSVM-BR EP-GPC LSSVM LSSVM-BR EP-GPC

Banana 10.60 ± 0.052 10.59 ± 0.050 10.41 ± 0.046 10.79 ± 0.072 10.73 ± 0.070 10.46 ± 0.049

Breast cancer 26.73 ± 0.466 27.08 ± 0.494 26.52 ± 0.489 29.08 ± 0.415 27.81 ± 0.432 27.97 ± 0.493

Diabetes 23.34 ± 0.166 23.14 ± 0.166 23.28 ± 0.182 24.35 ± 0.194 23.42 ± 0.177 23.86 ± 0.193

Flare solar 34.22 ± 0.169 34.07 ± 0.171 34.20 ± 0.175 34.39 ± 0.194 33.61 ± 0.151 33.58 ± 0.182

German 23.55 ± 0.216 23.59 ± 0.216 23.36 ± 0.211 26.10 ± 0.261 23.88 ± 0.217 23.77 ± 0.221

Heart 16.64 ± 0.358 16.19 ± 0.348 16.65 ± 0.287 23.65 ± 0.355 17.68 ± 0.623 19.68 ± 0.366

Image 3.00 ± 0.158 2.90 ± 0.154 2.80 ± 0.123 1.96 ± 0.115 2.00 ± 0.113 2.16 ± 0.068

Ringnorm 1.61 ± 0.015 1.61 ± 0.015 4.41 ± 0.064 2.11 ± 0.040 1.98 ± 0.026 8.58 ± 0.096

Splice 10.97 ± 0.158 10.91 ± 0.154 11.61 ± 0.181 5.86 ± 0.179 5.14 ± 0.145 7.07 ± 0.765

Thyroid 4.68 ± 0.232 4.63 ± 0.218 4.36 ± 0.217 4.68 ± 0.199 4.71 ± 0.214 4.24 ± 0.218

Titanic 22.47 ± 0.085 22.59 ± 0.120 22.64 ± 0.134 22.58 ± 0.108 22.86 ± 0.199 22.73 ± 0.134

Twonorm 2.84 ± 0.021 2.84 ± 0.021 3.06 ± 0.034 5.18 ± 0.072 4.53 ± 0.077 4.02 ± 0.068

Waveform 9.79 ± 0.045 9.78 ± 0.044 10.10 ± 0.047 13.56 ± 0.141 11.48 ± 0.177 11.34 ± 0.195

Table 2: Error rates of least-squares support vector machine, with and without Bayesian regularisation of the model selection criterion, in
this case the PRESS statistic (Allen, 1974), and Gaussian process classifiers over thirteen benchmark data sets (Rätsch et al., 2001),
using both standard radial basis function and automatic relevance determination kernels. The results for the EP-GPC were obtained
using the MATLAB software accompanying the book by Rasmussen and Williams (2006). The results for each method are presented
in the form of the mean error rate over test data for 100 realisations of each data set (20 in the case of the image and splice data sets),
along with the associated standard error. The best results are shown in boldface and the second best in italics (without implication
of statistical significance).
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image and splice), while being significantly worse on six (breast cancer, diabetis, heart,
ringnorm, twonorm and waveform).

In the case of the elliptical RBF kernel, the use of Bayesian regularisation in model selection
has a dramatic effect on the performance of LS-SVM models, with the LS-SVM-BR model prov-
ing significantly better than the conventional LS-SVM on nine of the thirteen benchmarks (breast
cancer, diabetis, flare solar, german, heart, ringnorm, splice, twonorm and waveform)
without being significantly worse on any of the remaining four data sets. This demonstrates that
over-fitting in model selection, due to the larger number of kernel parameters, is likely to be the
significant factor causing the relatively poor performance of models with the elliptical RBF kernel.
Again, the Gaussian Process classifier is significantly better than the LS-SVM with Bayesian regu-
larisation on the banana and twonorm data sets, but is significantly worse on four of the remaining
eleven (diabetis, heart, ringnorm and splice). Again, according to the Wilcoxon signed rank
test, neither the LSSVM-BR nor the EP-PGC is statistically superior at the 95% level of signifi-
cance. However the magnitude of the difference in performance between LSSVM-BR and EP-GPC
approaches tends to be greatest when the LSSVM-BR out-performs EP-GPC, most notably on the
heart, splice and ringnorm data sets. This provides some support for the observation of Wahba
(1990) that cross-validation based model selection procedures should be more robust against model
mis-specification (see also Rasmussen and Williams, 2006).

4. Discussion

The experimental evaluation presented in the previous section demonstrates that over-fitting can
occur in model selection, due to the variance of the model selection criterion. In many cases the
minimum of the selection criterion using the elliptical RBF kernel is lower than that achievable us-
ing the spherical RBF kernel, however this results in a degradation in generalisation performance.
Using the PRESS statistic, the over-fitting is likely to be most severe in cases with a small num-
ber of training patterns, as the variance of the leave-one-out estimator decreases as the sample size
becomes larger. Using the standard LSSVM, the elliptical RBF kernel only out-performs the spher-
ical RBF kernel on two of the thirteen data sets, image and splice, which also happen to be the
two largest data sets in terms of the number of training patterns. The greatest degradation in per-
formance is obtained on the heart benchmark, the third smallest. The heart data set also has a
relatively large number of input features (13). A large number of input features introduces a many
additional degrees of freedom to optimise the model selection criterion, and so will generally tend
to encourage over-fitting. However, there may be a compact subset of highly relevant features with
the remainder being almost entirely uninformative. In this case the advantage of suppressing the
noisy inputs is so great that it overcomes the predisposition towards over-fitting, and so results in
improved generalisation (as observed in the case of the image and splice benchmarks). Whether
the use of an elliptical RBF kernel will improve or degrade generalisation largely depends on such
characteristics of the data that are not known a-priori, and so it seems prudent to consider a range
of kernel functions and select the best via cross-validation.

The experimental results indicate that Bayesian regularisation of the hyper-parameters is gen-
erally beneficial, without at this stage providing a complete solution to the problem of over-fitting
the model selection criterion. The effectiveness of the Bayesian regularisation scheme is to a large
extent dependent on the appropriateness of the prior imposed on the hyper-parameters. There is no
reason to assume that the simple Gaussian prior used here is in any sense optimal, and this is an
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issue where further research is necessary (see Section 4.2). The comparison of the integrate-out ap-
proach and the evidence framework highlights a deficiency of the simple Gaussian prior. It suggests
that the integrate-out approach is likely to result in mild over-regularisation of the hyper-parameters
in the presence of a large number of irrelevant features, as the corresponding hyper-parameters will
be ill-determined.

The LSSVM with Bayesian regularisation of the hyper-parameters does not significantly out-
perform the expectation propagation based Gaussian process classifier over the suite of thirteen
benchmark data sets considered. This is not wholly surprising as the EP-GPC is at least very
close to the state-of-the-art, indeed it is interesting that the EP-GPC does not out-perform such
a comparatively simple model. The EP-GPC uses the marginal likelihood as the model selection
criterion, which gives the probability of the data, given the assumptions of the model (Rasmussen
and Williams, 2006). Cross-validation based approaches, on the other hand, provide an estimate of
generalisation performance that does not depend on the model assumptions, and so may be more
robust against model mis-specification (Wahba, 1990). The no free lunch theorems suggest that, at
least in terms of generalisation performance, there is a lack of inherent superiority of one classifi-
cation method over another, in the absence of a-priori assumptions regarding the data. This implies
that if one classifier performs better than another on a particular data set it is because the inductive
biases of that classifier provide a better fit to the particular pattern recognition task, rather than to
its superiority in a more general sense. A model with strong inductive biases is likely to benefit
when these biases are well suited to the data, but will perform badly when they do not. While a
model with weak inductive biases will be more robust, it is less likely to perform conspicuously
well on any given data set. This means there are complementary advantages and disadvantages to
both approaches.

4.1 Relationship to Existing Work

The use of a prior over the hyper-parameters is in accordance with normal Bayesian practice and
has been used in Gaussian Process classification (Williams and Barber, 1998). The problem of
over-fitting in model selection has also been addressed by Qi et al. (2004), in the case of selecting
informative features for a logistic regression model using an Automatic Relevance Determination
(ARD) prior (cf., Tipping, 2000). In this case, the Expectation Propagation method (Minka, 2001)
is used to obtain a deterministic approximation of the posterior, and also (as a by-product) a leave-
one-out performance estimate. The latter is then used to implement a form of early-stopping (e.g.,
Sarle, 1995) to prevent over-fitting resulting from the direct optimization of the marginal likelihood
until convergence. It seems likely that this approach would be also be beneficial in the case of tuning
the hyper-parameters of the covariance function of Gaussian process model, using either the leave-
one-out estimate arising from the EP approximation, or an approximate leave-one-out estimate from
the Laplace approximation (cf., Cawley and Talbot, 2007).

4.2 Directions for Further Research

In this paper, the regularisation term corresponds to a simple spherical Gaussian prior over the kernel
parameters. One direction of research would be to investigate alternative regularisation terms. The
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first possibility would be to use a regularisation term corresponding to a separable Laplace prior,

Ω(θ) =
1
2

d

∑
i=1

|ηi| =⇒ p(θ) =
d

∏
i=1

ξ
2

exp{−ξ|ηi|} .

Setting the derivative of the regularised model selection criterion (14) to zero, we obtain

∣∣∣∣
∂Q
∂ηi

∣∣∣∣ =
ξ
ζ

if |ηi| > 0 and

∣∣∣∣
∂Q
∂ηi

∣∣∣∣ <
ξ
ζ

if |ηi| = 0,

which implies that if the sensitivity of the leave-one-out error, Q(θ), falls below ξ/ζ, the value of the
hyper-parameter, ηi will be set exactly to zero, effectively pruning that input from the model. In this
way explicit feature selection may be obtained as a consequence of (regularised) model selection.
The model selection criterion with Bayesian regularisation then becomes

L =
`

2
logQ(θ)+N logΩ(θ)

where N is the number of input features with non-zero scale factors. This potentially overcomes the
propensity towards under-fitting the data that might be expected when using the Gaussian prior, as
the pruning action of the Laplace prior means that the values of all remaining hyper-parameters are
well-determined by the data. In the case of the Laplace prior, the integrate-out approach is exactly
equivalent to continuous updates of the hyper-parameters according to the update formulae under
the evidence framework (Williams, 1995). Alternatively, defining a prior over the function of a
model seems more in accordance with Bayesian ideals than choosing a prior over the parameters of
the model. The use of a prior over the hyper-parameters based on the smoothness of the resulting
model also provides a potential direction for future research. In this case, the regularisation term
might take the form,

Ω(θ) =
1
2`

`

∑
i=1

d

∑
j=1

[
∂2ŷi

∂x2
i j

]2

,

directly penalising models with excess curvature. This regularisation term corresponds to curvature
driven smoothing in multi-layer perceptron networks (Bishop, 1993), except that the model output
ŷi is viewed as a function of the hyper-parameters, rather than of the weights. A penalty term based
on the first-order partial derivatives is also feasible (cf., Drucker and Le Cun, 1992).

5. Conclusion

Leave-one-out cross-validation has proved to be an effective means of model selection for a variety
of kernel learning methods, provided the number of hyper-parameters to be tuned is relatively small.
The use of kernel functions with large numbers of parameters often provides sufficient degrees of
freedom to over-fit the model selection criterion, leading to poor generalisation. In this paper, we
have proposed the use of regularisation at the second level of inference, that is, model selection.
The use of Bayesian regularisation is shown to be effective in reducing over-fitting, by ensuring the
values of the kernel parameters remain small, giving a smoother kernel and hence a less complex
classifier. This is achieved with only a minimal computational expense as the additional regular-
isation parameters are integrated out analytically using a reference prior. While a fully Bayesian
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model selection strategy is conceptually more elegant, it may also be less robust to model mis-
specification. The use of leave-one-out cross-validation in model selection and Bayesian methods
at the next level seems to be a pragmatic compromise. The effectiveness of this approach is clearly
demonstrated in the experimental evaluation where, on average, the LS-SVM with Bayesian reg-
ularisation out-performs the expectation-propagation based Gaussian process classifier, using both
spherical and elliptical RBF kernels.
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