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Abstract
In this paper we propose a novel approach for ensemble construction based on the use of nonlinear
projections to achieve both accuracy and diversity of individual classifiers. The proposed approach
combines the philosophy of boosting, putting more effort on difficult instances, with the basis of
the random subspace method. Our main contribution is that instead of using a random subspace,
we construct a projection taking into account the instances which have posed most difficulties to
previous classifiers. In this way, consecutive nonlinear projections are created by a neural network
trained using only incorrectly classified instances. The feature subspace induced by the hidden layer
of this network is used as the input space to a new classifier. The method is compared with bagging
and boosting techniques, showing an improved performance on a large set of 44 problems from the
UCI Machine Learning Repository. An additional study showed that the proposed approach is less
sensitive to noise in the data than boosting methods.
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1. Introduction

An ensemble of classifiers consists of a combination of different classifiers, homogeneous or het-
erogeneous, to jointly perform a classification task. Ensemble construction is one of the fields
of Artificial Intelligence that is receiving most research attention, mainly due to the significant
performance improvements over single classifiers that have been reported with ensemble methods
(Breiman, 1996a; Kohavi and Kunz, 1997; Bauer and Kohavi, 1999; Webb, 2000; Garcı́a-Pedrajas
et al., 2005).

A classification problem of K classes and n training observations consists of a set of instances
whose class membership is known. Let S = {(x1,y1),(x2,y2), . . .(xn,yn)} be a set of n training
samples where each instance xi belongs to a domain X . Each label is an integer from the set Y =
{1, . . . ,K}. A multiclass classifier is a function f : X → Y that maps an instance x ∈ X ⊂ � D onto
an element of Y .
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The task is to find a definition for the unknown function, f (x), given the set of training instances.
In a classifier ensemble framework we have a set of classifiers � = {C1,C2, . . . ,Cm}, each classifier
performing a mapping of an instance vector x ∈ � D onto the set of labels Y = {1, . . . ,K}. The
design of classifier ensembles must face two main tasks: constructing the individuals classifiers,
Ci, and developing a combination rule that finds a class label for x based on the outputs of the
classifiers {C1(x),C2(x), . . . ,Cm(x)}. This paper is devoted to the first problem, the combination of
the classifiers is being done with a simple majority voting scheme.

For more detailed descriptions of ensembles the reader is referred to other reviews: Dietterich
(2000b), Webb (2000), Dzeroski and Zenko (2004), Merz (1999), or Fern and Givan (2003).

Techniques using multiple models usually consist of two independent phases: model generation
and model combination (Merz, 1999). Most techniques are focused on obtaining a group of classi-
fiers which are as accurate as possible but which disagree as much as possible. These two objectives
are somewhat conflicting, since if the classifiers are more accurate, it is obvious that they must agree
more frequently. Many methods have been developed to enforce diversity on the classifiers that form
the ensemble (Dietterich, 2000c). Kuncheva (2001) identifies four fundamental approaches: (i) us-
ing different combination schemes, (ii) using different classifier models, (iii) using different feature
subsets, and (iv) using different training sets. Perhaps the last one is the most commonly used. The
algorithms in this last approach can be divided into two groups: algorithms that adaptively change
the distribution of the training set based on the performance of the previous classifiers, and algo-
rithms that do not adapt the distribution. Boosting methods are the most representative methods
of the first group. The most widely used boosting methods are ADABOOST (Freund and Schapire,
1996) and its numerous variants, and Arc-x4 (Breiman, 1998). They are based on adaptively in-
creasing the probability of sampling the instances that are not classified correctly by the previous
classifiers.

Bagging (Breiman, 1996b) is the most representative algorithm of the second group. Bagging
(after Bootstrap aggregating) just generates different bootstrap samples from the training set. Sev-
eral empirical studies have shown that ADABOOST is able to reduce both bias and variance compo-
nents of the error (Breiman, 1996c; Schapire et al., 1998; Bauer and Kohavi, 1999). On the other
hand, bagging seems to be more efficient in reducing bias than ADABOOST (Bauer and Kohavi,
1999).

Although these techniques are focused on obtaining as diverse classifiers as possible, without
deteriorating the accuracy of each classifier, Kuncheva and Whitaker (2003) failed to establish a
clear relationship between diversity and ensemble performance.

Boosting methods are the most popular techniques for constructing ensembles of classifiers. Its
popularity is mainly due to the success of ADABOOST. However, ADABOOST tends to perform
very well for some problems but can also perform very poorly on other problems. One of the
sources of the bad behaviour of ADABOOST is that although it is always able to construct diverse
ensembles, in some problems the individual classifiers tend to have large training errors (Dietterich,
2000a). Moreover, ADABOOST usually performs poorly on noisy problems (Bauer and Kohavi,
1999; Dietterich, 2000a).

Schapire and Singer (1999) identified two scenarios where ADABOOST is likely to fail:

1. When there is insufficient training data relative to the “complexity” of the base classifiers.

2. When the training errors of the base classifiers become too large too quickly.
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Sebban et al. (2002) proposed a stopping criterion for boosting algorithms, and there are other
variants (Schapire and Singer, 1999; Webb, 2000; Bshouty and Gavinsky, 2002; Eibl and Pfeiffer,
2005) that try to overcome the drawbacks of the method. Nevertheless, ADABOOST is still likely to
fail on noisy problems or when there is not much available data. Unfortunately, these two scenarios
are very common in real-world problems.

The margin (Mason et al., 2000) of a real-valued function f : X → �
on a training instance

(x,y) ∈ X ×{−1,1} is defined as y f (x), so that if the sign is correct the margin is positive. The
size of the margin can be interpreted as an indication of the confidence of the classification. The
success of ADABOOST has been partially explained in terms of the “boosting” of the margins that
usually is achieved, however this is not the only important factor in its success. Several experiments
have shown that ADABOOST is able to perform better than algorithms that are more efficient than
ADABOOST in optimising the margins (Breiman, 1999; Grove and Schuurmans, 1998). There are
other attempts to explain the good performance of boosting (Rosset et al., 2004).

Alternatively, some works have focused on using different subsets of the inputs, that is, differ-
ent subspaces, to train the classifiers. Cherkauer (1996) trained an ensemble of classifiers which
consisted of 32 neural networks trained using 8 different subsets of input features together with 4
different network sizes. Chen et al. (1997) studied the use of different features for training multiple
classifiers in a framework of text-independent speaker recognition. Tumer and Ghosh (1996) used
a similar technique to classify sonar signals, but they found that removing just a few of the input
features hurts the performance of the classifiers so much that the resulting ensemble had a poor
performance.

As a matter of fact, it has been shown that this technique is capable of obtaining a good perfor-
mance only when the input features are highly redundant (Dietterich, 2000b). Ho (1998) proposed
a method for constructing a decision forest by randomly selecting subspaces from the original data
set, and reported very good results.

As an useful alternative, evolutionary computation has also been successfully applied to ensem-
ble construction. Zhou et al. (2002) used a genetic algorithm to obtain a subset of an ensemble of
classifiers that was able to outperform the ensemble using all the classifiers. Liu et al. (2000) used
the concept of negative correlation to improve the diversity of a population of classifiers. Garcı́a-
Pedrajas et al. (2005) developed a cooperative coevolutionary method for ensemble construction
with excellent results on classification problems. Ortiz-Boyer et al. (2005) used a real-coded ge-
netic algorithm to optimise the weights of each classifier within an ensemble.

In summary, the construction of ensembles aims to fulfil two different objectives: accuracy of
classifiers and diversity among them. These two objectives are partially in conflict, as the more
accurate the classifiers are the less diverse they must be. Among the different approaches presented
above, we can highlight the following techniques to enforce accuracy and diversity:

• Bagging methods sample the training data with replacement to obtain different sets to train
the classifiers.

• Boosting methods enforce accuracy and diversity by putting more emphasis on instances that
are misclassified by previous classifiers.

• Subspace methods encourage diversity by training the classifiers using different subsets of
input features or different projections of the original data.
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In our approach we combine the rationale of these previous approaches. On the one hand, the
use of different subspaces, or different projections, is capable of inducing diversity and produces
better ensembles. On the other hand, putting more emphasis on difficult instances, as boosting
methods do, obtains very good performance and is able to reduce both bias and variance of the
classifiers. Nevertheless, boosting is very sensitive to noise and does not usually perform well on
small data sets. As the weight of each instance for the training of the classifier depends on whether
it is correctly classified too much emphasis may be put on noisy instances or outliers. So, our
approach is based on combining the main ideas underlying boosting and random subspace methods,
namely:

• All the classifiers should receive all the training instances for learning, and all of them are
equally weighted. We are thus neither throwing away any instances which is something which
happens in bagging, or putting more emphasis on misclassified instances as in boosting.

• Each classifier uses a different nonlinear projection of the original data onto a space of the
same dimension. We are using this to create diversity within the training sets.

• Following the basic principles of boosting, each nonlinear projection is constructed in order
to make the classification of difficult instances easier.

This approach is able to incorporate the advantages of boosting without its main drawbacks.
The construction of the projection taking into account only instances that have been misclassified
by a previous classifier permits the new classifier to focus on difficult instances. Nevertheless, as
this classifier receives all the data, the sensitivity to noise and the effect of small data sets is greatly
reduced.

In this way, the method presented in this paper is a hybrid of approaches (iii) and (iv) identified
by Kuncheva (2001). It uses different feature spaces and only a subset of instances to construct
those spaces.

The problem we must solve is how to construct a projection that favours the correct classification
of a subset of instances. This problem is solved by means of a neural network as is explained in
Section 2.

This paper is organised as follows: Section 2 explains in depth the proposed methodology; Sec-
tion 3 surveys some related work; Section 4 shows the experimental setup and the results obtained
with the proposed algorithm and several standard methods; Section 5 reports some further experi-
ments aimed at understanding the behaviour of the method; and Section 6 states the conclusions of
our work.

2. Constructing Nonlinear Projections

The problem of obtaining a useful projection is not trivial. Methods for projecting data are fo-
cused on the features of the input space, and do not take into account the labels of the instances.
Moreover, most of them are specifically useful for non-labelled data and aimed at data analysis.
Among the most widely used of these methods we can cite principal component analysis (PCA)
(Jolliffe, 1986), Kohonen’s self-organizing maps (Kohonen, 2001), and factor analysis (Gorsuch,
1983). Nevertheless, none of them is appropriate for our problem.

Our approach is based on the use of the projection carried out by the hidden layer of a multilayer
perceptron neural network when it is used for classification purposes. In order to get a useful
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projection, we must take into account the role of the hidden layer in a neural network. As stated in
Haykin (1999), p. 199:

Hidden neurons play a critical role in the operation of a multilayer perceptron with
back-propagation learning because they act as feature detectors. As the learning pro-
cess progresses, the hidden neurons begin to gradually “discover” the salient features
that characterise the training data. They do so by performing a nonlinear transforma-
tion on the input data into a new space called the hidden space, or feature space. In this
new space the classes of interest in a pattern-classification task, for example, may be
more easily separated from each other than in the original input space.

From this point of view, neural networks can be considered similar to basis function models
(Denison et al., 2002). These models assume that the function to be implemented, g, is made up of
a linear combination of basis functions and corresponding coefficients. Hence g can be written:

g(x) =
H

∑
i=1

βiBi(x), x ∈ X ⊂ � D, (1)

where β = (β1, . . . ,βk)
′ is the set of coefficients corresponding to basis functions B = (B1, . . . ,Bk).

Typically, the basis functions in (1) are nonlinear transformations. Neural networks can be consid-
ered another example of basis function models. Methodologically, there is a major separation in
the multilayer perceptron (MLP) approach, as the combination of the basis functions is not always
linear, as in (1), and subsequent sets of basis functions, represented by further hidden layers, can be
constructed.

Let us consider a feed-forward neural network with D inputs and a hidden layer with H nodes.
The hidden layer carries out a non linear projection of input vector x to a vector h where:

hi = f

(

D

∑
j=0

wi jx j

)

, x0 = 1.

As we have stated, each node performs a nonlinear projection of the input vector. So, h = f (x),
and the output layer obtains its output from vector h. In this context we can consider this projection
as a basis function, so Bi(x) = f

(

∑D
j=0 wi jx j

)

, and the output of the network is:

y(x) = F

(

H

∑
i=1

βiBi(x)

)

where F is the transfer function of the output layer, and the βi represent the weights of the connec-
tions from the hidden layer to the output layer. This projection performed by the hidden layer of a
multi-layer perceptron distorts the data structure and inter-instance distances (Lerner et al., 1999) in
order to achieve a better classification.

So, the projection performed by the hidden layer focuses on making the classification of the
instances easier. Our approach to obtain a projection focused on making the classification of dif-
ficult instances easier consists of training a neural network with only the instances that have been
incorrectly classified by the previous classifier. The number of hidden nodes of the network is the
same as the number of input variables, so the hidden layer is performing a nonlinear projection into
a space of the same dimension as the input space. As the network has been trained only with a
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subset of the training instances, the projection performed by the hidden layer focuses on making the
classification of only this subset easier.

Once the network is trained, the projection implemented by the hidden layer is used to project
all the data set, and these projections are fed to the new classifier to be trained.1 Then, each classifier
performs its task using as input a feature space that is created to make the classification of difficult
instances easier.

This nethod can be used with any base classifier as the projection is made before training the
classifier and the obtained projected data can be used for any type of classifier. The complexity of
the classifiers is not increased, as the feature space into which the data is projected has the same
dimension as the original input space.

2.1 Nonlinear Projection Based Algorithm

The initialisation of the network is very important for the overall performance as it has been shown
that back-propagation is sensitive to initial conditions (Kolen and Pollack, 1991). For the initiali-
sation of the weights of the networks, we used the method suggested by LeCun et al. (1998) and
described in Haykin (1999). The weights are obtained from a uniform distribution within the inter-
val [−3/

√
D,3/

√
D], where D is the number of inputs to the node. In this way, we try to avoid large

initial values, that can saturate the transfer function and have a dramatic impact on the performance
of the network.

The proposed method for constructing classifier ensembles is shown in Algorithm 1. The pro-
posed algorithm has not incorporated any other ensemble construction method, that may improve
its performance, in order not to obscure its behaviour.

Algorithm 1: Nonlinear Boosting Projection algorithm.
Data : A training set S = {(x1,y1), . . . ,(xn,yn)}, a base learning algorithm, � , and the

number of iterations T .
Result : The final classifier:

C∗(x) = argmaxy∈Y ∑t:C(x)=y 1.

1 C0 = � (S)
for t = 1 to T −1 do

2 S′ ⊂ S, S′ = {xi ∈ S : Ct−1(xi) 6= yi}.
3 Train network H with S′ and get projection P(x) implemented by the hidden layer of H.
4 Ct = � (P(S))

end

We have named the algorithm Non-Linear “Boosting” Projection (NLBP) as the projections are
constructed using the basic idea of boosting methods. The source code, in C, used for the standard
and proposed methods is under GNU License and is freely available upon request to the authors.

Although we need to train an additional neural network for each new classifier of the ensemble,
except the first one, the additional complexity of this training process is diminished by the fact that
the projection network is trained using only the instances misclassified by the previous classifier.

1. To avoid confusion, we must remark that the network trained using the misclassified instances is not part of the
ensemble, and only the projection carried out by its hidden layer is used.
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We can illustrate how the method works with a toy example. Consider the simple case of a two-
dimensional space and the learning and testing sets shown in Figure 1. The figure shows how there
are two points in the training set that are, with a high probability, mislabelled noisy data. Using
these two data sets we run our algorithm and ADABOOST with an ensemble of 50 classifiers and a
neural network, a C4.5 tree and a support vector machine as base classifiers. The results are shown
in Table 1.
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Figure 1: Training and testing data for a two-dimensional problem of two classes with two likely
mislabelled noisy instances

The example illustrates the differences of our method with boosting methods and how these
differences may constitute an advantage. After the initial classifier is trained, ADABOOST focus its
effort on classifying the two misclassified instances correctly. The result is that the learning error
drops eventually to 0, but the cost is overlearning the training data and poor generalisation. On the
other hand, our method tries to classify the misclassified instances but without allowing the classifier
to put too much effort on that task. The result is that the learning error is larger but the generalisation
ability is better. This is, of course, a toy problem only intended to illustrate the underlying ideas of
our method.

Base classifier Ensemble method
ADABOOST NLBP

Training Test Training Test
Neural network 0.0000 0.5000 0.2500 0.0000
Support vector machine 0.0000 0.2500 0.2500 0.0000
C4.5 0.0000 0.2500 0.1250 0.1250

Table 1: Summary of training and test error results for the toy problem with an ensemble of 50
classifiers.

3. Related Work

The use of different spaces for ensemble construction has been extensive in recent research. Ho
(1998) showed that the random subspace method was able to improve the generalisation error. The
random subspace method, rooted in the theory of stochastic discrimination (Kleinberg, 2000), has
common points with bagging, but instead of sampling instances it samples subspaces (Skurichina
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and Duin, 2001). The random subspace method has been successfully applied to different problems
(Munro et al., 2003; Hall et al., 2003).

Opitz (1999) developed accurate and diverse classifiers for an ensemble using ensemble feature
selection. In contrast to classical feature selection algorithms, that are focused on finding the best
feature subset for a given classifier, ensemble feature selection adds an additional objective of pro-
moting disagreement among the individual classifiers. Different strategies have been proposed to
ensemble feature selection, such as hill climbing (Kohavi, 1995; Cunningham and Carney, 2000),
a genetic algorithm (Opitz, 1999), and the heuristic method Ensemble Forward and Backward Se-
quential Selection (Aha and Bankert, 1995). A comparative study for medical diagnosis tasks is
carried out in Tsymbal et al. (2003).

Utsugi (2001) proposed an ensemble of independent factor analysers (Anderson, 1984). This
new statistical model assumes that each data point is generated by the sum of outputs of inde-
pendently activated factor analysers. A maximum likelihood (ML) estimation algorithm for the
parameters is derived using a Monte Carlo EM algorithm with a Gibbs sampler. The independent
factor analysers developed into feature detectors that resemble complex cells in mammalian visual
systems.

Yand et al. (2000) used mixtures of linear subspaces to create a classifier for face recognition.
Rodrı́guez et al. (2006) proposed a method based on applying PCA to subsets of inputs variables.
The method obtained very good results on a large set of real-world problems.

4. Experiments

In order to test the performance of our method on solving classification tasks, we need to compare
it with other widely used ensemble methods. In this section we try to make as fair a comparison as
possible. So, we have chosen three different base classifiers: a neural network, a C4.5 tree (Quinlan,
1993), and a support vector machine (SVM) (Cristianini and Shawe-Taylor, 2000) . The first two
have been widely used for ensemble construction in the literature. The last one has been shown
recently to achieve good results as a member of an ensemble (Kim et al., 2002; Diao et al., 2002),
although its stability might suggest that it is not a suitable base learner for constructing an ensemble.
For the SVM we used a Gaussian kernel and parameters C = 10.0 and γ = 0.1. We used the LIBSVM
library (Chang and Lin, 2001). For the neural network we used a standard multilayer perceptron
trained using a simple back-propagation algorithm (Rumelhart et al., 1986). The network has a
hidden layer of 25 nodes and hyperbolic tangent transfer function for the hidden layer and logistic
transfer function for the output layer. The network was trained for 100,000 iterations with a learning
coefficient η = 0.25 and a momentum coefficient α = 0.1. For C4.5 we used the available code by
the author of the algorithm. We must state that these parameters are rather standard and have not
been selected in any way to improve the performance of any of the methods.2

For all three base classifiers we performed experiments using bagging, Arc-x4, ADABOOST,
and MADABOOST (Domingo and Watanabe, 2000).

Before deciding upon bagging we tested its performance against wagging. Wagging is a variant
of bagging (Breiman, 1996a) that requires a learning algorithm that can use training instances with
different weights. Wagging assigns random weights to the instances of the training set instead of

2. It is obvious that these parameters might not be appropriate for all the data sets. Nevertheless, adjusting the parameters
for each data set and each base learner is computationally infeasible. Moreover, as the parameters are common for
all the methods, any weakness will be shared for all of them.
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resampling the training instances as in bagging. In our implementation the weights assigned to the
instances follow a Poisson distribution (Webb, 2000). In a preliminary set of experiments we com-
pared the performance of bagging and wagging, and found that bagging significantly outperformed
wagging, so in all the experiments we have used bagging.

We use the Arc-x4 (Breiman, 1998) implementation in Bauer and Kohavi (1999). The factor
(1 + e(x)4) that weights each instance is rather heuristic, and the value of 4 for the exponent was
experimentally obtained as optimal. These type of methods were named by Breiman (1998) Arcing
methods after “Adaptively resampling and combining”.

The ADABOOST algorithm is specifically designed for minimising the exponential loss func-
tion:

m

∑
i=1

exp(−yi fλ(xi)),

where:

fλ(xi) =
n

∑
j=1

λ jh j(xi).

One of the most interesting features of ADABOOST is that the test error continues to improve,
even when the learning error reaches 0 (Schapire et al., 1998). However, the marginal error reduction
produced by each new classifier tends to decrease. On average, each new classifier has less impact
on the test error than the previous members of the ensemble.

We use the ADABOOST version in Webb (2000). For ADABOOST it is required that the weak
learning algorithm, in our case each individual classifier, achieves an error strictly less than 0.5.
This cannot be guaranteed; especially when dealing with difficult multiclass problems. In our ex-
periments when this error is not achieved, we generate a bootstrap sample from the original set and
continue the algorithm assigning to that classifier a zero weight (Bauer and Kohavi, 1999; Zhou
et al., 2002).

For the three base learners we make a preliminary test to compare resampling and reweighting
versions of the boosting algorithms. For neural networks we found that reweighting performed
better than resampling; for C4.5 and SVM we found that resampling achieved better results. So,
in the experiments reported here for the standard methods we use reweighting for neural networks,
and resampling for C4.5 and SVMs.

For the case of a neural network as a base classifier we make some additional experiments to
improve the quality of the comparison. Firstly, instead of using standard ADABOOST, we used
ADABOOST.MH (Schapire and Singer, 1999, 2000). Moreover, we also used the algorithms GEN-
TLEBOOST (Friedman et al., 2000) and LOGITBOOST (Friedman et al., 2000).3 Secondly, the
hidden weights of the non-linear projection are also learned when using standard methods as an
additional layer of the network, in order to avoid any spurious advantage for the proposed method
derived from the use of the additional hidden layer represented by the non-linear projection.

All the ensembles are made up of 50 classifiers, regardless of the kind of base classifier. This
number is fairly common in the literature. Although desirable, fixing the number of classifiers on

3. These three algorithms modify the learning of the base classifier, so we cannot use them with C4.5 and SVMs as we
are using standard libraries for these two base classifiers.
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each ensemble taking into account either the problem or the type of base learner is computation-
ally unfeasible. Moreover, it is known (Zenobi and Cunningham, 2001) that the diversity and the
accuracy of the ensemble usually plateau at some size between 10 and 50 members. The standard
ensembles are also made up of 50 networks. Furthermore, for ADABOOST the error bound of the
training error is almost 0 after the addition of about 30 classifiers to the ensemble (Kuncheva, 2003),
so 50 is a widely used ensemble size.

4.1 Experimental Setup

For testing the validity of the proposed method we have selected 44 data sets from the UCI Machine
Learning Repository (Hettich et al., 1998). A summary of these data sets is shown in Table 2.

Three of the data sets were reduced to make them of a manageable size. For isolet and zip we
performed a principal component analysis and retained the first 34 and 50 principal components
respectively. For the letter data set we use a randomly selected subset of 5000 instances from the
whole set of 20000 instances.

In order to avoid confusion we will use the term “learning error” for referring to the error of a
classifier on the training set, and the term “test error” for the error of a classifier on the testing set. In
the literature, the terms “generalisation error” and “prediction error” are also common for referring
to the error on the test set. However, we believe that these two terms are more appropriate for the
probability of misclassifying a new sample, thus the generalisation error is the expected test error.

The experiments were conducted following the 5x2 cross-validation set-up (Dietterich, 1998).
We perform five replications of a two-fold cross-validation. In each replication the available data is
partitioned into two random equal-sized sets. Each learning algorithm is trained on one set at a time
and tested on the other set. The original test proposed by Dietterich suffers from low replicability,
so to test the differences between two algorithms we use the 5x2cv F test (Alpaydin, 1999).

This test has the following formulation. We have five replications, i = 1, . . . ,5, and two-folds,
j = 1,2, for each replication. p( j)

i is the difference between the error rates of the two classifiers

on fold j of replication i. The average on replication i is p̄i = (p(1)
i + p(2)

i )/2, and the estimated

variance is s2
i = ((p(1)

i − p̄i)2 +((p(2)
i − p̄i)2. Alpaydin (1999) proposed the test:

f =
∑5

i=1 ∑2
j=1

(

p( j)
i

)2

2∑5
i=1 s2

i

, (2)

that is approximately F distributed with 10 and 5 degrees of freedom. As a general rule we consider
a confidence level of 90%. The same 5x2cv partitions were used for all the reported experiments.

In all tables the error measure is E = 1
n ∑n

i=1 ei, where ei is 1 if instance i is misclassified and
0 otherwise. In the following sections we report all the experiments performed with the proposed
method and all the data sets used for testing the method.

The source code, in C, used for the standard and proposed methods as well as the partitions of
the data sets, are freely available upon request to the authors.

4.2 Experimental Results

In the first set of experiments we tested our method against the standard ensemble methods. For a
neural network as base learner we used bagging, ADABOOST.MH, MADABOOST, LOGITBOOST,
GENTLEBOOST, and Arc-x4. Test error results are shown in Table 3. Tables 4 and 5 show the
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Data set Cases Classes Features Inputs
Continuous Binary Nominal

anneal 898 5 6 14 18 59
audio 226 24 – 61 8 93
autos 205 6 15 4 6 72
balance 625 3 4 – – 4
breast-cancer 286 2 9 – – 9
card 690 2 6 4 5 51
dermatology 366 6 1 1 32 34
ecoli 336 8 7 – – 7
gene 3175 3 – – 60 120
german 1000 2 6 3 11 61
glass 214 6 9 – – 9
glass-g2 163 2 9 – – 9
heart 270 2 6 1 6 13
heart-c 302 2 6 3 4 22
hepatitis 155 2 6 13 – 19
horse 364 3 13 2 5 58
ionosphere 351 2 33 1 – 34
iris 150 3 4 – – 4
isolet 7797 26 617 – – 34
labor 57 2 8 3 5 29
led24 200 10 – 24 – 24
letter 5000 26 16 – – 16
liver 345 2 6 – – 6
lrs 531 10 101 – – 101
lymph 148 4 – 9 6 38
optdigits 5620 10 64 – – 64
page-blocks 5473 5 10 – – 10
pendigits 10992 10 16 – – 16
phoneme 5404 2 5 – – 5
pima 768 2 8 – – 8
primary-tumor 339 22 – 14 3 23
promoters 106 2 – – 57 114
satimage 6435 6 36 – – 36
segment 2310 7 19 – – 19
sick 3772 7 2 20 2 33
sonar 208 2 60 – – 60
soybean 683 19 – 16 19 82
vehicle 846 4 18 – – 18
vote 435 2 – 16 – 16
vowel 990 11 10 – – 10
waveform 5000 3 40 – – 40
yeast 1484 10 8 – – 8
zip 9298 10 256 – – 50
zoo 101 7 1 15 – 16

Table 2: Summary of data sets. The Inputs column shows the number of inputs to the classifier as
it depends not only on the number of input features but also on their type.
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results using C4.5 and SVM respectively. As explained, with these two base learners we have used
bagging, ADABOOST, MADABOOST, and Arc-x4.

The results in Table 3 show that the proposed method is significantly better than the standard
methods for 17 data sets when compared with bagging, 20 with ADABOOST.MH, 19 with GENTLE-
BOOST, 16 with LOGITBOOST, 17 with MADABOOST and Arc-x4. It is worse than LOGITBOOST

in 1 data set and worse than MADABOOST in 2 data sets. The differences are not significant for the
other data sets.

Table 4 shows the test error of NLBP and the four standard methods for C4.5 tree as base
classifier. As a summary, NLBP is able to significantly improve bagging in 16 data sets, AdaBoost
in 13, MadaBoost in 17 and Arc-x4 in 14. It is significantly worse in 3, 5, 3, and 3 data sets
respectively. These results show a general advantage of our method. Nevertheless, the experiments
using C4.5 as base learner show the worst performance of NLBP. We think the reason is the fact that
C4.5 is a tree algorithm that best works with nominal and binary variables; the projection performed
by NLBP transform all variables into continuous variables, and that may have a negative effect
on C4.5 performance. However, even in this unfavourable scenario NLBP is able to outperform
classical methods.

The results in Table 5 show that, for a SVM as base classifier, the proposed method is signifi-
cantly better than bagging in 19 data sets, than ADABOOST in 23 data sets, than MADABOOST in
16 and than Arc-x4 in 21 data sets. NLBP is significantly worse than the standard methods only
once for bagging, MADABOOST, and Arc-x4, and never for ADABOOST. In general terms, the
performance of NLBP using a SVM as base classifier, is very good. We believe that the use of a
SVM is able to obtain the best of NLBP as the non-linear projections obtained by NLBP are able to
make the task of SVM easier.

As a summary, for all the three classifiers NLBP is able to obtain very good results, outper-
forming both bagging and boosting methods. Of most interest is its performance in some of the
most difficult problems, such as breast-cancer, hepatitis, horse, isolet, letter, liver, lymphography,
primary-tumor, sonar, and vowel.

5. Analysis of the Proposed Method

In the previous section we have shown that the nonlinear projection approach is very competitive
when compared with the standard methods of ensemble construction. In this section we present
additional experiments that try to gain some insight into how it works.

In a first set of experiments we investigate if the good behaviour of NLBP is due to any side
effect of the proposed algorithm or has its source in the idea of constructing nonlinear projections
using only difficult instances. Then, we review the κ-error diagrams and show the κ-error diagrams
of the standard and proposed methods. The behaviour of NLBP shown by κ-error diagrams suggests
a further study on the sensitivity to noise of the method; that study is performed for all the data sets
used in the previous experiments, and the three base classifiers.

5.1 Control Experiments

The first set of experiments of this section is focused on studying whether the basic contribution
of our method, that is, using the subset of misclassified instances to obtain a nonlinear projection
that makes subsequent classification easier, is responsible for the excellent results reported in the
previous section.
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Data Set NLBP Standard ensemble methods
Bagging AdaB.MH GentleB LogitB MadaB Arc-x4

anneal 0.0100 0.0114 0.0154 0.0091 0.0512✓ 0.0107 0.0103
audiology 0.2557 0.2495 0.2389 0.2531 0.2876 0.2557 0.2584
autos 0.3004 0.3198✓ 0.3277✓ 0.3257 0.3325 0.3276 0.3296
balance 0.0509 0.0602 0.0522 0.0525 0.0934✓ 0.0304✗ 0.0330
breast-c 0.3098 0.3168 0.3266 0.3224 0.2951 0.3406✓ 0.3056
card 0.1490 0.1498 0.1614 0.1780✓ 0.1553 0.1701✓ 0.1582
dermatology 0.0246 0.0268 0.0268 0.0295 0.0301 0.0284 0.0268
ecoli 0.1476 0.1494 0.1631✓ 0.1923✓ 0.1541 0.1583✓ 0.1637✓
gene 0.0979 0.1039 0.1026✓ 0.1049 0.1017✓ 0.1052 0.1015
german 0.2588 0.2620 0.2864✓ 0.2802 0.2646 0.2816✓ 0.2706✓
glass 0.3206 0.3206 0.3243 0.3327 0.3804✓ 0.3271 0.3299
glass-g2 0.2221 0.2257 0.2677✓ 0.2478 0.2626✓ 0.2551✓ 0.2454✓
heart 0.1985 0.2074 0.2096 0.2244✓ 0.1941 0.2185✓ 0.2215✓
heart-c 0.1762 0.1841 0.1974 0.2027 0.1835 0.2033✓ 0.1954
hepatitis 0.1795 0.2094✓ 0.2001 0.2064 0.1988 0.2090 0.2051
horse 0.3297 0.3363✓ 0.3533 0.3698✓ 0.3286 0.3560✓ 0.3489✓
ionosphere 0.0980 0.1304✓ 0.1418✓ 0.1435✓ 0.1424✓ 0.1418✓ 0.1481✓
iris 0.0440 0.0467 0.0493 0.0480 0.0480 0.0493 0.0454
isolet 0.0677 0.0890✓ 0.0918✓ 0.0806✓ 0.1079✓ 0.0773✓ 0.0886✓
labor 0.1084 0.1964✓ 0.1860✓ 0.1858✓ 0.0981 0.1894✓ 0.1930✓
led24 0.3730 0.3780 0.4040✓ 0.3910 0.3870 0.3880 0.3900
letter 0.2086 0.2631✓ 0.2524✓ 0.2194 0.2039✗ 0.2075 0.2490✓
liver 0.3084 0.3101 0.3350 0.3523✓ 0.3107 0.3246✓ 0.3107
lrs 0.1149 0.1085 0.1115 0.1100 0.1247 0.1108 0.1134
lymph 0.1635 0.1878 0.2149✓ 0.2135✓ 0.1878 0.2189 0.2176✓
optdigits 0.0190 0.0229✓ 0.0255✓ 0.0197 0.0225✓ 0.0218 0.0214✓
page-blocks 0.0328 0.0371✓ 0.0379✓ 0.0774✓ 0.0421 0.0332 0.0351✓
pendigits 0.0104 0.0136✓ 0.0142✓ 0.0168 0.0381✓ 0.0107 0.0131✓
phoneme 0.1936 0.2030 0.1943 0.2133 0.1756 0.1669✗ 0.2065
pima 0.2464 0.2500 0.2534 0.2943✓ 0.2448 0.2508 0.2451
primary-t 0.5870 0.5940 0.5911✓ 0.6253✓ 0.5805 0.5975 0.5976
promoters 0.1924 0.2302✓ 0.2321✓ 0.2302✓ 0.1906 0.2302✓ 0.2302✓
satimage 0.1061 0.1203✓ 0.1216✓ 0.1230✓ 0.1092 0.1141✓ 0.1193✓
segment 0.0332 0.0411✓ 0.0398 0.0561✓ 0.0594✓ 0.0376 0.0454
sick 0.0239 0.0251✓ 0.0262✓ 0.0557 0.0242✓ 0.0241 0.0280
sonar 0.2077 0.2536✓ 0.2644✓ 0.2683✓ 0.2461✓ 0.2644✓ 0.2673✓
soybean 0.0653 0.0679 0.0682 0.0670 0.1564✓ 0.0682 0.0682
vehicle 0.1849 0.1816 0.1983 0.2076 0.1965 0.1790 0.1884
vote 0.0487 0.0552 0.0593 0.0616✓ 0.0556 0.0607 0.0616
vowel 0.0731 0.1354✓ 0.0820 0.0697 0.2188✓ 0.1028✓ 0.0731
waveform 0.1373 0.1404 0.1440 0.1580✓ 0.1406 0.1434✓ 0.1443
yeast 0.4074 0.4123 0.4119 0.4824✓ 0.4316 0.4121 0.4189
zip 0.0147 0.0189✓ 0.0203✓ 0.0169 0.0163✓ 0.0175 0.0178✓
zoo 0.0494 0.0631 0.0611 0.0651 0.0812✓ 0.0632 0.0651
win/loss 17/0 20/0 19/0 16/1 17/2 17/0
✓/✗ significantly worse/better than NLBP method using F test.

Table 3: Summary of test error results for ensembles using a neural network as base learner and
5x2cv.
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Data Set NLBP Standard ensemble methods
Bagging AdaBoost MadaBoost Arc-x4

anneal 0.0154 0.0165 0.0085 0.0109 0.0109
audiology 0.2672 0.2858✓ 0.2434 0.2557 0.2425
autos 0.2907 0.3160 0.2624 0.2750 0.2653
balance 0.0685 0.1527✓ 0.2115✓ 0.1795✓ 0.2125✓
breast-cancer 0.2811 0.2902 0.3245✓ 0.3147✓ 0.3336✓
card 0.1591 0.1414 0.1449 0.1478 0.1507
dermatology 0.0273 0.0208 0.0323 0.0312 0.0361✓
ecoli 0.1530 0.1750 0.1738✓ 0.1756✓ 0.1720✓
gene 0.0983 0.0751✗ 0.0765✗ 0.0718✗ 0.0732✗
german 0.2520 0.2534 0.2712✓ 0.2626 0.2654✓
glass 0.3150 0.3140 0.3000 0.3028 0.3019
glass-g2 0.2198 0.1756✗ 0.1462✗ 0.1585 0.1609
heart 0.1859 0.1948 0.2052✓ 0.2133 0.2044
heart-c 0.1841 0.1927 0.2046✓ 0.2053✓ 0.2033
hepatitis 0.1821 0.2066✓ 0.2104 0.2118✓ 0.2013
horse 0.3258 0.3308 0.3308 0.3258 0.3242
ionosphere 0.0507 0.0815✓ 0.0763 0.0798✓ 0.0712
iris 0.0467 0.0480 0.0587 0.0573 0.0520
isolet 0.0670 0.2151✓ 0.1217✓ 0.1545✓ 0.1320✓
labor 0.0741 0.1227✓ 0.1049 0.1190 0.0978
led24 0.3940 0.3330 0.3680 0.3620 0.3730
letter 0.1128 0.2070✓ 0.1196 0.1426✓ 0.1243
liver 0.3246 0.3159 0.3252 0.3159 0.3194
lrs 0.1115 0.1454✓ 0.1398✓ 0.1481✓ 0.1428✓
lymphography 0.1838 0.1811 0.1838 0.1973 0.1905
optdigits 0.0193 0.0555✓ 0.0206 0.0312✓ 0.0242✓
page-blocks 0.0290 0.0285 0.0307 0.0303 0.0298
pendigits 0.0091 0.0271✓ 0.0090 0.0186✓ 0.0143✓
phoneme 0.1287 0.1378 0.1112✗ 0.1137✗ 0.1082✗
pima 0.2484 0.2440 0.2612 0.2516 0.2625
primary-tumor 0.5770 0.5705 0.5970 0.5781 0.5858
promoters 0.2189 0.1792 0.2038 0.1793 0.1736
satimage 0.0942 0.1152✓ 0.0912 0.0975 0.0931
segment 0.0304 0.0382 0.0233✗ 0.0339 0.0280
sick 0.0286 0.0163✗ 0.0139✗ 0.0156✗ 0.0151✗
sonar 0.1836 0.2471✓ 0.2462✓ 0.2385✓ 0.2433✓
soybean 0.0650 0.0764 0.0682 0.0747 0.0679
vehicle 0.2109 0.2650✓ 0.2440 0.2610✓ 0.2518
vote 0.0506 0.0469 0.0593 0.0620 0.0625
vowel 0.0786 0.1996✓ 0.1208✓ 0.1556✓ 0.1334✓
waveform 0.1387 0.1678✓ 0.1625✓ 0.1658✓ 0.1599✓
yeast 0.4051 0.4063 0.4348✓ 0.4116✓ 0.4239✓
zip 0.0163 0.0841✓ 0.0371✓ 0.0523✓ 0.0423✓
zoo 0.0848 0.0835 0.0672 0.0653 0.0673
win/loss 16/3 13/5 17/3 14/3
✓/✗ significantly worse/better than NLBP method using F test.

Table 4: Summary of test error results for ensembles using a C4.5 tree as base learner and 5x2cv.
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Data Set NLBP Standard ensemble methods
Bagging AdaBoost MadaBoost Arc-x4

anneal 0.0136 0.0508✓ 0.0267 0.0325✓ 0.0312✓
audiology 0.2522 0.2893✓ 0.2637 0.2540 0.2593
autos 0.2906 0.3179✓ 0.3064 0.3063 0.3034
balance 0.0426 0.0691✓ 0.0595 0.0624✓ 0.0502
breast-cancer 0.2930 0.3091 0.3790✓ 0.3448✓ 0.3630✓
card 0.1632 0.2162✓ 0.2409✓ 0.2238✓ 0.2377✓
dermatology 0.0246 0.0290 0.0312 0.0301 0.0317
ecoli 0.1512 0.1476 0.1976✓ 0.1482 0.1750✓
gene 0.0998 0.1168✓ 0.1162✓ 0.1207✓ 0.1225✓
german 0.2680 0.2992✓ 0.2914✓ 0.2916✓ 0.2946✓
glass 0.3234 0.3383 0.3411 0.3420✓ 0.3327
glass-g2 0.2098 0.2248 0.2196 0.2063 0.2210
heart 0.1844 0.1956✓ 0.2281✓ 0.2119✓ 0.2244✓
heart-c 0.1940 0.2126 0.2510✓ 0.2331✓ 0.2417✓
hepatitis 0.1847 0.1899 0.1948 0.1911 0.1936
horse 0.3440 0.3698✓ 0.3692 0.3648✓ 0.3654
ionosphere 0.0496 0.0547 0.0644 0.0581 0.0576
iris 0.0467 0.0413 0.0467 0.0413 0.0493
isolet 0.0682 0.1193✓ 0.0743 0.0938✓ 0.0794✓
labor 0.0875 0.1086 0.1293✓ 0.1119 0.1222✓
led24 0.3680 0.3950✓ 0.4330✓ 0.4090✓ 0.4310✓
letter 0.1016 0.1035✓ 0.1380✓ 0.0940✗ 0.1646✓
liver 0.3310 0.3159 0.3623✓ 0.3206 0.3333✓
lrs 0.1130 0.1172 0.1221 0.1232 0.1318
lymphography 0.1811 0.2797✓ 0.2595✓ 0.2568✓ 0.2486✓
optdigits 0.0162 0.0180 0.0226✓ 0.0200 0.0203✓
page-blocks 0.0347 0.0384✓ 0.0401✓ 0.0375 0.0382
pendigits 0.0060 0.0057 0.0067 0.0049 0.0053
phoneme 0.1769 0.1565 0.1574 0.1556 0.1585✗
pima 0.2372 0.2526 0.2953✓ 0.2505 0.2711✓
primary-tumor 0.5911 0.6365✓ 0.6371✓ 0.6289✓ 0.6318✓
promoters 0.2057 0.1943 0.2094 0.2113 0.2132
satimage 0.0888 0.0904 0.0929 0.0867 0.0933
segment 0.0413 0.0470✓ 0.0409 0.0426 0.0408
sick 0.0313 0.0355✓ 0.0343✓ 0.0339 0.0339✓
sonar 0.1615 0.2414✓ 0.2413✓ 0.2568✓ 0.2615✓
soybean 0.0659 0.0712 0.0732✓ 0.0685 0.0752
vehicle 0.1846 0.2213✓ 0.2314✓ 0.2194✓ 0.2234
vote 0.0446 0.0524 0.0570✓ 0.0510 0.0538
vowel 0.0467 0.0555 0.0448 0.0418 0.0434
waveform 0.1418 0.1530 0.1697✓ 0.1512 0.1624✓
yeast 0.4093 0.4160 0.4291✓ 0.4233 0.4443✓
zip 0.0182 0.0158✗ 0.0188 0.0170 0.0172
zoo 0.0533 0.0652 0.0455 0.0515 0.0575
win/loss 19/1 23/0 16/1 21/1
✓/✗ significantly worse/better than NLBP method using F test.

Table 5: Summary of test error results ensembles with using a SVM as base learner and 5x2cv.
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The first experiment tests if the performance of the method is due to the use of different pro-
jections. It is known that the use of random subspaces is able to improve the performance of an
ensemble (Ho, 1998), and it is possible that the use of different projections of the original data, no
matter how they are obtained, could be the cause of the good performance of NLBP. So we have
trained the classifiers that make up the ensemble using a different nonlinear random projection for
each classifier. The random nonlinear projection is obtained using the same neural network used in
NLBP, but with the weights randomly initialised in the interval [−1,1] and no training.

The second experiment aims to establish if a similar performance can be obtained if we obtain
different nonlinear projections using all the instances of the training set instead of only the misclas-
sified instances. Thus, for this simulation, we apply Algorithm 1 but projection P(x) is constructed
using the whole training set, S, instead of the subset of instances incorrectly classified by the pre-
vious classifier, S′. The results of these two experiments for the three base classifiers are shown in
Table 6.

The table shows how NLBP is performing significantly better than the two control algorithms
for many problems. This experiment supports the approach of the proposed algorithm, ruling out
as a cause of its good performance the use of an additional layer of learning. For a neural network
NLBP is significantly better than a random projection in 16 data sets, and better than the projection
using all the instances in 20 data sets. Similar results are obtained for a C4.5 tree and a SVM.

5.2 κ - Error Diagrams

One way of understanding the behaviour of ensemble methods is by means of a κ-error diagram
(Margineantu and Dietterich, 1997; Dietterich, 2000a). These diagrams represent a point for each
pair of classifiers. The x coordinate is a measure of the diversity of the two classifiers known as κ
measure, the y coordinate is the average error of the two classifiers on the test data. The two values
are conflicting, as it is obvious that we cannot have both perfect and independent classifiers. The
κ-error diagram is the scatter plot of the points corresponding to all pairs of classifiers.

The κ measure is defined as follows: let us consider a problem with K classes, and let C be a
K×K matrix such that Ci j contains the number of instances assigned to class i by the first classifier
and to class j by the second classifier. Let us define:

Θ1 =
∑K

i=1Cii

n
,

and

Θ2 =
K

∑
i=1

(

K

∑
j=1

Ci j

n
×

K

∑
j=1

C ji

n

)

,

where n is the number of instances. Then, the κ statistic is defined:

κ =
Θ1 −Θ2

1−Θ2
.

When the agreement of the two classifiers equals that expected by chance κ = 0; when they
agree on every instance κ = 1. Negative values mean a systematic disagreement between the two
classifier.
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Data Set Neural network C4.5 SVM
NLBP Random All NLBP Random All NLBP Random All

anneal 0.0100 0.0118 0.0096 0.0154 0.0294✓ 0.0136 0.0136 0.0243✓ 0.0089
audiology 0.2557 0.2734 0.2681 0.2672 0.3823✓ 0.2779 0.2522 0.4956✓ 0.2487
autos 0.3004 0.3111 0.3394✓ 0.2907 0.3404✓ 0.2994 0.2906 0.3765 0.2867
balance 0.0509 0.0995✓ 0.0851✓ 0.0685 0.1002✓ 0.0822 0.0426 0.1008✓ 0.0877✓

breast-c 0.3098 0.3371 0.3504✓ 0.2811 0.2727 0.3140✓ 0.2930 0.2769 0.3546✓

card 0.1490 0.1710✓ 0.1861✓ 0.1591 0.1704 0.1646 0.1632 0.1928✓ 0.1785✓

dermatol. 0.0246 0.0263 0.0301 0.0273 0.0306 0.0372✓ 0.0246 0.0306 0.0284
ecoli 0.1476 0.1363✓ 0.1512✓ 0.1530 0.1506 0.1655 0.1512 0.1512 0.1554
gene 0.0979 0.0996 0.1009✓ 0.0983 0.2363✓ 0.1253✓ 0.0998 0.3997✓ 0.1008
german 0.2588 0.2626✓ 0.2840✓ 0.2520 0.2592 0.2750✓ 0.2680 0.2686 0.2760
glass 0.3206 0.3383✓ 0.3393 0.3150 0.3299✓ 0.3421✓ 0.3234 0.3524✓ 0.3355✓

glass-g2 0.2221 0.2111 0.2417 0.2198 0.2444 0.2259 0.2098 0.2579✓ 0.2369✓

heart 0.1985 0.2007 0.2267✓ 0.1859 0.1748 0.2037 0.1844 0.1756 0.2348✓

heart-c 0.1762 0.2119 0.2245✓ 0.1841 0.1888 0.1927 0.1940 0.2033 0.2199✓

hepatitis 0.1795 0.1949 0.1987 0.1821 0.1820 0.2130 0.1847 0.1860 0.2013
horse 0.3297 0.3346 0.3632✓ 0.3258 0.3412 0.3302 0.3440 0.3527 0.3539
ionosph. 0.0980 0.1077✓ 0.1521✓ 0.0507 0.0524 0.1247✓ 0.0496 0.0518 0.1225✓

iris 0.0440 0.0427 0.0480 0.0467 0.0613✓ 0.0627✓ 0.0467 0.0453 0.0467
isolet 0.0677 0.1038✓ 0.0715 0.0670 0.2279✓ 0.0875✓ 0.0682 0.0734 0.0607✓

labor 0.1084 0.1223 0.1823✓ 0.0741 0.1127 0.1543 0.0875 0.0915 0.1575✓

led24 0.3730 0.4000 0.3970✓ 0.3940 0.4990✓ 0.3790 0.3680 0.4280✓ 0.3670
letter 0.2086 0.2692✓ 0.2328✓ 0.1128 0.2172✓ 0.1665✓ 0.1016 0.1094 0.1136✓

liver 0.3084 0.3066 0.3344 0.3246 0.3617 0.3554 0.3310 0.3438 0.3414
lrs 0.1149 0.1206 0.1206 0.1115 0.1341✓ 0.1255✓ 0.1130 0.1729✓ 0.1160
lymph. 0.1635 0.1730 0.2108✓ 0.1838 0.1824 0.2054 0.1811 0.1865 0.2081✓

optdigits 0.0190 0.0230✓ 0.0158 0.0193 0.0494✓ 0.0267✓ 0.0162 0.0179 0.0142
page-b 0.0328 0.0393✓ 0.0340 0.0290 0.0327✓ 0.0304 0.0347 0.0373 0.0329
pendigits 0.0104 0.0162✓ 0.0137✓ 0.0091 0.0133✓ 0.0132✓ 0.0060 0.0062 0.0075
phoneme 0.1936 0.2103 0.1707 0.1287 0.1554✓ 0.1552✓ 0.1769 0.2122✓ 0.1702
pima 0.2464 0.2396 0.2615 0.2484 0.2458 0.2518 0.2372 0.2354 0.2565✓

primary-t 0.5870 0.5846 0.5905 0.5770 0.5917 0.5793 0.5911 0.5823 0.5852
promoters 0.1924 0.2208 0.2283 0.2189 0.2434 0.2698✓ 0.2057 0.5283✓ 0.2245✓

satimage 0.1061 0.1154✓ 0.1142✓ 0.0942 0.1028 0.1032✓ 0.0888 0.0891 0.0975✓

segment 0.0332 0.0570✓ 0.0380✓ 0.0304 0.0459✓ 0.0311 0.0413 0.0609✓ 0.0369
sick 0.0239 0.0290✓ 0.0254 0.0286 0.0373✓ 0.0244✗ 0.0313 0.0320 0.0251✗

sonar 0.2077 0.2154 0.2558✓ 0.1836 0.1789 0.2654✓ 0.1615 0.1558 0.2577✓

soybean 0.0653 0.0641 0.0694 0.0650 0.0735 0.0662 0.0659 0.0861✓ 0.0682
vehicle 0.1849 0.1936 0.1835 0.2109 0.2624✓ 0.2059 0.1846 0.2196✓ 0.1870
vote 0.0487 0.0446 0.0570 0.0506 0.0510 0.0556 0.0446 0.0478 0.0570
vowel 0.0731 0.1669✓ 0.1810✓ 0.0786 0.0845 0.1069✓ 0.0467 0.1501✓ 0.1729✓

waveform 0.1373 0.1395 0.1407 0.1387 0.1604✓ 0.1451 0.1418 0.1550 0.1434
yeast 0.4074 0.4159 0.4119 0.4051 0.4074 0.4171✓ 0.4093 0.4102 0.4120
zip 0.0147 0.0215✓ 0.0148 0.0163 0.0818✓ 0.0212✓ 0.0182 0.0268✓ 0.0128✗

zoo 0.0494 0.0474 0.0611 0.0848 0.1027 0.0789 0.0533 0.0713✓ 0.0533
win/loss 16/0 20/0 20/0 19/1 17/0 17/2
✓/✗ significantly worse/better than NLBP method using F test.

Table 6: Control experiment for NLBP. Test error using a random non-linear projection, and a pro-
jection trained using all the instances.
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Figures 2, 3, and 4 show κ-error diagrams of the first partition for several data sets with four
standard methods and NLBP, and neural networks, C4.5, and SVMs as base classifiers, respectively.
These diagrams are fairly representative of the diagrams of all the data sets.

For all the three base classifiers we verify the usual behaviour of bagging and boosting methods.
Bagging provides diversity, but to a lesser degree than boosting. On the other hand, boosting’s
improvement of diversity has the side effect of deteriorating accuracy. NLBP behaviour is midway
between these two methods. It is able to improve diversity, but to a lesser degree than boosting,
without damaging accuracy as much as boosting. This behaviour suggests that the performance of
NLBP in noisy problems can be better than the performance of boosting methods. The next section
is devoted to studying the sensitivity to noise of NLBP, and tests that hypothesis.

5.3 Effect of Noise

Several researchers have reported that boosting methods, among them ADABOOST, degrade their
performance in the presence of noise. Dietterich (2000a) tested this effect introducing artificial
noise in the class labels of different data sets and confirmed this behaviour. In this section we study
the sensitivity of our method to noise.

To add noise to the class labels we follow the method of Dietterich (2000a). To add classification
noise at a rate r, we chose a fraction r of the instances and changed their class labels to be incorrect
choosing uniformly from the set of incorrect labels. We chose all the data sets and three rates of
noise, 5%, 10%, and 20%. With this three levels of noise we have performed the experiments using
the 5x2cv setup and NLBP, bagging and ADABOOST ensemble methods and compared the results
as the level of noise increases.

For the noise study we have used bagging and ADABOOST as the representative of the boosting
methods (for neural networks the used method is ADABOOST.MH as in the previous experiments).
Tables 7, 8, and 9 show the comparison of the three methods at noise levels 5%, 10%, and 20%, for
a neural network, a C4.5 tree and a SVM respectively. First of all, we can corroborate that tables
confirm that bagging is less affected by noise than boosting, as has been shown in several papers,
for example, (Dietterich, 2000a).

Table 7 shows the results for a neural network. For a noise level of 5% the results are not much
different from the results without noise for all the three methods. Bagging performs slightly worse
and ADABOOST.MH slightly better. It seems that for this low noise level the algorithms perform
as in the case without noise. For 10% of noise the performance of bagging improves, achieving a
win/loss record of 13/3 with NLBP, better than the record without noise, 17/0. On the other hand, the
performance of ADABOOST.MH drops to a win/loss record of 28/0 with NLBP. Here the sensibility
to noise of ADABOOST.MH is clearly evident.

The behaviour with a noise level of 20% is less clear. Bagging’s performance drops to a record
of 22/1 and ADABOOST.MH improves to 20/2. Two reasons can account for this behaviour: i) all
the algorithms are performing badly due to the large amount of noise, so the results have a higher
dependency on random factors, ii) the differences in the test error observed on the different partitions
can be very high, making the F test, that depends on the variance between the error within the same
partition (see Equation 2), less able to conclude that the differences are significant.
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Figure 2: κ-error diagram for the data sets using the five ensemble methods and a neural network
as base learner. κ measure is represented on horizontal axis in the interval [−0.5,1], and
error value on vertical axis in the interval [0,1].
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Figure 3: κ-error diagram for the data sets using the five ensemble methods and a C4.5 tree as base
learner. κ measure is represented on horizontal axis in the interval [−0.5,1], and error
value on vertical axis in the interval [0,1].
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Figure 4: κ-error diagram for the data sets using the five ensemble methods and a SVM as base
learner. κ measure is represented on horizontal axis in the interval [−0.5,1], and error
value on vertical axis in the interval [0,1].
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Using C4.5 as base learner, Table 8, the results are much the same. For a noise level of 5% the
performance of the three algorithms is similar to the original one. When the noise level increases
to 10% the performance of ADABOOST degrades from a win/loss record of 13/5 (with no artificial
noise) to a record of 19/2. Bagging slightly worsens compared with NLBP, from a record of 16/3 to
20/6. When the noise level is 20% the effect is more marked for both algorithms, with a record of
18/3 for bagging and 25/1 for ADABOOST.

Table 9 shows a similar behaviour for the three algorithms when using a SVM but with some
differences. The performance of ADABOOST dramatically decreases with noise as in the previous
cases. For a SVM the negative effect of noise on ADABOOST is even more marked. But the case of
bagging is slightly different from the two previous classifiers. With a SVM bagging is less affected
by noise, even improving its compared performance with NLBP; for a noise level of 20% bagging
is worse than NLBP in only 11 data sets.

In summary, NLBP has the very desirable property of behaving, at least, as robustly as bagging
in the presence of noise. This is probably due to the fact that NLBP does not put so much emphasis
on incorrectly classified instances as boosting does. However, NLBP does use the incorrectly clas-
sified instances in determining the nonlinear representation of the input data which provides it with
a performance enhancement over bagging.

5.4 Effect of Ensemble Size

As we have stated, most previous work agrees that boosting methods are fairly resistant to over-
fitting. Additionally, there is also a general agreement that the most important gain of boosting
methods is given by the first few classifiers. These two arguments together support the use of an
ensemble of fixed size of 50 base classifiers as reasonable, and that it is not likely that the size of the
ensemble might contaminate the experimental results. Nevertheless, it is possible that for some of
the problems the ensemble may be either overfitting or underfitting the data. So, we have performed
an additional experiment where the size of the ensemble is obtained by a cross-validation strategy.
The experiment is carried out using ADABOOST and the proposed NLBP method.

The method for selecting the number of classifiers for each problem is the cross-validation strat-
egy presented in Zhang and Yu (2005). For each partition of each problem we perform a 5-fold
cross-validation to obtain the optimal size of the ensemble within the range of [10,100] classifiers.
That is, we divide the training set into five partitions and train the ensemble with four partitions and
test the error with the remaining one. This is repeated for each one of the five partitions, and the en-
semble size is obtained as the average size of the 5 runs. Then, the algorithm is run with this optimal
size of the ensemble and using the whole training set. As the size of the ensemble is estimated for
each partition, overfitting or underfitting is less likely to happen. Table 10 shows the results using
the three base classifiers of the previous experiments. The parameters of the experiments are the
same as the previous runs.

The first noticeable result shown in the table is that the errors of the algorithms using this method
are similar to the errors for ensembles of 50 classifiers. These results support the general belief that
boosting is quite resistant to overfitting. The results also show that NLBP is also hardly affected
by overfitting. The differences among NLBP and ADABOOST are similar to the obtained using 50
classifiers. The significant win/loss record, 21/2, 12/4, and 20/1 for neural network, C4.5 and SVM
as base classifiers respectively, is similar to the previous results using 50 classifiers: 20/0, 13/5, and
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Data Set 5% 10% 20%
NLBP Bagging Ada.MH NLBP Bagging Ada.MH NLBP Bagging Ada.MH

anneal 0.0764 0.0909 0.0679 0.1499 0.1254✗ 0.1664 0.2904 0.2490✗ 0.2608✗

audiology 0.3372 0.3186 0.3425 0.4027 0.4053 0.4372✓ 0.5566 0.5655 0.5796✓

autos 0.3851 0.4145✓ 0.3975✓ 0.4388 0.4278 0.4535 0.5639 0.5834✓ 0.5785
balance 0.1030 0.1082 0.1018 0.1530 0.1462 0.1923✓ 0.2954 0.2874 0.2928
breast-c 0.3301 0.3664✓ 0.3699✓ 0.3993 0.3993 0.4413✓ 0.4329 0.4273 0.4322
card 0.2148 0.2261 0.2128 0.2458 0.2299 0.2661✓ 0.3762 0.3588 0.3632✗

dermatol. 0.0989 0.1180✓ 0.1191 0.1628 0.1809✓ 0.2071✓ 0.2787 0.2874 0.3279✓

ecoli 0.1899 0.2554✓ 0.2196 0.2554 0.2643 0.3327✓ 0.2994 0.3042 0.3351✓

gene 0.1844 0.1631✗ 0.1608✗ 0.2079 0.2020 0.2328✓ 0.3305 0.3273 0.3395
german 0.2836 0.3142✓ 0.3170✓ 0.3156 0.3144 0.3436 0.3842 0.3876 0.4096✓

glass 0.3804 0.4037✓ 0.3823 0.4561 0.4458 0.4925✓ 0.4804 0.4953 0.5168✓

glass-g2 0.2564 0.2761 0.2699✓ 0.3375 0.3349 0.3769✓ 0.3242 0.3450 0.3254
heart 0.2600 0.2748✓ 0.2674 0.3407 0.3185 0.3829✓ 0.3741 0.3711 0.3689
heart-c 0.2497 0.2742✓ 0.2536 0.3199 0.3046 0.3351 0.4040 0.3815 0.3947
hepatitis 0.2232 0.2555✓ 0.2542✓ 0.2943 0.2957 0.3345✓ 0.3200 0.3355 0.3575✓

horse 0.3632 0.3918 0.3873 0.3973 0.4247✓ 0.4297 0.4764 0.4918 0.5165✓

ionosph. 0.1630 0.2268✓ 0.1857 0.2376 0.2194 0.2877✓ 0.3271 0.2986 0.3248
iris 0.0787 0.1040 0.0973 0.1173 0.1173 0.1773✓ 0.3080 0.3360✓ 0.3587✓

isolet 0.1107 0.1361✓ 0.1448✓ 0.1665 0.1912✓ 0.1893✓ 0.2671 0.3250✓ 0.3094✓

labor 0.0912 0.1541✓ 0.1860✓ 0.2355 0.3054✓ 0.2984 0.4457 0.4739✓ 0.4739✓

led24 0.4010 0.4440✓ 0.4390✓ 0.5110 0.5060 0.5240 0.5870 0.6020 0.6120✓

letter 0.1839 0.2394✓ 0.3168✓ 0.3045 0.3801✓ 0.3230✓ 0.4038 0.4936✓ 0.4922✓

liver 0.3501 0.3559 0.3414 0.3565 0.3443 0.3663 0.4249 0.4285 0.4354
lrs 0.1755 0.1869 0.1676 0.2140 0.2027 0.2249 0.3420 0.3529 0.3405
lymph. 0.2933 0.3378✓ 0.3473✓ 0.2933 0.3400✓ 0.3716✓ 0.4041 0.4554✓ 0.4581✓

optdigits 0.0711 0.0821✓ 0.0755✓ 0.1212 0.1252 0.1442✓ 0.2208 0.2673✓ 0.2304✓

page-b 0.0855 0.0842 0.0897✓ 0.1306 0.1410✓ 0.1334✓ 0.2335 0.2462✓ 0.2424
pendigits 0.0625 0.0654✓ 0.0660✓ 0.1135 0.1165✓ 0.1151✓ 0.2171 0.2488✓ 0.2219✓

phoneme 0.2259 0.2440✓ 0.2335✓ 0.2588 0.2748✓ 0.2558 0.3235 0.3561✓ 0.3409✓

pima 0.2719 0.2867 0.2899 0.3073 0.3089 0.3412✓ 0.3849 0.3849 0.3896
primary-t 0.6011 0.6212 0.6141 0.6513 0.6595 0.6708 0.7096 0.7356✓ 0.7203
promoters 0.2340 0.2472 0.2547 0.2547 0.2962 0.2887 0.4245 0.4472 0.4453
satimage 0.1521 0.1674✓ 0.1692✓ 0.1988 0.2106✓ 0.2128✓ 0.3009 0.3154✓ 0.3058✓

segment 0.0811 0.0905✓ 0.0876✓ 0.1322 0.1389 0.1431✓ 0.2390 0.2704✓ 0.2372
sick 0.0761 0.0792✓ 0.0745 0.1297 0.1257✗ 0.1418✓ 0.2313 0.2402✓ 0.2294
sonar 0.2433 0.3106 0.3558✓ 0.2914 0.3548✓ 0.3414✓ 0.3606 0.4010✓ 0.4125✓

soybean 0.1318 0.1488✓ 0.1280 0.1833 0.1719 0.1921 0.3101 0.3330✓ 0.2977
vehicle 0.2525 0.2648✓ 0.2624 0.2799 0.2730 0.3109✓ 0.3801 0.3965✓ 0.3868
vote 0.1195 0.1311 0.1140 0.1710 0.1766 0.2014 0.2427 0.2405 0.2519
vowel 0.2039 0.1756✗ 0.2146 0.2499 0.2572 0.2731 0.3432 0.4390✓ 0.3701✓

waveform 0.1808 0.1867 0.1822 0.2250 0.2233✗ 0.2475✓ 0.3102 0.3208✓ 0.3115
yeast 0.4412 0.4522 0.4473 0.4747 0.4771 0.4699 0.5220 0.5448✓ 0.5283
zip 0.0668 0.0769✓ 0.0698✓ 0.1207 0.1220✓ 0.1295✓ 0.2142 0.2374✓ 0.2199✓

zoo 0.1760 0.2278 0.1900 0.1642 0.1840✓ 0.1977✓ 0.2535 0.2813✓ 0.2773
win/loss 24/2 18/1 13/3 28/0 22/1 20/2
✓/✗ significantly worse/better than NLBP method using F test.

Table 7: Summary of test error results for ensembles with a neural network using 5x2cv with noise
levels of 5%, 10%, and 20%.
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Data Set 5% 10% 20%
NLBP Bagging AdaB NLBP Bagging AdaB NLBP Bagging AdaB

anneal 0.0722 0.0973✓ 0.0922 0.1399 0.1817✓ 0.1757✓ 0.2702 0.3156✓ 0.3200✓

audiology 0.3460 0.3027 0.3106 0.3717 0.3566✗ 0.3593✗ 0.5620 0.5195✗ 0.5204✗

autos 0.3871 0.3413✗ 0.3725 0.4214 0.3853 0.3911 0.5288 0.5307 0.5367
balance 0.1296 0.3567✓ 0.2586✓ 0.1718 0.2883✓ 0.3082✓ 0.3139 0.4198✓ 0.4292✓

breast-c 0.3014 0.3007 0.3469 0.3455 0.3881✓ 0.4028✓ 0.3993 0.4182 0.4392✓

card 0.2029 0.1893 0.1942 0.2371 0.2313 0.2386 0.3495 0.3551 0.3649
dermatol. 0.0891 0.1060 0.0951 0.1563 0.1836✓ 0.1776✓ 0.2311 0.2475✓ 0.2503✓

ecoli 0.1976 0.2125✓ 0.2167 0.2494 0.2923✓ 0.2976✓ 0.2881 0.3298✓ 0.3500✓

gene 0.1542 0.1312✗ 0.1451 0.2023 0.1746✗ 0.1996 0.3242 0.2905✗ 0.3227
german 0.2916 0.2912 0.2974 0.3126 0.3320 0.3292 0.3796 0.3904 0.4086✓

glass 0.3841 0.3710 0.3729 0.4393 0.4047 0.4112 0.4738 0.4467 0.4645
glass-g2 0.2627 0.2418 0.2455 0.3350 0.2982 0.3153 0.3316 0.3168 0.3608
heart 0.2445 0.2607 0.2652 0.2941 0.3200 0.3437✓ 0.3378 0.3667 0.3830
heart-c 0.2311 0.2583✓ 0.2583✓ 0.2921 0.3066 0.3175✓ 0.3536 0.3960✓ 0.3987
hepatitis 0.2259 0.2296 0.2308 0.3021 0.2763✗ 0.2983✗ 0.2956 0.3047 0.3073
horse 0.3637 0.3522 0.3610 0.3923 0.3995 0.4099 0.4698 0.5066 0.5094✓

ionosph. 0.1459 0.1305 0.1464 0.1715 0.1881 0.1898 0.2706 0.2957 0.3031
iris 0.1027 0.1094 0.1027 0.1147 0.1707✓ 0.1720✓ 0.3173 0.3560✓ 0.3667✓

isolet 0.1152 0.2102✓ 0.1706✓ 0.1646 0.2489✓ 0.2189✓ 0.2635 0.3215✓ 0.3202✓

labor 0.1050 0.1085 0.1117 0.1863 0.1898 0.1792 0.3576 0.3825 0.3785
led24 0.4350 0.4120 0.4150 0.5270 0.4850 0.4970 0.5860 0.5480 0.5610
letter 0.1645 0.2106✓ 0.1893✓ 0.2137 0.2499✓ 0.2502✓ 0.3222 0.3709✓ 0.3782✓

liver 0.3768 0.3698 0.3565 0.3843 0.3663 0.3722 0.4493 0.4337 0.4482
lrs 0.1737 0.1936 0.1959✓ 0.2098 0.2219✓ 0.2174 0.3081 0.3326 0.3296
lymph. 0.2838 0.2838 0.2865 0.2906 0.3203 0.3230 0.3460 0.3851✓ 0.4081✓

optdigits 0.0700 0.0873✓ 0.0716 0.1207 0.1352✓ 0.1244 0.2223 0.2310✓ 0.2311✓

page-b 0.0794 0.0842✓ 0.0849✓ 0.1311 0.1400✓ 0.1389✓ 0.2312 0.2528✓ 0.2526✓

pendigits 0.0588 0.0680✓ 0.0614✓ 0.1080 0.1167✓ 0.1154✓ 0.2118 0.2247✓ 0.2245✓

phoneme 0.2110 0.1814 0.1716✗ 0.2563 0.2075✗ 0.2245 0.3247 0.3007✗ 0.3340
pima 0.2794 0.2857 0.2927 0.3169 0.3372 0.3331 0.3818 0.3974 0.4083✓

primary-t 0.5941 0.6135 0.6064 0.6430 0.6519 0.6814 0.6902 0.7126 0.7338✓

promoters 0.2358 0.2113 0.1887 0.2793 0.2264✗ 0.2547 0.4151 0.4170 0.4170
satimage 0.1385 0.1476✓ 0.1391 0.1833 0.1903✓ 0.1860✓ 0.2849 0.2853 0.2864
segment 0.0820 0.0827 0.0887✓ 0.1345 0.1448✓ 0.1483✓ 0.2446 0.2549 0.2613✓

sick 0.0871 0.0674✗ 0.0720✗ 0.1422 0.1290✗ 0.1442 0.2387 0.2521 0.2818✓

sonar 0.3039 0.2692 0.2769 0.3433 0.3308 0.3260 0.3442 0.3577 0.3837✓

soybean 0.1256 0.1616✓ 0.1529 0.1754 0.2234✓ 0.2100✓ 0.3051 0.3640✓ 0.3643✓

vehicle 0.2645 0.3024✓ 0.3111✓ 0.2976 0.3303✓ 0.3343✓ 0.4047 0.4388✓ 0.4310
vote 0.1154 0.1310 0.1297 0.1697 0.1904✓ 0.1959 0.2349 0.2630✓ 0.2731✓

vowel 0.1758 0.2085✓ 0.1957 0.2244 0.2628✓ 0.2554✓ 0.3321 0.3667✓ 0.3675✓

waveform 0.1821 0.2028✓ 0.2045✓ 0.2260 0.2432✓ 0.2487✓ 0.3142 0.3292 0.3364✓

yeast 0.4464 0.4580 0.4625✓ 0.4791 0.4945 0.4988 0.5367 0.5566✓ 0.5616✓

zip 0.0676 0.1107✓ 0.0874✓ 0.1201 0.1596✓ 0.1404✓ 0.2171 0.2390✓ 0.2383✓

zoo 0.1859 0.1799 0.2016 0.1841 0.1702 0.2038 0.2653 0.2594 0.2713
win/loss 15/3 12/2 20/6 19/2 18/3 25/1
✓/✗ significantly worse/better than NLBP method using F test.

Table 8: Summary of test error results for ensembles with a C4.5 tree using 5x2cv with noise levels
of 5%, 10%, and 20%.
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Data Set 5% 10% 20%
NLBP Bagging AdaB NLBP Bagging AdaB NLBP Bagging AdaB

anneal 0.0757 0.1031✓ 0.1238✓ 0.1635 0.1682 0.2007✓ 0.3114 0.3027 0.3575✓

audiology 0.3469 0.3522 0.5611✓ 0.5620 0.4265✗ 0.4310✗ 0.6691 0.5761✗ 0.6035
autos 0.3881 0.3803 0.4671✓ 0.4643 0.4262 0.4418 0.5630 0.5463 0.5727
balance 0.1088 0.1264✓ 0.1760✓ 0.1626 0.1680 0.2003✓ 0.3094 0.3146 0.3421✓

breast-c 0.3182 0.3602✓ 0.4147✓ 0.3727 0.3930✓ 0.4301✓ 0.4154 0.4273 0.4594
card 0.2180 0.2658✓ 0.3049✓ 0.2826 0.2907 0.3249✓ 0.3875 0.3899 0.4160✓

dermatol. 0.1011 0.0896 0.1465✓ 0.1667 0.1656 0.2197✓ 0.2574 0.2579 0.3344✓

ecoli 0.1887 0.1839 0.2732✓ 0.2476 0.2488 0.3226✓ 0.2792 0.2798 0.3607✓

gene 0.1857 0.2050✓ 0.3099✓ 0.3482 0.2584 0.2869 0.3244 0.3707✓ 0.4001✓

german 0.3000 0.3150✓ 0.3150 0.3242 0.3310✓ 0.3394 0.3780 0.3800 0.3872
glass 0.3729 0.3841 0.4028 0.4327 0.4439 0.4823 0.4682 0.4907✓ 0.5252✓

glass-g2 0.2651 0.2652 0.2565 0.3276 0.3117✗ 0.3351 0.3192 0.3266 0.3425
heart 0.2333 0.2459 0.2852✓ 0.2830 0.3104✓ 0.3622✓ 0.3452 0.3763 0.3978✓

heart-c 0.2537 0.2596✓ 0.3192✓ 0.2914 0.3033 0.3576✓ 0.3715 0.3854 0.4245✓

hepatitis 0.2194 0.2299 0.2284 0.2866 0.2724 0.2879 0.2866 0.3111 0.3278
horse 0.3709 0.3989✓ 0.3989 0.4116 0.4220 0.4160 0.4846 0.4808 0.4879
ionosph. 0.1026 0.1066 0.1391✓ 0.1738 0.1721 0.2165✓ 0.2684 0.2712 0.3253✓

iris 0.0746 0.0760 0.1013 0.1027 0.1040 0.1414 0.3133 0.3013 0.3347
isolet 0.1101 0.1675✓ 0.1721✓ 0.1839 0.2144✓ 0.2286✓ 0.2893 0.3163✓ 0.3375✓

labor 0.0979 0.0915 0.1224 0.2005 0.2246 0.2491✓ 0.3510 0.3791 0.4179✓

led24 0.4040 0.4270 0.4730✓ 0.5270 0.5120 0.5360 0.5910 0.5740 0.6010
letter 0.1859 0.1716✗ 0.2432 0.2399 0.2286 0.2683✓ 0.3507 0.3647✓ 0.4168✓

liver 0.3519 0.3478 0.3762 0.3629 0.3588 0.3890 0.4209 0.4238 0.4592✓

lrs 0.1752 0.1789 0.2079✓ 0.2554 0.2268 0.2931 0.3627 0.3439 0.4620
lymph. 0.2838 0.3392✓ 0.3176 0.2906 0.4054✓ 0.3325 0.3730 0.4297✓ 0.4216
optdigits 0.0730 0.0975✓ 0.1339✓ 0.1276 0.1736✓ 0.2368✓ 0.2453 0.2857✓ 0.3411✓

page-b 0.0865 0.0894 0.0919 0.1346 0.1495✓ 0.1388 0.2381 0.2598✓ 0.2396
pendigits 0.0605 0.0571✗ 0.0997✓ 0.1113 0.1092 0.1611✓ 0.2171 0.2176 0.2375✓

phoneme 0.2155 0.1988✗ 0.1990 0.2496 0.2333 0.2362 0.3171 0.3048 0.3086
pima 0.2755 0.2825 0.3253✓ 0.3047 0.3250 0.3664✓ 0.3750 0.3878 0.4255✓

primary-t 0.6094 0.6542✓ 0.6537✓ 0.6519 0.6955✓ 0.6955✓ 0.7209 0.7327 0.7339
promoters 0.2075 0.1981 0.2226 0.2528 0.2604 0.2812 0.4736 0.4208 0.4227
satimage 0.1500 0.1401✗ 0.1630✓ 0.1969 0.1877✗ 0.2244✓ 0.2947 0.2930 0.3498✓

segment 0.0915 0.0994✓ 0.1251✓ 0.1547 0.1545 0.1829✓ 0.2464 0.2563✓ 0.2856✓

sick 0.1037 0.0863✗ 0.1127✓ 0.1505 0.1439✗ 0.1785✓ 0.2424 0.2479 0.2969✓

sonar 0.2250 0.2914✓ 0.3240✓ 0.2798 0.3442✓ 0.3442✓ 0.3356 0.3846✓ 0.4010✓

soybean 0.1707 0.1423 0.1699 0.2264 0.1994 0.2407 0.3719 0.3327✗ 0.3857
vehicle 0.2456 0.2896✓ 0.3104✓ 0.2757 0.3187✓ 0.3612✓ 0.3913 0.4348✓ 0.4875✓

vote 0.1117 0.1196 0.1449✓ 0.1628 0.1825 0.1977 0.2290 0.2524 0.2763✓

vowel 0.1394 0.1366 0.1703✓ 0.1994 0.2077 0.2642✓ 0.3174 0.3123 0.3950✓

waveform 0.1955 0.1899 0.2118✓ 0.2379 0.2340 0.2436✓ 0.3178 0.3249 0.3295✓

yeast 0.4445 0.4507 0.4688✓ 0.4725 0.4873✓ 0.4965✓ 0.5217 0.5368 0.5040
zip 0.0752 0.0896✓ 0.1296✓ 0.1305 0.1445✓ 0.1801✓ 0.2276 0.2418✓ 0.2591✓

zoo 0.1701 0.1701 0.1743 0.1603 0.1603 0.1821 0.2358 0.2317 0.3031✓

win/loss 16/5 29/0 12/4 25/1 11/2 27/0
✓/✗ significantly worse/better than NLBP method using F test.

Table 9: Summary of test error results for ensembles with a SVM using 5x2cv with noise levels of
5%, 10%, and 20%.
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Data Set Neural network C4.5 SVM
NLBP ADABOOST.MH NLBP ADABOOST NLBP ADABOOST

anneal 0.0100 0.0100 0.0118 0.0102 0.0102 0.0278✓

audiology 0.2513 0.2611 0.2823 0.2504 0.2938 0.2779
autos 0.3082 0.3247✓ 0.2867 0.2633 0.2945 0.3121
balance 0.0544 0.0502 0.0803 0.2038✓ 0.0570 0.0614
breast-c 0.3336 0.3769✓ 0.2762 0.3189✓ 0.2944 0.3748✓

card 0.1487 0.1797✓ 0.1548 0.1551 0.1603 0.2392✓

dermatol. 0.0273 0.0268 0.0301 0.0317 0.0323 0.0361
ecoli 0.1607 0.2006✓ 0.1506 0.1768✓ 0.1542 0.1863✓

gene 0.0977 0.1036✓ 0.1295 0.0798✗ 0.1158 0.1208
german 0.2724 0.2868 0.2668 0.2740 0.2892 0.2968
glass 0.3327 0.3505 0.3252 0.3019 0.3187 0.3393✓

glass-g2 0.2197 0.2466✓ 0.2284 0.1841 0.2136 0.2858✓

heart 0.1963 0.2356✓ 0.1852 0.2208✓ 0.1845 0.2089✓

heart-c 0.1835 0.2238✓ 0.1801 0.2172✓ 0.1861 0.2043✓

hepatitis 0.2052 0.2156✓ 0.1936 0.2001 0.2001 0.2000
horse 0.3412 0.3725✓ 0.3297 0.3423 0.3330 0.3643✓

ionosph. 0.1282 0.1492✓ 0.0638 0.0792✓ 0.0980 0.0667
iris 0.0507 0.0454 0.0427 0.0534 0.0427 0.0493
isolet 0.0715 0.0673 0.0756 0.1258✓ 0.0649 0.1358✓

labor 0.1432 0.1541✓ 0.1192 0.1087 0.1468 0.2006✓

led24 0.3750 0.4130✓ 0.4300 0.3810 0.3850 0.4290✓

letter 0.1734 0.1893 0.1172 0.1236 0.1022 0.1006
liver 0.3217 0.3414✓ 0.3339 0.3327 0.3426 0.3518
lrs 0.1119 0.1266✓ 0.1179 0.1364✓ 0.1205 0.1251
lymph. 0.1757 0.2095✓ 0.1757 0.1878 0.1932 0.2662✓

optdigits 0.0204 0.0187 0.0241 0.0222 0.0222 0.0221
page-b 0.0339 0.0340 0.0317 0.0303 0.0333 0.0411✓

pendigits 0.0107 0.0064✗ 0.0090 0.0095 0.0059 0.0066
phoneme 0.1844 0.1614 0.1405 0.1096✗ 0.1712 0.1546
pima 0.2471 0.2695✓ 0.2482 0.2674 0.2375 0.2914✓

primary-t 0.5698 0.6064✓ 0.5822 0.5970 0.6141 0.6366
promoters 0.2094 0.2227 0.2264 0.2245 0.2302 0.2189
satimage 0.1067 0.1097✓ 0.0955 0.0938 0.0939 0.0965
segment 0.0433 0.0363 0.0382 0.0225✗ 0.0371 0.0410
sick 0.0465 0.0270 0.0399 0.0151✗ 0.0566 0.0344✗

sonar 0.2231 0.2519✓ 0.2202 0.2375 0.2087 0.2452✓

soybean 0.0656 0.0706 0.0679 0.0647 0.0688 0.0726
vehicle 0.2002 0.2017 0.2445 0.2513 0.2185 0.2307
vote 0.0529 0.0620 0.0556 0.0556 0.0483 0.0579
vowel 0.0972 0.0717✗ 0.0937 0.1301✓ 0.0576 0.0456
waveform 0.1361 0.1493✓ 0.1473 0.1685✓ 0.1481 0.1639✓

yeast 0.4186 0.4146 0.4054 0.4408✓ 0.4151 0.4320✓

zip 0.0153 0.0139 0.0206 0.0380✓ 0.0160 0.0188✓

zoo 0.0592 0.0592 0.0789 0.0713 0.0474 0.0903✓

win/loss 21/2 12/4 20/1
✓/✗ significantly worse/better than NLBP method using F test.

Table 10: Summary of test error results for ensembles with a neural network, a C4.5 tree and a
SVM as base classifiers and the size of the ensemble obtained by cross-validation.
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23/0. We can say that the conclusions obtained using 50 classifiers also hold for the results obtained
estimating the size of the ensemble by cross-validation.

Table 11 shows the average size of the ensembles. The most interesting result is the fact that
most of the ensembles are in the interval between 20 and 30 classifiers. As we have stated, this
agrees with most previous work that found little gain in terms of error after about 25 classifiers had
been added. It is also interesting to note that, typically, both methods, NLBP and ADABOOST find
similar sizes of the ensemble.

6. Conclusions and Future Work

In this paper we have presented a new approach for ensemble construction based on nonlinear
projections of the original training instances. The projections are obtained by means of a neural
network and are aimed to make the classification of difficult instances easier. This idea is taken from
boosting methods, but in contrast with these methods our method does neither resample or weight
the instances in the training set. This avoids the drawbacks of either resampling/reweighting, such
as poor performance on small data sets and sensitivity to noise.

The only drawback of the proposed method is the necessity of training an additional neural
network each time a new classifier must be added to the ensemble. Nevertheless, this network is
only trained with the instances misclassified by the previous classifier, so the time needed for its
training is much reduced.

We have compared the performance of this method against the performance of bagging, Arc-
x4 and several boosting methods. The comparison was made using a fairly large set of real-world
problems. Our method showed very good results in terms of test error that clearly outperformed
bagging, Arc-x4, and different boosting algorithms. κ-error diagrams showed the ability of the
proposed algorithm to improve diversity among classifiers without dramatically affecting accuracy.
This improvement of performance has been assessed using ensembles of fixed size and ensembles
of variable size obtained by cross-validation.

Additional experiments have been made to test the sensitivity to noise of this approach. These
experiments have shown that NLBP is less sensitive to noise than boosting methods, and at least as
good as bagging.

We believe that this work opens a new and interesting approach to ensemble construction. Based
on the main idea of boosting, that is putting more effort into difficult instances, our approach tries
to make the classification of these instances easier without disregarding the instances correctly clas-
sified so far. The advantages of this approach have been highlighted by the results presented in this
paper. Moreover, an interesting research line opens in which we can devise alternative projection
methods that take into account the classification of a subset of instances.

Our future work is mainly directed towards two goals. Firstly, we are working on developing a
more theoretical view of our method, that may explain the good experimental results reported here.
Secondly, we have experienced some problems with the use of a neural network for the non-linear
projections, due to the facility with which the outputs of the hidden nodes of the network saturate,
making the projection less efficient. We are working on alternative supervised non-linear projection
that can improve the performance of the method.
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Data Set Neural network C4.5 SVM
NLBP ADABOOST.MH NLBP ADABOOST NLBP ADABOOST

anneal 16.9 16.8 20.0 18.9 17.4 19.3
audiology 17.7 19.4 25.5 20.5 18.2 14.1
autos 16.0 20.0 21.1 20.6 19.0 13.8
balance 21.6 20.7 21.6 23.0 23.0 21.5
breast-c 20.4 20.1 21.1 20.8 18.6 20.1
card 23.2 23.6 22.0 24.1 24.9 21.7
dermatol. 16.9 17.5 16.7 19.6 18.1 12.6
ecoli 20.5 20.8 20.5 21.9 19.7 20.0
gene 28.5 23.2 25.0 28.8 29.9 16.5
german 23.3 21.5 19.5 24.2 18.9 21.9
glass 18.5 20.1 21.0 22.8 18.0 22.3
glass-g2 19.8 21.5 20.8 22.1 19.6 15.1
heart 18.6 20.0 22.0 24.8 19.0 13.7
heart-c 21.4 22.1 20.8 22.5 19.0 14.6
hepatitis 18.7 18.9 19.6 21.2 18.3 20.5
horse 20.6 20.5 22.1 22.8 21.1 18.1
ionosph. 20.3 18.0 18.0 22.9 18.5 19.1
iris 15.5 16.2 16.8 17.1 15.5 16.7
isolet 28.5 27.9 46.0 49.2 15.7 11.3
labor 16.0 16.0 15.3 17.5 16.0 16.3
led24 20.0 16.4 24.0 17.9 17.5 12.8
letter 28.5 38.5 41.2 36.7 17.2 22.5
liver 23.3 21.0 18.5 23.5 16.0 22.0
lrs 19.0 18.9 19.2 23.0 19.5 13.7
lymph. 17.1 17.5 20.1 21.4 19.3 21.7
optdigits 24.4 26.2 30.5 35.4 15.9 14.8
page-b 23.4 21.6 23.0 21.9 21.0 20.4
pendigits 26.2 25.6 28.7 34.4 18.7 21.8
phoneme 20.0 25.2 21.5 31.9 17.0 22.3
pima 25.0 21.4 24.7 22.2 22.4 22.1
primary-t 21.0 10.8 13.9 11.3 11.4 10.4
promoters 16.5 17.0 16.0 22.1 14.0 12.8
satimage 23.3 26.4 26.6 33.4 16.4 20.2
segment 23.3 21.6 25.0 24.2 23.8 23.2
sick 15.5 22.4 19.7 23.8 15.0 20.6
sonar 19.5 19.2 22.0 23.6 22.0 14.3
soybean 20.1 20.6 18.0 22.1 20.7 14.6
vehicle 21.5 22.2 22.9 26.7 23.8 22.1
vote 18.4 18.6 17.9 20.5 19.5 19.6
vowel 24.0 25.0 27.9 30.7 22.8 22.1
waveform 23.0 25.5 28.4 33.9 16.8 17.1
yeast 22.6 24.5 29.0 22.0 22.3 21.9
zip 23.9 25.1 39.4 41.9 12.2 15.2
zoo 14.9 15.5 18.5 16.9 15.1 18.1

Table 11: Summary of sizes for ensembles with a neural network, a C4.5 tree and a SVM as base
classifiers and the size of the ensemble obtained by cross-validation.
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