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Abstract

Many feature representations, as in genomics, describe directional data where all feature vectors
share a common norm. In other cases, as in computer vision, a norm or variance normalization
step, where all feature vectors are normalized to a common length, is generally used. These repre-
sentations and pre-processing step map the original data from R

p to the surface of a hypersphere
Sp−1. Such representations should then be modeled using spherical distributions. However, the
difficulty associated with such spherical representations has prompted researchers to model their
spherical data using Gaussian distributions instead—as if the data were represented in R

p rather
than Sp−1. This opens the question to whether the classification results calculated with the Gaus-
sian approximation are the same as those obtained when using the original spherical distributions.
In this paper, we show that in some particular cases (which we named spherical-homoscedastic)
the answer to this question is positive. In the more general case however, the answer is negative.
For this reason, we further investigate the additional error added by the Gaussian modeling. We
conclude that the more the data deviates from spherical-homoscedastic, the less advisable it is to
employ the Gaussian approximation. We then show how our derivations can be used to define
optimal classifiers for spherical-homoscedastic distributions. By using a kernel which maps the
original space into one where the data adapts to the spherical-homoscedastic model, we can derive
non-linear classifiers with potential applications in a large number of problems. We conclude this
paper by demonstrating the uses of spherical-homoscedasticity in the classification of images of
objects, gene expression sequences, and text data.

Keywords: directional data, spherical distributions, normal distributions, norm normalization,
linear and non-linear classifiers, computer vision

1. Introduction

Many problems in science and engineering involve spherical representations or directional data,
where the sample vectors lie on the surface of a hypersphere. This is typical, for example, of
some genome sequence representations (Janssen et al., 2001; Audit and Ouzounis, 2003), in text
analysis and clustering (Dhillon and Modha, 2001; Banerjee et al., 2005), and in morphometrics
(Slice, 2005). Moreover, the use of some kernels (e.g., radial basis function) in machine learning
algorithms, will reshape all sample feature vectors to have a common norm. That is, the original
data is mapped into the surface of a hypersphere. Another area where spherical representations are
common is in computer vision, where spherical representations emerge after the common norm-

c©2007 Onur C. Hamsici and Aleix M. Martinez.



HAMSICI AND MARTINEZ

normalization step is incorporated. This pre-processing step guarantees that all vectors have a com-
mon norm and it is used in systems where the representation is based on the shading properties of
the object to make the algorithm invariant to changes of the illumination intensity, and when the rep-
resentation is shape-based to provide scale and rotation invariance. Typical examples are in object
and face recognition (Murase and Nayar, 1995; Belhumeur and Kriegman, 1998), pose estimation
(Javed et al., 2004), shape analysis (Dryden and Mardia, 1998) and gait recognition (Wang et al.,
2003; Veeraraghavan et al., 2005).

Figure 1 provides two simple computer vision examples. On the left hand side of the figure the
two p-dimensional feature vectors x̂i, i = {1,2}, correspond to the same face illuminated from the
same angle but with different intensities. Here, x̂1 = αx̂2, α ∈ R, but normalizing these vectors to a
common norm results in the same representation x; that is, the resulting representation is invariant to
the intensity of the light source. On the right hand side of Figure 1, we show a classical application
to shape analysis. In this case, each of the p elements in ŷi represents the Euclidean distances from
the centroid of the 2D shape to a set of p equally separated points on the shape. Normalizing each
vector with respect to its norm, guarantees our representation is scale invariant.

The most common normalization imposes that all vectors have a unit norm, that is,

x =
x̂
‖x̂‖ ,

where x̂ ∈ R
p is the original feature vector, and ‖x‖ is the magnitude (2-norm length) of the vector

x. When the feature vectors have zero mean, it is common to normalize these with respect to their
variances instead,

x =
x̂√

1
p−1 ∑p

i=1 x̂2
=
√

p−1
x̂
‖x̂‖ ,

which generates vectors with norms equal to
√

p−1. This second option is usually referred to as
variance normalization.

It is important to note that these normalizations enforce all feature vectors x to be at a common
distance from the origin; that is, the original feature space is mapped to a spherical representation
(see Figure 1). This means that the data now lays on the surface of the (p− 1)-dimensional unit
sphere Sp−1. 1

Our description above implies that the data would now need to be interpreted as spherical.
For example, while the illumination subspace of a (Lambertian) convex object illuminated by a
single point source at infinity is known to be 3-dimensional (Belhumeur and Kriegman, 1998), this
corresponds to the 2-dimensional sphere S2 after normalization. The third dimension (not shown in
the spherical representation) corresponds to the intensity of the source. Similarly, if we use norm-
normalized images to define the illumination cone, the extreme rays that define the cone will be the
extreme points on the corresponding hypersphere.

An important point here is that data would now need to be modeled using spherical distributions.
However, the computation of the parameters that define spherical models is usually complex, very
costly and, in many cases, impossible to obtain (see Section 2 for a review). This leaves us with
an unsolved problem: To make a system invariant to some parameters, we want to use spherical

1. Since all spherical representations are invariant to the radius (i.e., there is an isomorphism connecting any two rep-
resentations of distinct radius), selecting a specific value for the radius is not going to effect the end result. In this
paper, we always impose this radius to be equal to one.
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Figure 1: On the left hand side of this figure, we show two feature vectors corresponding to the
same face illuminated from the same position but with different intensities. This means
that x̂1 = αx̂2, α ∈ R. Normalizing these two vectors with respect to their norm yields a
common solution, x = x̂1

‖x̂1‖ = x̂2
‖x̂2‖ . The norm-normalized vector x is on Sp−1, whereas

x̂i ∈R
p. On the right hand side of this figure we show a shape example where the elements

of the feature vectors ŷi represent the Euclidean distance between the centroid of the
2D shape and p points on the shape contour. As above, ŷ1 = βŷ2 (where β ∈ R), and
normalizing them with respect to their norm yields y.

representations (as in genomics) or normalize the original feature vectors to such a representation
(as in computer vision). But, in such cases, the parameter estimation of our distribution is impossible
or very difficult. This means, we are left to approximate our spherical distribution with a model that
is well-understood and easy to work with. Typically, the most convenient choice is the Gaussian
(Normal) distribution.

The question arises: how accurate are the classification results obtained when approximating
spherical distributions with Gaussian distributions?

Note that if the Bayes decision boundary obtained with Gaussians is very distinct to that found
by the spherical distributions, our results will not generally be useful in practice. This would be
catastrophic, because it would mean that by using spherical representations to solve one problem,
we have created another problem that is even worse.

In this paper, we show that in almost all cases where the Bayes classifier is linear (which is
the case when the data is what we will refer to as spherical-homoscedastic—a rotation-invariant
extension of homoscedasticity) the classification results obtained on the true underlying spherical
distributions and on those Gaussians that best approximate them are identical. We then show that for
the general case (which we refer to as spherical-heteroscedastic) these classification results can vary
substantially. In general, the more the data deviates from our spherical-homoscedastic definition,
the more the classification results diverge from each other. This provides a mechanism to test when
it makes sense to use the Gaussian approximation and when it does not.

Our definition of spherical-homoscedasticity will also allow us to define simple classification
algorithms that provide the minimal Bayes classification error for two spherical homoscedastic dis-
tributions. This result can then be extended to the more general spherical-heteroscedastic case by
incorporating the idea of the kernel trick. Here, we will employ a kernel to (intrinsically) map the
data to a space where the spherical-homoscedastic model provides a good fit.
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The rest of this paper is organized as follows. Section 2 presents several of the commonly used
spherical distributions and describes some of the difficulties associated to their parameter estimation.
In Section 3, we introduce the concept of spherical-homoscedasticity and show that whenever two
spherical distributions comply with this model, the Gaussian approximation works well. Section 4
illustrates the problems we will encounter when the data deviates from our spherical-homoscedastic
model. In particular, we study the classification error added when we model spherical-heteroscedastic
distributions with the Gaussian model. Section 5 presents the linear and (kernel) non-linear classi-
fiers for spherical-homoscedastic and -heteroscedastic distributions, respectively. Our experimental
results are in Section 6. Conclusions are in Section 7. A summary of our notation is in Appendix A.

2. Spherical Data

In this section, we introduce some of the most commonly used spherical distributions and discuss
their parameter estimation and associated problems. We follow with a description of the corre-
sponding distance measurements derived from the Bayes classification rule.

2.1 Spherical Distributions

Spherical data can be modeled using a large variety of data distributions (Mardia and Jupp, 2000),
most of which are analogous to distributions defined for the Cartesian representation. For example,
the von Mises-Fisher (vMF) distribution is the spherical counterpart of those Gaussian distributions
that can be represented with a covariance matrix of the form τ2I; where I is the p× p identity matrix
and τ > 0. More formally, the probability density function (pdf) of the p-dimensional vMF model
M(µ,κ) is defined as

f (x|µ,κ) = cMF(p,κ)exp{κµT x}, (1)

where cMF(p,κ) is a normalizing constant which guarantees that the integral of our density over the
(p− 1)-dimensional sphere Sp−1 is one, κ ≥ 0 is the concentration parameter, and µ is the mean
direction vector (i.e., ‖µ‖ = 1). Here, the concentration parameter κ is used to represent distinct
types of data distributions—from uniformly distributed (for which κ is small) to very localized (for
which κ is large). This means that when κ = 0 the data will be uniformly distributed over the sphere,
and when κ → ∞ the distribution will approach a point.

As mentioned above, Equation (1) can only be used to model circularly symmetric distributions
around the mean direction. When the data does not conform to such a distribution type, one needs
to use more flexible pdfs such as the Bingham distribution (Bingham, 1974). The pdf for the p-
dimensional Bingham B(A) is an antipodally symmetric function (i.e., f (−x) = f (x), ∀x ∈ S p−1)
given by

f (±x|A) = cB(p,A) exp{xT Ax}, (2)

where cB(p,A) is the normalizing constant and A is a p× p symmetric matrix defining the param-
eters of the distribution. Note that since the feature vectors have been mapped onto the unit sphere,
xT x = 1. This means that substituting A for A + cI with any c ∈ R would result in the same pdf
as that shown in (2). To eliminate this redundancy, we need to favor a solution with an additional
constraint. One such constraint is λMAX(A) = 0, where λMAX (A) is the largest eigenvalue of A.

For many applications the assumption of antipodally symmetric is inconvenient. In such cases,
we can use the Fisher-Bingham distribution (Mardia and Jupp, 2000) which combines the idea
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of von Mises-Fisher with that of Bingham, yielding the following p-dimensional Fisher-Bingham
FB(µ,κ,A) pdf

f (x|µ,κ,A) = cFB (κ,A) exp{κµT x+xT Ax},
where cFB(κ,A) is the normalizing constant and A is a symmetric p× p matrix, with the constraint
tr(A) = 0. Note that the combination of the two components in the exponential function shown
above, provides enough flexibility to represent a large variety of ellipsoidal distributions (same as
Bingham) but without the antipodally symmetric constraint (same as in von Mises-Fisher).

2.2 Parameter Estimation

To use each of these distributions, we need to first estimate their parameters from a training data-set,
X = (x1,x2, . . . ,xn); X a p×n matrix, with xi ∈ Sp−1 the sample vectors.

If one assumes that the samples in X arise from a von Mises-Fisher distribution, we will need
to estimate the concentration parameter κ and the (unit) mean direction µ. The most common way
to estimate these parameters is to use the maximum likelihood estimates (m.l.e.). The sample mean
direction µ̂ is given by

µ̂ =
x̄

‖x̄‖ , (3)

where x̄ = 1
n ∑n

i=1 xi is the average feature vector. It can be shown that

cMF =
(κ

2

)p/2−1 1

(2π)p/2Ip/2−1(κ)

in (1), where Iv(.) denotes the modified Bessel function of the first kind and of order v (Banerjee
et al., 2005).2 By substituting this normalization constant in (1) and calculating the expected value

of x (by integrating the pdf over the surface of Sp−1), we obtain ‖x̄‖ =
Ip/2(κ̂)

Ip/2−1(κ̂) . Unfortunately,

equations defining a ratio of Bessel functions cannot be inverted and, hence, approximation methods
need to be defined for κ̂. Banerjee et al. (2005) have recently proposed one such approximation
which can be applied regardless of the dimensionality of the data,

κ̂ =
‖x̄‖p−‖x̄‖3

1−‖x̄‖2 .

This approximation makes the parameter κ̂ directly dependent on the training data and, hence, can
be easily computed.

For the Bingham distribution, the normalizing constant, c−1
B =

R

Sp−1 exp
{

xT Ax
}

dx, requires
that we estimate the parameters defined in A. Since A is a symmetric matrix, its spectral decom-
position can be written as A = QΛQT , where Q = (q1,q2, . . . ,qp) is a matrix whose columns qi

correspond to the eigenvectors of A and Λ = diag(λ1, . . . ,λp) is the p× p diagonal matrix of cor-
responding eigenvalues. This allows us to calculate the log-likelihood of the data by adding the log
version of (2) over all samples in X, L(Q,Λ) = ntr(SQΛQT )+n ln(cB(p,Λ)); where S = n−1 XXT

is the sample autocorrelation matrix (sometimes also referred to as scatter matrix). Since the tr(SA)
is maximized when the eigenvectors of S and A are the same, the m.l.e. of Q (denoted Q̂) is given

2. The modified Bessel function of the first kind is proportional to the contour integral of the exponential function
defined in (1) over the (p−1)-dimensional sphere Sp−1.
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by the eigenvector decomposition of the autocorrelation matrix, S = Q̂Λ̂SQ̂; where Λ̂S is the eigen-
value matrix of S. Unfortunately, the same does not apply to the estimation of the eigenvalues Λ,
because these depend on S and cB. Note that in order to calculate the normalizing constant cB we
need to know Λ, but to compute Λ we need to know cB. This chicken-and-egg problem needs to be
solved using iterative approaches or optimization algorithms. To define such iterative approaches,
we need to calculate the derivative of cB. Since there are no known ways to express Λ as a function
of the derivative of cB(p,Λ), approximations for cB (which permit such a dependency) are nec-
essary. Kume and Wood (2005) have recently proposed a saddlepoint approximation that can be
used for this purpose. In their approach, the estimation of the eigenvalues is given by the following
optimization problem

argmax
Λ

ntr(Λ̂SΛ)−n ln(ĉB(Λ)),

where ĉB(Λ) is now the estimated normalizing constant given by the saddlepoint approximation of
the density function of the 2-norm of x.

The estimation of the parameters of the Fisher-Bingham distribution comes at an additional cost
given by the large number of parameters that need to be estimated. For example, the normalizing
constant cFB depends on κ, µ and A, making the problem even more complex than that of the Bing-
ham distribution. Hence, approximation methods are once more required. One such approximation
is given by Kent (1982), where it is assumed that the data is highly concentrated (i.e., κ is large) or
that the data is distributed more or less equally about every dimension (i.e., the distribution is almost
circularly symmetric). In this case, the mean direction µ is estimated using (3) and the estimate of
the parameter matrix (for the 3-dimensional case) is given by A = β(q1qT

1 −q2qT
2 ); where q1 and

q2 are the two eigenvectors associated to the two largest eigenvalues (λ1 ≥ λ2) of S̄, S̄ is the scatter
matrix calculated on the null space of the mean direction, and β is the parameter that allows us to
deviate from the circle defined by κ.3 Note that the two eigenvectors q1 and q2 are constrained to
be orthogonal to the unit vector µ̂ describing the mean direction. To estimate the value for κ and
β, Kent proposes to further assume the data can be locally represented as Gaussian distributions on
Sp−1 and shows that in the three dimensional case β̂ ∼= 1

2

(
(2−2‖x̄‖− r2)

−1 +(2−2‖x̄‖+ r2)
−1
)

and κ̂ ∼= (2−2‖x̄‖− r2)
−1 +(2−2‖x̄‖+ r2)

−1, where r2 = λ1 −λ2.

The Kent distribution is one of the most popular distribution models for the estimation of 3-
dimensional spherical data, since it has fewer parameters to be estimated than Fisher-Bingham and
can model any ellipsoidally symmetric distribution. A more recent and general approximation for
Fisher-Bingham distributions is given in Kume and Wood (2005), but this requires the estimate of a
larger number of parameters, a cost to be considered.

As summarized above, the actual values of the parameters of spherical distributions can rarely
be computed, and approximations are needed. Furthermore, we have seen that most of these ap-
proximation algorithms require assumptions that may not be applicable to our problem. In the case
of the Kent distribution, these assumptions are quite restrictive. When the assumptions do not hold,
we cannot make use of these spherical pdfs.

3. Recall that the first part of the definition of the Fisher-Bingham pdf is the same as that of the von Mises-Fisher, κµT x,
which defines a small circle on Sp−1, while the second component xT Ax allows us to deviate from the circle and
represent a large variety of ellipsoidal pdfs.
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2.3 Distance Calculation

The probability (“distance”) of a new (test) vector x to belong to a given distribution can be defined
as (inversely) proportional to the likelihood or log-likelihood of x. For instance, the pdf of the p-
dimensional Gaussian N(m,Σ) is f (x|m,Σ) = cN(Σ)exp{− 1

2(x−m)T Σ−1(x −m)}, where m is the
mean, Σ is the sample covariance matrix of the data and c−1

N (Σ) = (2π)p/2|Σ|1/2 is the normalizing
constant. When the priors of each class are the same, the optimum “distance” measurement (in
the Bayes sense) of a point x to f (x|m,Σ) as derived by the Bayes rule is the negative of the log-
likelihood

d 2
N(x) = − ln f (x|m,Σ) =

1
2

(x−m)T Σ−1 (x−m)− ln(cN(Σ)). (4)

Similarly, we can define the distance of a test sample to each of the spherical distributions
defined above (i.e., von Mises-Fisher, Bingham and Fisher-Bingham) as

d 2
MF(x) = −κµT x− ln(cMF(p,κ)), (5)

d 2
B(x) = −xT Ax− ln(cB(p,A)), (6)

d 2
FB(x) = −κµT x−xT Ax− ln(cFB (κ,A)). (7)

As seen in Section 2.2, the difficulty with the distance measures defined in (5-7) will be given by
the estimation of the parameters of our distribution (e.g., µ, κ, and A), because this is usually com-
plex and sometimes impossible. This is the reason why most researchers prefer to use the Gaussian
model and its corresponding distance measure defined in (4) instead. The question remains: are
the classification errors obtained using the spherical distributions defined above lower than those
obtained when using the Gaussian approximation? And, if so, when?

The rest of this paper addresses this general question. In particular, we show that when the data
distributions conform to a specific relation (which we call spherical-homoscedastic), the classifica-
tion errors will be the same. However, in the most general case, they need not be.

3. Spherical-Homoscedastic Distributions

If the distributions of each class are known, the optimal classifier is given by the Bayes Theorem.
Furthermore, when the class priors are equal, this decision rule simplifies to the comparison of
the likelihoods (maximum likelihood classification), p(x|wi); where wi specifies the ith class. In
the rest of this paper, we will make the assumption of equal priors (i.e., P(wi) = P(w j) ∀i, j). An
alternative way to calculate the likelihood of an observation x to belong to a class, is to measure the
log-likelihood-based distance (e.g., d 2

N in the case of a Gaussian distribution). In the spherical case,
the distances defined in Section 2.3 can be used.

In the Gaussian case, we say that a set of r Gaussians, {N1(m1,Σ1), . . . ,Nr(mr,Σr)}, are ho-
moscedastic if their covariance matrices are all the same (i.e., Σ1 = · · ·= Σr). Homoscedastic Gaus-
sian distributions are relevant, because their Bayes decision boundaries are given by hyperplanes.

However, when all feature vectors are restricted to lay on the surfaces of a hypersphere, the
definition of homoscedasticity given above becomes too restrictive. For example, if we use Gaus-
sian pdfs to model some spherical data that is ellipsoidally symmetric about its mean, then only
those distributions that have the same mean up to a sign can be homoscedastic. This is illustrated
in Figure 2. Although the three classes shown in this figure have the same covariance matrix up to
a rotation, only the ones that have the same mean up to a sign (i.e., Class 1 and 3) have the exact
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Class 1

Class 2

Class 3

 m
1

 m
2

 m
3

Figure 2: Assume we model the data of three classes laying on Sp−1 using three Gaussian distri-
butions. In this case, each set of Gaussian distributions can only be homoscedastic if the
mean feature vector of one class is the same as that of the others up to a sign. In this
figure, Class 1 and 3 are homoscedastic, but classes 1,2 and 3 are not. Classes 1, 2 and 3
are however spherical-homoscedastic.

same covariance matrix. Hence, only classes 1 and 3 are said to be homoscedastic. Nonetheless,
the decision boundaries for each pair of classes in Figure 2 are all hyperplanes. Furthermore, we
will show that these hyperplanes (given by approximating the original distributions with Gaussians)
are generally the same as those obtained using the Bayes Theorem on the true underlying distribu-
tions. Therefore, it is important to define a new and more general type of homoscedasticity that is
rotational invariant.

Definition 1 Two distributions ( f1 and f2) are said to be spherical-homoscedastic if the Bayes
decision boundary between f1 and f2 is given by one or more hyperplanes and the variances in f1

are the same as those in f2.

Recall that the variance of the vMF distribution is defined using a single parameter, κ. This
means that in the vMF case, we will only need to impose that all concentration parameters be the
same. For the other cases, these will be defined by κ and the eigenvalues of A. This is what is meant
by “the variances” in our definition above.

Further, in this paper, we will work on the case where the two distributions ( f1 and f2) are of
the same form, that is, two Gaussian, vMF, Bingham or Kent distributions.

Our main goal in the rest of this section, is to demonstrate that the linear decision boundaries
(given by the Bayes Theorem) of a pair of spherical-homoscedastic von Mises-Fisher, Bingham or
Kent, are the same as those obtained when these are assumed to be Gaussian. We start with the
study of the Gaussian distribution.

Theorem 2 Let two Gaussian distributions N1(m,Σ) and N2(RT m,RT ΣR) model the spherical
data of two classes on Sp−1; where m is the mean, Σ is the covariance matrix (which is assumed to
be full ranked), and R ∈ SO(p) is a rotation matrix. Let R be spanned by two of the eigenvectors of
Σ, v1 and v2, and let one of these eigenvectors define the same direction as m (i.e., vi = m/‖m‖ for
i equal to 1 or 2). Then, N1(m,Σ) and N2(RT m,RT ΣR) are spherical-homoscedastic.
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Proof We want to prove that the Bayes decision boundaries are hyperplanes. This boundary is
given when the ratio of the log-likelihoods of N1(m,Σ) and N2(RT m,RT ΣR) equals one. Formally,

ln(cN(Σ))− 1
2

(x−m)T Σ−1 (x−m) =

ln(cN(RT ΣR))− 1
2

(
x−RT m

)T
(RT ΣR)−1 (x−RT m

)
.

Since for any function f we know that f (|RT ΣR|) = f (|Σ|), the constant parameter cN(|RT ΣR|) =
cN(|Σ|); where |M| is the determinant of M. Furthermore, since the normalizing constant cN only
depends on the determinant of the covariance matrix, we know that cN(RT ΣR) = cN(Σ). This allows
us to simplify our previous equation to

(x−m)T Σ−1 (x−m) =
(
x−RT m

)T
RT Σ−1R

(
x−RT m

)

= (Rx−m)T Σ−1 (Rx−m) .

Writing this equation in an open form,

xT Σ−1x−2xT Σ−1m+mT Σ−1m = (Rx)T Σ−1(Rx)−2(Rx)T Σ−1m+mT Σ−1m,

xT Σ−1x−2xT Σ−1m = (Rx)T Σ−1(Rx)−2(Rx)T Σ−1m. (8)

Let the spectral decomposition of Σ be VΛVT = (v1, · · · ,vp)diag(λ1, · · · ,λp)(v1, · · · ,vp)
T .

Now use the assumption that m is orthogonal to all the eigenvectors of Σ except one (i.e., v j =
m/‖m‖ for some j). More formally, mT vi = 0 for all i 6= j and mT v j = s‖m‖, where s = ±1.
Without loss of generality, let j = 1, which yields Σ−1m = VΛ−1VT m = λ1

−1m. Substituting this
in (8) we get

xT Σ−1x−2λ−1
1 xT m = (Rx)T Σ−1(Rx)−2λ−1

1 (Rx)T m.

Writing Σ−1 in an open form,

p

∑
i=1

λ−1
i

(
xT vi

)2 −2λ−1
1 xT m =

p

∑
i=1

λ−1
i

(
(Rx)T vi

)2 −2λ−1
1 (Rx)T m,

p

∑
i=1

(
λ−1

i

[(
xT vi

)2 −
(
xT RT vi

)2
])

−2λ−1
1 xT m+2λ−1

1 xT RT m = 0.

Recall that the rotation is constrained to be in the subspace spanned by two of the eigenvectors
of Σ. One of these eigenvectors must be v1. Let the other eigenvector be v2. Then, xT RT vi = xT vi

for i 6= {1,2}. This simplifies our last equation to

λ−1
1

[(
xT v1

)2 −
(
xT RT v1

)2
]
+λ−1

2

[(
xT v2

)2 −
(
xT RT v2

)2
]
+2λ−1

1

(
xT RT m−xT m

)
= 0. (9)

Noting that
(
xT v1

)2 −
(
xT RT v1

)2
= (xT RT v1 − xT v1)(−xT v1 − xT RT v1), and that m = s‖m‖v1,

allows us to rewrite (9) as

λ−1
1 (xT RT v1 −xT v1)(2‖m‖s−xT v1 −xT RT v1)

+λ−1
2

((
xT v2

)2 −
(
xT RT v2

)2
)

= 0,

λ−1
1 (xT RT v1 −xT v1)(2‖m‖s−xT v1 −xT RT v1)

+λ−1
2 (xT (v2 −RT v2))(xT (v2 +RT v2)) = 0. (10)
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− RT v
2

 RT v
2

 RT v
1

 v
1

− v
1

 u

 v
2

 w
θ/2

θ/2

π/2−θ

.
.

.

Figure 3: Shown here are two orthonormal vectors, v1 and v2, and their rotated versions, RT v1

and RT v2. We see that RT v1 + v1 = 2ucos
(θ

2

)
, RT v2 + v2 = 2wcos

(θ
2

)
, RT v1 − v1 =

2wcos
(π

2 − θ
2

)
and v2 −RT v2 = 2ucos

(π
2 − θ

2

)
.

In addition, we know that the rotation matrix R defines a rotation in the (v1,v2)-plane. As-
sume that R rotates the vector v1 θ degrees in the clockwise direction yielding RT v1. Similarly, v2

becomes RT v2. From Figure 3 we see that

v2 −RT v2 = 2ucos

(
π
2
− θ

2

)
, v2 +RT v2 = 2wcos

(
θ
2

)
,

RT v1 −v1 = 2wcos

(
π
2
− θ

2

)
, RT v1 +v1 = 2ucos

(
θ
2

)
,

where u and w are the unit vectors as shown in Figure 3. Therefore,

v2 +RT v2 = (RT v1 −v1)cot

(
θ
2

)
and v2 −RT v2 = (RT v1 +v1) tan

(
θ
2

)
.

If we use these results in (10), we find that

λ−1
1 (xT RT v1 −xT v1)(2‖m‖s−xT v1 −xT RT v1)

+ λ−1
2 (xT RT v1 −xT v1)cot

(
θ
2

)
(xT RT v1 +xT v1) tan

(
θ
2

)
= 0,

which can be reorganized to

[
xT (RT v1 −v1)

][
(λ−1

2 −λ−1
1 )xT (RT v1 +v1)+2λ−1

1 ‖m‖s
]
= 0.

The two possible solutions of this equation provide the two hyperplanes for the Bayes classifier.
The first hyperplane,

xT (RT v1 −v1)

2sin
(θ

2

) = 0, (11)
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passes through the origin and its normal vector is (RT v1 −v1)/2sin( θ
2 ). The second hyperplane,

xT RT v1 +v1

2cos
(θ

2

) +
λ−1

1 ‖m‖s

(λ−1
2 −λ−1

1 )cos
(θ

2

) = 0, (12)

has a bias equal to
λ−1

1 ‖m‖s

(λ−1
2 −λ−1

1 )cos
(θ

2

) ,

and its normal is
(
RT v1 +v1

)
/2cos(θ/2).

The result above, shows that when the rotation matrix is spanned by two of the eigenvectors of
Σ, then N1 and N2 are spherical-homoscedastic. The reader may have noted though, that there exist
some Σ (e.g., τ2I) which are less restrictive on R. The same applies to spherical distributions. We
start our study with the case where the true underlying distributions of the data are von Mises-Fisher.

Theorem 3 Two von Mises-Fisher distributions M1(µ,κ) and M2(RT µ,κ) are spherical-
homoscedastic if R ∈ SO(p).

Proof As above, the Bayes decision boundary is given when the ratio between the log-likelihood
of M1(µ,κ) and that of M2(RT µ,κ) is equal to one. This means that

κµT x+ ln(cMF(κ)) = κ(RT µ)T x+ ln(cMF(κ)) ,

κ(xT RT µ−xT µ) = 0. (13)

We see that (13) defines the decision boundary between M1(µ,κ) and M2(RT µ,κ) and that this is a
hyperplane4 with normal

RT µ−µ
2cos(ω/2)

,

where ω is the magnitude of the rotation angle.5 Hence, M1(µ,κ) and M2(RT µ,κ) are spherical-
homoscedastic.

We now want to show that the Bayes decision boundary of two spherical-homoscedastic vMF
is the same as the classification boundary obtained when these distributions are modeled using
Gaussian pdfs. However, Theorem 2 provides two hyperplanes—those given in Equations (11-12).
We need to show that one of these equations is the same as the hyperplane given in Equation (13),
and that the other equation gives an irrelevant decision boundary. The irrelevant hyperplane is that
in (12). To show why this equation is not relevant for classification, we will demonstrate that this
hyperplane is always outside Sp−1 and, hence, cannot divide the spherical data into more than one
region.

4. Since this hyperplane is constrained with ‖x‖ = 1, the decision boundary will define a great circle on the sphere.
5. Note that since the variance about every direction orthogonal to µ is equal to τ2, all rotations can be expressed as a

planar rotation spanned by µ and any µ⊥ (where µ⊥ is a vector orthogonal to µ) .
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Proposition 4 When modeling the data of two spherical-homoscedastic von Mises-Fisher distribu-
tions, M1(µ,κ) and M2(RT µ,κ), using two Gaussian distributions, N1(m,Σ) and N2(RT m,RT ΣR),
the Bayes decision boundary will be given by the two hyperplanes defined in Equations (11-12).
However, the hyperplane given in (12) does not intersect with the sphere and can be omitted for
classification purposes.

Proof Recall that the bias of the hyperplane given in (12) was

b2 =
s‖m‖

((λ1/λ2)−1)cos(θ/2)
. (14)

We need to show that the absolute value of this bias is greater than one; that is, |b2| > 1.
We know from Dryden and Mardia (1998) that if x is distributed as M(µ,κ), then

m = E(x) = Ap(κ)µ,

and the covariance matrix of x is given by

Σ = A′
p(κ)µµT +

Ap(κ)

κ
(Ip −µµT ),

where Ap(κ) = Ip/2(κ)/Ip/2−1(κ) and A′
p(κ) = 1−A2

p(κ)− p−1
κ Ap(κ). Note that the first eigenvector

of the matrix defined above is aligned with the mean direction, and that the rest are orthogonal to it.
Furthermore, the first eigenvalue of this matrix is

λ1 = 1−A2
p(κ)− p−1

κ
Ap(κ),

and the rest are all equal and defined as

λi =
Ap(κ)

κ
, ∀i > 1.

Substituting the above calculated terms in (14) yields

b̂2(κ) =
Ap(κ)

1−A2
p(κ)− p−1

κ Ap(κ)
Ap(κ)

κ

−1
=

A2
p(κ)

κ
(
1−A2

p(κ)− p
κ Ap(κ)

) (15)

with b2 = s b̂2(κ)
cos(θ/2) .

Note that we can rewrite Ap(κ) as

Ap(κ) =
Iν(κ)

Iν−1(κ)
,

where ν = p/2. Moreover, the recurrence relation between modified Bessel functions states that
Iν−1(κ)− Iν+1(κ) = 2ν

κ Iν(κ), which is the same as 1− (Iν+1(κ)/Iν−1(κ)) = (2νIν(κ))/(κIν−1(κ)).
This can be combined with the result shown above to yield

p
κ

Ap(κ) = 1− Iν+1(κ)

Iν−1(κ)
.
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By substituting these terms in (15), one obtains

b̂2(κ) =

(
Iν(κ)

Iν−1(κ)

)2

κ
(
−
(

Iν(κ)
Iν−1(κ)

)2
+ Iν+1(κ)Iν−1(κ)

I2
ν−1(κ)

) =
I2
ν(κ)

κ(−I2
ν(κ)+ Iν+1(κ)Iν−1(κ))

.

Using the bound defined by Joshi (1991, see Equation 3.14), 0 < I2
v (κ)− Iv−1(κ)Iv+1(κ) < I2

v (κ)
v+κ

(∀κ > 0), we have

0 < I2
ν(κ)− Iν−1(κ)Iν+1(κ) <

I2
ν(κ)

ν+κ
,

I2
ν(κ)

κ(I2
ν(κ)− Iν−1(κ)Iν+1(κ))

>
(ν+κ)

κ
,

I2
ν(κ)

κ(−I2
ν(κ)+ Iν−1(κ)Iν+1(κ))

<
(ν+κ)

−κ
< −1.

This upper-bound shows that |b2| =
∣∣∣ b̂2(κ)

cos(θ/2)

∣∣∣ > 1. This means that the second hyperplane will not

divide the data into more than one class and therefore can be ignored for classification purposes.

From our proof above, we note that Σ is spanned by µ and a set of p− 1 basis vectors that are
orthogonal to µ. Furthermore, since a vMF is circularly symmetric around µ, these basis vectors
can be represented by any orthonormal set of vectors orthogonal to µ. Next, note that the mean
direction of M2 can be written as µ2 = RT µ. This means that R can be spanned by µ and any
unit vector orthogonal to µ (denoted µ⊥)—such as an eigenvector of Σ. Therefore, N1 and N2 are
spherical-homoscedastic. We can summarize this results in the following.

Corollary 5 If we model two spherical-homoscedastic von Mises-Fisher, M1(µ,κ) and M2( RT µ,κ),
with their corresponding Gaussian approximations N1(m,Σ) and N2(RT m,RT ΣR), then N1 and N2

are also spherical-homoscedastic.

This latest result is important to show that the Bayes decision boundaries of two spherical-
homoscedastic vMFs can be calculated exactly using the Gaussian model.

Theorem 6 The Bayes decision boundary of two spherical-homoscedastic von Mises-Fisher,
M1(µ,κ) and M2(RT µ,κ), is the same as that given in (11), which is obtained when modeling
M1(µ,κ) and M2(RT µ,κ) using the two Gaussian distributions N1(m,Σ) and N2(RT m,RT ΣR).

Proof From Corollary 5 we know that N1(m,Σ) and N2(RT m,RT ΣR) are spherical-homoscedastic.
And, from Proposition 4, we know that the hyperplane decision boundary given by Equation (12) is
outside the sphere and can be eliminated. In the proof of Proposition 4 we also showed that v1 = µ.
This means, (11) can be written as

xT (RT µ−µ)

2sin(θ/2)
= 0. (16)

The decision boundary for two spherical-homoscedastic vMF was derived in Theorem 3, where it
was shown to be

κ(xT RT µ−xT µ) = 0. (17)
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We note that the normal vectors of Equations (16-17) are the same and that both biases are zero.
Therefore, the two equations define the same great circle on Sp−1; that is, they yield the same clas-
sification results.

When the vMF model is not flexible enough to represent our data, we need to use a more
general definition such as that given by Bingham. We will now study under which conditions two
Bingham distributions are spherical-homoscedastic and, hence, can be efficiently approximated with
Gaussians.

Theorem 7 Two Bingham distributions, B1(A) and B2(RT AR), are spherical-homoscedastic if R∈
SO(p) defines a planar rotation in the subspace spanned by any two of the eigenvectors of A, say
q1 and q2.

Proof Making the ratio of the log-likelihood equations equal to one yields

xT Ax = xT RT ARx. (18)

Since the rotation is defined in the subspace spanned by q1 and q2 and A = QΛQT , then the
above equation can be expressed (in open form) as ∑p

i=1 λi(xT qi)
2 = ∑p

i=1 λi(xT RT qi)
2. In addi-

tion, RT qi = qi for i > 2, which simplifies our equation to

p

∑
i=1

λi(xT qi)
2 =

2

∑
i=1

λi(xT RT qi)
2 +

p

∑
i=3

λi(xT qi)
2

λ1
(
(xT q1)

2 − (xT RT q1)
2)+λ2

(
(xT q2)

2 − (xT RT q2)
2)= 0. (19)

From the proof of Theorem 2, we know that q2 can be expressed as a function of q1 as q2 +RT q2 =(
RT q1 −q1

)
cot(θ/2) and q2−RT q2 =

(
RT q1 +q1

)
tan(θ/2). This allows us to write the decision

boundary given in (19) as

xT (RT q1 +q1) = 0, (20)

and

xT (RT q1 −q1) = 0. (21)

These two hyperplanes are necessary to successfully classify the antipodally symmetric data of two
Bingham distributions.

Since antipodally symmetric distributions, such as Bingham distributions, have zero mean, the
Gaussian distributions fitted to the data sampled from these distributions will also have zero mean.
We now study the spherical-homoscedastic Gaussian pdfs when the mean vector is equal to zero.

Lemma 8 Two zero-mean Gaussian distributions, N1(0,Σ) and N2(0,RT ΣR), are spherical-
homoscedastic if R ∈ SO(p) defines a planar rotation in the subspace spanned by any two of the
eigenvectors of Σ, say v1 and v2.
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Proof The Bayes classification boundary between these distributions can be obtained by making
the ratio of the log-likelihood equations equal to one, xT Σx = xT RT ΣRx. Note that this equation is
in the same form as that derived in (18). Furthermore, since the rotation is defined in the subspace
spanned by v1 and v2 and Σ = VΛVT , we can follow the proof of Theorem 7 to show

xT (RT v1 +v1) = 0, (22)

and
xT (RT v1 −v1) = 0. (23)

And, therefore, N1 and N2 are also spherical-homoscedastic.

We are now in a position to prove that the decision boundaries obtained using two Gaussian
distributions are the same as those defined by spherical-homoscedastic Bingham distributions.

Theorem 9 The Bayes decision boundaries of two spherical-homoscedastic Bingham distributions,
B1(A) and B2(RT AR), are the same as those obtained when modeling B1(A) and B2(RT AR) with
two Gaussian distributions, N1(m,Σ) and N2(RT m,RT ΣR), where m = 0 and Σ = S.

Proof Since the data sampled from a Bingham distribution is symmetric with respect to the origin,
its mean will be the origin, m = 0. Therefore, the sample covariance matrix will be equal to the
sample autocorrelation matrix S = n−1 XXT . In short, the estimated Gaussian distribution of B1(A)
will be N1(0,S). We also know from Section 2.2 that the m.l.e. of the orthonormal matrix Q (where
A = QΛQT ) is given by the eigenvectors of S. This means that the two Gaussian distributions
representing the data sampled from two spherical-homoscedastic Bingham distributions, B1(A) and
B2(RT AR), are N1(0,S) and N2(0,RT SR).

Following Lemma 8, N1(0,S) and N2(0,RT SR) are spherical-homoscedastic if R is spanned by
any two eigenvectors of S. Since the eigenvectors of A and S are the same (vi = qi for all i), these
two Gaussian distributions representing the two spherical-homoscedastic Bingham distributions will
also be spherical-homoscedastic. Furthermore, the hyperplanes of the spherical-homoscedastic
Bingham distributions B1(A) and B2(RT AR), Equations (20 - 21), and the hyperplanes of the
spherical-homoscedastic Gaussian distributions N1(0,S) and N2(0,RT SR), Equations (22 - 23), will
be identical.

We now turn to study the similarity between the results obtained using the Gaussian distribution
and the Kent distribution. We first define when two Kent distributions are spherical-homoscedastic.

Theorem 10 Two Kent distributions K1(µ,κ,A) and K2(RT µ,κ,RT AR) are spherical-homoscedastic,
if the rotation matrix R is defined on the plane spanned by the mean direction µ and one of the eigen-
vectors of A.

Proof By making the two log-likelihood equations equal, we have κµT x + xT Ax = κ(RT µ)T x +
xT RT ARx. Let the spectral decomposition of A be A = QΛQT , then κ(µT x−µT Rx)+∑p

i=1 λi(xT qi)
2

−∑p
i=1 λi(xT (RT qi))

2 = 0. Since R is defined to be in the plane spanned by an eigenvector of A (say,
q1) and the mean direction µ, one can simplify the above equation to κ(µT x−µT Rx)+λ1(xT q1)

2−
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λ1(xT (RT q1))
2 = 0. Since the first term of this equation is a constant, its transpose would yield the

same result,
κ(xT (µ−RT µ))+λ1(xT (q1 −RT q1))(xT (q1 +RT q1)) = 0.

Using the relation between v1 and v2 (now µ and q1) given in the proof of Theorem 2,

(q1 +RT q1) = (RT µ−µ)cot

(
θ
2

)
,

(q1 −RT q1) = (RT µ+µ) tan

(
θ
2

)
,

we can write (xT (RT µ− µ))(xT (RT µ + µ)λ1 −κ) = 0, where θ is the rotation angle defined by R.
This equation gives us the hyperplane decision boundary equations,

xT (RT µ−µ)

sin
(θ

2

) = 0, (24)

xT

(
RT µ+µ

cos
(θ

2

)
)
− κ

cos
(θ

2

)
λ1

= 0. (25)

Finally, we are in a position to define the relation between Kent and Gaussian pdfs.

Theorem 11 The first hyperplane given by the Bayes decision boundary of two spherical-
homoscedastic Kent distributions, K1(µ,κ,A) and K2(RT µ,κ,RT AR), is equal to the first hyper-
plane obtained when modeling K1 and K2 with the two Gaussian distributions N1(m,Σ) and
N2(RT m,RT ΣR) that best approximate them. Furthermore, when κ > λ1K and ‖m‖ > 1−λ1G/λ2G ,
then the second hyperplanes of the Kent and Gaussian distributions are outside the sphere and can
be ignored in classification; where λ1K is the eigenvalue associated to the eigenvector of A defining
the rotation R, and λ1G and λ2G are the two eigenvalues of Σ defining the rotation R.

Proof If we fit a Gaussian distribution to an ellipsoidally symmetric pdf, then the mean direction of
the data is described by one of the eigenvectors of the covariance matrix. Since the Kent distribution
assumes the data is either concentrated or distributed more or less equally about every dimension,
one can conclude that the eigenvectors of S̄ (the scatter matrix calculated on the null-space of the
mean direction) are a good estimate of the orthonormal bases of A (Kent, 1982). This means that
(11) and (24) will define the same hyperplane equation. Furthermore, we see that the bias in (12)
and that of (25) will be the same when

−κλ−1
1K

=
‖m‖s(

λ1G
λ2G

−1
) ,

where λ1K is the eigenvalue associated to the eigenvector defining the rotation plane (as given in
Theorem 10), and λ1G and λ2G are the eigenvalues associated to the eigenvectors that span the
rotation matrix R (as shown in Theorem 2—recall that λ1G is associated to the eigenvector aligned
with the mean direction).
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Similarly to what happened for the vMF case, the second hyperplane may be outside S p−1.
When this is the case, such planes are not relevant and can be eliminated. For this to happen, the
two biases need not be the same, but need be larger than one; that is,

|κλ−1
1K
| > 1 and

∣∣∣∣∣∣
s‖m‖(

λ1G
λ2G

−1
)

∣∣∣∣∣∣
> 1. (26)

These two last conditions can be interpreted as follows. The second hyperplane of the Kent dis-
tribution will not intersect with the sphere when κ > λ1K . The second hyperplane of the Gaussian
estimate will be outside the sphere when ‖m‖ > 1−λ1G/λ2G . These two conditions hold, for exam-
ple, when the data is concentrated, but not when the data is uniformly distributed.

Thus far, we have shown where the results obtained by modeling the true underlying spherical
distributions with Gaussians do not pose a problem. We now turn to the case where both solutions
may differ.

4. Spherical-Heteroscedastic Distributions

When two (or more) distributions are not spherical-homoscedastic, we will refer to them as spherical-
heteroscedastic. In such a case, the classifier obtained with the Gaussian approximation needs not
be the same as that computed using the original spherical distributions. To study this problem, one
may want to compute the classification error that is added to the original Bayes error produced by
the Bayes classifier on the two (original) spherical distributions. Following the classical notation in
Bayesian theory, we will refer to this as the reducible error. This idea is illustrated in Figure 4. In
Figure 4(a) we show the original Bayes error obtained when using the original vMF distributions.
Figure 4(b) depicts the classifier obtained when one models these vMF using two Gaussian distribu-
tions. And, in Figure 4(c), we illustrate the reducible error added to the original Bayes error when
one employs the new classifier in lieu of the original one.

In theory, we could calculate the reducible error by means of the posterior probabilities of the
two spherical distributions, PS(w1|x) and PS(w2|x), and the posteriors of the Gaussians modeling
them, PG(w1|x) and PG(w2|x). This is given by,

P(reducible error) =
Z

PG(w1 |x)
PG(w2 |x)≥1

PS(w2|x) p(x)dSp−1 +
Z

PG(w1 |x)
PG(w2 |x) <1

PS(w1|x) p(x)dSp−1

−
Z

Sp−1
min(PS(w1|x),PS(w2|x)) p(x)dSp−1,

where the first two summing terms calculate the error defined by the classifier obtained using the
Gaussian approximation (as for example that shown in Figure 4(b)), and the last term is the Bayes
error associated to the original spherical-heteroscedastic distributions (Figure 4(a)).

Unfortunately, in practice, this error cannot be calculated because it is given by the integral of a
number of class densities over a nonlinear region on the surface of a sphere. Note that, since we are
exclusively interested in knowing how the reducible error increases as the data distributions deviate
from spherical-homoscedasticity, the use of error bounds would not help us solve this problem
either. We are therefore left to empirically study how the reducible error increases as the original
data distributions deviate from spherical-homoscedastic. This we will do next.
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Figure 4: (a) Shown here are two spherical-heteroscedastic vMF distributions with κ1 = 10 and
κ2 = 5. The solid line is the Bayes decision boundary, and the dashed lines are the corre-
sponding classifiers. This classifier defines the Bayes error, which is represented by the
dashed fill. In (b) we show the Bayes decision boundary obtained using the two Gaussian
distributions that best model the original vMFs. (c) Provides a comparison between the
Bayes classifier derived using the original vMFs (dashed lines) and that calculated from
the Gaussian approximation (solid lines). The dashed area shown in (c) corresponds to
the error added to the original Bayes error; that is, the reducible error.

4.1 Modeling Spherical-Heteroscedastic vMFs

We start our analysis with the case where the two original spherical distributions are given by the
vMF model. Let these two vMFs be M1(µ1,κ1) and M2(µ2,κ2), where µ2 = RT µ1 and R ∈ SO(p).
Recall that R defines the angle θ which specifies the rotation between µ1 and µ2. Furthermore,
let N1(m1,Σ1) and N2(m2,Σ2) be the two Gaussian distributions that best model M1(µ1,κ1) and
M2(µ2,κ2), respectively. From the proof of Proposition 4 we know that the means and covariance
matrices of these Gaussians can be defined in terms of the mean directions and the concentration
parameters of the corresponding vMF distributions. Defining the parameters of the Gaussian dis-
tributions in terms of κi and µi (i = {1,2}) allows us to estimate the reducible error with respect to
different rotation angles θ, concentration parameters κ1 and κ2, and dimensionality p.
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Since our goal is to test how the reducible error increases as the original data distributions
deviate from spherical-homoscedasticity, we will plot the results for distinct values of κ2/κ1. Note
that when κ2/κ1 = 1 the data is spherical-homoscedastic and that the larger the value of κ2/κ1 is,
the more we deviate from spherical-homoscedasticity. In our experiments, we selected κ1 and κ2

so that the value of κ2/κ1 varied from a low of 1 to maximum of 10 at 0.5 intervals. To do this we
varied κ1 from 1 to 10 at unit steps and selected κ2 such that the κ2/κ1 ratio is equal to one of the
values described above.

The dimensionality of the feature space is also varied from 2 to 100 at 10-step intervals. In
addition, we also vary the value of the angle θ from 10o to 180o at 10o increments.

The average of the reducible error over all possible values of κ1 and over all values of θ from 10o

to 90o is shown in Figure 5(a). As anticipated by our theory, the reducible error is zero when κ2/κ1 =
1 (i.e., when the data is spherical-homoscedastic). We see that as the distributions start to deviate
from spherical-homoscedastic, the probability of reducible error increases really fast. Nonetheless,
we also see that after a short while, this error starts to decrease. This is because the data of the
second distribution (M2) becomes more concentrated. To see this, note that to make κ2/κ1 larger,
we need to increase κ2 (with respect to κ1). This means that the area of possible overlap between
M1 and M2 decreases and, hence, the reducible error will generally become smaller. In summary,
the probability of reducible error increases as the data deviates from spherical-homoscedasticity and
decreases as the data becomes more concentrated. This means that, in general, the more two non-
highly concentrated distributions deviate from spherical-homoscedastic, the more sense it makes
to take the extra effort to model the spherical data using one of the spherical models introduced
in Section 2. Nevertheless, it is important to note that the reducible error remains relatively low
(∼ 3%).

We also observe, in Figure 5(a), that the probability of reducible error decreases with the dimen-
sionality (which would be something unexpected had the original pdf been defined in the Cartesian
space). This effect is caused by the spherical nature of the von Mises-Fisher distribution. Note that
since the volume of the distributions need to remain constant, the probability of the vMF at each
given point will be reduced when the dimensionality is made larger. Therefore, as the dimensional-
ity increase, the volume of the reducible error area (i.e., the probability) will become smaller.

In Figure 5(b) we show the average probability of the reducible error over κ1 and p, for differ-
ent values of κ2/κ1 and θ. Here we also see that when two vMFs are spherical-homoscedastic (i.e.,
κ2/κ1 = 1), the average of the reducible error is zero. As we deviate from spherical-homoscedasticity,
the probability of reducible error increases. Furthermore, it is interesting to note that as θ increases
(in the spherical-heteroscedastic case), the probability of reducible error decreases. This is because
as θ increases, the two distributions M1 and M2 fall farther apart and, hence, the area of possible
overlap generally reduces.

4.2 Modeling Spherical-Heteroscedastic Bingham Distributions

As already mentioned earlier, the parameter estimation for Bingham is much more difficult than that
of vMF and equations directly linking the parameters of any two Bingham distributions B1(A1) and
B2(A2) to those of the corresponding Gaussians N1(0,Σ1) and N2(0,Σ2) are not usually available.
Hence, some parameters will need to be estimated from randomly chosen samples from Bi. Recall
from Section 2.2 that another difficulty is the calculation of the normalizing constant cB(A) because
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Figure 5: In (a) we show the average of the probability of reducible error over κ1 and θ =
{10o,20o, . . . ,90o} for different values of κ2/κ1 and dimensionality p. In (b) we show
the average probability of reducible error over p and κ1 for different values of κ2/κ1 and
θ = {10o,20o, . . . ,180o}.

this requires us to solve a contour integral on Sp−1. This hypergeometric function will be calculated
with the method defined by Koev and Edelman (2006).

Moreover, if we want to calculate the reducible error on Sp−1, we will need to simulate each of
the p variance parameters of B1 and B2 and the p− 1 possible rotations between their means; that
is, 3p− 1. While it would be almost impossible to simulate this for a large number of dimensions
p, we can easily restrict the problem to one of our interest that is of a manageable size.

In our simulation, we are interested in testing the particular case where p = 3.6 Furthermore,
we constrain our analysis to the case where the parameter matrix A1 has a diagonal form; that is,
A1 = diag(λ1,λ2,λ3). The parameter matrix A2 can then be defined as a rotated and scaled version
of A1 as A2 = ςRT A1R, where ς is the scale parameter,

R = R1R2 ∈ SO(3), (27)

R1 defines a planar rotation θ in the range space given by the first two eigenvectors of A1, and R2

specifies a planar rotation φ in the space defined by the first and third eigenvectors of A1. Note
that B1 and B2 can only be spherical-homoscedastic if ς = 1 and the rotation is planar (φ = 0 or
θ = 0). To generate our results, we used all possible combinations of the values given by −1/2 j
(with j the odd numbers from 1 to 15 to represent low concentrations and j = {30,60} to model
high concentrations) as entries for λ1, λ2 and λ3 constrained to λ1 < λ2 < λ3 (i.e., a total of 120
combinations). We also let θ = {0o,10o, . . . ,90o}, φ = {0o,10o, . . . ,90o} and ς = {1,2, . . . ,10}.

In Figure 6(a), we study the case where ς = 1. In this case, B1 and B2 are spherical-homoscedastic
when either φ or θ is zero. As seen in the figure, the probability of reducible error increases as the

6. We have also simulated the cases where p was equal to 10 and 50 and observed almost identical results to those
shown in this paper.
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Figure 6: We show the average of the probability of reducible error over all the possible set of vari-
ance parameters when ς = 1 in (a) and when ς 6= 1 in (b). In (c) we show the increase of
reducible error as the data deviates from spherical-homoscedastic (i.e., when ς increases).
The more the data deviates from spherical-homoscedastic, the larger the reducible error
is. This is independent of the closeness of the two distributions.

data starts to deviate from spherical-homoscedastic (i.e., when the rotation R does not define a pla-
nar rotation). Nonetheless, the probability of reducible error is still very small even for large values
of φ and θ—approximately 0.006.7

When the scale parameter ς is not one, the two Bingham distributions B1 and B2 can never be
spherical-homoscedastic. In this case, the probability of reducible error is generally expected to be
larger. This is shown in Figure 6(b) where the probability of reducible error has been averaged over
all possible combinations of variance parameters (λ1,λ2,λ3) and scales ς 6= 1. Here, it is important
to note that as the two original distributions get closer to each other the probability of reducible
error increases quite rapidly. In fact, the error can be incremented by more than 20%. As in vMF,

7. Note that the plot shown in Figure 6(a) is not symmetric. This is due to the constraint given above (λ1 < λ2 < λ3)
which gives less flexibility to φ.
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this means that if the data largely deviates from spherical-homoscedastic, extra caution needs to be
taken with our results.

To further illustrate this point, we can plot the probability of reducible error over ς and θ, Figure
6(c). In this case, the larger ς is, the more different the eigenvalues of the parameter matrices
(A1 and A2) will be. This means, that the larger the value of ς, the more the distributions deviate
from spherical-homoscedastic. Hence, this plot shows the increase in reducible error as the two
distributions deviate from spherical-homoscedastic. We note that this is in fact independent of how
close the two distributions are, since the slop of the curve increases for every value of θ.

4.3 Modeling Spherical-Heteroscedastic Kent Distributions

Our final analysis involves the study of spherical-heteroscedastic Kent distributions. Here, we
want to estimate the probability of reducible error when two Gaussian distributions N1(m1,Σ1)
and N2(m2,Σ2) are used to model the data sampled from two Kent distributions K1(µ1,κ1,A1) and
K2(µ2,κ2,A2). Recall that the shape of a Kent distribution is given by two parameters: βi, which
defines the ovalness of Ki, and κi, the concentration parameter. From Kent (1982) we know that
if 2βi/κi < 1, then the normalizing constant c(κi,βi) can be approximated by 2πeκ

i [(κi −2βi)(κi +
2βi)]

−1/2. Note that 2βi/κi < 1 holds regardless of the ovalness of our distribution when the data
is highly concentrated, whereas in the case where the data is not concentrated (i.e., κi is small) the
condition holds when the distribution is almost circular (i.e., βi is very small).

To be able to use this approximation in our simulation, we have selected two sets of concentra-
tion parameters: one for the low concentration case (where κi = {2,3, . . . ,10}), and another where
the data is more concentrated (κi = {15,20, . . . ,50}). The value of βi is then given by the following
set of equalities 2βi/κi = {0.1,0.3, . . . ,0.9}. As was done in the previous section (for the spherical-
heteroscedastic Bingham), we fixed the mean direction µ1 and then rotate µ2 using a rotation matrix
R; that is, µ2 = RT µ1. To do this, we used the same rotation matrix R defined in (27). Now, however,
R1 defines a planar rotation in the space spanned by µ1 and the first eigenvector of A1, and R2 is a
planar rotation defined in the space of µ1 and the second eigenvector of A1. In our simulations we
used {0o,15o, . . . ,90o} as values for the rotations defined by θ and φ.

In Figure 7(a), we show the results of our simulation for the special case where the variance
parameters of K1 and K2 are the same (i.e., κ1 = κ2 and β1 = β2) and the data is not concentrated.
Note that the criteria defined in (26) hold when either R1 or R2 is the identity matrix (or equiv-
alently, in Figure 7(a), when θ or φ is zero). As anticipated in Theorem 11, in these cases the
probability of reducible error is zero. Then the more these two distributions deviate from spherical-
homoscedastic, the larger the probability of reducible error will become. It is worth mentioning,
however, that the probability of reducible error is small over all possible values for θ and φ (i.e.,
< 0.035). We conclude (as with the analysis of the Bingham distribution comparison) that when
the data only deviates from spherical-homoscedastic by a rotation (but the variances remain the
same), the Gaussian approximation is a reasonable one. This means that whenever the parameters
of the two distributions (Bingham or Kent) are defined up to a rotation, the results obtained using
the Gaussian approximation will generally be acceptable.

The average of the probability of reducible error for all possible values for κi and βi (including
those where κ1 6= κ2 and β1 6= β2) is shown in Figure 7(b). In this case, we see that the probability
of reducible error is bounded by 0.17 (i.e., 17%). Therefore, in the general case, unless the two
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Figure 7: In (a) we show the average of the probability of reducible error when κ1 = κ2 and β1 = β2

and the data is not concentrated. (b) Shows the probability of reducible error when the
parameters of the pdf are different in each distribution and the values of κi are small. (c-d)
Do the same as (a) and (b) but for the cases where the concentration parameters are large
(i.e., the data is concentrated).

original distributions are far away from each other, it is not advisable to model them using Gaussian
distributions.

Figure 7(c-d) show exactly the same as (a-b) but for the case where the data is highly-concentrated.
As expected, when the data is more concentrated in a small area, the probability of reducible error
decreases fast as the two distributions fall far apart from each other. Similarly, since the data is
concentrated, the maximum of the probability of reducible error shown in Figure 7(d) is smaller
than that observed in (b).

As seen up to now, there are several conditions under which the Gaussian assumption is accept-
able. In vMF, this happens when the distributions are highly concentrated, and in Bingham and Kent
when the variance parameters of the distributions are the same.
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Our next point relates to what can be done when neither of these assumptions hold. A powerful
and generally used solution is to employ a kernel to (implicitly) map the original space to a high-
dimensional one where the data can be better separated. Our next goal is thus to show that the
results defined thus far are also applicable in the kernel space.

This procedure will provide us with a set of new classifiers (in the kernel space) that are based
on the idea of spherical-homoscedastic distributions.

5. Kernel Spherical-Homoscedastic Classifiers

To relax the linear constraint stated in Definition 1, we will now employ the idea of the kernel
trick, which will permit us to define classifiers that are nonlinear in the original space, but linear
in the kernel one. This will be used to tackle the general spherical-heteroscedastic problem as if
the distributions were linearly separable spherical-homoscedastic. Our goal is thus to find a kernel
space where the classes adapt to this model.

We start our description for the case of vMF distributions. First, we define the sample mean di-
rection of the first distribution M1(µ,κ) as µ̂1. The sample means of a set of spherical-homoscedastic
distributions can be represented as rotated versions of this first one, that is, µ̂a = RT

a µ̂1, with
Ra ∈ SO(p) and a = {2, . . . ,C}, C the number of classes. Following this notation, we can derive the
classification boundary between any pair of distributions from (13) as

xT (µ̂a − µ̂b) = 0, ∀a 6= b.

The equation above directly implies that any new vector x will be classified to that class a for which
the inner product between x and µ̂a is largest, that is,

argmax
a

xT µ̂a. (28)

We are now in a position to provide a similar result in the feature space F obtained by the
function φ(x), which maps the feature vector x from our original space Sp−1 to a new spherical
space Sd of d dimensions. In general, this can be described as a kernel k(xi,x j), defined as the inner
product of the two feature vectors in F , that is, k(xi,x j) = φ(xi)

T φ(x j).
Note that the mappings we are considering here are such that the resulting space F is also spher-

ical. This is given by all those mappings for which the resulting norm of all vectors is a constant;
that is, φ(x)T φ(x) = h, h ∈ R

+.8 In fact, many of the most popular kernels have such a property.
This includes kernels such as the Radial Basis Function (RBF), polynomial, and Mahalanobis, when
working in Sp−1, and several (e.g., RBF and Mahalanobis) when the original space is R

p. This ob-
servation makes our results of more general interest yet, because even if the original space is not
spherical, the use of some kernels will map the data into Sd . This will again require the use of
spherical distributions or their Gaussian equivalences described in this paper.

In this new space F , the sample mean direction of class a is given by

µ̂φ
a =

1
na

∑na
i=1 φ(xi)√

1
na

∑na
i=1 φ(xi)T 1

na
∑na

j=1 φ(x j)

=
1
na

∑na
i=1 φ(xi)√
1T K1

,

8. Further, any kernel k1(xi,x j) can be defined to have this property by introducing the following simple normalization
step k(xi,x j) = k1(xi,x j)/

√
k1(xi,xi)k1(x j,x j).
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where K is a symmetric positive semidefinite matrix with elements K(i, j) = k(xi,x j), 1 is a vector
with all elements equal to 1/na, and na is the number of samples in class a.

By finding a kernel which transforms the original distributions to spherical-homoscedastic vMF,
we can use the classifier defined in (28), which states that the class label of any test feature vector x
is

argmax
a

φ(x)T µ̂φ
a =

1
na

∑na
i=1 φ(x)T φ(xi)√

1T K1

=
1
na

∑na
i=1 k(x,xi)√
1T K1

. (29)

Therefore, any classification problem that uses a kernel which converts the data to spherical-
homoscedastic vMF distributions, can employ the solution derived in (29).

A similar result can be derived for Bingham distributions. We already know that the decision
boundary for two spherical-homoscedastic Bingham distributions defined as B1(A) and B2(RT AR),
with R representing a planar rotation given by any two eigenvectors of A, is given by the two
hyperplane Equations (20) and (21). Since the rotation matrix is defined in a 2-dimensional space
(i.e., planar rotation), one of the eigenvectors was described as a function of the other in the solution
derived in Theorem 7. For classification purposes, this result will vary depending on which of the
two eigenvectors of A we choose to use. To derive our solution we go back to (19) and rewrite it
for classifying a new feature vector x. That is, x will be classified in the first distribution, B1, if the
following holds

λ1
(
(xT q1)

2 − (xT RT q1)
2)+λ2

(
(xT q2)

2 − (xT RT q2)
2)> 0.

Using the result shown in Theorem 7, where we expressed q2 as a function of q1, we can simplify
the above equation to

(λ1 −λ2)
(
(xT q1)

2 − (xT RT q1)
2)> 0.

Then, if λ1 > λ2, x will be in B1 when

(xT q1)
2 > (xT RT q1)

2,

which can be simplified to
|xT q1| > |xT RT q1|. (30)

If this condition does not hold, x is classified as a sample of B2. Also, if λ2 > λ1, the reverse
applies. In the following, and without loss of generality, we will always assume q1 corresponds
to the eigenvector of A defining the rotation plane of R that is associated to the largest of the two
eigenvalues. This means that whenever (30) holds, x is classified in B1.

The relevance of (30) is that (as in vMF), a test feature vector x is classified to that class provid-
ing the largest inner product value. We can now readily extend this result to the multi-class problem.
For this, let B1(A) be the distribution of the first class and Ba(RT

a ARa) that of the ath class, where
now Ra is defined by two eigenvectors of A, qa1 and qa2 , with corresponding eigenvalues λa1 and
λa2 and we have assumed λa1 > λa2 . Then, the class of a new test feature vector x is given by

argmax
a

|xT qa1 |. (31)
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Following Theorem 7, we note that not all the rotations Ra should actually be considered, because
some may result in two distributions Ba and Bb that are not spherical-homoscedastic. To see this,
consider the case with three distributions, B1(A), B2(RT

2 AR2) and B3(RT
3 AR3). In this case, B1

and B2 will always be spherical-homoscedastic if R2 is defined in the plane spanned by two of the
eigenvectors of A. The same applies to B1 and B3. However, even when R2 and R3 are defined
by two eigenvectors of the parameter matrix, the rotation between B2 and B3 may not be planar.
Nonetheless, we have shown in Section 4 that if the variances of the two distributions are the same
up to an arbitrary rotation, the reducible error is negligible. Therefore, and since imposing additional
constraints would make it very difficult to find a kernel that can map the original distributions to
spherical-homoscedastic, we will consider all rotations about every qa1 .

We see that (31) still restricts the eigenvectors qa1 to be rotated versions of one another. This
constraint comes from (30), where the eigenvector of the second distribution must be the first eigen-
vector rotated by the rotation matrix relating the two distributions. Since the rotation is a rigid
transformation, all qa1 will be defined by the same index i in q̂ai , where Q̂a = {q̂a1 , . . . , q̂ap} are the
eigenvectors of the autocorrelation matrix Sa of the ath class. This equivalency comes from Section
2.2, where we saw that the eigenvectors of Aa are the same as those of the autocorrelation matrix.
Also, since we know the data is spherical-homoscedastic, the eigenvectors of the correlation matrix
will be the same as those of the covariance matrix Σa of the (zero-mean) Gaussian distribution as
seen in Theorem 9.

Our next step is to derive the same classifier in the kernel space. From our discussion above,
we require to find the eigenvectors of the covariance matrix. The covariance matrix in F can be
computed as

ΣΦ
a = Φ(Xa)Φ(Xa)

T ,

where Xa is a matrix whose columns are the sample feature vectors, Xa =
(
xa1 ,xa2 , . . . ,xana

)
, and

Φ(X) is a function which maps the columns xi of X with φ(xi).
This allows us to obtain the eigenvectors of the covariance matrix from

ΣΦ
a VΦ

a = VΦ
a ΛΦ

a .

Further, these d-dimensional eigenvectors VΦ
a = {vΦ

a1
, . . . ,vΦ

ad
} are not only the same as those of AΦ

a ,
but, as shown in Theobald (1975), are also sorted in the same order.

As pointed out before though, the eigenvalue decomposition equation shown above may be
defined in a very high dimensional space. A usual way to simplify the computation is to employ the
kernel trick. Here, note that since we only have na samples in class a, rank(ΛΦ

a ) ≤ na. This allows
us to write VΦ

a = Φ(Xa)∆a, where ∆a is a na ×na coefficient matrix, and thus the above eigenvalue
decomposition equation can be stated as

Φ(Xa)Φ(Xa)
T Φ(Xa)∆a = Φ(Xa)∆aΛΦ

a .

Multiplying both sides by Φ(Xa)
T and cancelling terms, we can simplify this equation to

Φ(Xa)
T Φ(Xa)∆a = ∆aΛΦ

a ,

Ka∆a = ∆aΛΦ
a ,

where Ka is known as the Gram matrix.
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We should now be able to obtain the eigenvectors in F using the equality

V̂Φ
a = Φ(Xa)∆a.

However, the norm of the vectors V̂Φ
a thus obtained is not one, but rather

ΛΦ
a = ∆T

a Φ(Xa)
T Φ(Xa)∆a.

To obtain the (unit-norm) eigenvectors, we need to include a normalization coefficient into our
result,

VΦ
a = Φ(Xa)∆aΛΦ

a
−1/2

,

where VΦ
a = {vφ

a1 , . . . ,v
φ
ana

}, and vφ
ai ∈ Sd .

The classification scheme derived in (31) can now be extended to classify φ(x) as

argmax
a

|φ(x)T vφ
ai
|,

where the index i = {1, . . . , p} defining the eigenvector vφ
ai must be kept constant for all a.

The result derived above, can be written using a kernel as

argmax
a

∣∣∣∣∣∣

na

∑
l=1

k(x,xl)δai(l)√
λφ

ai

∣∣∣∣∣∣
, (32)

where ∆a = {δa1 , . . . ,δana
}, δai(l) is the lth coefficient of the vector δai , and again i takes a value

from the set {1, . . . , p} but otherwise kept constant for all a.
We note that there is an important difference between the classifiers derived in this section for

vMF in (29) and for Bingham in (32). While in vMF we are only required to optimize the kernel re-
sponsible to map the spherical-heteroscedastic data to one that adapts to spherical-homoscedasticity,
in Bingham we will also require the optimization of the eigenvector (associated to the largest eigen-
value) vφ

ai defining the rotation matrix Ra. This is because there are many different solutions which
can convert a set of Bingham distributions into spherical-homoscedastic.

To conclude this section, we turn to the derivations of a classifier for the Kent distribution in the
kernel space. From Theorem 10, the 2-class classifier can be written as

xT (µa −µb) > 0,

xT (µa +µb)−
κ

λa1

> 0.

The first of these equations is the same as that used to derive the vMF classifier, and will therefore
lead to the same classification result. Also, as seen in Theorem 11 the second equation can be
eliminated when either: i) the second hyperplane is identical to the first, or ii) the second hyperplane
is outside Sp−1. Any other case should actually not be considered, since this would not guarantee
the equality of the Gaussian model. Therefore, and rather surprisingly, we conclude that the Kent
classifier in the kernel space will be the same as that derived by the vMF distribution. The rational
behind this is, however, quite simple, and it is due to the assumption of the concentration of the data
made in the Kent distribution: Since the parameters of the Kent distributions are estimated in the
tangent space of the mean direction, the resulting classifier should only use this information. This
is exactly the solution derived in (29).
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6. Experimental Results

In this section we show how the results reported in this paper can be used in real applications. In
particular, we apply our results to the classification of text data, genomics, and object classification.
Before we get to these though, we need to address the problems caused by noise and limited number
of samples. We start by looking at the problem of estimating the parameters of the Gaussian fit of a
spherical-homoscedastic distribution from a limited number of samples and how this may effect the
equivalency results of Theorems 6, 9 and 11.

6.1 Finite Sample Set

Theorems 6, 9 and 11 showed that the classifiers separating two spherical-homoscedastic distri-
butions are the same as those of the corresponding Gaussian fit. This assumes, however, that the
parameters of the spherical distributions are known. In the applications to be presented in this sec-
tion, we will need to estimate the parameters of such distributions from a limited number of sample
feature vectors. The question to be addressed here is to what extent this may effect the classification
results obtained with the best Gaussian fit. Following the notation used above, we are interested in
finding the reducible error that will (on average) be added to the classification error when using the
Gaussian model.

To study this problem, we ran a set of simulations. We started by drawing samples from two
underlying spherical-homoscedastic distributions that are hidden (unknown) to the classifier. Then,
we estimated the mean and covariance matrix defining the Gaussian distribution of the samples
in each of the two classes. New test feature vectors were randomly drawn from each of the two
(underlying) distributions and classified using the log-likelihood equations defined in Section 2.3.
The percentage of samples misclassified by the Gaussian model (i.e., using 4) as opposed to the
correct classification given by the corresponding spherical model (i.e., Equations 5-7), determines
the probability of reducible error.

Our spherical-homoscedastic vMF simulation used the following concentration parameters κ1 =
κ2 = {1,2, . . . ,10}, and the following rotations between distributions θ = {10,20, . . . ,180}. The
number of samples randomly drawn from each distribution varied from 10 times the dimensionality
to 100 times that value, at increments of ten. The dimensionality was tested for the following
values p = {2,10,20,30,40,50}. Our experiment was repeated 100 times for each of the possible
parameters, and the average was computed to obtain the probability of reducible error.

Fig. 8(a)-(b) show these results. In (a) the probability of reducible error is shown over the
dimensionality of the data p and the scalar γ, which is defined as the number of samples over
their dimensionality, γ = n/p. As already noticed in Section 4, the probability of reducible error
decreases with the dimensionality. This is the case since the volume of the distribution is taken over
a larger number of dimensions, forcing the overlapping area to shrink. As the scalar γ increases, so
does the number of samples n. In those cases, if p is small, the probability of the reducible error
decreases. However, when the dimensionality is large, this probability increases at first. In short,
we are compensating the loss in volume caused by the increase in dimensionality, by including
additional samples. When the dimension to sample ratio is adequate, the probability of reducible
error decreases as expected. The decreasing rate for larger dimensions is, however, much slower.
This result calls for a reduction of dimensionality from Sp−1 to a hypersphere where the scalar γ is
not too large. This will be addressed in our next section.
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Figure 8: (a-b) Shown here are the average reducible errors obtained when fitting two Gaussian dis-
tributions to the data sampled from two spherical-homoscedastic vMFs with parameters
κ = {1,2, . . . ,10} and θ = {10,20, . . . ,180}. The number of samples is n = γp, where γ
is a constant taking values in {10,20, . . . ,100}, and p is the dimensionality with values
p = {2,10,20, . . . ,50}. (c) Shows the average reducible error when data sampled from
spherical-homoscedastic Bingham distributions is fitted with the Gaussians estimates. In
this case, p = 3 and the number of samples as defined above. (d) Summarizes the same
simulation for spherical-homoscedastic Kent distributions, with p = 3.

We also note that in the worse case scenario, the probability of reducible error is very low and
shall not have a dramatic effect in the classification results when working with vMF.

In Fig. 8(b), we see that the closer two vMF distributions get, the larger the reducible error can
be. This is because the closer the distributions, the larger the overlap. Once more, however, this
error is negligible. With this, we can conclude that the parameters of the vMF can very reliably be
estimated with the corresponding Gaussian fit described in this paper even if the number of samples
is limited. This is especially true when the dimensionality of the data is relatively low.
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To simulate the probability of reducible error in Bingham and Kent, several of the parameters
of the distributions were considered. For simplicity, we show the results obtained in the three-
dimensional case, p = 3. Similar results were observed in larger dimensions (e.g., 10 and 50).
The number of samples n = γp, was determined as above by varying the values of the scalar, γ =
{10,20, . . . ,100}. Recall that in both distributions, spherical-homoscedasticity is satisfied when
θ1 = 0 and θ2 = {10,20, . . . ,90}, and when θ2 = 0 and θ1 = {10,20, . . . ,90}. The parameter matrix
of the second distribution A2 can be defined as a rotated version of A1 as A2 = RT A1R, where R is
given by (27). Further, in Kent, we impose the concentration and skewness parameters to be equal
in both distributions, that is, κ1 = κ2 and β1 = β2.

In Fig. 8(c-d) we show the probability of reducible error as a function of γ and the rotation θ. In
both cases, and as expected, when the two distributions get closer, the error increases. In Bingham,
when the sample to dimensionality ratio decreases, the error slightly increases (to about 6%). But,
in Kent, as in vMF, reducing the number of samples produces a negligible effect. Therefore, as in
vMF, we conclude that, in the worst case scenarios, keeping a ratio of 10 samples per dimension,
results in good approximations. When the distributions are not in tight proximity, this number can
be smaller. These observations bring us to our next topic: how to project the data onto a feature
space where the ratio sample-to-dimensionality is adequate.

6.2 Subsphere Projection

As demonstrated in Section 6.1, a major concern in fitting a distribution model to a data set is the
limited amount of samples available. This problem is exacerbated when the dimensionality of the
data p surpasses the number of samples n. This problem is usually referred to as the curse of di-
mensionality. In such circumstances, the classifier can easily overfit and lead to poor classification
results on an independent set of observations. A typical technique employed to mitigate this prob-
lem, is the use of Principal Components Analysis (PCA). By projecting the sample vectors onto
the subspace defined by the PCs of largest data variance, we can eliminate data noise and force
independent test vectors to be classified in the subspace defined by the training data. This procedure
is typically carried out in R

p by means of an eigendecomposition of the covariance matrix of the
training data. In this section, we show how to employ PCA on the correlation matrix to do the same
in Sp−1.

This problem can be easily stated as follows: We want to find a representation x̃i ∈ Sr−1 of the
original feature vectors xi ∈ Sp−1, r ≤ p, with minimal loss of information. This can be done with a
p× r orthogonal projection matrix W, that is, WT W = I. The least-squares solution to this problem
is then given by

argmin
W

n

∑
i=1

(xi −Wx̃i)
T (xi −Wx̃i), (33)

where x̃i = WT xi/‖WT xi‖, that is, the unit-length vector represented in Sr−1.

Note that as opposed to PCA in the Euclidean space, our solution requires the subspace vectors
to have unit length, since these are also in a hypersphere. To resolve this, we can first search for that
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projection which minimizes the projection error,

argmin
W

n

∑
i=1

(xi −WWT xi)
T (xi −WWT xi)

= argmin
W

n

∑
i=1

(xT
i xi −2xT

i WWT xi +xT
i WWT WWT xi)

= argmin
W

n

∑
i=1

(1−‖WT xi‖2)

= argmax
W

n

∑
i=1

‖WT xi‖2

= argmax
W

WT
n

∑
i=1

xixT
i W

= argmax
W

WT SW,

where S is the sample correlation matrix. Then, the resulting data vectors need to be normalized to
unit length to produce the final result.

To justify this solution, note that the direct minimization of (33) would result in

argmin
W

n

∑
i=1

(
xT

i xi −2
xT

i WWT xi

‖WT xi‖
+ x̃T

i x̃i

)
= argmin

W

n

∑
i=1

(
2− 2xT

i WWT xi

‖WT xi‖

)

= argmin
W

n

∑
i=1

(
1−‖WT xi‖

)

= argmax
W

n

∑
i=1

‖WT xi‖. (34)

Since we are only interested in eliminating those dimensions of Sp−1 that are close to zero and
‖xi‖ = 1, it follows that ‖WT xi‖ ∼= ‖WT xi‖2. Further, because (34) may not generate unit length
vectors x̃i, this will require a normalization step.

The projection to a lower dimensional sphere Sr−1 minimizing the least-squares error can hence
be carried out in two simple steps. First, project the data onto the subspace that keeps most of the
variance as defined by the autocorrelation matrix, that is, x̌i = WT xi, where SW = WΛ. Second,
normalize the vectors to produce the following final result x̃i = x̌i/‖x̌i‖.

6.3 Object Categorization

As already mentioned in the Introduction, norm normalization is a typical pre-processing step in
many systems, including object recognition and categorization. In the latter problem, images of
objects need to be classified according to a set of pre-defined categories, for example, cows and
cars. A commonly used database for testing such systems is the ETH-80 data set of Leibe and
Schiele (2003). This database includes the images of eight categories: apples, cars, cows, cups,
dogs, horses, pears and tomatoes. Each of these consists of a set of images representing ten different
objects (e.g., ten cars) photographed at a total of 41 orientations. This means that we have a total of
410 images per category.
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In an attempt to emulate the primary visual areas of the human visual system, many feature
representations of objects are based on the outputs of a set of filters corresponding to the derivatives
of the Gaussian distribution at different scales. In our experiments, we consider the first deriva-
tive about the x and y axes for a total of three different scales, that is, υ = {1,2,4}, where υ is
the variance of the Gaussian filter. The convolution of each of these filters with the input images
produces a different result, which means we will generate a total of six images. Next, we compute
the histogram of each of these resulting images. This histogram representation is simplified to 32
intensity intervals. These histograms are generally assumed to be the distribution of the pixel val-
ues in the image and, therefore, the sum of the values over all 32 intervals should be one (because
the integral of a density is 1). Hence, these 32 values are first represented in vector form and then
normalized to have unit norm. The resulting unit-norm feature vectors are concatenated to form a
single feature representation. This generates a feature space of 192 dimensions. We refer to this
feature representation as Gauss.

As an alternative, we also experimented with the use of the magnitude of the gradient and the
Laplacian operator. The latter generally used for its rotation-invariant properties, which is provided
by its symmetric property. As above, the gradient and Laplacian are computed using three scales,
that is, υ = {1,2,4}. To reduce the number of features, we use the histogram representation de-
scribed above, which again produces unit-norm feature vectors of 192 dimensions. This second
representation will be referred to as MagLap.

These two image representations are tested using the leave-one-object-out strategy, where, at
each iteration, we leave all the images of one of the objects out for testing and use the remaining for
training. This is repeated (iterated) for each of the possible objects that one can leave out.

We now use the PCA procedure described in Section 6.2 to map the data of each of the two
feature spaces described above onto the surface of an 18-dimensional sphere. This dimensionality
was chosen such that 99.9% of the data variance was kept. Note that in this subsphere, the sample
to dimensionality ratio (which is about 180) is more than adequate for classification purposes as
demonstrated in Section 6.1.

To generate our results, we first use the vMF and Bingham approximations introduced in Section
2.2 and then use (5) and (6) for classification. We refer to these approaches as vMF and Bingham
classifiers, respectively. These are the classifiers one can construct based on the available approxi-
mation defined to estimate the parameters of spherical distributions.

Next, we consider the Gaussian equivalency results shown in this paper, which allow us to
represent the data with Gaussian distributions and then use (4) for classification. This algorithm
will be labeled Gaussian classifier in our tables.

In Section 5, we derived three algorithms for classifying spherical-homoscedastic vMF, Bing-
ham, and Kent. These were obtained from Theorems 3, 7 and 10. We also showed how the vMF
and Kent classifiers were identical. These classifiers were given in (28) and (31), and will be labeled
SH-vMF and SH-Bingham, respectively.

Table 1 shows the average of the recognition rates using the leave-one-object out with each of
the algorithms just mentioned. In this table, we have also included the results we would obtained
with the classical Fisher (1938) Linear Discriminant Analysis algorithm (LDA). This algorithm is
typically used in classification problems in computer vision, genomics and other machine learning
applications. In LDA, the data of each class is approximated with a Gaussian distribution, but
only the average of these, Σ̄, is subsequently used. This is combined with the scatter-matrix of the
class means SB to generate the LDA basis vectors U from Σ̄−1SBU = UΛLDA; where SB is formally
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Method vMF Bingham Gaussian SH-vMF SH-Bingham LDA
Gauss 13.75 73.11 73.14 45.85 46.16 62.9

MagLap 12.5 74.18 73.75 51.95 52.90 66.25

Table 1: Average classification rates for the ETH database with Gauss and MagLap feature repre-
sentations.

defined as SB = ∑C
i=1 ni/n(µ̂i − µ̂)(µ̂i − µ̂)T , ni is the number of samples in class i, µ̂i the mean of

these samples, and µ̂ the global mean. In LDA, the nearest mean classifier is generally used in the
subspace spanned by the eigenvectors of U associated to non-zero variance.9

It is clear that, in this particular case, the vMF model is too simplistic to successfully represent
our data. In comparison, the Bingham model provides a sufficient degree of variability to fit the
data.

Next, we turn to the results of the Gaussian fit defined in this paper, Table 1. We see that
the results are comparable to those obtained with the Bingham model. A simple data analysis
reveals that the data of all classes is highly concentrated. We see this by looking at the eigenvalues
of each class scatter matrix Sa, a = {1, . . . ,C}. The average of the variance ratios between the
first eigenvector (defining the mean direction) and the second eigenvector (representing the largest
variance of the data on Sd−1), which is 66.818. From the results obtained in Section 4, we expected
the Gaussian fit to perform similarly to Bingham under such circumstances. This is clearly the case
in the classification results shown in Table 1.

While the Gaussian fit has proven adequate to represent the data, the spherical-homosce-dastic
classifiers derived in Section 5 performed worse. This is because the class distributions are far from
spherical-homoscedastic. We can see that by studying the variability of the variance in each of the
eigenvectors of the class distributions. To do this, we look at the variance λ̂ai about each eigenvector
q̂ai . If the data were spherical-homoscedastic, the variances about the corresponding eigenvectors
should be identical, that is, λ̂ai = λ̂bi , ∀a,b (recall a and b are the labels of any two distributions).
Seemingly, the more the class distributions deviate from spherical-homoscedastic, the larger the
difference between λ̂ai and λ̂bi will be. The percentage of variability among the variances λ̂ai for
different a, can be computed as

100
stdv{λ̂1i , . . . , λ̂Ci}

1
C ∑C

j=1 λ̂ ji

, (35)

where stdv{·} is the standard deviation of the values of the specified set. Hence, a 0% variability
would correspond to perfect spherical-homoscedastic distributions. The more we deviate from this
value, the more the distributions will deviate from the spherical-homoscedastic model.

Applying (35) to the resulting class distributions of the ETH data set with the Gauss represen-
tation and then computing the mean of all resulting differences yields 58.04%. The same can be
done for the MagLap representation, resulting in an average variability of 76.51%. In these two
cases, we clearly see that the class distributions deviate considerably from spherical-homoscedastic.
As demonstrated in Figure 6(c). The effects of heteroscedasticity are further observed in the low
performances of the LDA algorithm, which assumes the data is homoscedastic.

9. Note that the rank of U is upper-bounded by C − 1, because the scatter-matrix matrix SB is defined by the C − 1
vectors interconnecting the C class means.
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Method K-SH-vMF K-SH-Bingham
Gauss 79.24 (ς̄ = 3.2) 78.84 (ς̄ = 3.96, v̄ = 1)

MagLap 77.23 (ς̄ = 5.63) 77.16 (ς̄ = 6.35, v̄ = 1)

Table 2: Average classification rates for the ETH database with Gauss and MagLap feature repre-
sentations using the nonlinear spherical-homoscedastic vMF and Bingham classifiers. In
these results, we used the Mahalanobis kernel.

As shown in Section 5, we can improve the results of our spherical-homoscedastic classifiers by
first (intrinsically) mapping the data into a space where the underlying class distributions fit to the
spherical-homoscedastic model.

Since the original class distributions need to be reshaped to fit the spherical-homoscedastic
model, the Mahalanobis kernel is a convenient choice. This kernel is defined as

k(x,y) = exp

(
−(x−y)T Σ̄−1 (x−y)

2ς2

)

where ς is a scale parameter to be optimized using the leave-one-object-out test (looot) on the
training set. This looot is not to be confused with the object left out for testing, which is used to
compute the classification error. In our experimental results, we tested the following scalar values
for the kernel, ς = {1,2, . . . ,10}.

Table 2 shows the recognition rates for the (nonlinear) spherical-homoscedastic vMF and Bing-
ham classifiers, using the Mahalanobis kernel just defined. These classifiers are labeled, K-SH-vMF
and K-SH-Bingham, respectively. The classification rates are shown in percentages. The values in
parentheses indicate the average over all scale parameters as determined by looot. This includes the
average scalar kernel parameter, denoted ς̄, for vMF and Bingham, and the average value of i in qai ,
denoted v̄, when optimizing the Bingham classifier defined in (32). We see that the classification
results are boosted beyond those obtained with Bingham and the Gaussian fit.

6.4 Gene Expression Classification

Spherical representations can be applied to gene expression data in a variety of ways. For exam-
ple, some genome sequences are circular, and the gene co-orientation as well as its expression are
relevant (Audit and Ouzounis, 2003; Janssen et al., 2001). In analyzing other genomes or the expres-
sion of a set of genes from microarrays, correlation coefficients (e.g., Pearson) provide a common
way to determine the similarity between samples (Banerjee et al., 2005). These are generally norm
invariant and, hence, whenever density estimations are required, spherical models are necessary.

To demonstrate this application, we have used the gene expression data set A of Pomeroy et al.
(2002). This data set consists of five different classes of tumors in the central nervous system:
medulloblastomas, malignant gliomas, AT/RT (atypical teratoid/rhabdoid tumors), normal cerebel-
lums and supratentorial PNETs (primitive neuroectodermal tumors). The first three classes each has
a total of ten samples. The fourth class includes four samples. And, the fifth class, has a total of 8
samples. Each sample is described with 7,132 features corresponding to the expression level from
a set of genes. The goal is to classify each of these gene expression samples into their correct class.
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This can be done using the leave-one-out test (loot), where we use all but one of the samples for
training and determine whether our algorithm can correctly classify the sample left out.

Before we can use the data of Pomeroy et al. (2002), a set of normalization steps are required.
First, it is typical to threshold the expression levels in each microarray to conform to a minimum
expression value of 100 and a maximum of 1,600. Second, the maximum and minimum of each
feature, across all samples, is computed. The features with low-variance, that is, those that have
max/min < 12 and max−min < 1200, do not carry significant class information and are therefore
eliminated from consecutive analysis. This results in a feature representation of 3,517. Finally,
to facilitate the use of correlation-based classifiers, the variance of each of the samples is norm-
normalized. This maps the feature vectors to S3516.

Since the number of samples is only 42, we require to project the data onto a subsphere (Sec-
tion 6.2) to a dimensionality where the sample-to-dimension ratio is appropriate. By reducing the
dimensionality of our space to that of the range of the data, we get an average sample-to-dimension
ratio of 1.18. Note that this ratio could not be reduced further, because the number of samples in
gene expression analysis is generally very small (in this particular case 10 or less samples per class).
Reducing the dimensionality further would impair our ability to analyze the data efficiently.

The average recognition rates obtained with each of the algorithms described earlier with loot
are in Table 3. The small sample-to-dimension ratio, characteristic of this gene expression data
sets, makes most of the algorithms perform poorly. For example, Fisher’s LDA is about as bad
as a random classifier which assigns the test vector to a class randomly. And, in particular, the
Bingham approximation could not be completed with accuracy and its classifier is even worse than
LDA’s. As opposed to the results with the ETH database, when one has such a small number of
samples, distributions with few parameters will usually produce better results. This is clearly the
case here, with vMF and Gaussian providing a better fit than Bingham. To resolve the issues caused
by the small sample-to-dimension ratio, one could regularize the covariance matrix of each class
to allow the classifier to better adapt to the data (Friedman, 1989). By doing this, we were able
to boost the results of our Gaussian fit to around 80%. At each iteration of the loot, the regu-
larization parameter (also optimized with loot over the training data) selected 90% of the actual
covariance matrix and 10% for the regularizing identity matrix term. We can now calculate how
close to spherical-homoscedastic these regularized distributions are. As above, we can do this by
estimating the average of percentage variance from the median of the eigenvalues obtained from the
distribution of each class.10 This results in ∼ 0.08% deviation, which means the data can be very
well represented with spherical-homoscedastic distributions. These results imply that the regular-
ized Gaussian fit will outperform the other estimates, which is indeed the case. Since the classifiers
derived in Section 5 are also based on the assumption of spherical-homoscedasticity, these should
also perform well in this data set. We see in the results of Table 3 that these results were also the
best. Furthermore, the spherical-homoscedastic classifiers do not require of any regularization. This
means that the computation associated to these is very low, reversing the original problem associ-
ated to the (non-linear) estimation of the parameters of the distributions—making the SH-Bingham
the best fit.

Further investigation of the spherical-homoscedastic classifiers in a higher dimensional nonlin-
ear space by means of the Mahalanobis kernels defined above shows that these results can be further
improved. In these experiments, the kernel parameters are optimized with loot over the training set.

10. We restricted the comparison to the first three eigenvalues, because the rest were many time zero due to the singularity
of some of the class covariance matrices.
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Method vMF Bingham Gaussian SH-vMF SH-Bingham LDA
Data Set A 28.57 14.29 33.33 80.95 85.71 21.43
ALL-AML 41.18 41.18 41.18 94.12 94.12 91.18

Table 3: Average classification rates on the gene expression data of Pomeroy et al. (2002) and Golub
et al. (1999).

Method K-SH-vMF K-SH-Bingham
Data Set A 88.10 (ς̄ = 0.1) 90.48 (ς̄ = 0.2, v̄ = 1.11)
ALL-AML 85.29 (ς̄ = 0.7) 85.29 (ς̄ = 0.7, v̄ = 1)

Table 4: Average classification rates on the gene expression data using the Mahalanobis kernel. The
values in parentheses correspond to the average parameters of the classifiers. These have
been optimized using the leave-one-sample-out strategy on the training data.

As shown in Table 4, the performances of the SH-vMF and SH-Bingham classifiers improved to
88.10% and 90.48%, respectively.

Next, we tested our algorithms on the RNA gene expression data set of Golub et al. (1999).
The training set consists of a total of 38 bone marrow samples, 27 of which correspond to Acute
Lymphoblastic Leukemia (ALL) and 11 to Acute Myeloid Leukemia (AML). the testing set includes
20 ALL and 14 AML samples, respectively. Each feature vector is constructed with a total of 7,129
probes from 6,817 human genes, where a probe is a labeled subset of the original set of bases of a
gene.

The feature vectors in this data set are norm-normalized to eliminate the variance changes across
the samples. We then used the subsphere projection technique to represent the training set on a
subsphere of dimensionality equal to the range space of the data, resulting in a sample-to-dimension
ratio of 1.

The results obtained using the independent testing set on each of the trained classifiers are
shown in Table 3. Once again, we see that the sample-to-dimension ratio is too small to allow good
results in the estimate of the parameters of the spherical distributions or the Gaussian fit. As we
did above, one can improve the Gaussian fit with the use of a regularization parameter, yielding
∼ 94% classification rate (with a regularization of about 0.2). This is superior to the result of LDA,
which in this case is much better than before. The LDA results are also surpassed by those of the
spherical-homoscedastic classifiers, which again work well because the data can be estimated with
spherical-homoscedastic distributions.

We note that the results obtained with the spherical-homoscedastic classifiers are already very
good. Adding another optimization step to select the most appropriate kernel parameter may be too
much to ask from such a small number of samples. We see in the results of Table 4 (which the use of
the Mahalanobis kernel) this actually resulted in poorer classifications. This can be further studied
with the use of the polynomial kernel, defined as

k(x,y) = (xT y)d ,

where d defines the degree. If we substitute the Mahalanobis kernel for this one in our implemen-
tation and optimize d with loot, we find that this is given at d = 1. That is, the best polynomial
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Method vMF Gaussian SH-vMF SH-Bingham LDA
Classic 38.64 21.23 89.67 89.23 ( v̄ = 1) 76.40
CMU 57.33 33.33 69.07 68 ( v̄ = 1) 34.53

Table 5: Average classification rate on text data sets.

kernel is that which does not change the space, and the classification results will be the same as
those shown in Table 3.

7. Text Data Set

In text recognition the documents are usually represented as a bag of words, which can be described
in vector form by assigning to each feature the frequency of each of the words in the document. In
this representation, the important information is that of the frequency of a word with respect to the
rest (i.e., percentage of occurrence). This can be easily obtained by norm-normalizing these feature
vectors, which maps the data into a spherical representation.

The first data set (labeled Classic) we will test is composed of three classes.11 The first class
is a collection of documents from MEDLINE (the index of medical related papers), which includes
1,033 documents. The second class consists of 1,460 documents from the CISI database. The
third class includes 1,400 documents from the aeronautical system database CRANFIELD. The
second data set (labeled CMU) we will use, is a subset of the CMU set.12 This corresponds to
1,500 randomly selected documents, 500 from each of the following three classes: newsgroups
comp.graphics, comp.os.ms-windows.misc and comp.windows.x.

The preprocessing of the data, which is common to the two data sets, includes eliminating high
and low frequency words as well as those words that have less than 3 letters (examples are, “a”,
“and”,“the”). After this preprocessing, each feature vector in the Classic data set consists of 4,427
dimensions and those in the CMU data set 3,006 dimensions.

We have done a 10-fold cross-validation on these data sets using the algorithms described above.
This means that we kept 10% of the data set for testing and fit the distribution models or classifiers
to the remaining 90%. This was repeated 10 times and the average classification rates are shown in
Table 5.

The resulting sample vectors are sparse—described in a high dimensional feature space with
most of the features equal to zero. This makes the estimation problem very difficult. For instance,
this sparseness did not permit computation of the normalizing constant of the Bingham distribution
with the saddlepoint approximation of Kume and Wood (2005). For this reason Table 5 does not
provide recognition rates for Binghams. The sparseness of the data did not allow for a good estimate
of the parameters of the vMF or Gaussian modeling either, as is made evident in the poor results
shown in Table 5. The Gaussian modeling result, in particular, can be improved in two ways. One, as
above, would correspond to using a regularization term. A second option corresponds to calculating
the average class covariance matrix of all Gaussians and use this as a common covariance matrix.
This is in fact LDA’s results, which is much better. Since eliminating the bases with lowest variance
can reduce noise, we can further improve this results to about 98% for the Classical data set and
64% for CMU, by using the spherical projection of Section 6.2.

11. Available at ftp://ftp.cs.cornell.edu/pub/smart/.
12. Available at http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html.
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Method K-SH-vMF K-SH-Bingham K-SH-vMF K-SH-Bingham
Polynomial Polynomial RBF RBF

Classic 90.21 (d̄ = 9.8) 88.92 (d̄ = 2.3, v̄ = 1) 90.54 (̄ς = 0.3) 88.23 (ς̄ = 0.7, v̄ = 1)
CMU 71.13 (d̄ = 7.9) 68.27 (d̄ = 5.4, v̄ = 1) 75.27 (̄ς = 0.22) 69.33 (ς̄ = 0.50, v̄ = 1)

Table 6: Average classification rate on text data sets using kernel extension. The value of d̄ specifies
the average degree of the polynomial kernel optimized over the training set.

As we have shown above, these issues are generally less problematic when using the spherical-
homoscedastic classifiers derived in this paper. The reason for that is given by the simplicity of
these classifiers, which facilitates robustness. Yet, these results can be boosted by using the kernel
classifiers derived above. To do this, we first note that we should not use the Mahalanobis kernel on
these data sets, because the Gaussian fits will be biased by the sparseness. For this reason, we have

used the polynomial kernel given above and the RBF kernel defined as k(x,y) = exp
(
− ‖x−y‖2

2ς2

)
. As

demonstrated in Table 6, the results improved to about 90% on the Classic data set and over 75%
for CMU.

8. Conclusions

In this paper, we investigated the effect of modeling von Mises-Fisher, Bingham and Kent distribu-
tions using Gaussian distributions. We first introduced the concept of spherical-homoscedasticity
and showed that if two spherical distributions comply with this model, their Gaussian approxima-
tions are enough to obtain optimal classification performance in the Bayes sense. This was shown to
be true for the von Mises-Fisher and Bingham distribution. For the Kent distribution the additional
criteria defined in (26) must hold.

We further investigated what happens if we model the data sampled from two spherical-
heteroscedastic distributions using their Gaussian approximations. In such a scenario, the Gaus-
sian modeling will result in a decision boundary different to that produced by the original spherical
distributions. We have referred to the additional error caused by this approximation as the reducible
error. We have then empirically evaluated this and showed that as the two distributions start to devi-
ate from spherical-homoscedastic, the probability of reducible error increases. We have also stated
the particular cases where two spherical-heteroscedastic distributions may lead to a small error. For
example, for vMFs this happens when these are highly concentrated, and for Bingham and Kent
when the variance parameters are the same.

Since spherical-homoscedasticity provides an optimal model for parameter estimation, we were
also able to define classifiers based on these. These classifiers are linear, since the Bayes deci-
sion boundary for two spherical-homoscedastic distributions in Sp−1 is a hyperplane (same as for
homoscedastic distributions in R

p). When the data is spherical-heteroscedastic, we can first map
the data into a space where the projected distributions adapt to the spherical-homoscedastic model.
With this, we can use our spherical-homoscedastic classifiers in a large number of data sets. Finally,
this can be efficiently implemented using the idea of the kernel trick as shown in Section 5. We have
shown how all these results apply to a variety of problems in object recognition, gene expression
classification, and text organization.
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Appendix A. Notation

x feature vector
p dimensionality of the original feature space
Sp−1 (p−1)-dimensional unit sphere in R

p

SO(p) p-dimensional Special Orthogonal Group
κ concentration of our spherical distribution
β ovalness of the Kent distribution
µ mean direction vector
m mean feature vector
Γ(·) Gamma function
Iν(·) Bessel function of the first kind and order ν
R rotation matrix
Σ covariance matrix
S autocorrelation (scatter) matrix
S̄ scatter matrix calculated on the null space of the mean direction
A parameter matrix for the Bingham and Fisher-Bingham
K gram matrix
vi ith eigenvector of the covariance matrix
qi ith eigenvector of the parameter matrix A
λi ith eigenvalue of a symmetric matrix
N(µ,Σ) Gaussian (Normal) distribution
M(µ,κ) von Mises-Fisher distribution
B(A) Bingham distribution
K(µ,κ,A) Kent distribution
FB(µ,κ,A) Fisher-Bingham distribution
E(·) expected value
ς scale parameter
θ, φ, ω rotation angles
k(., .) mercer kernel
φ(.) vector mapping function
Φ(.) matrix mapping function
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