
Journal of Machine Learning Research 9 (2008) 157-164 Published 2/08

Response to Mease and Wyner, Evidence Contrary to the Statistical View
of Boosting, JMLR 9:131–156, 2008

Kristin P. Bennett BENNEK@RPI.EDU

Department of Mathematical Sciences
Rensselear Polytechnic Institute
Troy, NY 12180, USA

Editor: Yoav Freund

1. Introduction

Mease and Wyner (MW) argue experimentally that the statistical view of boosting does not account
for its success and that following the now conventional wisdom arising from this view in Friedman
et al. (2000) does not necessarily lead to choices in the boosting algorithm that improve generaliza-
tion. The authors did an excellent job of defining a set of experiments in which small changes in the
boosting algorithm (such as changing the hypothesis space, loss function, and shrinkage) produce
significant changes in generalization that were unintuitive given the statistical view of AdaBoost
(Freund and Schapire, 1996) expressed in Friedman et al. (2000).

The authors state “The statistical view focuses only on one aspect of the algorithm - the opti-
mization.” But one can argue just the opposite, that some of the problems and surprises come from
not enough of the optimization perspective instead of too much. Analyzing AdaBoost’s performance
as an optimization algorithm in terms of convergence rates and optimality conditions (measured on
the training data) can be quite revealing. First, we observe that the experiments in MW make dra-
matic changes in the convergence rates of AdaBoost and that these convergence rates are closely
associated with the margin of the classifier. AdaBoost may avoid overfitting for two completely
different reasons. Sometimes the algorithm is converging so slowly that stopping at a large number
of iterations is still early stopping. At other times, AdaBoost converges relatively quickly and is
in essence “overtrained” way past reasonable measures of the optimality conditions. In this case
the classifier has converged and is no longer changing much, so the classifier does not overfit. In-
deed, some overtraining appears to help improve the classifier slightly. Second, we observe that
AdaBoost cannot be trained forever. For the separable case, overtraining AdaBoost and LogitBoost
will eventually produce numeric problems that can produce artifacts in the generalization error. In
Experiments 3.3 and 4.3 in MW, LogitBoost was overtrained to the point of failure. The so called
overfitting observed for LogitBoost was really an algorithmic issue that is quite fixable. If Logit-
Boost is stopped appropriately or another stepsize strategy is used, the results for LogitBoost are as
good as or better than those for AdaBoost. More discussion of these results can be found below.

c©2008 Kristin P. Bennett.

BENNETT

2. A Mathematical Programmer’s View of AdaBoost

AdaBoost optimizes a linear combination of weak hypotheses with respect to the exponential loss.
AdaBoost is a coordinate descent (CD) algorithm, that iteratively optimizes the problem with respect
to one hypothesis at a time using column generation (Bennett et al., 2000). The weak learner seeks
the hypothesis that maximizes the inner product with the function gradient (Mason et al., 2000).
The convergence properties of such coordinate descent algorithms have been extensively studied
in the mathematical programming community and a full analysis of relevant CD results and their
extension to the boosting case can be found in Rätsch (2001).

Thus from the mathematical programming perspective, we know AdaBoost inherits both the
beneficial and potentially problematic properties of CD. We know from both the CD and original
AdaBoost theoretical results that the AdaBoost objective converges linearly to the optimal objective.
The simplicity of CD and its suitability for column generation make coordinate descent an attractive
algorithm, but in practice coordinate descent is not widely used because it can be very slow and it
has a tendency to cycle. CD guarantees that the objective function converges to the minimum but
there is no guarantee that optimal hypothesis coefficients are attained, and cycling is possible. The
AdaBoost loss function is particularly problematic since the exponential function is not strongly
convex and the Hessian is rank deficient when the size of the hypothesis space exceeds the number
of points. Overall, mathematical programming tells us that we can expect the AdaBoost objective
value to converge linearly and the convergence rate to be slow, especially when cycling occurs. The
paper on the dynamics of AdaBoost (Rudin et al., 2004) investigates this cycling behavior.

The MW experiments focus on the degenerate case in which the optimal objective value of
the underlying exponential optimization problem is zero. LogitBoost and AdaBoost are func-
tions of the form minαJ(f) s.t. f = Ha where H is the hypothesis space matrix containing all
possible weak learners for that data set. In every case, there exists some linear combination of
weak learners that classifies the points with no error, and therefore the objective can be driven
to zero. The AdaBoost exponential loss function is ∑exp(−yi fi). The function space gradient is
∂J(f)

∂ fi
= −yiexp(−yi fi). Note the 1-norm of the function space gradient is the same as the objec-

tive,
∥

∥

∥

∂J(f)
∂ f

∥

∥

∥

1
= ∑exp(−yi f (xi)) for two-class classification. The optimality condition is that the

gradient with respect to α is zero, ∂J(Ha)
∂α = H ′ ∂J(f)

∂ f = 0. In theory, to check this gradient we need
to know the weak learners for the full hypothesis space, H. But, for cases where the misclassifica-
tion error is driven to 0, it is sufficient to monitor the gradient in function space. Fortunately, the
norm of the function space gradient provides an upper bound on the norm of the true gradient since
∥

∥

∥
H ′ ∂J(f)

∂ f

∥

∥

∥
≤C

∥

∥

∥

∂J(f)
∂ f

∥

∥

∥
for some fixed C > 0.

From a mathematical programming perspective, we are optimizing a degenerate, poorly-scaled
problem for which the optimal objective value of 0 can only be achieved in the limit using a slower
algorithm prone to cycling that may become numerically unstable. Clearly, convergence of the
algorithm should be monitored closely. Yet, in most machine learning boosting papers, the focus is
on generalization for a fixed number of iterations and rarely on optimization performance.

3. Convergence Rate of AdaBoost

Let’s examine the convergence rate and optimality conditions of AdaBoost in the MW experiments.
Figure 1 contains three plots, one each for the log base 10 of the objective (or equivalently the 1-

158

RESPONSE TO MEASE AND WYNER, EVIDENCE CONTRARY TO THE STATISTICAL VIEW OF BOOSTING

0 500 1000 1500

−
25

−
20

−
15

−
10

−
5

0

Adaboost Iterations

O
bj

ec
tiv

e
F

un
ct

io
n/

G
ra

di
en

t

0 500 1000 1500

0.
20

0.
25

0.
30

0.
35

AdaBoost iterations

M
is

cl
as

si
fic

at
io

n
E

rr
or

(a) Objective/Gradient (log10) (b) Test Error

0 500 1000 1500

−
1.

0
−

0.
5

0.
0

0.
5

Adaboost Iterations

M
ar

gi
n

(c) Margin

Figure 1: 1 trial of Experiment 3.1 (10% Bayes Error) for AdaBoost + stumps (black, dots), Ad-
aBoost + 8-node trees (red, squares), and AdaBoost + 16-node trees (blue, triangles).

norm of the gradient), the testing error, and the training margin (mini(yi fi)
∑m αm

) for 1500 iterations for the
first trial of the experiment with 10% Bayes error in section 3.1 of MW. The graphs contain results
for AdaBoost with stumps (black, dots), AdaBoost with 8-node trees (red, squares) and AdaBoost
with 16-node trees (blue, triangles). Observe that the loss function and gradient are driven to zero
for all three hypothesis spaces and that the remarkably different convergence rates are inversely
proportional to the size of the trees being boosted. The results for AdaBoost with 16-node trees end
at 1017 iterations because the objective becomes less than 10−322, so a divide-by-zero error occurs.
In general, AdaBoost with bigger trees achieves bigger margins and obtains better generalization.
AdaBoost with stumps converges incredibly slowly and arguably should be run for more than 1500
iterations if early stopping is not desired.

Figure 2 contains the same three graphs for the first trial for the experiment with no Bayes Error
in section 3.2. The objective/gradient and margin graphs are qualitatively similar for experiments
3.1 and 3.2. Note that the 16 node tree Adaboost algorithm underflows at 673 iterations. The testing
error graph for experiment 3.2 is quite different. The performance for AdaBoost with stumps is
much improved and now competitive or better than AdaBoost with 8 or 16 node trees. Here the
margin results do not predict which type of boosted trees will generalize best. MW found at least
one simple example in which margins don’t work well.

159

BENNETT

0 500 1000 1500

−
25

−
15

−
5

0

Adaboost Iterations

O
bj

ec
tiv

e
F

un
ct

io
n/

G
ra

di
en

t

0 500 1000 1500

0.
0

0.
1

0.
2

0.
3

AdaBoost Iterations

M
is

cl
as

si
fic

at
io

n
E

rr
or

a) Objective/Gradient (log10) (b) Test Error

0 500 1000 1500

−
1.

0
−

0.
5

0.
0

0.
5

Adaboost Iterations

m
ar

gi
n

(c) Margin

Figure 2: 1 trial of Experiment 3.2 (0 Bayes Error) for AdaBoost + stumps (black, dots), AdaBoost
+ 8-node trees (red, squares), and AdaBoost + 16-node trees (blue, triangles).

Figure 3 shows the results for AdaBoost with 8-node trees and AdaBoost with 8-node trees
restricted to 15 nodes for the first trial of experiment 3.6. Here we see that restricting the trees slows
convergence, decreases margins, and increases error.

Figure 4 shows the results for AdaBoost with 8-node trees with no shrinkage (red, squares), .1
shrinkage (purple, dots), and .5 shrinkage (blue, triangles) for the first trial of experiment 3.3 (10 %
Bayes error). Here we see that shrinkage can speed up or slow down the convergence rates. For .1
shrinkage compared to no shrinkage, the convergence rate was slower, the margin smaller, and the
test error larger. For .5 shrinkage, the convergence rate was faster and the margin was larger than
for the .1 shrinkage case. If the .5 shrinkage algorithm is terminated at using reasonable stopping
criteria, the performance is quite comparable with the no shrinkage case, and improved over the .1
shrinkage case.

We present the following conjectures based on observations of this and other MW experiments
for the separable case and leave fuller investigation to later work.

• The convergence rate of AdaBoost is dependent on the space spanned by the weak learner
and larger hypothesis spaces converge faster. The weak learners produced by stumps are a
subset of those from the 8-node decision tree which are in turn a subset of those produced by
the 16-node decision tree. The bigger the decision tree, the better the weak learner can match

160

RESPONSE TO MEASE AND WYNER, EVIDENCE CONTRARY TO THE STATISTICAL VIEW OF BOOSTING

0 200 400 600 800 1000

−
25

−
15

−
5

0

Adaboost Iterations

O
bj

ec
tiv

e
F

un
ct

io
n/

G
ra

di
en

t

0 200 400 600 800 1000

0.
15

0.
20

0.
25

0.
30

0.
35

AdaBoost Iterations

M
is

cl
as

si
fic

at
io

n
E

rr
or

(a) Objective/Gradient (log10) (b) Test Error

0 200 400 600 800 1000

−
1.

0
−

0.
5

0.
0

0.
5

Adaboost Iterations

m
ar

gi
n

(c) Margin

Figure 3: 1 trial of Experiment 3.6 (10% Bayes Error) for AdaBoost + 8-node trees (red, squares),
and AdaBoost + 8-node trees restricted to at least 15 observations in terminal nodes (pur-
ple, dots).

the gradient at each iteration (as reflected by weighted misclassification error). So AdaBoost
can obtain a better decrease in the objective value. This conjecture is also supported by the
fact that in Figure 3’s run of experiment 3.6, decreasing the hypothesis space by restricting
the terminal node size, also reduced the convergence rate.

• For a fixed separable problem, faster convergence rates of AdaBoost can result in larger mar-
gins. AdaBoost is known to approximately optimize the margin as measured by the 1-norm
(Rosset et al., 2004; Schapire et al., 1998). The objective decreases the numerator of the mar-
gin and the iterations increase the denominator, so getting a smaller objective quicker creates
a better margin. Bigger hypothesis spaces allow bigger steps resulting in larger margins. This
finding is also supported by the fact that when shrinkage is used to change the convergence
rate, the resulting margins changed as well (see Figure 4). For problems with no training
error, we expect larger margins to translate to better generalization rates. But MW’s exper-
iments 3.2 and 4.2 show that this is not always the case. Figure 2 shows the margin for 1
run of Experiment 3.2. So MW are quite right in their conclusion that there is more to the

161

BENNETT

0 500 1000 1500 2000

−
25

−
15

−
5

0

Adaboost Iterations

O
bj

ec
tiv

e
F

un
ct

io
n/

G
ra

di
en

t

0 500 1000 1500 2000

0.
0

0.
1

0.
2

0.
3

AdaBoost Iterations

M
is

cl
as

si
fic

at
io

n
E

rr
or

(a) Objective/Gradient (log10) (b) Test Error

0 500 1000 1500 2000

−
1.

0
−

0.
5

0.
0

0.
5

Adaboost Iterations

m
ar

gi
n

(c) Margin

Figure 4: 1 trial of Experiment 3.7 (10% Bayes Error) for AdaBoost + 8-node trees (red, squares),
AdaBoost + 8-node trees with .5 shrinkage (blue, triangles) and AdaBoost + 8-node trees
with .1 shrinkage (purple, dots).

generalization of AdaBoost then just optimizing the loss. Adding consideration of the margin
is not enough either.

• For slowly converging problems, AdaBoost will frequently be regularized by early stopping.
In experiments 3.1 and 3.2, AdaBoost with stumps is overfitting and the early stopping in
MW at 1000 iterations helps the generalization error. For this specific experiment, the slow
convergence is a result of cycling. For the first trial in experiments 3.1 and 3.2, AdaBoost
with stumps only generated 158 and 156 distinct weak learners in 1000 iterations respectively.
The weak learners generated by AdaBoost with 8-node trees and 16-node trees were distinct
except for 2. By cycling through relatively few weak learners, AdaBoost with stumps strongly
weights a few trees. This appears to be bad for generalization in experiment 3.1 and good for
generalization for the no noise case in experiment 3.2.

• For more rapidly converging problems, AdaBoost will converge and enter an overtraining
phase. For the larger tree cases, the objective and margins converge rapidly. Typically one
would halt an optimization algorithm when the gradient became near 0. In the MW experi-
ments, AdaBoost with 8-node trees is overtrained past the point where one would normally

162

RESPONSE TO MEASE AND WYNER, EVIDENCE CONTRARY TO THE STATISTICAL VIEW OF BOOSTING

halt an optimization algorithm based on gradient criteria (Gill et al.). AdaBoost doesn’t over-
fit in this overtraining phase because it has converged and only very small changes are being
made. Perhaps the overtraining phase contributes to the robustness of AdaBoost, since Ad-
aBoost is performing the self-averaging discussed in MW and acting more like bagging. In
the MW experiments, AdaBoost achieves better generalization when trained to an extraordi-
narily high degree of accuracy, a fact contrary to the usual loose convergence criteria used in
support vector machines (Bennett and Parrado-Hernández, 2006). But care must be taken to
halt the boosting algorithm before the overtraining produces numeric problems due to finite
precision problems. As shown in Figure 1, AdaBoost with 16-node trees underflows at 1017
iterations for the 10% Bayes error case and at 673 iterations for the 0 error case. AdaBoost
with 8-node trees also underflows eventually as well.

4. LogitBoost versus AdaBoost

Experiments 3.4 and 4.4 compare LogitBoost and AdaBoost and conclude LogitBoost overfits.
Tracking the convergence of LogitBoost shows that this is not quite the case. We show our results
repeating experiment 4.4 exactly as in the paper for AdaBoost and LogitBoost. Recall LogitBoost
differs from AdaBoost in two ways. First, it uses the logistic loss instead of the exponential loss and
second, it uses a Newton step instead of an exact step size. The Newton step for logistic loss works
out to be 1/2 at each iteration. AdaBoost’s stepsize is adaptive. The CD convergence results do not
apply directly to LogitBoost as implemented in the paper because of the Newton step.

Figure 4 shows the average objective and misclassification results for 100 trials with 8-node
trees. Note that at about 375 iterations, LogitBoost fails to obtain a decrease in the objective be-
cause the Newton step is too large when the objective is very small. From that point, the testing error
declines. LogitBoost with shrinkage converges more slowly, so it can go more iterations before the
step size fails. Once the objective becomes too small, the stepsize fails and the generalization perfor-
mance of LogitBoost decreases remarkably. The LogitBoost objective is still small and continues to
decrease slightly, but the self-averaging properties observed in AdaBoost in the overtraining phase
are lost. Note that up until it missteps, LogitBoost is very competitive with AdaBoost. If LogitBoost
and AdaBoost were halted at the same high degree of accuracy (e.g., 10−8), there is no evidence of
overfitting.

5. Conclusion

MW are correct is saying that optimization provides only part of the picture because optimiza-
tion tells us nothing about generalization. Mathematical programming theory tells us that more
well-posed boosting problems with well-conditioned loss functions (like the hinge loss) and ex-
plicit regularization in the objective should produce boosting algorithms with better behavior from
an optimization perspective. But AdaBoost’s ill-conditioning appears to be one of the secrets of
its success. More investigation is needed comparing Adaboost with its regularized counterparts.
Certainly machine learning researchers should mind their optimization theory and track the con-
vergence of their algorithms. Optimality conditions should be used to halt and compare boosting
algorithms instead of fixed iteration limits.

163

BENNETT

0 200 400 600 800 1000

−
25

−
15

−
5

0

Iterations

T
ra

in
in

g
O

bj
ec

tiv
e

0 200 400 600 800 1000

0.
10

0.
20

0.
30

0.
40

Iterations

M
is

cl
as

si
fic

at
io

n
E

rr
or

(a) Objective (log10) (b) Test Error

Figure 5: Average of 100 trials of Experiment 4.3 (10% Bayes Error) for AdaBoost (red, squares),
LogitBoost (blue, triangles), and LogitBoost with .5 shrinkage (purple, circles) for 8-node
trees.

References

K.P. Bennett and E. Parrado-Hernández. The interplay of optimization and machine learning re-
search. Journal of Machine Learning Research, 7:1265–1281, 2006.

K.P. Bennett, A. Demiriz, and J. Shawe-Taylor. A column generation algorithm for boosting. Pro-
ceedings of the Seventeenth International Conference on Machine Learning, pages 65–72, 2000.

Y. Freund and R.E. Schapire. Experiments with a new boosting algorithm. Machine Learning:
Proceedings of the Thirteenth International Conference, 148:156, 1996.

J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting
(With discussion and a rejoinder by the authors). Ann. Statist, 28(2):337–407, 2000.

P.E. Gill, W. Murray, and M.H. Wright. Practical Optimization. Academic Press, London and New
York.

L. Mason, J. Baxter, P. Bartlett, and M. Frean. Boosting algorithms as gradient descent. Advances
in Neural Information Processing Systems, 12:512–518, 2000.

G. Rätsch. Robust Boosting via Convex Optimization Theory and Applications. PhD thesis, Univer-
sitat Potsdam, 2001.

S. Rosset, J. Zhu, and T. Hastie. Boosting as a regularized path to a maximum margin classifier.
Journal of Machine Learning Research, 5:941–973, 2004.

C. Rudin, I. Daubechies, and R.E. Schapire. The dynamics of AdaBoost: Cyclic behavior and
convergence of margins. Journal of Machine Learning Research, 5:1557–1595, 2004.

R.E. Schapire, Y. Freund, P. Bartlett, and W.S. Lee. Boosting the margin: A new explanation for
the effectiveness of voting methods. The Annals of Statistics, 26(5):1651–1686, 1998.

164

