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We thank the authors for writing a thought-provoking piece that may ruffle the feathers of re-
cent orthodoxies in boosting. We also thank JMLR for publishing this article! Since the late 1990s,
boosting has undergone the equivalent of a simultaneous X-ray, fMRI and PET exam, and the com-
mon view these days is that boosting is a kind of model fitting. As such, it is subjected to as-
sumptions that are common in non-parametric statistics, such as: limiting the complexity of the
base learner, building up complexity gradually by optimization, and preventing overfitting by early
stopping or by regularizing the criterion with a complexity penalty. The theories backing this up
use VC dimensions and other measures to show that, if the complexity of fits grows sufficiently
slowly, asymptotic guarantees can be given. Into this orthodox scene Mease and Wyner throw one
of the most original mind bogglers we have seen in a long time: “if stumps are causing overfitting,
be willing to try larger trees.” In other words, if boosting a low-complexity base learner leads to
overfit, try a higher-complexity base learner; boosting it might just not overfit. Empirical evidence
backs up the claim.

Is this counterintuitive wisdom so surprising? Yes, if seen from the point of view of orthodoxy,
but less so when reviving some older memories. We may remind ourselves how boosting’s fame
arose in statistics when the late Leo Breiman stated in a discussed 1998 Annals of Statistics article
(based on a 1996 report) that boosting algorithms are “the most accurate ... off-the-shelf classifiers
on a wide variety of data sets.” We should further remind ourselves what this praise was based on:
boosting of the full CART algorithm by Breiman himself, and boosting of the full C4.5 algorithm by
others. In other words, the base learners were anything but ‘weak’ in the sense of today’s orthodoxy;,
where "weak’ means ‘low complexity, low variance, and generally high bias.” (Few people today
use PAC theory’s untenable notion of weak learner, which was gently demolished by Breiman in
the appendix of this same article.) Breiman’s (1998b, p. 802) 02) major conclusion at the time was:
“The main effect of both bagging and [boosting] is to reduce variance.” It appears, therefore, that
his notion of ‘weak learner’ was one of ‘high complexity, high variance, and low bias’! This was
before the low-variance orthodoxy set in and erased the memories of the early boosting experiences.

Unfortunately, soon thereafter Breiman saw his own assumptions thrown into question when he
learned from Schapire et al.’s (1998) work that excellent results could also be achieved by boosting
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stumps. This experience was later reinforced when Friedman et al. (2000) introduced the interpreta-
tion of boosting as model fitting: the base learner now had to be weak in the sense of low variance.
Ever since, theoretical attempts at ‘explaining boosting’ have relied on low complexity of the base
learner and controlling complexity of the final classifier to assure good generalization properties.
These “‘explanations,” however, have never been able to explain why boosting is relatively immune
to overfitting, even when not stopped and not regularized and used with a high complexity base
learner.

Mease and Wyner’s achievement is to pull the messy truth out from under the rug of the low-
variance orthodoxy. They do so with the equivalent of boy scout tools, some simple but telling
simulations, which reinforce the idea that our reasonings about early stopping, regularization, low
variance of the base learner, and the specifics of the surrogate loss function, are not or not the only
essence of boosting. To explain why this is so, Mease and Wyner do not give us hard theory, but they
point in a direction, essentially by recovering memories that predate the low-variance orthodoxy:
“self-averaging” for variance reduction, which is the principle behind bagging and random forests.

While variance reduction is an aspect that has been ignored by the low-variance orthodoxy, the
orthodoxy’s implicit dogma, that boosting can reduce bias, is also true. As asserted and documented
empirically a decade ago by Schapire et al. (1998, Section 5.3), boosting can do both. Depending on
the data and the base learner, the effect that dominates may be bias reduction or variance reduction.
In this regard Schapire et al.’s (1998) simulation results as summarized in their Table 1 (p. 1673)
are illuminating, and had we taken them seriously sooner, we would be less surprised by Mease and
Whyner’s messages. Arguing against Breiman (1998b), Schapire et al. used the table to make the now
orthodox point that boosting can reduce bias. An unprejudiced look shows, however, that the winner
in all four scenarios is boosting C4.5, not boosting stumps, and when C4.5 is the base learner the
overwhelming story is indeed variance reduction. With this information, the Mease-Wyner mind
boggler is a touch less mind boggling indeed: From the combined evidence of Breiman (1998b)
and Schapire et al. (1998), we should expect that boosting high-variance base learners generally
outperforms boosting low-variance base learners. For the practitioner the recommendation should
be to boost CART or C4.5. In theoretical terms, one should let most of the bias removal be done by
the base learner and take advantage of boosting’s variance removal; at the same time, boosting may
further reduce the base learner’s bias by another notch if that is possible.

Where does this leave us in terms of theory? The implications of Mease and Wyner’s unortho-
doxies stand: Complexity controlling theories of bias removal are off the mark; they are not incor-
rect but misleading, and they ignore a whole other dimension that matters hugely for the practice of
boosting. What we need is a theory that explains bias and variance reduction in a single framework.
We do not even know of a unified general theory of variance reduction, although some interesting
work has been done in the area of bagging (Buhlmann and Yu, 2002) and random forests (Amit
et al., 2001). The real jackpot, however, would be a theory that explains how and when boosting
reduces bias and variance.

Meanwhile we are left with some tantalizing clues, above all Breiman’s hunch (1999, p. 3):
“AdaBoost has no random elements .... But just as a deterministic random number generator can
give a good imitation of randomness, my belief is that in its later stages AdaBoost is emulating a
random forest.” If born out, this conjecture would have theoretical and practical implications. For
one, it would mean that the initial stages of boosting may remove bias, whereas the later stages re-
move variance. According to Breiman (1998b, p. 803), boosting a high-variance base learner does
not yield convergence but exhibits “back and forth rocking” of the weights, and “This variability
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may be an essential ingredient of successful [boosting] algorithms.” Breiman implies that at some
point boosting iterations turn into a pseudo-random process whose behavior may resemble more
the purely random iterations of bagging than those of a minimization process. This random process
may be able to achieve the self-averaging effect of variance reduction that is so prominent when
boosting high-variance base learners. If this view is correct, one may have to rethink the role of the
surrogate loss function that is minimized by boosting. Its main role is to produce structured weights
in the iterations, but with noisy errors, these weights may for practical purposes be as much random
as they are systematic. This insight jibes with Wyner’s (2002) malicious experiments in which he
doubled the step size of discrete AdaBoost with C4.5, thereby assuring that the exponential loss
never decreased and in fact provably remained at a constant level; his empirical results indicated
that on average this SOR (successively over-relaxed) form of boosting performs as well as regular
AdaBoost. These results may be taken as evidence that the minimization aspect is of little impor-
tance for a high-variance base learner; of greater importance may be a pseudo-random aspect of
the reweighting scheme that achieves variance reduction similar to bagging, just more successfully
due to a sort of adaptivity in the reweighting that improves over the purely random resampling of
bagging.

If the pseudo-random aspect of boosting is critical for high-variance base learners, one may draw
consequences and implement boosting with proper pseudo-random processes. So did Breiman. He
didn’t attempt a theory of boosting for high-variance base learners, and instead he put his intuitions
to use in further proposals such as in his work on “half & half bagging” (Breiman, 1998a), ap-
parently with success. Another example that benefited from Breiman’s inspiration was Friedman’s
(2002) “stochastic gradient boosting” which inhibits convergence of boosting by computing gra-
dient steps from random subsamples drawn without replacement. Friedman (ibid., p. 9) observes
improvements over deterministic boosting in a majority of situations, above all for small samples
and “high capacity” (high variance) base learners. He admits that “the reason why this random-
ization produces improvement is not clear,” but suggests “that variance reduction is an important
ingredient.” Friedman goes on to suggest that stochastic AdaBoost with sampling from the weights
rather than reweighting may have similar variance-reducing effects. In early boosting approaches
such sampling (with replacement) was performed to match the given sample size, but Friedman
suggests that further variance reduction could be gained by choosing smaller resamples.

An implication of Breiman’s hunch is that the real difference between LogitBoost and AdaBoost
is not so much due to the differences in loss functions as to the minimization method, at least when
the base learner has relatively high variance, or generally in the late stages of boosting. AdaBoost
can be interpreted as constrained gradient descent on the exponential loss, whereas LogitBoost is
Newton descent on the logistic loss (Friedman et al., 2000). The two minimization schemes pro-
duce very different reweighting schemes, and they work off different working responses during the
iterations. We are currently ignorant about whether LogitBoost develops pseudo-random behavior
late in the iterations, similar to AdaBoost. If it does, the cause may be traced to the base learner,
and the phenomenon may be robust to the specifics not only of loss functions but of algorithms as
well.

Another implication of Breiman’s hunch is that boosting does both, reduce bias and variance, in
the same problem, but each primarily at different stages of the boosting iterations. If it is true that
variance reduction occurs during later iterations, then this should go a long way to explain boosting’s
relative immunity to overfitting. By comparison, conventional fitting mechanisms only know how
to do one thing: follow the data ever more closely, thereby continually reduce bias and continually
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accumulate variance. According to orthodoxy, therefore, the art is to find the proper balance, and to
this end auxiliary devices such as early stopping, regularization penalties and cross-validation come
into play. Boosting seems to be different, but we do not have the theory yet to prove it.

All that we said so far is based on out-of-sample classification error. A peculiarity of classi-
fication error is that it is not the criterion being minimized in-sample because of its discontinuous
nature. The role of minimizing a smooth surrogate loss function is to trace a path that leads to low
classification error, but the surrogate loss is not of interest in itself. Yet, for the variance reducing
properties of the resulting classifier, the surrogate loss is of interest. First of all, the surrogate loss
should keep decreasing because for example discrete AdaBoost is constrained gradient descent with
line search (Friedman et al., 2000). This explains why in terms of the surrogate loss, the fitted class
probability estimates end up vastly overfitting the data, confirming the orthodox view in terms of
the surrogate loss. Yet, two phenomena are also observed: in terms of out-of-sample classification
error, no overfitting is taking place, and, according to Breiman, no convergence of the weights is tak-
ing place. The bouncing of the weights would indicate that, in spite of a well-behaved convex loss
function, the descent directions chosen by the base learner become erratic. Such behavior would be
plausible if the base learner is of the high-variance type, but the specifics of why the variance com-
ponent of out-of-sample classification error is improved is not explained. It is quite clear, though,
that explaining boosting’s variance reduction would be a greater achievement than explaining its
bias reduction. Bias can be largely taken care of by the base learner, variance can’t.

If the peculiarities we observe in boosting are due to the use of two loss functions, one may
ask whether any lessons learned carry over to other parts of statistics. The “statistical view” has
indeed produced generalizations of boosting to other areas, such as regression: Biihimann and Yu’s
L»-boosting (2003), Friedman’s gradient boosting in their deterministic and stochastic forms (2001;
2002), and boosting of exponential and survival models by Ridgeway (1999). In these single-loss
function contexts, the paradoxical phenomena should no longer be visible, as they aren’t for boost-
ing if judged in terms of the surrogate loss function. Yet, Friedman’s stochastic gradient boosting
shows that adding an element of variance reduction with randomization may just be what the doc-
tor ordered in most statistical model fitting contexts even with a single loss function. We should
therefore aim for a variance reduction theory for all of statistics, reaching beyond classification.

Another question that may be raised for binary, or categorical response data in general, is
whether classification error is as desirable a loss function as suggested by the attention it has re-
ceived. Classification error is a bottom line number that may be appropriate in industrial contexts
where real large scale engineering problems are solved, for example, in document retrieval. One
might characterize these contexts as “the machine learner’s black box problems.” There do exist
other contexts, though, and one might characterize them as “the problems of the interpreting statis-
tician.” When interpretation is the problem, attaining the last percent of classification accuracy is
not the goal. Instead, one hopes to develop a functional form that reasonably fits the data but also
“speaks,” that is, lends itself to statements about what variables are associated with the categorical
response. Fitting good conditional class probabilities takes on greater importance because associa-
tions and effects can then be measured in terms of differences in the logits of class 1 (for example)
for a unit or percentage difference in the predictor variables. Interpretability is a problem for non-
parametric model fits such as boosted trees. The decomposition of complex fits into interpretable
components, for example with an ANOVA decomposition as suggested by Friedman et al. (2000),
takes on considerable importance. In the end, one may want to produce a few telling plots explain-
ing functional form and a few numbers summarizing the strengths of various associations. When
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fitting models for conditional class probabilities, the surrogate loss becomes the primary loss func-
tion because it can be interpreted as a loss function for fitted class probabilities. It is one of the
achievements of Friedman et al. (2000) to have shown that this is true for exponential loss as much
as for logistic loss, even though there is a misperception, as pointed out by Mease and Wyner, that
LogitBoost was specifically designed to recover class probabilities that AdaBoost couldn’t. Expo-
nential loss does similar things as logistic loss in Friedman et al.’s analysis, and they provide the
appropriate link functions for both. All this is relevant only if minimization of the “surrogate/now-
primary loss” is prevented from overfitting, with cross-validated early stopping, penalization, or
variance-reducing randomization, and it comes at the cost of diminished classification performance,
one of Mease and Wyner’s points.

Diminished classification performance when estimating class probabilities is easily explained;
it is due to a compromise that class probability estimation has to strike. It effectively attempts good
classification simultaneously at all misclassification cost ratios. (Note that this ratio is assumed
to be one in most of the boosting literature.) This statement can be made precise in a technical
sense: unbiased loss functions for class probabilities, so-called “proper scoring rules,” are weighted
mixtures of cost-weighted misclassification losses Buja et al. (2005). After mapping exponential
and logistic losses to probability scales with their associated inverse link functions, they turn into
proper scoring rules and therefore exhibit the mixture structure just described. It follows that both
loss functions attempt compromises across classification problems with non-equal misclassification
costs. Both loss functions give inordinate attention to extreme cost ratios, but exponential loss even
more so than logistic loss. At any rate, the nature of the compromise is such that no cost ratio, in
particular not equal costs, is served optimally if the exponential or logistic losses are tuned to high
out-of-sample performance. By comparison, overfitting these losses in-sample seems to provide
benefits in terms of classification error. However, once we change our priorities from black-box
performance to interpretation, and hence from classification to class probability estimation, we may
prefer tuning surrogate loss and accept the increased classification error.

Anticipating an objection by Mease and Wyner, we should disclose that one of us (Buja) col-
laborated with them on an article that is relevant here (Mease et al., 2007). In this work we traveled
the opposite of the usual direction by composing class probability estimates from layered classifica-
tion regions, estimated at a grid of misclassification cost ratios. Presumably such class probability
estimation inherits superior performance from boosting in classification. When interpretation is the
goal, however, a simple functional form that “speaks” might be more desirable than the increased
performance of the layered estimates we provide in our joint proposal. The problem is that our
proposal inherits the interpretative disadvantages of boosted classification regions, which tend to
be jagged around the edges and pockmarked with holes—not a credible feature when it comes to
interpretation.

We started this discussion joining Mease and Wyner in their argument against today’s boosting
orthodoxy. We ended by questioning the single-minded reliance on classification error as the only
yard stick of performance. Still, Mease and Wyner’s call should be heard because the orthodoxy
misattributes the causes of boosting’s success and makes invalid recommendations.
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