
Journal of Machine Learning Research 9 (2008) 203-233 Submitted 5/07; Published 2/08

Optimization Techniques for
Semi-Supervised Support Vector Machines

Olivier Chapelle∗ CHAP@YAHOO-INC.COM

Yahoo! Research
2821 Mission College Blvd
Santa Clara, CA 95054

Vikas Sindhwani VIKASS@CS.UCHICAGO.EDU

University of Chicago, Department of Computer Science
1100 E 58th Street
Chicago, IL 60637

Sathiya S. Keerthi SELVARAK@YAHOO-INC.COM

Yahoo! Research
2821 Mission College Blvd
Santa Clara, CA 95054

Editor: Nello Cristianini

Abstract
Due to its wide applicability, the problem of semi-supervised classification is attracting increas-
ing attention in machine learning. Semi-Supervised Support Vector Machines (S3VMs) are based
on applying the margin maximization principle to both labeled and unlabeled examples. Unlike
SVMs, their formulation leads to a non-convex optimization problem. A suite of algorithms have
recently been proposed for solving S3VMs. This paper reviews key ideas in this literature. The
performance and behavior of various S3VM algorithms is studied together, under a common exper-
imental setting.
Keywords: semi-supervised learning, support vector machines, non-convex optimization, trans-
ductive learning

1. Introduction

In many applications of machine learning, abundant amounts of data can be cheaply and automati-
cally collected. However, manual labeling for the purposes of training learning algorithms is often
a slow, expensive, and error-prone process. The goal of semi-supervised learning is to employ the
large collection of unlabeled data jointly with a few labeled examples for improving generalization
performance.

The design of Support Vector Machines (SVMs) that can handle partially labeled data sets has
naturally been a vigorously active subject. A major body of work is based on the following idea:
solve the standard SVM problem while treating the unknown labels as additional optimization vari-
ables. By maximizing the margin in the presence of unlabeled data, one learns a decision bound-
ary that traverses through low data-density regions while respecting labels in the input space. In
other words, this approach implements the cluster assumption for semi-supervised learning—that is,

∗. Most of the work was done while at MPI for Biological Cybernetics,Tübingen, Germany.

c©2008 Olivier Chapelle, Vikas Sindhwani and Sathiya S. Keerthi.

CHAPELLE, SINDHWANI AND KEERTHI

Figure 1: Two moons. There are 2 labeled points (the triangle and the cross) and 100 unlabeled
points. The global optimum of S3VM correctly identifies the decision boundary (black
line).

points in a data cluster have similar labels (Seeger, 2006; Chapelle and Zien, 2005). Figure 1 illus-
trates a low-density decision surface implementing the cluster assumption on a toy two-dimensional
data set. This idea was first introduced by Vapnik and Sterin (1977) under the name Transduc-
tive SVM, but since it learns an inductive rule defined over the entire input space, we refer to this
approach as Semi-Supervised SVM (S3VM).

Since its first implementation by Joachims (1999), a wide spectrum of techniques have been
applied to solve the non-convex optimization problem associated with S3VMs, for example, local
combinatorial search (Joachims, 1999), gradient descent (Chapelle and Zien, 2005), continuation
techniques (Chapelle et al., 2006a), convex-concave procedures (Fung and Mangasarian, 2001;
Collobert et al., 2006), semi-definite programming (Bie and Cristianini, 2006; Xu et al., 2004),
non-differentiable methods (Astorino and Fuduli, 2007), deterministic annealing (Sindhwani et al.,
2006), and branch-and-bound algorithms (Bennett and Demiriz, 1998; Chapelle et al., 2006c).

While non-convexity is partly responsible for this diversity of methods, it is also a departure
from one of the nicest aspects of SVMs. Table 1 benchmarks the empirical performance of various
S3VM implementations against the globally optimal solution obtained by a Branch-and-Bound al-
gorithm. These empirical observations strengthen the conjecture that the performance variability of
S3VM implementations is closely tied to their susceptibility to sub-optimal local minima. Together
with several subtle implementation differences, this makes it challenging to cross-compare different
S3VM algorithms.

The aim of this paper is to provide a review of optimization techniques for semi-supervised
SVMs and to bring different implementations, and various aspects of their empirical performance,
under a common experimental setting.

In Section 2 we discuss the general formulation of S3VMs. In Sections 3 and 4 we provide
an overview of various methods. We present a detailed empirical study in Section 5 and present a
discussion on complexity in Section 6.

204

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton BB
Coil3 61.6 61 56.6 56.7 61.6 61.5 0
2moons 61 37.7 63.1 68.8 22.5 11 0

Table 1: Generalization performance (error rates) of different S3VM algorithms on two (small) data
sets Coil3 and 2moons. Branch and Bound (BB) yields the globally optimal solution
which gives perfect separation. BB can only be applied to small data sets due to its high
computational costs. See Section 5 for experimental details.

2. Semi-Supervised Support Vector Machines

We consider the problem of binary classification. The training set consists of l labeled examples
{(xi,yi)}

l
i=1, yi =±1, and u unlabeled examples {xi}

n
i=l+1, with n = l +u. In the linear S3VM clas-

sification setting, the following minimization problem is solved over both the hyperplane parameters
(w,b) and the label vector yu := [yl+1 . . .yn]

>,

min
(w,b), yu

I (w,b,yu) =
1
2
‖w‖2 +C

l

∑
i=1

V (yi,oi)+C?
n

∑
i=l+1

V (yi,oi) (1)

where oi = w>xi +b and V is a loss function. The Hinge loss is a popular choice for V ,

V (yi,oi) = max(0,1− yioi)
p . (2)

It is common to penalize the Hinge loss either linearly (p = 1) or quadratically (p = 2). In the rest
of the paper, we will consider p = 2. Non-linear decision boundaries can be constructed using the
kernel trick (Vapnik, 1998).

The first two terms in the objective function I in (1) define a standard SVM. The third term
incorporates unlabeled data. The loss over labeled and unlabeled examples is weighted by two
hyperparameters, C and C?, which reflect confidence in labels and in the cluster assumption respec-
tively. In general, C and C? need to be set at different values for optimal generalization performance.

The minimization problem (1) is solved under the following class balancing constraint,

1
u

n

∑
i=l+1

max(yi,0) = r or equivalently
1
u

n

∑
i=l+1

yi = 2r−1. (3)

This constraint helps in avoiding unbalanced solutions by enforcing that a certain user-specified
fraction, r, of the unlabeled data should be assigned to the positive class. It was introduced with
the first S3VM implementation (Joachims, 1999). Since the true class ratio is unknown for the
unlabeled data, r is estimated from the class ratio on the labeled set, or from prior knowledge about
the classification problem.

There are two broad strategies for minimizing I :

1. Combinatorial Optimization: For a given fixed yu, the optimization over (w,b) is a standard
SVM training.1 Let us define:

J (yu) = min
w,b

I (w,b,yu). (4)

1. The SVM training is slightly modified to take into account different values for C and C?.

205

CHAPELLE, SINDHWANI AND KEERTHI

The goal now is to minimize J over a set of binary variables. This combinatorial view of the
optimization problem is adopted by Joachims (1999), Bie and Cristianini (2006), Xu et al.
(2004), Sindhwani et al. (2006), Bennett and Demiriz (1998), and Chapelle et al. (2006c).
There is no known algorithm that finds the global optimum efficiently. In Section 3 we review
this class of techniques.

2. Continuous Optimization: For a fixed (w,b), argminyV (y,o) = sign(o). Therefore, the
optimal yu is simply given by the signs of oi = w>xi +b. Eliminating yu in this manner gives
a continuous objective function over (w,b):

1
2
‖w‖2 +C

l

∑
i=1

max(0,1− yioi)
2 +C?

n

∑
i=l+1

max(0,1−|oi|)
2 . (5)

This form of the optimization problem illustrates how S3VMs implement the cluster assump-
tion. The first two terms in (5) correspond to a standard SVM. The last term (see Figure 2)
drives the decision boundary, that is, the zero output contour, away from unlabeled points.
From Figure 2, it is clear that the objective function is non-convex.

−1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

Signed output

Lo
ss

Figure 2: The effective loss max(0,1−|o|)2 is shown above as a function of o = (w>x + b), the
real-valued output at an unlabeled point x.

Note that in this form, the balance constraint becomes 1
u ∑n

i=l+1 sign(w>xi +b) = 2r−1 which
is non-linear in (w,b) and not straightforward to enforce. In Section 4 we review this class
of methods (Chapelle and Zien, 2005; Chapelle et al., 2006a; Fung and Mangasarian, 2001;
Collobert et al., 2006).

3. Combinatorial Optimization

We now discuss combinatorial techniques in which the labels yu of the unlabeled points are explicit
optimization variables. Many of the techniques discussed in this section call a standard (or slightly
modified) supervised SVM as a subroutine to perform the minimization over (w,b) for a fixed yu

(see 4).

206

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

3.1 Branch-and-Bound (BB) for Global Optimization

The objective function (4) can be globally optimized using Branch-and-Bound techniques. This was
noted in the context of S3VM by Wapnik and Tscherwonenkis (1979) but no details were presented
there. In general, global optimization can be computationally very demanding. The technique
described in this section is impractical for large data sets. However, with effective heuristics it
can produce globally optimal solutions for small-sized problems. This is useful for benchmarking
practical S3VM implementations. Indeed, as Table 1 suggests, the exact solution can return excellent
generalization performance in situations where other implementations fail completely. Branch-and-
Bound was first applied by Bennett and Demiriz (1998) in association with integer programming for
solving linear S3VMs. More recently Chapelle et al. (2006c) presented a Branch-and-Bound (BB)
algorithm which we outline in this section. The main ideas are illustrated in Figure 3.

objective function

Initial labeled set

y =0

y =15

Increasing

Do not explore

Best solution so far

3

y =07 7y =05

3 y =1

y =1

Objective function on
currently labeled points

12.7

15.6

17.8

14.3

23.3

Figure 3: Branch-and-Bound Tree

Branch-and-Bound effectively performs an exhaustive search over yu, pruning large parts of
the solution space based on the following simple observation: suppose that a lower bound on
minyu∈A J (yu), for some subset A of candidate solutions, is greater than J (ỹu) for some ỹu, then
A can be safely discarded from exhaustive search. BB organizes subsets of solutions into a binary
tree (Figure 3) where nodes are associated with a fixed partial labeling of the unlabeled data set and
the two children correspond to the labeling of some new unlabeled point. Thus, the root corresponds
to the initial set of labeled examples and the leaves correspond to a complete labeling of the data.
Any node is then associated with the subset of candidate solutions that appear at the leaves of the
subtree rooted at that node (all possible ways of completing the labeling, given the partial labeling
at that node). This subset can potentially be pruned from the search by the Branch-and-Bound pro-
cedure if a lower bound over corresponding objective values turns out to be worse than an available
solution.

The effectiveness of BB depends on the following design issues: (1) the lower bound at a node
and (2) the sequence of unlabeled examples to branch on. For the lower bound, Chapelle et al.
(2006c) use the objective value of a standard SVM trained on the associated (extended) labeled

207

CHAPELLE, SINDHWANI AND KEERTHI

set.2 As one goes down the tree, this objective value increases as additional loss terms are added,
and eventually equals J at the leaves. Note that once a node violates the balance constraint, it can
be immediately pruned by resetting its lower bound to ∞. Chapelle et al. (2006c) use a labeling-
confidence criterion to choose an unlabeled example and a label on which to branch. The tree is
explored on the fly by depth-first search. This confidence-based tree exploration is also intuitively
linked to Label Propagation methods (Zhu and Ghahramani, 2002) for graph-transduction. On many
small data sets (e.g., Table 1 data sets have up to 200 examples) BB is able to return the globally
optimal solution in reasonable amount of time. We point the reader to Chapelle et al. (2006c) for
pseudocode.

3.2 S3VMlight

S3VMlight (Joachims, 1999) refers to the first S3VM algorithm implemented in the popular SVMlight

software.3 It is based on local combinatorial search guided by a label switching procedure. The
vector yu is initialized as the labeling given by an SVM trained on the labeled set, thresholding
outputs so that u× r unlabeled examples are positive. Subsequent steps in the algorithm comprise
of switching labels of two examples in opposite classes, thus always maintaining the balance con-
straint. Consider an iteration of the algorithm where yu is the temporary labeling of the unlabeled
data and let (w̃, b̃) = argminw,b I (w,b,yu) and J (yu) = I (w̃, b̃,yu). Suppose a pair of unlabeled
examples indexed by (i, j) satisfies the following condition,4

yi = 1,y j =−1,V (1,oi)+V (−1,o j) > V (−1,oi)+V (1,o j) (6)

where oi,o j are outputs of (w̃, b̃) on the examples xi,x j. Then after switching labels for this
pair of examples and retraining, the objective function J can be easily shown to strictly decrease.
S3VMlight alternates between label-switching and retraining. Since the number of possible yu is
finite, the procedure is guaranteed to terminate in a finite number of steps at a local minima of (4),
that is, no further improvements are possible by interchanging two labels.

In an outer loop, S3VMlight gradually increases the value of C? from a small value to the final
value. Since C? controls the non-convex part of the objective function (4), this annealing loop can
be interpreted as implementing a “smoothing” heuristic as a means to protect the algorithm from
sub-optimal local minima. The pseudocode is provided in Algorithm 1.

3.3 Deterministic Annealing S3VM

Deterministic annealing (DA) is a global optimization heuristic that has been used to approach hard
combinatorial or non-convex problems. In the context of S3VMs (Sindhwani et al., 2006), it consists
of relaxing the discrete label variables yu to real-valued variables pu = (pl+1, . . . , pl+u) where pi is
interpreted as the probability that yi = 1. The following objective function is now considered:

I ′(w,b,pu) = E [I (w,b,yu)] (7)

=
1
2
‖w‖2 +C

l

∑
i=1

V (yi,oi)+C?
n

∑
i=l+1

piV (1,oi)+(1− pi)V (−1,oi)

2. Note that in this SVM training, the loss terms associated with (originally) labeled and (currently labeled) unlabeled
examples are weighted by C and C? respectively.

3. Note that in the S3VM literature, this particular implementation is often referred as “TSVM” or “Transductive SVM”.
4. This switching condition is slightly weaker than that proposed by Joachims (1999).

208

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

Algorithm 1 S3VMlight

Train an SVM with the labeled points. oi← w ·xi +b.
Assign yi← 1 to the ur largest oi, -1 to the others.
C̃← 10−5C?

while C̃ < C? do
repeat

Minimize (1) with {yi} fixed and C? replaced by C̃.
if ∃(i, j) satisfying (6) then

Swap the labels yi and y j

end if
until No labels have been swapped
C̃←min(1.5C,C?)

end while

where E denotes expectation under the probabilities pu. Note that at optimality with respect to pu,
pi must concentrate all its mass on yi = sign(w>xi +b) which leads to the smaller of the two losses
V (1,oi) and V (−1,oi). Hence, this relaxation step does not lead to loss of optimality and is simply
a reformulation of the original objective in terms of continuous variables. In DA, an additional
entropy term −H(pu) is added to the objective,

I ′′(w,b,pu;T) = I ′(w,b,pu)−T H(pu)

where H(pu) =−∑
i

pi log pi +(1− pi) log (1− pi),

and T ≥ 0 is usually referred to as ‘temperature’. Instead of (3), the following class balance con-
straint is used,

1
u

n

∑
i=l+1

pi = r.

Note that when T = 0, I ′′ reduces to (7) and the optimal pu identifies the optimal yu. When T = ∞,
I ′′ is dominated by the entropy term resulting in the maximum entropy solution (pi = r for all i). T
parameterizes a family of objective functions with increasing degrees of non-convexity (see Figure 4
and further discussion below).

At any T , let (wT ,bT ,puT) = argmin(w,b),pu
I′′(w,b,pu;T). This minimization can be performed

in different ways:

1. Alternating Minimization: We sketch here the procedure proposed by Sindhwani et al. (2006).
Keeping pu fixed, the minimization over (w,b) is standard SVM training—each unlabeled
example contributes two loss terms weighted by C?pi and C?(1− pi). Keeping (w,b) fixed,
I′′ is minimized subject to the balance constraint 1

u ∑n
i=l+1 pi = r using standard Lagrangian

techniques. This leads to:

pi =
1

1+ e(gi−ν)/T
(8)

where gi =C?[V (1,oi)−V (−1,oi)] and ν, the Lagrange multiplier associated with the balance
constraint, is obtained by solving the root finding problem that arises by plugging (8) back
in the balance constraint. The alternating optimization proceeds until pu stabilizes in a KL-
divergence sense. This method will be referred to as DA in the rest of the paper.

209

CHAPELLE, SINDHWANI AND KEERTHI

2. Gradient Methods: An alternative possibility5 is to substitute the optimal pu (8) as a function
of (w,b) and obtain an objective function over (w,b) for which gradient techniques can be
used:

S(w,b) := min
pu

I ′′(w,b,pu;T). (9)

S(w,b) can be minimized by conjugate gradient descent. The gradient of S is easy to com-
pute. Indeed, let us denote by p∗u(w,b) the argmin of (9). Then,

∂S
∂wi

=
∂I ′′

∂wi
+

n

∑
j=l+1

∂I ′′

∂p j

∣
∣
∣
∣
pu=p∗u(w,b)

︸ ︷︷ ︸

0

∂p∗j(w)

∂wi
=

∂I ′(w,b,p?
u(w))

∂wi
.

The partial derivative of I ′′ with respect to p j is 0 by the definition of p∗u(w,b). The argument
goes through even in the presence of the constraint 1

u ∑ pi = r; see Chapelle et al. (2002,
Lemma 2) for a formal proof. In other words, we can compute the gradient of (7) with respect
to w and consider pu fixed. The same holds for b. This method will be referred to as ∇DA in
the rest of the paper.

Figure 4 shows the effective loss terms in S associated with an unlabeled example for various
values of T . In an outer loop, starting from a high value, T is decreased geometrically by a con-
stant factor. The vector pu is then tightened back close to discrete values (its entropy falls below
some threshold), thus identifying a solution to the original problem. The pseudocode is provided in
Algorithm 2.

Table 2 compares the DA and ∇DA solutions as T → 0 at two different hyperparameter set-
tings.6 Because DA does alternate minimization and ∇DA does direct minimization, the solutions
returned by them can be quite different. Since ∇DA is faster than DA, we only report ∇DA results
in the Section 5.

Algorithm 2 DA/∇DA
Initialize pi = r i = l +1, . . . ,n
Set T = 10C?, R = 1.5, ε = 10−6.
while H(puT) > ε do

Solve (wT ,bT ,puT) = argmin(w,b),pu
I ′′(w,b,pu;T) subject to: 1

u ∑n
i=l+1 pi = r

(find local minima starting from previous solution—alternating optimization or gradient meth-
ods can be used.)
T = T/R

end while
Return wT ,bT

3.4 Convex Relaxation

We follow Bie and Cristianini (2006) in this section, but outline the details for the squared Hinge
loss (see also Xu et al., 2004, for a similar derivation). Rewriting (1) as the familiar constrained

5. Strictly speaking, this approach is more along the lines of methods discussed in Section 4.
6. In Sindhwani et al. (2006), the best solution in the optimization path is returned.

210

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

output

lo
ss

Decreasing T

Figure 4: DA parameterizes a family of loss functions (over unlabeled examples) where the degree
of non-convexity is controlled by T . As T → 0, the original loss function (Figure 2) is
recovered.

DA ∇DA DA ∇DA
g50c 6.5 7 8.3 6.7
Text 13.6 5.7 6.2 6.5
Uspst 22.5 27.2 11 11
Isolet 38.3 39.8 28.6 26.9
Coil20 3 12.3 19.2 18.9
Coil3 49.1 61.6 60.3 60.6
2moons 36.8 22.5 62.1 30

Table 2: Generalization performance (error rates) of the two DA algorithms. DA is the original
algorithm (alternate optimization on pu and w). ∇DA is a direct gradient optimization on
(w,b), where pu should be considered as a function of (w,b). The first two columns report
results when C? = C and the last columns report results when C? = C/100. See Section 5
for more experimental details.

optimization problem of SVMs:

min
(w,b),yu

1
2
‖w‖2 +C

l

∑
i=1

ξ2
i +C?

n

∑
i=l+1

ξ2
i subject to: yioi ≥ 1−ξi i = 1, . . . ,n.

Consider the associated dual problem:

min
{yi}

max
α

n

∑
i=1

αi−
1
2

n

∑
i, j=1

αiα jyiy jKi j subject to:
n

∑
i=1

αiyi = 0, αi ≥ 0

where Ki j = x>i x j +Di j and D is a diagonal matrix given by Dii =
1

2C , i = 1, . . . , l and Dii =
1

2C? , i =
l +1, . . . ,n.

211

CHAPELLE, SINDHWANI AND KEERTHI

Introducing an n×n matrix Γ, the optimization problem can be reformulated as:

min
Γ

max
α

n

∑
i=1

αi−
1
2

n

∑
i, j=1

αiα jΓi jKi j (10)

under constraints ∑αiyi = 0, αi ≥ 0, Γ = yy>. (11)

The objective function (10) is now convex since it is the pointwise supremum of linear functions.
However the constraint (11) is not. The idea of the relaxation is to replace the constraint Γ = yy>

by the following set of convex constraints:

Γ� 0,

Γi j = yiy j, 1≤ i, j ≤ l,

Γii = 1, l +1≤ i≤ n.

Though the original method of Bie and Cristianini (2006) does not incorporate the class bal-
ancing constraint (3), one can additionally enforce it as 1

u2 ∑n
i, j=l+1 Γi j = (2r− 1)2. Such a soft

constraint is also used in the continuous S3VM optimization methods of Section 4.
The convex problem above can be solved through Semi-Definite Programming. The labels of

the unlabeled points are estimated from Γ (through one of its columns or its largest eigenvector).
This method is very expensive and scales as O((l + u2)2(l + u)2.5). It is possible to try to

optimize a low rank version of Γ, but the training remains slow even in that case. We therefore do
not conduct empirical studies with this method.

4. Continuous Optimization

In this section we consider methods which do not include yu, the labels of unlabeled examples, as
optimization variables, but instead solve suitably modified versions of (5) by continuous optimiza-
tion techniques. We begin by discussing two issues that are common to these methods.

Balancing Constraint The balancing constraint (3) is relatively easy to enforce for all algorithms
presented in Section 3. It is more difficult for algorithms covered in this section. The proposed
workaround, first introduced by Chapelle and Zien (2005), is to instead enforce a linear constraint:

1
u

n

∑
i=l+1

w>xi +b = 2r̃−1, (12)

where r̃ = r. The above constraint may be viewed as a “relaxation” of (3). For a given r̃, an easy way
of enforcing (12) is to translate all the points such that the mean of the unlabeled points is the origin,
that is, ∑n

i=l+1 xi = 0. Then, by fixing b = 2r̃− 1, we have an unconstrained optimization problem
on w. We will assume that the xi are translated and b is fixed in this manner; so the discussion will
focus on unconstrained optimization procedures for the rest of this section. In addition to being easy
to implement, this linear constraint may also add some robustness against uncertainty about the true
unknown class ratio in the unlabeled set (see also Chen et al., 2003, for related discussion).

However, since (12) relaxes (3),7 the solutions found by algorithms in this section cannot strictly
be compared with those in Section 3. In order to admit comparisons (this is particularly important
for the empirical study in Section 5), we vary r̃ in an outer loop and do a dichotomic search on this
value such that (3) is satisfied.

7. Note that simply setting r̃ = r in (12) will not enforce (3) exactly.

212

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

Primal Optimization For linear classification, the variables in w can be directly optimized. Non-
linear decision boundaries require the use of the “kernel trick” (Boser et al., 1992) using a kernel
function k(x,x′). While most of the methods of Section 3 can use a standard SVM solver as a sub-
routine, the methods of this section need to solve (5) with a non-convex loss function over unlabeled
examples. Therefore, they cannot directly use off-the-shelf dual-based SVM software. We use one
of the following primal methods to implement the techniques in this section.

Method 1 We find zi such that zi · z j = k(xi,x j). If B is a matrix having columns zi, this can
be written in matrix form as B>B = K. The Cholesky factor of K provides one such B. This
decomposition was used for ∇S3VM (Chapelle and Zien, 2005). Another possibility is to perform
the eigendecomposition of K as K =UΛU> and set B = Λ1/2U>. This latter case corresponds to the
kernel PCA map introduced by Schölkopf and Smola (2002, Section 14.2). Once the zi are found,
we can simply replace xi in (5) by zi and solve a linear classification problem. For more details, see
Chapelle et al. (2006a).

Method 2 We set w = ∑n
i=1 βiφ(xi) where φ denotes a higher dimensional feature map associated

with the nonlinear kernel. By the Representer theorem (Schölkopf and Smola, 2002), we indeed
know that the optimal solution has this form. Substituting this form in (5) and using the kernel
function yields an optimization problem with β as the variables.

Note that the centering mentioned above to implement (12) corresponds to using the modified
kernel Schölkopf and Smola (2002, page 431) defined by:

k(x,x′) := k(x,x′)−
1
u

n

∑
i=l+1

k(x,xi)−
1
u

n

∑
i=l+1

k(x′,xi)+
1
u2

n

∑
i, j=l+1

k(xi,x j). (13)

All the shifted kernel elements can be computed in O(n2) operations.
Finally, note that these methods are very general and can also be applied to algorithms of Sec-

tion 3.

4.1 Concave Convex Procedure (CCCP)

The CCCP method (Yuille and Rangarajan, 2003) has been applied to S3VMs by Fung and Man-
gasarian (2001), Collobert et al. (2006), and Wang et al. (2007). The description given here is close
to that in Collobert et al. (2006).

CCCP essentially decomposes a non-convex function f into a convex component fvex and a con-
cave component fcave. At each iteration, the concave part is replaced by a linear function (namely,
the tangential approximation at the current point) and the sum of this linear function and the convex
part is minimized to get the next iterate. The pseudocode is shown in Algorithm 3.

Algorithm 3 CCCP for minimizing f = fvex + fcave

Require: Starting point x0

t← 0
while ∇ f (xt) 6= 0 do

xt+1← argminx fvex(x)+∇ fcave(xt) ·x
t← t +1

end while

213

CHAPELLE, SINDHWANI AND KEERTHI

In the case of S3VM, the first two terms in (5) are convex. Splitting the last non-convex term
corresponding to the unlabeled part as the sum of a convex and a concave function, we have:

max(0,1−|t|)2 = max(0,1−|t|)2 +2|t|
︸ ︷︷ ︸

convex

−2|t|
︸ ︷︷ ︸

concave

.

If an unlabeled point is currently classified positive, then at the next iteration, the effective (convex)
loss on this point will be

L̃(t) =

0 if t ≥ 1,
(1− t)2 if |t|< 1,
−4t if t ≤−1.

A corresponding L̃ can be defined for the case of an unlabeled point being classified negative. The
CCCP algorithm specialized to S3VMs is given in Algorithm 4. For optimization variables we
employ method 1 given at the beginning of this section.

Algorithm 4 CCCP for S3VMs
Starting point: Use the w obtained from the supervised SVM solution.
repeat

yi← sign(w ·xi +b), l +1≤ i≤ n.
(w,b) = argmin 1

2‖w‖
2 +C ∑l

i=1 max(0,1− yi(w ·xi +b))2 +C? ∑n
i=l+1 L̃(yi(w ·xi +b)).

until convergence of yi, l +1≤ i≤ n.

The CCCP method given in Collobert et al. (2006) does not use annealing, that is, increasing
C? slowly in steps as in S3VMlight to help reduce local minima problems. We have however found
performance improvements with annealing (see Table 12).

4.2 ∇S3VM

This method is proposed by Chapelle and Zien (2005) to minimize directly the objective function
(5) by gradient descent. For optimization variables, method 1 given at the beginning of this section
is used. Since the function t 7→max(0,1−|t|)2 is not differentiable, it is replaced by t 7→ exp(−st2),
with s = 5 (see Figure 5), to get the following smooth optimization problem:8

min
w,b

1
2
‖w‖2 +C

l

∑
i=1

max(0,1− yi(w ·xi +b))2 +C?
n

∑
i=l+1

exp(−s(w ·xi +b)2). (14)

As for S3VMlight , ∇S3VM performs annealing in an outer loop on C?. In the experiments we
followed the same annealing schedule as in Chapelle and Zien (2005): C? is increased in 10 steps
to its final value. More precisely, at the ith step, C? is set to 2i−10C?

f inal .

4.3 Continuation S3VM (cS3VM)

Closely related to ∇S3VM, Chapelle et al. (2006a) proposes a continuation method for minimizing
(14). Gradient descent is performed on the same objective function (with the same loss for the

8. Chapelle and Zien (2005) used s = 3 with hinge loss, p = 1 in (2), but s = 5 seems to be a better choice for quadratic
hinge loss (p = 2).

214

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

Lo
ss

Signed output

Standard L
2
 loss

Differentiable approximation

Figure 5: The loss function on the unlabeled points t 7→ max(0,1−|t|)2 is replaced by a differen-
tiable approximation t 7→ exp(−5t2).

unlabeled points as shown in Figure 5), but the method used for annealing is different. Instead of
slowly increasing C?, it is kept fixed, and a continuation technique is used to transform the objective
function.

This kind of method belongs to the field of global optimization techniques (Wu, 1996). The idea
is similar to deterministic annealing (see Figure 6). A smoothed version of the objective function is
first minimized. With enough smoothing the global minimum can hopefully be easily found. Then
the smoothing is decreased in steps and the minimum is tracked—the solution found in one step
serves as the starting point for the next step. The method is continued until there is no smoothing
and so we get back to the solution of (14). Algorithm 5 gives an instantiation of the method in which
smoothing is achieved by convolution with a Gaussian, but other smoothing functions can also be
used.

Algorithm 5 Continuation method for solving minx f (x)

Require: Function f : R
d 7→ R, initial point x0 ∈ R

d

Require: Sequence γ0 > γ1 > .. .γp−1 > γp = 0.
Let fγ(x) = (πγ)−d/2 R

f (x− t)exp(−‖t‖2/γ)dt.
for i = 0 to p do

Starting from xi, find local minimizer xi+1 of fγi .
end for

It is not clear if one should only smooth the last non-convex term of (14) (the first two terms
are convex) or the whole objective as in Chapelle et al. (2006a). It is noteworthy that since the loss
for the unlabeled points is bounded, its convolution with a Gaussian of infinite width tends to the
zero function. In other words, with enough smoothing, the unlabeled part of the objective function
vanishes and the optimization is identical to a standard SVM.

215

CHAPELLE, SINDHWANI AND KEERTHI

large γ

γ=0

smaller γ

Figure 6: Illustration of the continuation method: the original objective function in blue has two
local minima. By smoothing it, we find one global minimum (the red star on the green
curve). By reducing the smoothing, the minimum moves toward the global minimum of
the original function.

4.4 Newton S3VM

One difficulty with the methods described in sections 4.2 and 4.3 is that their complexity scales as
O(n3) because they employ an unlabeled loss function that does not have a linear part, for example,
see (14). Compared to a method like S3VMlight (see Section 3.2), which typically scales as O(n3

sv
+

n2), this can make a large difference in efficiency when nsv (the number of support vectors) is small.
In this subsection we propose a new loss function for unlabeled points and an associated Newton
method (along the lines of Chapelle, 2007) which brings down the O(n3) complexity of the ∇S3VM
method.

To make efficiency gains we employ method 2 described at the beginning of this section (note
that method 1 requires an O(n3) preprocessing step) and perform the minimization on β, where
w = ∑n

i=1 βiφ(xi). Note that the βi are expansion coefficients and not the Lagrange multipliers αi

in standard SVMs. Let us consider general loss functions, `L for the labeled points, `U for the
unlabeled points, replace w by β as the variables in (5), and get the following optimization problem,

min
β

1
2

β>Kβ+C
l

∑
i=1

`L(yi(K
>
i β+b))+C?

n

∑
i=l+1

`U(K>i β+b), (15)

where K is the kernel matrix with Ki j = k(xi,x j) and Ki is the ith column of K.9

As we will see in detail below, computational time is dictated by nsv, the number of points that
lie in the domain of the loss function where curvature is non-zero. With this motivation we choose
the differentiable loss function plotted in Figure 7 having several linear and flat parts which are
smoothly connected by small quadratic components.10

9. Note that, the kernel elements used here correspond to the modified kernel elements in (13).
10. The CCCP method of Collobert et al. (2006) also considers a loss function with a flat middle part, but it was not

motivated by computational gains.

216

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

−1 −0.5 0 0.5 1

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7: The piecewise quadratic loss function `U and its derivative (divided by 4; dashed line).

Consider the solution of (15) with this choice of loss function. The gradient of (15) is

Kg with gi =

{
βi +C`′L(yi(K>i β+b))yi 1≤ i≤ l
βi +C?`′U(K>i β+b) l +1≤ i≤ n

. (16)

Using a gradient based method like nonlinear conjugate gradient would sill be costly because each
evaluation of the gradient requires O(n2) effort. To improve the complexity when nsv is small, one
can use Newton’s method instead. Let us now go into these details.

The Hessian of (15) is

K +KDK, with D diagonal, Dii =

{
C`′′L(yi(K>i β+b)) 1≤ i≤ l
C?`′′U(K>i β+b) l +1≤ i≤ n

. (17)

The corresponding Newton update is β← β− (K + KDK)−1Kg. The advantage of Newton opti-
mization on this problem is that the step can be computed in O(n3

sv
+n2) time11 as we will see below

(see also Chapelle, 2007, for a similar derivation). The number of Newton steps required is usually
a small finite constant.

A problem in performing a Newton optimization with a non-convex optimization function is that
the step might not be a descent direction because the Hessian is not necessarily positive definite. To
avoid this problem, we use the Levenberg-Marquardt algorithm (Fletcher, 1987, Algorithm 5.2.7).
Roughly speaking, this algorithm is the same as Newton minimization, but a large enough ridge is
added to the Hessian such that it becomes positive definite. For computational reasons, instead of
adding a ridge to the Hessian, we will add a constant times K.

The goal is to choose a λ≥ 1 such that λK+KDK is positive definite and solve (λK+KDK)−1Kg
efficiently. For this purpose, we reorder the points such that Dii 6= 0, i ≤ nsv and Dii = 0, i > nsv.
Let A be the Cholesky decomposition of K:12 A is the upper triangular matrix satisfying A>A = K.
We suppose that K (and thus A) is invertible. Let us write

λK +KDK = A>(λIn +ADA>)A.

11. Consistent with the way we defined earlier, note here that nsv is the number of “support vectors” where a support
vector is defined as a point xi such that Dii 6= 0.

12. As we will see below, we will not need the Cholesky decomposition of K but only that of of Ksv.

217

CHAPELLE, SINDHWANI AND KEERTHI

The structure of K and D implies that

λK +KDK � 0⇔ B := λInsv
+AsvDsvA>

sv
� 0,

where Asv is the Cholesky decomposition of Ksv and Ksv is the matrix formed using the first nsv

rows and columns of K. After some block matrix algebra, we can also get the step as

−(λK +KDK)−1Kg =

(
A−1

sv
B−1Asv(gsv−

1
λ DsvKsv,nsvgnsv)

1
λ gnsv

)

, (18)

where nsv refers to the indices of the ”non support vectors”, that is, {i, Dii = 0}. Computing this
direction takes O(n3

sv
+ n2) operations. The checking of the positive definiteness of B can be done

by doing Cholesky decomposition of Ksv. This decomposition can then be reused to solve the linear
system involving B. Full details, following the ideas in Fletcher (1987, Algorithm 5.2.7), are given
in Algorithm 6.

Algorithm 6 Levenberg-Marquardt method
β← 0.
λ← 1.
repeat

Compute g and D using (16) and (17)
sv←{i, Dii 6= 0} and nsv←{i, Dii = 0}.
Asv← Cholesky decomposition of Ksv.
Do the Cholesky decomposition of λInsv

+AsvDsvA>
sv

. If it fails, λ← 4λ and try again.
Compute the step s as given by (18).
ρ← Ω(β+s)−Ω(β)

1
2 s>(K+KDK)s+s>Kg

. % If the obj fun Ω were quadratic, ρ would be 1.

If ρ > 0, β← β+ s.
If ρ < 0.25, λ← 4λ.
If ρ > 0.75, λ←min(1, λ

2).
until Norm(g)≤ ε

As discussed above, the flat part in the loss (cf. Figure 7) provides computational value by
reducing nsv. But we feel it may also possibly help in leading to better local minimum. Take
for instance a Gaussian kernel and consider an unlabeled point far from the labeled points. At
the beginning of the optimization, the output on that point will be 0.13 This unlabeled point does
not contribute to pushing the decision boundary one way or the other. This seems like a satisfactory
behavior: it is better to wait to have more information before taking a decision on an unlabeled point
for which we are unsure. In Table 3 we compare the performance of the flat loss in Figure 7 and the
original quadratic loss used in (5). The flat loss yields a huge gain in performance on 2moons. On
the other data sets the two losses perform somewhat similarly. From a computational point of view,
the flat part in the loss can sometimes reduce the training time by a factor 10 as shown in Table 3.

5. Experiments

This section is organized around a set of empirical issues:

13. This is true only for balanced problems; otherwise, the output is b.

218

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

Error rate Training time
Flat Quadratic Flat Quadratic

g50c 6.1 5.3 15 39
Text 5.4 7.7 2180 2165
Uspst 18.6 15.9 233 2152
Isolet 32.2 27.1 168 1253
Coil20 24.1 24.7 152 1244
Coil3 61.5 58.4 6 8
2moons 11 66.4 1.7 1.2

Table 3: Comparison of the Newton-S3VM method with two different losses: the one with a flat
part in the middle (see Figure 7) and the standard quadratic loss (Figure 2). Left: error rates
on the unlabeled set; right: average training time in seconds for one split and one binary
classifier training (with annealing and dichotomic search on the threshold as explained in
the experimental section). The implementations have not been optimized, so the training
times only constitute an estimate of the relative speeds.

1. While S3VMs have been very successful for text classification (Joachims, 1999), there are
many data sets where they do not return state-of-the-art empirical performance (Chapelle and
Zien, 2005). This performance variability is conjectured to be due to local minima problems.
In Section 5.3, we discuss the suitability of the S3VM objective function for semi-supervised
learning. In particular, we benchmark current S3VM implementations against the exact, glob-
ally optimal solution and we discuss whether one can expect significant improvements in
generalization performance by better approaching the global solution.

2. Several factors influence the performance and behavior of S3VM algorithms. In Section 5.4
we study their quality of optimization, generalization performance, sensitivity to hyperpa-
rameters, effect of annealing and the robustness to uncertainty in class ratio estimates.

3. S3VMs were originally motivated by Transductive learning, the problem of estimating labels
of unlabeled examples without necessarily producing a decision function over the entire input
space. However, S3VMs are also semi-supervised learners as they are able to handle unseen
test instances. In Section 5.5, we run S3VM algorithms in an inductive mode and analyze
performance differences between unlabeled and test examples.

4. There is empirical evidence that S3VMs exhibit poor performances on “manifold” type data
(where graph-based methods typically excel) or when the data has many distinct sub-clusters
(Chapelle and Zien, 2005). We explore the issue of data geometry and S3VM performance in
Section 5.6.

At the outset, we point out that this section does not provide an exhaustive cross-comparison
between algorithms. Such a comparison would require, say, cross-validation over multiple hyperpa-
rameters, randomization over choices of labels, dichotomic search to neutralize balance constraint
differences and handling different choices of annealing sequences. This is computationally quite
demanding and, more seriously, statistically brittle due to the lack of labeled validation data in

219

CHAPELLE, SINDHWANI AND KEERTHI

semi-supervised tasks. Our goal, therefore, is not so much to establish a ranking of algorithms
reviewed in this paper, but rather to observe their behavior under a neutral experimental protocol.

We next describe the data sets used in our experiments. Note that our choice of data sets is
biased towards multi-class manifold-like problems which are particularly challenging for S3VMs.
Because of this choice, the experimental results do not show the typically large improvements one
might expect over standard SVMs. We caution the reader not to draw the conclusion that S3VM is a
weak algorithm in general, but that it often does not return state-of-the-art performance on problems
of this nature.

5.1 Data Sets

Most data sets come from Chapelle and Zien (2005). They are summarized in Table 4.

data set classes dims points labeled
g50c 2 50 550 50
Text 2 7511 1946 50
Uspst 10 256 2007 50
Isolet 9 617 1620 50
Coil20 20 1024 1440 40
Coil3 3 1024 216 6
2moons 2 102 200 2

Table 4: Basic properties of benchmark data sets.

The artificial data set g50c is inspired by Bengio and Grandvalet (2004): examples are generated
from two standard normal multi-variate Gaussians, the labels correspond to the Gaussians, and
the means are located in 50-dimensional space such that the Bayes error is 5%. The real world
data sets consist of two-class and multi-class problems. The Text data set is defined using the
classes mac and mswindows of the Newsgroup20 data set preprocessed as in Szummer and Jaakkola
(2001). The Uspst set contains the test data part of the well-known USPS data on handwritten
digit recognition. The Isolet is a subset of the ISOLET spoken letter database (Cole et al., 1990)
containing the speaker sets 1, 2 and 3 and 9 confusing letters {B,C,D,E,G,P,T,V,Z}. In Coil20
(respectively Coil3), the data are gray-scale images of 20 (respectively 3) different objects taken
from different angles, in steps of 5 degrees (Nene et al., 1996). The Coil3 data set has been used
first by Chapelle et al. (2006c) and is particularly difficult since the 3 classes are 3 cars which look
alike (see Figure 8).

Figure 8: The 3 cars from the COIL data set, subsampled to 32×32

220

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

Finally, 2moons has been used extensively in the semi-supervised learning literature (see for
instance Zhu and Ghahramani, 2002, and Figure 1). For this data set, the labeled points are fixed
and new unlabeled points are randomly generated for each repetition of the experiment.

5.2 Experimental Setup

To minimize the influence of external factors, unless stated otherwise, the experiments were run in
the following normalized way:

Hyperparameters The Gaussian kernel k(x,y) = exp(−‖x− y‖2/2σ2) was used. For simplicity
the constant C? in (1) was set to C.14 The same hyperparameters C and σ have been used
for all the methods. They are found with cross-validation by training an inductive SVM on
the entire data set (the unlabeled points being assigned their real label). These values are
reported in Table 5. Even though it seems fair to compare the algorithms with the same
hyperparameters, there is a possibility that some regime of hyperparameter settings is more
suitable for a particular algorithm than for another. We discuss this issue in section 5.4.3.

Multi-class Data sets with more than two classes are learned with a one-versus-the-rest approach.
The reported objective value is the mean of the objective values of the different classifiers.
We also conducted experiments on pair-wise binary classification problems (cf. Section 5.6.1)
constructed from the multi-class data sets.

Objective value Even though the objective function that we want to minimize is (5), some algo-
rithms like ∇S3VM use another (differentiable) objective function. In order to compare the
objective values of the different algorithms, we do the following: after training, we predict the
labels of the unlabeled points and train a standard SVM on this augmented labeled set (with
p = 2 in (2) and C, C? weightings on originally labeled and unlabeled terms respectively).
The objective value reported is the one of this SVM.

Balancing constraint For the sake of simplicity, we set r in the balancing constraint (3) to the true
ratio of the positive points in the unlabeled set. This constraint is relatively easy to enforce
for all algorithms presented in Section 3. It is more difficult for algorithms in Section 4 and,
for them we used the dichotomic search described at the beginning of Section 4.

For a given data set, we randomly split the data into a labeled set and an unlabeled set. We refer
to the error rate on the unlabeled set as the unlabeled error to differentiate it from the test error
which would be computed on an unseen test set. Results are averaged over 10 random splits. The
difference between unlabeled and test performance is discussed in Section 5.5.

5.3 Suitability of the S3VM Objective Function

Table 1 shows unlabeled error rates for common S3VM implementations on two small data sets
Coil3 and 2moons. On these data sets, we are able to also run Branch-and-Bound and get the true
globally optimal solution. We see that the global optimum corresponds to a perfect solution, while
the local minima found by approximate implementations yield very poor accuracies. From these
results, it appears that the minimization of the S3VM objective function makes good sense, even

14. Alternatively, one could set C? = C l
u to have equal contribution from labeled and unlabeled points.

221

CHAPELLE, SINDHWANI AND KEERTHI

σ C
g50c 38 19
Text 3.5 31
Uspst 7.4 38
Isolet 15 43
Coil20 2900 37
Coil3 3000 100
2moons 0.5 10

Table 5: Values of the hyperparameters used in the experiments.

though the performance of practical S3VM may not consistently reflect this due to local minima
problems.

Table 6 records the rank correlation between unlabeled error and objective function. The rank
correlation has been computed in the following way. For each split, we take 10 different solutions
and compute the associated unlabeled error and objective value. Ideally, we would like to sam-
ple these solutions at random around local minima. But since it is not obvious how to do such a
sampling, we simply took the solution given by the different S3VM algorithms as well as 4 “inter-
mediate” solutions obtained as follows. A standard SVM is trained on the original labeled set and
a fraction of the unlabeled set (with their true labels). The fraction was either 0, 10, 20 or 30%.
The labels of the remaining unlabeled points are assigned through a thresholding of the real value
outputs of the SVM. This threshold is such that the balancing constraint (3) is satisfied. Finally, an
SVM is retrained using the entire training set. By doing so, we “sample” solutions varying from an
inductive SVM trained on only the labeled set to the optimal solution. Table 6 provides evidence
that the unlabeled error is correlated with the objective values.

Coefficient
g50c 0.2
Text 0.67
Uspst 0.24
Isolet 0.23
Coil20 0.4
Coil3 0.17
2moons 0.45

Table 6: Kendall’s rank correlation (Abdi, 2006) between the unlabeled error and the objective
function averaged over the 10 splits (see text for details).

5.4 Behavior of S3VM Algorithms

Several factors influence the performance and behavior of S3VM algorithms. We study their quality
of optimization, generalization performance, sensitivity to hyperparameters, effect of annealing and
the robustness to uncertainty in class ratio estimates.

222

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

5.4.1 QUALITY OF MINIMIZATION

In Table 7 we compare different algorithms in terms of minimization of the objective function.
∇S3VM and cS3VM appear clearly to be the methods achieving the lowest objective values. How-
ever, as we will see in the next section, this does not necessarily translate into lower unlabeled
errors.

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton
1.7 1.9 4.5 4.9 4.3 3.7

Table 7: For each data set and each split, the algorithms were ranked according to the objective
function value they attained. This table shows the average ranks. These ranks are only
about objective function values; error rates are discussed below.

5.4.2 QUALITY OF GENERALIZATION

Table 8 reports the unlabeled errors of the different algorithms on our benchmark data sets. A first
observation is that most algorithms perform quite well on g50c and Text. However, the unlabeled
errors on the other data sets, Uspst, Isolet, Coil20, Coil3, 2moons (see also Table 1) are poor and
sometimes even worse than a standard SVM. As pointed out earlier, these data sets are particularly
challenging for S3VMs. Moreover, the honors are divided and no algorithm clearly outperforms the
others. We therefore cannot give a recommendation on which one to use.

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton SVM SVM-5cv

g50c 6.7 6.4 6.3 6.2 7 6.1 8.2 4.9
Text 5.1 5.3 8.3 8.1 5.7 5.4 14.8 2.8
Uspst 15.6 36.2 16.4 15.5 27.2 18.6 20.7 3.9
Isolet 25.8 59.8 26.7 30 39.8 32.2 32.7 6.4
Coil20 25.6 30.7 26.6 25.3 12.3 24.1 24.1 0

Table 8: Unlabeled errors of the different S3VMs implementations. The next to the last column is an
SVM trained only on the labeled data, while the last column reports 5 fold cross-validation
results of an SVM trained on the whole data set using the labels of the unlabeled points.
The values in these two columns can be taken as upper and lower bounds on the best
achievable error rates. See Table 1 for results on Coil3 and 2moons.

Note that these results may differ from the ones previously reported by Chapelle and Zien
(2005), Collobert et al. (2006), Sindhwani et al. (2006), and Chapelle et al. (2006a) on the same
data sets. Most of this difference comes from the choice of the hyperparameters. Indeed, as ex-
plained below, several algorithms are rather sensitive to the choice of hyperparameters. The exact
experimental setting is also different. In results reported elsewhere, r is often estimated from the la-
beled set and the constraint is often a “soft” one. In Table 8, the hard balance constraint is enforced
for all methods assuming r to be known exactly. Finally, in Chapelle et al. (2006a), only pair-wise

223

CHAPELLE, SINDHWANI AND KEERTHI

binary problems were considered for the cS3VM algorithm, while results in Table 8 for multiclass
data sets are obtained under a one-versus-the-rest setup.

5.4.3 SENSITIVITY TO HYPERPARAMETERS

As mentioned before, it is possible that different algorithms excel in different hyperparameter
regimes. This is more likely to happen due to better local minima at different hyperparameters
as opposed to a better global solution (in terms of error rates).

Due to computational constraints, instead of setting the three hyperparameters (C,C? and the
Gaussian kernel width, σ) by cross-validation for each of the methods, we explored the influence
of these hyperparameters on one split of the data. More specifically, Table 9 shows the relative
improvement (in %) that one can gain by selecting other hyperparameters. These numbers may
be seen as a measure of the robustness of a method. Note that these results have to be interpreted
carefully because they are only on one split: for instance, it is possible that“by chance” the method
did not get stuck in a bad local minimum for one of the hyperparameter settings, leading to a larger
number in Table 9.

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton
g50c 31.2 31.2 27.8 13.3 35 7.7
Text 22 7.1 29.2 19.9 34.4 1.1
Uspst 12 70.2 19.2 0 41 15.6
Isolet 7.6 57.6 8 0 4.9 2.6
Coil20 46.4 42.7 27.9 5.8 5.7 16.9
Coil3 32.6 39.2 15.3 20.2 5.8 24.6
2moons 45.6 50 54.1 13.5 23.5 0
Mean 28.2 42.6 25.9 10.4 21.5 9.8

Table 9: On the 1st split of each data set, 27 set of hyperparameters (σ′,C′,C?′) have been tested
from σ′ ∈ { 1

2 σ,σ,2σ},C′ ∈ { 1
10C,C,10C},C?′ ∈ { 1

100C′, 1
10C′,C′}. The table shows the

relative improvement (in %) by taking the best hyperparameters over default ones.

By measuring the variation of the unlabeled errors with respect to the choice of the hyperpa-
rameters, Table 10 records an indication of the sensitivity of the method with respect to that choice.
From this point of view S3VMlight appears to be the most stable algorithm.

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton
6.8 8.5 6.5 2.7 8.4 8.7

Table 10: The variance of the unlabeled errors have been averaged over the 27 possible hyperpa-
rameters (cf. Table 9). The table shows those variance averaged over the data sets. A
small number shows that a given method is not too sensitive to the choice of the hyper-
parameters.

224

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

Finally, from the experiments in Table 9, we observed that in some cases a smaller value of C?

is helpful. We have thus rerun the algorithms on all the splits with C? divided by 100: see Table 11.
The overall performance does not necessarily improve, but the very poor results become better (see
for instance Uspst,Isolet,Coil20 for cS3VM).

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton
g50c 8.3 8.3 8.5 8.4 6.7 7.5
Text 5.7 5.8 8.5 8.1 6.5 14.5
Uspst 14.1 15.6 14.9 14.5 11 19.2
Isolet 27.8 28.5 25.3 29.1 26.9 32.1
Coil20 23.9 23.6 23.6 21.8 18.9 24.6
Coil3 60.8 55.0 56.3 59.2 60.6 60.5
2moons 65.0 49.8 66.3 68.7 30 33.5

Table 11: Same as Table 8, but with C? divided by 100.

5.4.4 EFFECT OF ANNEALING SCHEDULE

All the algorithms described in this paper use some sort of annealing (e.g., gradually decreasing
T in DA or increasing C? in S3VMlight in an outer loop) where the role of the unlabeled points is
progressively increased. The three ingredients to fix are:

1. The starting point which is usually chosen in such a way that the unlabeled points have very
little influence and the problem is thus almost convex.

2. The stopping criterion which should be such that the annealed objective function and the
original objective function are very close.

3. The number of steps. Ideally, one would like to have as many steps as possible, but for
computational reasons the number of steps is limited.

In the experimental results presented in Figure 9, we only varied the number of steps. The start-
ing and final values are as indicated in the description of the algorithms. The original CCCP paper
did not have annealing and we used the same scheme as for ∇S3VM: C? is increased exponentially
from 10−3C to C. For DA and ∇DA, the final temperature is fixed at a small constant and the de-
crease rate R is such that we have the desired number of steps. For all algorithms, one step means
that there is no annealing.

One has to be cautious when drawing conclusion from this plot. Indeed, the results are only for
one data set, one split and fixed hyperparameters. The goal is to get an idea of whether the annealing
for a given method is useful; and if so, how many steps should be taken. From this plot, it seems
that:

• All methods, except Newton, seem to benefit from annealing. However, on some other data
sets, annealing improved the performances of Newton’s method (results not shown).

• Most methods do not require a lot of steps. More precisely, we have noticed that the number
of steps does not matter as much as the minimization around a “critical” value of the annealing
parameter; if that point is missed, then the results can be bad.

225

CHAPELLE, SINDHWANI AND KEERTHI

 1 2 4 8 16 32
0

0.1

0.2

0.3

0.4

Number of steps

T
es

t e
rr

or

∇−S3VM

cS3VM
CCCP

SVMlight

DA
Newton
∇DA

Figure 9: Influence of the number of annealing steps on the first split of Text.

No annealing Annealing
g50c 7.9 6.3
Text 14.7 8.3
Uspst 21.3 16.4
Isolet 32.4 26.7
Coil20 26.1 26.6
Coil3 49.3 56.6
2moons 67.1 63.1

Table 12: Performance of CCCP with and without annealing. The annealing schedule is the same
as the one used for ∇S3VM and Newton: C? is increased in 10 steps from its final value
divided by 1000.

• DA seems the method which relies the most on a relatively slow annealing schedule, while
∇DA can have a faster annealing schedule.

• CCCP was originally proposed without annealing, but it seems that its performance can be
improved by annealing. To confirm this fact, Table 12 compares the results of CCCP with
and without annealing on the 10 splits of all the data sets.

The results provided in Table 8 are with annealing for all methods.

5.4.5 ROBUSTNESS TO CLASS RATIO ESTIMATE

Several results reported in the previous tables are better than, for instance, the results in Chapelle
and Zien (2005); Chapelle et al. (2006a). This is because (a) we took into account the knowledge
of the true class ratio among the unlabeled examples, and (b) we enforced the constraint (3) exactly
(with the dichotomic search described at the beginning of Section 4).

226

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

Of course, in practice the true number of positive points is unknown. One can estimate it from
the labeled points as:

r =
1
2

(

1
l

l

∑
i=1

yi +1

)

.

Table 13 presents the generalization performances in this more realistic context where class ratios
are estimated as above and original soft balance constraint is used where applicable (recall the
discussion in Section 4).

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton SVM
g50c 7.2 6.6 6.7 7.5 8.4 5.8 9.1
Text 6.8 5 12.8 9.2 8.1 6.1 23.1
Uspst 24.1 41.5 24.3 24.4 29.8 25 24.2
Isolet 48.4 58.3 43.8 36 46 45.5 38.4
Coil20 35.4 51.5 34.5 25.3 12.3 25.4 26.2
Coil3 64.4 59.7 59.4 56.7 61.7 62.9 51.8
2moons 62.2 33.7 55.6 68.8 22.5 8.9 44.4

Table 13: Constant r estimated from the labeled set. For methods of Section 4, the original con-
straint (12) is used; there is no dichotomic search (see beginning of Section 4).

5.5 Transductive Versus Semi-supervised Learning

S3VMs were introduced as Transductive SVMs, originally designed for the task of directly estimat-
ing labels of unlabeled points. However S3VMs provide a decision boundary in the entire input
space, and so they can provide labels of unseen test points as well. For this reason, we believe
that S3VMs are inductive semi-supervised methods and not strictly transductive. A discussion on
the differences between semi-supervised learning and transduction can be found in Chapelle et al.
(2006b, Chapter 25).15

We expect S3VMs to perform equally well on the unlabeled set and on an unseen test set. To
test this hypothesis, we took out 25% of the unlabeled set that we used as a unseen test set. We
performed 420 experiments (6 algorithms, 7 data sets and 10 splits). Based on these 420 pairs of
error rates, we did not observe a significant difference at the 5% confidence level. Also, for each of
the 7 data sets (resp 6 algorithms), there was no statistical significant differences in the 60 (resp 70)
pairs of error rates.

Similar experiments were performed by Collobert et al. (2006, Section 6.2). Based on 10 splits,
the error rate was found to be better on the unlabeled set than on the test set. The authors made
the hypothesis that when the test and training data are not identically distributed, transduction can
be helpful. Indeed, because of small sample effect, the unlabeled and test set could appear as not
coming from the same distribution (this is even more likely in high dimension).

We considered the g50c data set and biased the split between unlabeled and test set such that
there is an angle between the principal directions of the two sets. Figure 10 shows a correlation

15. Paper is available at http://www.kyb.tuebingen.mpg.de/ssl-book/discussion.pdf.

227

CHAPELLE, SINDHWANI AND KEERTHI

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−0.2

−0.15

−0.1

−0.05

0

0.05

Angle

E
rr

or
 d

iff
er

en
ce

Figure 10: The test set of g50c has been chosen with a bias such that there is an angle between
the principal directions of the unlabeled and test sets. The figure shows the difference
in error rates (negative means better error rate on the unlabeled set) as a function of the
angle for different random (biased) splits.

between the difference in error rates and this angle: the error on the test set deteriorates as the angle
increases. This confirms the hypothesis stated above.

5.6 Role of Data Geometry

There is empirical evidence that S3VMs exhibit poor performances on “manifold” type data or when
the data has many distinct sub-clusters (Chapelle and Zien, 2005). We now explore this issue and
propose an hybrid method combining the S3VM and LapSVM (Sindhwani et al., 2005).

5.6.1 EFFECT OF MULTIPLE CLUSTERS

In Chapelle et al. (2006a), cS3VM exhibited poor performance in multiclass problems with one-
versus-the-rest training, but worked well on pairwise binary problems that were constructed (using
all the labels) from the same multiclass data sets. Note that in practice it is not possible to do
semi-supervised one-vs-one multiclass training because the labels of the unlabeled points are truly
unknown.

We compared different algorithms on pairwise binary classification tasks for all the multiclass
problems. Results are shown in the first 4 rows of Table 14. Except on Coil3, most S3VM algo-
rithms show improved performances. There are two candidate explanations for this behavior:

1. The binary classification problems in one-versus-the-rest are unbalanced and this creates dif-
ficulties for S3VMs.

228

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

∇S3VM cS3VM CCCP S3VMlight ∇DA Newton SVM SVM-5cv
Uspst 1.9 2 2.8 2.9 4 1.9 5.3 0.9
Isolet 4.8 11.8 5.5 5.7 5 6.3 7.3 1.2
Coil20 2.8 3.9 2.9 3.1 2.7 2.4 3.3 0
Coil3 45.8 48.7 40.3 41.3 44.5 47.2 36.7 0
Uspst2 15.6 25.7 16.6 16.1 20 16 17.7 3

Table 14: Experiments in a pairwise binary setting. Uspst2 is the same set as Uspst but where the
task is to classify digits 0 to 4 versus 5 to 9.

2. In a one-versus-the-rest approach, the negative class is the concatenation of several classes
and is thus made up of several clusters. This might accentuate the local minimum problem of
S3VMs.

To test these hypothesis, we created a binary version of Uspst by classifying digits 0 to 4 versus 5
to 9: this data set (Uspst2 in Table 14) is balanced but each class is made of several clusters. The
fact that the S3VMs algorithms were not able to perform significantly better than the SVM baseline
tends to accredit the second hypothesis: S3VM results deteriorate when there are several clusters
per class.

5.6.2 HYBRID S3VM-GRAPH METHODS

Recall that the results in Table 8 boost the empirical evidence that S3VMs do not return state-
of-the-art performance on “manifold”-like data sets. On these data sets the cluster assumption
is presumably satisfied under an intrinsic “geodesic” distance rather than the original euclidean
distance between data points. It is reasonable, therefore, to attempt to combine S3VMs with choices
of kernels that conform to the particular geometry of the data.

LapSVM (Sindhwani et al., 2005) is a popular semi-supervised algorithm in which a kernel
function is constructed from the Laplacian of an adjacency graph that models the data geometry;
this kernel is then used with a standard SVM. This procedure was shown to be very effective on data
sets with a manifold structure. In Table 15 we report results with a hybrid S3VM-graph method: the
kernel is constructed as in LapSVM,16 but then it is plugged into S3VMlight . Such a hybrid was first
described in Chapelle et al. (2006a) where cS3VM was combined with LapSVM.

The results of this hybrid method is very satisfactory, often outperforming both LapSVM and
S3VMlight .

Such a method complements the strengths of both S3VM and Graph-based approaches: the
S3VM adds robustness to the construction of the graph, while the graph enforces the right cluster
structure to alleviate local minima problems in S3VMs. We believe that this kind of technique is
probably one of the most robust and powerful way for a semi-supervised learning problem.

16. Hyperparameters were chosen based on experiments in Sindhwani et al. (2005) without any extensive tuning.

229

CHAPELLE, SINDHWANI AND KEERTHI

Exact r (Table 8 setting) Estimated r (Table 13 setting)
LapSVM S3VMlight LapSVM-S3VMlight S3VMlight LapSVM-S3VMlight

g50c 6.4 6.2 4.6 7.5 6.1
Text 11 8.1 8.3 9.2 9.0
Uspst 11.4 15.5 8.8 24.4 19.6
Isolet 41.2 30.0 46.5 36.0 49.0
Coil20 11.9 25.3 12.5 25.3 12.5
Coil3 20.6 56.7 17.9 56.7 17.9
2moons 7.8 68.8 5.1 68.8 5.1

Table 15: Comparison of a Graph-based method, LapSVM (Sindhwani et al., 2005), with
S3VMlightand hybrid LapSVM-S3VMlight results under the settings of Table 8 and 13.

6. A Note on Computational Complexity

Even though a detailed comparison of the computational complexity of the different algorithms is
out of the scope of this paper, we can still give the following rough picture.

First, all methods use annealing and so the complexity depends on the number of annealing
steps. This dependency is probably sublinear because when the number of steps is large, retraining
after each (small) step is less costly. We can divide the methods in two categories:

1. Methods whose complexity is of the same order as that of a standard SVM trained with
the predicted labels of the unlabeled points, which is O(n3

sv
+n2) where nsv is the number of

points which are in a non-linear part of the loss function. This is clearly the case for S3VMlight

since it relies on an SVM optimization. Note that the training time of this algorithm can be
sped up by swapping labels in “batch” rather than one by one (Sindhwani and Keerthi, 2006).
CCCP is also in this category as the optimization problem it has to solve at each step is
very close to an SVM. Finally, even if the Newton method is not directly solved via SVM, its
complexity is also O(n3

sv
+n2) and we include it in this category. For both CCCP and Newton,

the possibility of having a flat part in the middle of the loss function can reduce nsv and thus
the complexity. We have indeed observed with the Newton method that the convergence can
be an order of magnitude faster when the loss includes this flat part in the middle (see Table 3).

2. Gradient based methods, namely ∇S3VM, cS3VM and ∇DA do not have any linear part in
the objective function and so they scale as O(n3). Note that it is possible to devise a gradient
based method and a loss function that contains some linear parts. The complexity of such an
algorithm would be O(nn2

sv
+n2).

The original DA algorithm alternates between optimization of w and pu and can be understood
as block coordinate optimization. We found that it was significantly slower than the other algo-
rithms; its direct gradient-based optimization counterpart, ∇DA, is usually much faster.

Finally, note that even if the algorithms of the second category have a complexity of O(n3), one
can find an approximate solution by reducing the dimensionality of the problem from n to m and
get a complexity of O(nm2). For instance, Chapelle et al. (2006a) reports a speed-up of 100 times
without loss in accuracy for cS3VM.

230

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

Ultimately a semi-supervised learning algorithm should be able to handle data sets with millions
of unlabeled points. The best way of scaling up S3VMs is still an open question and should be the
topic of future research.

7. Conclusion

When practical S3VM implementations fail to give good results on a problem, one might suspect
that either: (a) the cluster assumption does not hold; or, (b) the cluster assumption holds but lo-
cal minima problems are severe; or, (c) the S3VM objective function is unable to implement the
cluster assumption. We began our empirical study by benchmarking current S3VM implementa-
tions against a global optimizer. Our results (see Section 5.3) narrowed the cause for performance
loss down to suboptimal local minima, and established a correlation between generalization perfor-
mance and the S3VM objective function. For problems where the cluster assumption is true, we
expect the S3VM objective to indeed be an appropriate quantity to minimize. Due to non-convexity
however, this minimization is not completely straightforward—an assortment of optimization tech-
niques have been brought to bear on this problem with varying degrees of success. In this paper,
we have reviewed these techniques and studied them empirically, taking several subtle differences
into account. In a neutral experimental protocol, we were unable to identify any single technique
as being consistently superior to another in terms of generalization performance. We believe better
methods are still needed to optimize the S3VM objective function.

While S3VMs return good performance on textual data sets, they are currently not competitive
with graph-methods on domains such as image classification often characterized by multiple, highly
non-Gaussian clusters. A particularly promising class of techniques (see Section 5.6.2) is based on
combining S3VMs with graph methods.

S3VMs have been sparingly explored in domains other than text and image classification. New
application domains may provide additional insight into the behavior of S3VM methods while en-
hancing their general appeal for semi-supervised learning. Another major theme is the extension of
S3VMs for structured output problems, possibly building on one of several recent lines of work for
handling complex supervised learning tasks. A first step towards such an extension would require a
clear statement of the cluster assumption applicable to the semi-supervised structured output setting.
These are fertile areas for future research.

References

H. Abdi. Kendall rank correlation. In N.J. Salkind, editor, Encyclopedia of Measurement and
Statistics. SAGE, 2006.

A. Astorino and A. Fuduli. Nonsmooth optimization techniques for semi-supervised classification.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(12):2135–2142, 2007.

Y. Bengio and Y. Grandvalet. Semi-supervised learning by entropy minimization. In Advances in
Neural Information Processing Systems, volume 17, 2004.

K. Bennett and A. Demiriz. Semi-supervised support vector machines. In Advances in Neural
Information Processing Systems 12, 1998.

231

CHAPELLE, SINDHWANI AND KEERTHI

T. De Bie and N. Cristianini. Semi-supervised learning using semi-definite programming. In
O. Chapelle, B. Schoëlkopf, and A. Zien, editors, Semi-supervised Learning. MIT Press, 2006.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers.
In Fifth Annual Workshop on Computational Learning Theory, pages 144–152. ACM Press, New
York, NY, 1992.

O. Chapelle. Training a support vector machine in the primal. Neural Computation, 19(5):1155–
1178, 2007.

O. Chapelle and A. Zien. Semi-supervised classification by low density separation. In Tenth Inter-
national Workshop on Artificial Intelligence and Statistics, 2005.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support
vector machines. Machine Learning, 46(1-3):131–159, 2002.

O. Chapelle, M. Chi, and A. Zien. A continuation method for semi-supervised SVMs. In Interna-
tional Conference on Machine Learning, 2006a.

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006b. URL http://www.kyb.tuebingen.mpg.de/ssl-book.

O. Chapelle, V. Sindhwani, and S. Keerthi. Branch and bound for semi-supervised support vector
machines. In Advances in Neural Information Processing Systems, 2006c.

Y. Chen, G. Wang, and S. Dong. Learning with progressive transductive support vector machine.
Pattern Recognition Letter, 24(12):1845–1855, 2003.

R. Cole, Y. Muthusamy, and M. Fanty. The ISOLET spoken letter database. Technical Report CS/E
90-004, Oregon Graduate Institute, 1990.

R. Collobert, F. Sinz, J. Weston, and L. Bottou. Large scale transductive SVMs. Journal of Machine
Learning Research, 7:1687–1712, 2006.

R. Fletcher. Practical Methods of Optimization. John Wiley and Sons, 1987.

G. Fung and O. Mangasarian. Semi-supervised support vector machines for unlabeled data classifi-
cation. Optimization Methods and Software, 15:29–44, 2001.

T. Joachims. Transductive inference for text classification using support vector machines. In Inter-
national Conference on Machine Learning, 1999.

H. Liu and S.-T. Huang. Fuzzy transductive support vector machines for hypertext classification.
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 12(1):21–36,
2004.

S. A. Nene, S. K. Nayar, and H. Murase. Columbia object image library (coil-20). Technical Report
CUCS-005-96, Columbia Univ., USA, 1996.

B. Schölkopf and A.J. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

232

OPTIMIZATION TECHNIQUES FOR SEMI-SUPERVISED SUPPORT VECTOR MACHINES

M. Seeger. A taxonomy of semi-supervised learning methods. In O. Chapelle, B. Schölkopf, and
A. Zien, editors, Semi-Supervised Lerning. MIT Press, 2006.

M. Silva, T. Maia, and A. Braga. An evolutionary approach to transduction in support vector ma-
chines. In Fifth International Conference on Hybrid Intelligent Systems, pages 329–334, 2005.

V. Sindhwani and S. S. Keerthi. Large scale semi-supervised linear SVMs. In SIGIR, 2006.

V. Sindhwani, P. Niyogi, and M. Belkin. Beyond the point cloud: From transductive to semi-
supervised learning. In International Conference on Machine Learning, 2005.

V. Sindhwani, S. Keerthi, and O. Chapelle. Deterministic annealing for semi-supervised kernel
machines. In International Conference on Machine Learning, 2006.

M. Szummer and T. Jaakkola. Partially labeled classification with markov random walks. In Ad-
vances in Neural Information Processing Systems, volume 14, 2001.

V. Vapnik and A. Sterin. On structural risk minimization or overall risk in a problem of pattern
recognition. Automation and Remote Control, 10(3):1495–1503, 1977.

V. N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., New York, 1998.

L. Wang, X. Shen, and W. Pan. On transductive support vector machines. In J. Verducci, X. Shen,
and J. Lafferty, editors, Prediction and Discovery. American Mathematical Society, 2007.

W. Wapnik and A. Tscherwonenkis. Theorie der Zeichenerkennung. Akademie Verlag, Berlin,
1979.

Z. Wu. The effective energy transformation scheme as a special continuation approach to global
optimization with application to molecular conformation. SIAM Journal on Optimization, 6(3):
748–768, 1996.

L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In Advances in
Neural Information Processing Systems, 2004.

A. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:915–936,
2003.

X. Zhu and Z. Ghahramani. Learning from labeled and unlabeled data with label propagation.
Technical Report 02-107, CMU-CALD, 2002.

233

